
Open Source and IMS Learning Design: Building the Infrastructure for eLearning

David Griffiths Josep Blat
Universitat Pompeu Fabra Universitat Pompeu Fabra

Barcelona, Spain Barcelona, Spain
david.griffiths@upf.edu josep.blat@upf.edu

Ray Elferink Sara Zondergeld
RayCom BV, Netherlands RayCom BV, Netherlands
Raymond@raycom.com sara@raycom.com

Abstract – The development of open, flexible eLearning
specifications has significant implications for and interactions
with the FOSS movement. A short overview of eLearning
specifications is provided, focusing on the difference between
SCORM and Learning Design (LD). The significance of LD
for FOSS is examined, and common values identified. The
particular contribution made by FOSS to LD infrastructure is
discussed, and the importance of reference applications
described. An overview is given of the FOSS applications
available, divided into design time and run time, with
particular reference to LD editors and the CopperCore
Learning Design engine.

I. INTRODUCTION

This paper is strongly informed by discussions held in the
context of two European projects in which the authors are
involved. Firstly they are members of the Special Interest
Group on Organisation and Management Issues of
SIGOSSEE/JOIN [1] which promotes the use of Free and
Open Source Software in education.e. Secondly, the
UNFOLD project [2], which supports the adoption of IMS
Learning Design, which we explain later. The cross
fertilisation between the two communities of participants in
the projects has given rise to many of observations made
here, and provided the context for examining the
contributions which Open Source and Open Standards can
bring to each other communities of developers and users.

Free and Open Source Software (FOSS) has made
significant progress in European education in recent years
[3] and more recently the Creative Commons [4] initiative
has extended this to open content. In a separate
development, Open eLearning Specifications for
interoperability have been established, which provide the
means whereby eLearning resources can be exchanged
between systems. We outline the growth of Open
eLearning Specifications, and focus in particular on IMS
Learning Design (LD), in part because it is the focus of a
substantial current open source effort, and also because it
has features which are of particular relevance to FOSS.

In the discussion below we discuss both the relevance of
LD for FOSS eLearning implementations, and the
particular ways in which FOSS can support the
development of LD software infrastructure. We then
provide an overview of the applications available so far
and those under development. Unless otherwise stated, all
the applications discussed are FOSS.

II. THE RELEVANCE OF IMS LEARNING DESIGN
FOR FOSS ELEARNING IMPLEMENTATIONS

A. An outline of open eLearning specifications

A key initial milestone in Open elearning Specifications
was the Ariadne project in 1997 [5], which worked on
defining metadata for the identification of learning objects.
The Ariadne metadata itself included the more general
Dublin Core Metadata Initiative metadata for electronic
resources from 1994[6]. In 1997 IMS Global Learning
Consortium Inc. (IMS) was established to produce
specifications for all aspects of distributed learning [7].
IMS has become the leading force in defining Open
eLearning specifications, and has adopted much of the
Ariadne’s metadata in the IMS Learning Object Metadata
(LOM) specification. IMS has produced a growing suite of
specifications, some of which have achieved high levels of
adoption. A number of these, such as Content Packaging,
Question and Test Interoperability, and Simple
Sequencing, are incorporated in the Sharable Content
Object Reference Model (SCORM) produced by Advanced
Distributed Learning (ADL) [8]. This process of
consolidation, and the wide adoption of the SCORM mean
that there is now a solid base of accepted de facto standards
for eLearning interoperability.

It may be worth stressing that open source code does in
itself imply interoperability. While FOSS provides many
advantages, it does not automatically mean that documents
can be ported to other systems, or that different systmes
can work together. Interoperability specifications provide
important added value, especially in educational
environments which are largely heterogeneous.

The choice of an open eLearning specification is not
merely a technical issue, it has strong consequences for the
educational activities which are supported, as argued by
Friesen [9]. In the case of SCORM it is well positioned to
address the needs of a single learner in programmed
learning1, but cannot handle multiple users, and cannot
represent the role of the teacher. The pedagogy which it
supports may be characterised as an implementation of the
“conduit” metaphor, as described by Lakoff [11]. It should
be stressed that this is not because the specifications which
make up the SCORM are in themselves bad. On the
contrary they are an essential part of the infrastructure for
interoperable eLearning. The problem is that they are
insufficient, because they deal primarily with educational
content, without supporting flexible activities and
collaboration.

B. The significance of IMS Learning Design for FOSS

A more recent IMS specification, Learning Design (LD)

1Programmed learning: “Learning in which the students progress at their
own rate using workbooks, textbooks or electromagnetic resources that
provide information in discrete steps, test learning at each step and
provide immediate feedback about achievement”[10]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Open Universiteit Nederland

https://core.ac.uk/display/55533626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sets out meet this lack, and like IMS LOM it also builds on
previous European work, in this case Educational
Modelling Language (EML) from the Open University of
the Netherlands. LD provides a language which can model
pedagogic scenarios, including multiple learners in
collaboration, and the role of the teacher. It does this by
providing a precise description of how people in roles
carry out activities with learning resources. For more
information on LD, please see [7, 12, 13]. The
specification was published in 2003, and work on creating
the tools needed to work with it is currently reaching
fruition.

It is clear that FOSS can be used to support all kinds of
eLearning, including programmed learning. Nevertheless,
there is a substantial overlap between the values of the
FOSS community and those of educators who work with
pedagogies which may broadly be described as
constructivist. Among other aspects, this tradition
emphasises the importance of collaboration, of discourse,
of multiple valid viewpoints, and the idea that each learner
needs to be supported in constructing their own meaning
with culturally appropriate tools. This clearly has much in
common with the FOSS communities stress on
collaboration, adaptation of software to local requirements,
and localisation to many cultures. FOSS eLearning using
open specifications and informed by a constructivist
approach was not possible prior to the publication of LD,
and consequently many FOSS developers in education had
to choose between two undesirable options: lack of
interoperability, or restriction to a constrained (and perhaps
unsympathetic) pedagogic framework. LD resolves this
conflict, and will therefore be welcomed by many FOSS
developers.

To be fully effective, however, a specification for
interoperability needs to be adopted in both FOSS and
proprietary software. The SCORM has achieved high
levels of adoption, in part because it has been supported by
received substantial direct financial support from the US
Department of Defence, totalling 84.4 million dollars
between 2003 and 2009 [14], plus mandated compliance
from Federal authorities. Much of this funding has gone to
subsidise the production of proprietary applications. So far
LD has not received anything near such funding or
mandated support, despite the fact that the specification is
much more complex, and hence implementation more
challenging. The need for LD to succeed is felt most keenly
by learners and teachers and educational institutions, rather
than by publishers and software companies. Consequently
it is not prudent to rely on proprietary software providers to
create critical mass for LD, even though they are not
opposed to it. To overcome this strong bias towards the
dominance of the SCORM there is a need for a concerted
effort to create a complete FOSS infrastructure for the LD,
and this is indeed coming about, funded by European,
national and institutional sources, as we describe below.

III THE IMPORTANCE OF FOSS IN CREATING AN
INFRASTRUCTURE FOR LD

The implementation of the LD specification, which has
been coordinated by the Valkenburg Group (with a
significant FOSS presence). The Group has developed a
reference architecture which defines the applications which
need to be built, and has, together with the UNFOLD

project, coordinated the development process. There are
other higher level structures which provide the context for
the reference architecture, including the eLearning
Framework (ELF) based in the UK, and the OKI and
SAKAI initiatives in the USA, all of which have a strong
FOSS orientation. For a discussion of the Valkenburg
Group architecture, and these frameworks and their
relationship to LD, see Wilson [15] Service based
architectures have also been addressed in the SBLDS
project [16] funded by JISC in the UK.

Thus there is collaborative framework for development
of an infrastructure for open specifications which promises
to lead to a complete FOSS infrastructure for eLearning,
equivalent to that available for the Internet. This is very
valuable as a unifying structure for the development efforts
of FOSS developers in education, who can be sure that
their work will be interoperable and adaptable for a world
wide community of users. Communities such as UNFOLD
provide a central store of information so that developers
know what has been achieved so far in creating an LD
infrastructure, and can identify the most urgent needs. They
also welcome FOSS developers with a forum where they
can provide input into the evolving architecture for LD.

The use FOSS in creating this infrastructure makes a
contribution to LD (and the wider frameworks) in three
important respects. Firstly it offers a way to achieve critical
mass. Potential adopters need to be shown the benefits of
LD before they will adopt it, and publishers and proprietary
software developers want to be shown that there is a market
before they will develop for it. FOSS can provide the
impetus to drive adoption by making free tools available
which potential users can try out at no cost. Secondly, the
LD specification is extensive and complex, and it is far
from simple to implement software to edit compliant
documents, and servers on which the resulting XML can be
run. The only way to ensure interoperability is to have
reference implementations which represent the agreed
interpretation of the specification and ways to implement it,
and which have their source code open to inspection by
other developers. If these are not available, then each team
of developers will make their own decisions when faced
with a problem of interpretation of the specification. The
sum of the variant interpretations in the different sets of
applications processing LD documents in different
installations would lead to inconsistent output being
provided to learners (or perhaps even a failure to run) and
interoperability would be lost.

Thirdly, the well defined architecture for LD
development, and the coordination of development, means
that developers can often build on existing FOSS
implementations in order to add new functionality. This
greatly speeds implementations of the specification, and
makes adoption more likely.

IV. PROGRESS TO DATE IN DEVELOPING A FOSS
INFRASTRUCTURE FOR LD

The types of tools required for working with LD are
discussed in Griffiths [17], and we direct readers there for a
detailed discussion. Here we limit ourselves to providing
an overview of the specialised tools required, and a
summary of the principal FOSS projects underway at the
time of writing. The tools for working with LD may be
divided into two main categories, design time and run time,

which we will examine in turn. The most significant
developments are summarised at a table in following
section, together with URLs.

1. Design time tools. These are the various categories of
editors, together with compliance testing applications. We
do not consider the enabling framework within which these
operate. LD Units of Learning2 (UOLs) are encoded as
XML files, and a valid UOL can be written in any text
editor (if the author has sufficient skill and patience!).
There is, however, no reason why an author should ever
see the raw XML [18], which should be handled
transparently by the application. The first generation of LD
editors to appear has represented the UOL as a branching
tree, with an interface which enables the author to navigate
through the tree and enter the appropriate values for the LD
elements. An editor of this type at a minimum helps the
author by hiding the complexity of the XML syntax, and by
guiding them through the hierarchy, so that elements are
not misplaced. There are, however, other important
functionalities which tree based editors can provide. They
can handle the internal references which need to be
updated whenever a new resource is added or changed. It is
very useful if they provide a mechanism for the user to
incorporate existing fragments of UOLs (for example an
activity structure) and incorporate them in a new UOL. It
may also be valuable to be able to rename the elements, to
make them more understandable to members of particular
communities of groups of users, or for different language
groups.

Examples of FOSS implementations of tree based editors
include RELOAD [19], aL.Fanet LD Editor [20],
COSMOS [21], and CopperAuthor [22]. They may divide
the specification up into sections, as does RELOAD,
providing separate tabs for editing roles, environments
activities and method. These implementations are leading
the way in LD implementation, as no proprietary editors
have yet been released.
Authoring a UOL in a text editor is a job for a programmer,
and tree based editors greatly simplify the task so that it
can be undertaken by anyone who is, for example,
comfortable authoring web sites, and who is willing to put
in the effort to understand the structure of a UOL and the
purpose of the elements which make it up. This means that
they are appropriate for specialists in the development of
learning materials and online courses, but they are still too
complex and extensive for teachers (or learners) to be able
to handle, as they are not able to invest the necessary time.
It is important that teachers can engage with the authoring
process so that, for example, they can add and change
resources in existing UOLs, and inspect a UOL and
recognise if it is appropriate for their purposes. It is also
the case that some teachers want to be able to understand
and control the computing environment in which they are
working, and may want to set up their own courses. For this
to be possible the complexity of the specification has to be
reduced in some way. This can be achieved in a tree based
editor by constraining the options available to the author,
so that many design decisions are taken in advance and
hidden from the author. A template of this sort can also be
presented in many other ways, for example the EduPlone
[23] LD authoring facility offers a form based interface for

2 A Unit of Learning is a defined term in the LD specification, giving a
precise meaning to the broad unit of learning concept as an independent,
relatively self-contained piece of learning.

the creation of a restricted set of simple UOLs. This
approach may be more effective if combined with a
patterns based analysis of the pedagogical problems which
the templates address. An encouraging development is that
the Moodle [24] community is showing interest in LD, and
there is no doubt that an LD compliant version of the
Moodle system would be a very valuable addition to the
available LD infrastructure.

Another approach is to provide users with predefined
chunks of UOLs which they can combine to form valid
UOLs. These may be patterns (structures which resolve a
specified pedagogic problem) or primitives (which are
commonly used components which teachers can combine
for their own purposes) See Griffiths [25] for a discussion
of these terms and their implications for LD. These
components need not be limited to a single LD element,
and could consist of, for example, a combination of a role
part and a service. This is done in the ASK-LDT editor,
produced by the CERTH Centre [26], where the author can
drag predefined structures into the UOL as it is being
constructed. ASK-LDT is not intended as a tool for
teachers, but does provide an example of the kind of
functionality which could be provided. A tool which is
specifically intended for teachers is LAMS(Learning
Activity Management System) [27] which provides an easy
to use interface enabling authors to drag activities into a
sequence. This has so far not been LD compliant, but an
LD import/export capability is scheduled for release in
June 2005.

FOSS authoring tools for teachers are scarce, and as yet
not mature. In this the development of LD infrastructure is
following that of, for example, the relatively simple HTML
specification, where it took some years before editors
appeared which could be used by non-experts.

A high level interface such as that provided by LAMS is
not only useful to interfaces intended for teachers. The
MOT+ editor [28] (a proprietary application) is an editor
for learning designers which uses a graphical editor to
create courses following the MISA design method. The
resulting designs can be exported to LD. This means that
learning designers can use tools optimised for the methods
which they prefer, and maintain interoperability. The
DialogPlus toolkit takes a similar approach, enabling
authors navigate through a pedagogic taxonomy (which
does not follow the structure of LD). At present the
development team are working on exporting to LD the
pedagogic structures defined in DialogPlus.

Authors also need to validate their UOLs, to be
confident that they are fully compliant. Some editors
ensure that only valid UOLs can be created, and the
CopperCore Learning Design Engine (see next section)
also performs validation.

2. Runtime tools. An LD player application accepts a
UOL as an XML file, and interprets it to provide learners
with the appropriate resources, services and activities as
they work. This is not a straightforward process. Firstly,
information has to be added before learning can
commence. A UOL is an abstract representation of a
pedagogic structure, and in simple terms it may be
considered an interoperable lesson plan. Each time a cohort
of learners use a UOL for learning this is called a run.
Before a UOL can be run information has to be added
about the specific learners and teachers who will be
involved, dates may need to be specified, and services may

need to be set up. It is assumed that much of this will be
done automatically, reading from databases which maintain
this information in other parts of the providing institution,
but at the operation can also be carried out using the Clicc
application, produced by the Open University of the
Netherlands and distributed with CopperCore (see below).
This has a command line interface, making the learning
curve for using it rather steep, but a new interface is under
development.

Secondly, once a specific run is populated with users and
other necessary information, the player application has to
keep track of states of all the learners as they evolve, and
provide the appropriate resources and activities over time.
Implementing such a system is a major task, and the OUNL
has made a substantial contribution to player development
by providing the CopperCore Learning Design Engine.
This application handles all the underlying processing in
the complex core of the player, but provides only a simple
user interface. It is intended as a tool for developers which
enables them to build on the engine and focus on providing
innovative interfaces for players. CopperCore is also a
reference implementation of a player engine (as discussed
above), and provides a guide for later implementers who
want to know how certain aspects of the specification
should be interpreted.

Work has also been carried out towards wrapping
CopperCore in a service layer, in the SBLDS Project
(Service Based Learning Design System) funded by JISC
(Joint Information Systems Committee) in the UK, opening
the way to a range of new applications.

One particular kind of player which is required is a
viewer for authors, so that they can preview a UOL with
dummy users as they are working on it. If this is not
available then the UOL has to populated with users before
it can be loaded into a player such as CopperCore. The
RELOAD team have provided a player of this sort [18],
which should perhaps be more correctly termed a viewer.

Another runtime application which will be required is a
repository of UOLs. Any learning materials repository can
be used, but it would be useful to add specific LD features
to help users identify the most appropriate UOL for their
purposes, using graphic representations and/or controlled
vocabularies. The problem here is largely one of
understanding what those representations and vocabularies
should be, and the answer to this can only come through
practice. It is therefore not surprising that these features
have not yet been implemented, but as the technical
implementation is not especially challenging this should
not hold up completion of the infrastructure.

V. CONCLUSIONS

The most significant FOSS applications for LD currently
available or under development are as follows. The web
addresses are as of April 12 2005.

1. Currently available
 Editors
 - Reload
 - aL.Fanet LD Editor
 - CopperAuthor
 LD Player Engine
 - CopperCore
 Players

 - CopperCore has a simple player incorporated
 - RELOAD viewer
 Tool for populating UOLs
 - Clicc (included in CopperCore)

2. Under development
 Editors
 - DialogPlus
 - ASK LDT
 - COSMOS
 Editor / Player
 - LAMS
 Players
 - SBLDS Service wrapping for CopperCore
 - Alfanet player

The FOSS infrastructure for eLearning described above

is a huge enterprise, and it will not be possible to assess the
final results for a number of years in the future. The
infrastructure for Learning Design has, however, reached
the point where use of the specifications is a viable option,
with the critical open source applications already in place.
The key targets for future development are clear, based on
the architectures established by the Valkenburg Group, and
there is an active community working on applications. The
wider FOSS framework initiatives such as ELF, OKI and
SAKAI encourage us to believe that this technology is
becoming embedded at a strategic level, and that the
emerging FOSS infrastructure for LD will be part of an
overarching FOSS infrastructure for eLearning. There
remain a number of needs to be met which would facilitate
adoption of LD. In particular easier to use high level
authoring environments and templates need to be
developed, more varied and sophisticated player interfaces
provided, together with repositories with specific LD
features. The provision of applications which ease the
administration of LD systems and their integration with
enterprise systems in education institutions would also be
very advantageous.

VI. REFERENCES

[1] SIGOSSEE / JOIN, OSSITE, project website.
Available at http://www.ossite.org

[2] UNFOLD, project website. Available at
http://www.unfold-project.net

[3] Vuorikari, R., Why Europe Needs Free and Open
Source Software and Content in Schools. 2004,
European Schoolnet. p. 10. Available at
http://www.eun.org/insight-
pdf/special_reports/Why_Europe_needs_foss_Insight
_2004.pdf

[4] Creative Commons, website. accessed.10th April
2005, available at http://creativecommons.org/

[5] The Ariadne Foundation, The two ARIADNE projects.
Available at
http://www.ariadne-eu.org/en/foundation/history.html

[6] Dublin Core Metadata Initiative, History of the
Dublin Core Metadata Initiative. 2005. Available at
http://dublincore.org/about/history/

[7] IMS Global Learning Consortium Inc., corporate
website. Available at http://www.imsglobal.org/

[8] ADL Corporate Website. Available at

http://www.adlnet.org/
[9] Friesen, N., Three Objections to Learning Objects, in

Online Education Using Learning Objects, R.
McGreal, Editor. 2004, Routledge/Falmer: London.

[10] UNESCO, Thesaurus. Available at
 http://databases.unesco.org/thesaurus/
[11] Lakoff, G. and Johnson, M., Metaphors We Live By.

1980, Chicago and London: University of Chicago
Press.

[12] UNFOLD, project website. accessed.10th April 2005.
Available at www.unfold-project.net

[13] Koper, R. and Tattersall, C., eds. Learning Design:
modelling and implementing network-based
education & training. 2005, Springer. 412.

[14] US Department of Defence, UNCLASSIFIED FISCAL
(FY) 2005 DESCRIPTIVE SUMMARIES, available at
http://www.dtic.mil/descriptivesum/Y2005/DHRA/060
3769SE.pdf

[15] Wilson, S., Architectures to Support Authoring and
Content Management with Learning Design, in
Learning Design, a Handbook on Modelling and
Delivering Networked Education and Training, R.
Koper, Editor. 2005, Springer. p. 41-62.

[16] JISC, SBLDS project. Available at
 http://www.jisc.ac.uk/index.cfm?name=sblds

[17] Griffiths, D., et al., Learning Design Tools, in
Learning Design: modelling and implementing
network-based education & training, R. Koper and C.
Tattersall, Editors. 2005, Springer Verlag. p. 109-135.

[18] Olivier, B., The Learning Design Specification, in
Learning Design, a Handbook on Modelling and
Delivering Networked Education and Training, R.
Koper, Editor. 2005. p. 21-40.

[19] Reload, Project website. Available at
http://www.reload.ac.uk/

[20] aL.Fanet, Project website. Available at
http://alfanet.ia.uned.es/

[21] COSMOS site.
[22] CopperAuthor, SourceForge site. Available at

http://sourceforge.net/projects/copperauthor/
[23] EduPlone, corporate website. Available at

http://eduplone.net/index_html?cl=en
[24] Moodle, coporate website. Available at

 http://moodle.org
[25] Griffiths, D. and Blat, J., The Role of Teachers in

Editing and Authoring Units of Learning using IMS
Learing Design. International Journal on Advanced
Technology for Learning, 2005. 2(3).

[26] CERTH, ASK Website. Available at
 http://www.iti.gr/db.php/en/pages/ASK.html

[27] LAMS International, corporate website. Available at
 http://www.lamsinternational.com

[28] Technologies Cogigraph Inc. MOT Knowledge Editor.
Available at
http://www.cogigraph.com:90/cogigraph/article.php3
?id_article=19

