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ABSTRACT: Fatty acid synthase (FASN), the enzyme responsible for de
novo synthesis of free fatty acids, is up-regulated in many cancers. FASN is
essential for cancer cell survival and contributes to drug resistance and poor
prognosis. However, it is not expressed in most nonlipogenic normal tissues.
Thus, FASN is a desirable target for drug discovery. Although different
FASN inhibitors have been identified, none has successfully moved into
clinical use. In this study, using in silico screening of an FDA-approved drug
database, we identified proton pump inhibitors (PPIs) as effective inhibitors
of the thioesterase activity of human FASN. Further investigation showed
that PPIs inhibited proliferation and induced apoptosis of cancer cells.
Supplementation of palmitate, the end product of FASN catalysis, rescued
cancer cells from PPI-induced cell death. These findings provide new
evidence for the mechanism by which this FDA-approved class of
compounds may be acting on cancer cells.

■ INTRODUCTION

Human fatty acid synthase (FASN), consisting of 7-reaction
domains, is the sole cytosolic enzyme responsible for synthesis
of long-chain fatty acids, mainly 16-carbon palmitate.1−3 During
palmitate synthesis, the growing fatty chain, tethered to the acyl
carrier protein (ACP) domain, rotates between the other
domains of FASN with addition of two carbons in each
cycle.1−3 The thioesterase (TE) domain hydrolyzes the
thioester bond between palmitate and ACP, releasing the free
palmitate. FASN expression has been shown to play important
roles in the formation, maintenance, and progression of many
types of cancer4 and in the development of drug resistance.5−7

However, most nonlipogenic normal tissues do not express
FASN. Thus, the development of an effective FASN inhibitor
may have wide-reaching implications for many types of human
cancers with high FASN expression. Unfortunately, despite past
efforts, little progress has been made in finding a clinically
useful FASN inhibitor.
Pancreatic cancers are the fourth leading cause of cancer-

related deaths,8 and a majority of pancreatic cancer patients die
within 6 months of diagnosis.9 FASN is overexpressed in
pancreatic ductal adenocarcinomas and is positively associated
with recurrence and negatively associated with overall
survival.10 However, it is not expressed in normal pancreatic
ductal epithelium.11 FASN has also been implicated in the
increased resistance of pancreatic cancer cells to radiation and
gemcitabine.6 Thus, targeting FASN may be an attractive

approach for better treatment of pancreatic cancers and for
eliminating drug resistance.
Recently, there has been great interest in repositioning FDA-

approved drugs for treatment of human cancers.12 In this study,
we searched for FDA-approved drugs that could potentially
inhibit FASN using a crystal structure of FASN TE and
performed virtual screening of a library of FDA-approved drugs
targeting the active site of FASN TE, followed by a fluorogenic
assay of top-scoring drugs using recombinant TE protein. We
found that proton pump inhibitors (PPIs) effectively inhibited
TE activity. PPIs are benzimidazole compounds13 that are
FDA-approved therapeutics for treatment of a variety of acid-
related diseases that plague the digestive system.14−16 Further
examination showed that PPIs inhibited lipid synthesis, binding
of a serine hydrolase probe to FASN, pancreatic cancer cell
proliferation, and induced apoptosis of pancreatic cancer cells.
Palmitate supplementation effectively rescued cancer cells from
PPI-induced apoptosis. Thus, PPIs may exert anticancer activity
in part by targeting and inhibiting the TE activity of human
FASN, which is an important mechanistic consideration as PPIs
are being repositioned for anticancer use.

■ RESULTS
Identification of PPIs as FASN TE Inhibitors. To identify

potential FASN TE inhibitors, we performed in silico screening
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of a library of 2417 FDA-approved drugs using DOCK
programs and a crystal structure of FASN TE (PDB code
3TJM).17 The 200 top-scoring compounds were clustered
based on their chemical structure, and 25 representative drugs
from different clusters (Supporting Information Table S1) were
selected for testing their ability to inhibit TE. For this purpose,
we first purified recombinant FASN TE18,19 (Figure 1A) and
adopted the fluorogenic assay using 4-methylumbelliferyl
heptanoate (4-MUH) as a substrate, both as previously
described.20−22 Figure 1B and Figure 1C show that the
recombinant TE actively catalyzes hydrolysis of 4-MUH with a
Km of 38.5 μM. Using this assay and purified TE, we tested the
25 top-scoring FDA-approved drugs with orlistat, a known
inhibitor of FASN TE, as a positive control. As shown in Figure
2A, three drugs, 9, 16, and 18, reduced ≥40% of TE activity
and, thus, were selected for further investigation. However, only
9 (pantoprazole) inhibited FASN TE activity in a dose-
dependent manner (Figure 2B) with a Ki of 4.1 μM (Table 1).
Drugs 16 (13-cis-retinoic acid) and 18 (sulcotidil) did not
demonstrate the ability to inhibit FASN TE activity at lower
concentration or in a dose-dependent manner (data not
shown) and, consequently, were eliminated from further
evaluation.
We next sought to determine if any drugs from the cluster

containing pantoprazole could also potentially inhibit FASN
TE activity. Interestingly, the remaining drugs in this cluster of
the 200 top-scoring compounds were other PPIs including
omeprazole, lansoprazole, and rabeprazole. As shown in Figure
2B and Table 1, each of these PPIs similarly inhibited TE in a
dose-dependent manner with Ki values of 3.4−5.9 μM with an
activity ranking of omeprazole > pantoprazole > lansoprazole >
rabeprazole. These findings suggest that increasing the size of
either the 2-pyridylmethyl or the benzimidazole group of the
compounds may slightly decrease the activity of PPI in
inhibiting TE activity.
Binding Modes of PPIs. To predict a possible binding

mode for each PPI within FASN TE, we used the well-
established AMBER 12 suite of programs to perform molecular
dynamics (MD) simulations of each PPI docked in the active
site of FASN TE and calculated the binding free energy
(ΔGbind) using Poisson−Boltzmann surface area (PBSA)
analyses. Table 1 shows that the ΔGbind is favorable and that
omeprazole has the highest while rabeprazole has the lowest
ΔGbind, similar to the ranking of their experimental Ki values.

Next, the simulated average structure of each PPI within
FASN TE was examined in detail. As shown in Figure 2C,
omeprazole, with the most favorable ΔGbind and Ki, shows
potential for the formation of a strong hydrogen bond between
the active site serine residue (Ser2308) of the catalytic triad of
TE and the sulfoxide moiety of omeprazole, which may prevent
Ser2308 from nucleophilically attacking a substrate with an ester
moiety. Interestingly, pantoprazole, lansoprazole, and rabepra-
zole are not predicted to have apparent interaction with any of
the catalytic triad residues, Asp2338-His2481-Ser2308. However, the
hydrophobic benzamidazole moiety of these PPIs may interact
with residues of the “specificity channel”, which is predicted to
accommodate the growing carbon chain during fatty acid
synthesis,19 and thus, these PPIs may block access of the fatty
acid chain to the channel. Residues in the channel that interact
with PPIs include Thr2348, Tyr2351, Ala2363, Phe2370, Leu2427, and
Glu2431 for pantoprazole; Tyr2351, Phe2370, Leu2427, and Glu2431

for lansoprazole; and Thr2348, Ala2363, Leu2427, Tyr2351, and
Phe2370 for rabeprazole. Omeprazole also interacts with the
channel residue Phe2370. These potential interactions provide
rationale as to the mechanism by which PPIs inhibit TE activity.
However, experimental structure analysis is clearly needed to
validate the predicted binding mode of PPIs and specific
residues of interaction within FASN TE.

PPIs Inhibit Cancer Cell Proliferation by Inducing
Apoptosis. To determine the utility of PPIs in inhibiting
cancer cell proliferation, we performed colony formation assay
of BxPC-3 pancreatic cancer cells in the presence of PPIs along
with orlistat as a control. The survival of BxPC-3 cells was dose-
dependently inhibited by all four PPIs (Figure 3A). The relative
potency of PPIs is lansoprazole > rabeprazole > omeprazole >
pantoprazole with IC50 values ranging from 6.7 to 18.5 μM. We
also tested lansoprazole against another pancreatic cancer cell
line, PANC-1 and showed a dose-dependent inhibition with an
IC50 of 58.6 μM (Figure 3B). As a comparison, we also
examined the potency of orlistat in both cell lines and found
that the IC50 of orlistat is 8.5 μM for BxPC-3 and 68 μM for
PANC-1 cells, slightly less potent than lansoprazole. To
determine if PPIs possibly induce apoptosis, we performed
ELISA to quantitate the amount of cytoplasmic histone-
associated DNA-fragments using a cell death detection ELISA
kit (Roche) and Western blot analysis of cleaved poly(ADP-
ribose) polymerase 1 (PARP-1). As shown in Figure 3C,D,
lansoprazole dose-dependently caused formation of DNA

Figure 1. Determination of FASN TE kinetic parameters. (A) Expression and purification of recombinant FASN TE: CB, commassie blue staining;
IB, Western blot. (B) Lineweaver−Burk plot analysis of recombinant TE using 4-MUH fluorogenic assay. (C) Kinetic analysis. The kinetic
parameters of FASN TE were determined by plotting 4-MU product formed (pmol/min) vs the concentration of the 4-MUH substrate. The Km of
the protein was determined using a one enzyme model with no weighing of the data.
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fragments and cleaved PARP-1, indicating that lansoprazole
treatment causes apoptosis in a dose-dependent manner.

Lansoprazole Does Not Affect Intracellular pH. PPIs
are known to irreversibly inhibit H+/K+ ATPases23−25 and may
cause cancer cell death by affecting pH homeostasis. To test
this possibility, we examined the intracellular pH of BxPC-3
cells treated in the absence or presence of different
concentrations of lansoprazole. As shown in Figure 4A,
lansoprazole treatment had no significant effect on intracellular
pH. We then tested extracellular pH following lansoprazole
treatment and also found no change in extracellular pH (data
not shown). Thus, PPI-induced cancer cell death may not be
due to changes in pH homeostasis.

Lansoprazole Inhibits Cellular FASN Activity. To
investigate if lansoprazole inhibits cellular FASN, we performed
a FASN activity assay by determining lipid synthesis in the
presence of lansoprazole in live cells. As shown in Figure 4B,
lansoprazole inhibited lipid synthesis dose-dependently in both
PANC-1 and BxPC-3 cells with IC50 values of ∼93 and ∼124
μM, respectively. The known inhibitor of FASN TE, orlistat,
also inhibited FASN activity in PANC-1 cells with an IC50 of
∼203 μM (Figure 4B). It is noteworthy that the IC50 of
lansoprazole and orlistat required to inhibit lipid synthesis is
higher than that for inhibiting cell survival (Figure 3). This
discrepancy may be due to the difference in treatment duration
used for the two different assays. While cells were treated by
lansoprazole or orlistat for 10−14 days for the colony
formation survival assay, the treatment was only 4 h for the
lipid synthesis assays.
To ensure that lansoprazole inhibits FASN by binding to the

active site of cellular FASN, we performed a probe binding
displacement experiment using the ActivX desthiobiotin-
fluorophosphonate (FP) serine hydrolase probe, which can
covalently bind to the Ser residue in the catalytic triad of TE.18

For this purpose, PANC-1 cell lysate was incubated with the FP
probe in the presence and absence of lansoprazole and
subjected to Western blot analysis probed with streptavidin-
conjugated HRP. As shown in Figure 4A, lansoprazole inhibited
labeling of FASN by the FP probe in a dose-dependent manner,
suggesting that lansoprazole inhibits FASN by directly
interacting with the TE active site. However, lansoprazole

Figure 2. PPIs inhibit FASN TE activity. (A) Fluorogenic assay of 25
top-scoring FDA-approved drugs. The two horizontal lines indicate
100% and 60% TE activity (∗, p < 0.05; ∗∗, p < 0.01; ∗∗∗, p < 0.001).
(B) Dose-dependent inhibition of TE activity by PPIs. Each plot
represents the average of three independent experiments. (C) Average
simulated structures of PPIs bound to TE. TE is shown in gold ribbon.
Omeprazole, pantoprazole lansoprazole, and rabeprazole are shown as
ball and stick in green, blue, pink, and orange, respectively. In each
panel, the catalytic triad residues and the residues predicted to interact
with each PPI are labeled.

Table 1. Structures, IC50, Ki, and ΔGBind of PPIs

aIC50 is the concentration of PPIs required to inhibit 50% of the
recombinant TE activity, as measured using the 4-MUH fluorogenic
assay. bKi, the inhibition constant, was calculated from the IC50 using
the Cheng−Prusoff equation.37 cΔGBind, the binding free energy, was
calculated by Poisson−Boltzmann surface analysis (PBSA), where
ΔGbind = Gcomplex − GTE − GPPI and G = Gsolute + Gsolvent.
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treatment had no effect on the binding of the FP probe to other
Ser hydrolases, suggesting that lansoprazole selectively inhibits
FASN TE. Lansoprazole also had no effect on the total FASN
level. Together, these results indicate that lansoprazole inhibits
FASN TE, which is not likely due to an unknown artificial effect
but possibly due, at least in part, to the direct binding to and
inhibition of the TE active site.
Palmitate Supplementation Rescues Cells from

Lansoprazole Cytotoxicity. To further investigate the
inhibition of FASN by lansoprazole, we tested if palmitate,
the end product of FASN catalysis, can rescue cells from
lansoprazole-induced apoptosis. First, we tested if palmitate
supplementation alone affects cell survival. As shown in Figure
5A, supplementation with 3.75 μM palimitate had no significant
effect on BxPC-3 cell survival. It also did not reduce FASN
expression via potential feedback effect (Figure 5B). However,
supplementation with 3.75 μM palmitate significantly increased

cellular resistance to lansoprazole (Figure 5C) and reduced
lansoprazole-induced apoptosis (Figure 5D). Thus, lansopra-
zole likely causes cell death by inhibiting FASN and production
of palmitate, which can be rescued with palmitate supplemen-
tation.

Lansoprazole Is More Effective in Cells with Higher
FASN Activity. The data in Figure 3 show that BxPC-3 cells
are ∼9-fold more sensitive than PANC-1 cells to lansoprazole
treatment. To examine the underlining cause for the difference,
we first examined FASN expression and FASN activity in these
cells. As shown in Figure 6A, PANC-1 cells have a higher FASN
expression level than BxPC-3 cells but with less FASN activity.
Thus, FASN protein level does not directly correlate with
FASN activity and endogenous FASN in PANC-1 cells may be
less effective in synthesizing lipids (see discussion below). The
above finding also indicates that cells with higher FASN activity

Figure 3. PPIs inhibit survival and induce apoptosis. (A). Effect of PPIs on survival of BxPC-3 cells as determined using colony formation assay.
Orlistat was used as a control. Each plot represents the average of three independent experiments. (B) Effect of lansoprazole and orlistat on survial of
PANC-1 cells as determined using colony formation assay. (C) Lansoprazole induction of apoptosis. Apoptosis was measured by quantifying the
amount of cytoplasmic histone-associated DNA-fragments in PANC-1 cells following lansoprazole treatment. (D) Lansoprazole-induced PARP-1
cleavage: cPARP, cleaved PARP-1. Actin was used as a loading control.

Figure 4. Effect of lansoprazole on intracellular pH and FASN. (A) Intracellular pH. Intracellular pH was measured in BxPC-3 cells using the
pHrodo red intracellular pH dye following lansoprazole treatment. Each data point represents the average of three independent experiments. (B)
Lipid synthesis. Inhibition of [14C]acetate incorporation into lipids in the presence of different concentrations of lansoprazole or orlistat was
quantified in PANC-1 and/or BxPC-3 cells. The plots shown are representatives of three independent experiments. (C, D) Dose-dependent
lansoprazole inhibition of FP serine hydrolase probe labeling (C) and expression (D) of FASN. Arrowhead indicates FP probe-labeled FASN.
Asterisks indicate FP probe-labeled other serine hydrolases. Actin was used as a loading control for FASN.
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may be more sensitive to lansoprazole treatment in the survival
assay (see also discussion below).
To test this possibility, we took advantage of a previously

established stable PANC-1/FASN cell line with overexpression
of ectopic wild-type FASN (Figure 6B). We have shown
previously that PANC-1/FASN cells have higher FASN activity
than the vector-transfected PANC-1/Vec cells due to ectopic
expression of the wild type FASN6 (see also Figure 6B). We
performed a colony formation survival assay for both PANC-1/
FASN and PANC-1/Vec cells in the presence of lansoprazole.
As shown in Figure 6C, PANC-1/FASN cells with higher
FASN activity are significantly more sensitive to lansoprazole
than the control PANC-1/Vec cells. Thus, we conclude that
cells with higher FASN activity are likely more sensitive to
lansoprazole inhibition of survival.

■ DISCUSSION AND CONCLUSION
Recently, there has been considerable interest in repositioning
FDA-approved drugs for cancer treatments. The results of the
current study are the first to demonstrate that PPIs directly
bind to the active site and inhibit FASN TE and, thus, provide a

fundamental basis for repositioning PPIs as anticancer
therapeutics. Considering that long-term and high-dose PPI
treatment has been shown to be well tolerated in patients with
few side effects,26,27 repositioning PPIs as anticancer drugs will
unlikely have added toxicity.
Use of pantoprazole alone has been shown to induce

apoptosis of gastric cancer cells both in vitro and in vivo28 and
pretreatment with PPIs sensitized cancer cells to chemo-
therapeutic agents cisplatin, 5-FU, and vinblastine in vitro and
cisplatin in vivo.29 Clinical trials are also being performed to
evaluate the use of PPIs in combination with chemotherapeutic
drugs for cancer treatment. For example, an ongoing phase I
trial is investigating the use of pantoprazole in combination
with doxorubicin in advanced cancer patients with solid
tumors.30 However, it remains to be determined whether the
effect of PPIs in suppressing tumor growth and chemo-
sensitization in vivo and in clinical trials is due to inhibition of
FASN. The fact that FASN plays an important role in cancer
cell survival and in drug resistance4 and that PPIs inhibit FASN
as shown in this study is consistent with the observations of
both in vitro and in vivo studies. Furthermore, our finding that
the effect of lansoprazole is reversed upon palmitate
supplementation indicates that it may be important to restrict
high fat diets in future clinical use of PPIs to increase PPI
efficacy during chemotherapy.
Our finding that PPIs may be more effective in cells that have

higher FASN activity is very important for designing future
personalized treatments. Although it is unknown why cells with
higher FASN activity are more sensitive to PPIs and orlistat
inhibition of survival, it is possible that cells such as BxPC-3
may require, or are “addicted” to, higher FASN activity for
survival and, thus, are more sensitive to FASN inhibition. It is
also noteworthy that FASN activity in PANC-1 cells is lower
than that in BxPC-3 cells, albeit PANC-1 cells have a higher
FASN protein level. Although acetyl-CoA carboxylase is the
known rate-limiting enzyme for lipid synthesis,31 we found that
ectopic expression of FASN in PANC-1 cells was able to further
increase lipid synthesis. Thus, the endogenous FASN in PANC-
1 cells may be less effective in producing lipids possibly due to
potential mutations or post-translational modifications. Further
studies are clearly needed to determine if the endogenous
FASN in PANC-1 cells has any defective mutations or is post-
translationally modified, which may reduce FASN activity.

Figure 5. Palmitate supplementation rescues lansoprazole inhibition.
(A) Effect of palmitate on cell growth compared to DMSO control, as
measured by MTT assays (n = 3, p = 0.19). (B) Western blot analysis
of palmitate effect on FASN expression. Actin was used as a loading
control. (C) Effect of palmitate on lansoprazole cytotoxicity as
measured by MTT assay (n = 3; ∗∗∗, p < 0.001). (D) Effect of
palmitate on lansoprazole-induced apoptosis (n = 3; ∗∗∗, p < 0.001).

Figure 6. Differential effects of lansoprazole on cells with varying FASN activity. (A) FASN protein level and activity in PANC-1 and BxPC-3 cells.
(n = 3; ∗, p < 0.05). (B) FASN protein level and activity in PANC-1/FASN and control PANC-1/Vec cells (n = 3). (C) Lansoprazole cytotoxicity
on PANC-1/Vec and PANC-1/FASN cells as determined using colony formation assay. (n = 3; ∗, p < 0.05; ∗∗, p < 0.01).
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■ EXPERIMENTAL PROCEDURES
In Silico Screening. The in silico screening was performed as we

previously described.32 Briefly, the high resolution FASN TE crystal
structure with a polyunsaturated fatty acid adduct17 was obtained from
the RCSB Protein Data Bank (code 3TJM) with missing residues
modeled using ModLoop33 and was prepared for in silico screening
using the DOCK suite of programs. A library containing 2417 FDA
approved ligands was downloaded from the ZINC database34−36 and
was used for rigid docking with 500 orientations, which were scored
using the grid program within DOCK. The 200 top-scoring
compounds were then subjected to AMBER analysis and clustering
using the clustering tool Library MCS. Compounds with unfavorable
AMBER scores were eliminated. The 200 top-scoring compounds in
each cluster were visually examined using the Chimera visualization
program for the selection of representative compounds for further
testing using a fluorogenic assay. Drugs containing lactone or lactam
moieties, moieties that could be nucleophically attacked by the Ser
residue in the active site of TE to form a covalent bond (such as an
epoxide ring), and long-chain hydrocarbon moieties were given special
preference. The final 25 drugs were selected, which met all above
criteria (Supporting Information Table S1).
Purity Statement. All compounds tested were purchased from

reputable sources (Sigma-Aldrich, Toronto Research Chemicals,
Cayman Chemical), with purity of ≥95%, as determined by standard
analytical methods. The certificate of analysis for the final selected
compounds including pantoprazole (Toronto Research Chemicals),
lansoprazole, omeprazole, and rabeprazole (Sigma) as well as NMR
and MS spectra confirming their identity are shown in Supporting
Information purity file.
Fluorogenic TE Activity Assay. The fluorogenic TE activity assay

was performed as previously described.22 Briefly, each assay was
performed in opaque black, flat-bottom 96-well plates (Corning), with
each well containing 500 nM purified TE in buffer A (100 mM Tris-
HCl, 50 mM NaCl, 0.05% Brij35, pH 7.5). For PPI inhibition,
recombinant TE was preincubated with PPIs at 37 °C for 30 min. The
hydrolysis reaction was started by addition of 300 μM 4-MUH
(Sigma) and incubation at 37 °C for 1 h. Fluorescence due to liberated
4-MU was measured at 355/460 nm. The Ki value for each inhibitor
candidate was calculated using the Cheng and Prusoff equation.37

MD Simulation and Estimation of ΔGbind. The binding free
energies (ΔGbind) of PPIs within FASN TE were calculated as we
previously described38 using the final docked pose of each PPI in the
active site of TE. Briefly, to refine the position of the initially docked
structure within the FASN TE active site, energy minimization was
performed, followed by 10 ns production MD simulations. Finally, 50
snapshots were extracted from the final 5 ns of the production
trajectories, and the binding free energy was calculated using the MM-
PBSA method.39 All simulations and subsequent calculations were
performed using the AMBER 12 molecular dynamics package.
Colony Formation Survival and Apoptosis Assays. These

assays were performed as previously described.5,40,41 Briefly, cells were
seeded in six-well plates (100 cells/well for PANC-1 and 200 cells/well
for BxPC-3) and cultured for 24 h before addition of PPIs or DMSO
vehicle. The cells were continuously cultured in the presence of PPIs
or DMSO for 10−14 days followed by staining with crystal violet and
counting manually.
For the apoptosis assay, BxPC-3 cells were seeded in 12-well plates

(18 000 cells/well) and cultured for 24 h before treatment with
lansoprazole or DMSO control for 72 h. The cells were then harvested
and subjected to analysis using the cell death detection ELISA assay kit
(Roche) according to the manufacturer’s instructions. For detection of
cleaved PARP, BxPC-3 cells were seeded in six-well plates (200 000
cells/well) and cultured for 24 h before treatment with lansoprazole or
DMSO control for 24 h. Cells were then collected and subjected to
Western blot analysis of cleaved PARP using an antibody specific to
the cleaved PARP (Cell Signaling).
Determination of pH. To measure intracellular pH, BxPC-3 cells

were seeded in 96-well plates (2000 cells/well) and cultured for 24 h,
followed by treatment with lansoprazole or DMSO control for 72 h.

The cells were then incubated with the pHrodo red intracellular pH
dye (Molecular Probes), and the fluorescence was measured directly in
the 96-well plates according to the manufacturer’s instructions. The
fluorescence values were then converted to pH using the intracellular
pH calibration kit (Molecular Probes) and a standard curve of
fluorescence vs pH, created according to the manufacturer’s
instructions. For extracellular pH, BxPC-3 cells in six-well plates
(55 000 cells/well) were treated with 100 μM lansoprazole or DMSO
control for 72 h. The culture medium was collected, cleared of cell
debris by centrifugation, and used for pH determination using a pH
meter (Fisher Scientific).

Fatty Acid Synthase Activity Assay. Fatty acid synthase activity
was determined using [14C]acetate incorporation assay as previously
described.18 Briefly, cells were seeded in 12-well plates (100 000 cells/
well), cultured for 24 h, and incubated for 2 h at 37 °C in the presence
of 1 μCi/mL [14C]acetate (PerkinElmer). Lipids were then extracted
using the Folch extraction method,42 dried, resuspended in CHCl3,
and radioactivity was determined using a scintillation counter. For
inhibition of FASN, the cells were treated with PPIs for 4 h prior to
incubation with [14C]acetate and analysis.

Serine hydrolase probe displacement assay. The serine
hydrolase probe displacement assay was performed as previously
described.18 Briefly, lysate of PANC-1 cells was pretreated with varying
concentrations of lansoprazole or DMSO control for 30 min at room
temperature, followed by treatment with 5 μM ActivX desthiobiotin-
fluorophosphonate (FP) serine hydrolase probe (Thermo) for 30 min
at room temperature. Reactions were stopped by addition of SDS−
PAGE loading buffer and boiling for 10 min, followed by Western blot
analysis probed with streptavidin-conjugated HRP and ECL for
visualization.

IC50 and Statistical Calculations. All IC50 values and statistical
calculations were performed using Prism5 (GraphPad). IC50 values
were calculated using the log(inhibitor) vs normalized response
regression equation. All statistics were calculated using a two-tailed
Student’s t test.
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