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Abstract

Alsomitra macrocarpa is a gliding diaspore which grows on tall trees in tropical Asian forests.
It does not rely on gusts nor even on a slight breeze to fly up to hundreds of meters. It is a low
aspect ratio wing, which defies the conventional aerodynamic argument that efficient gliders
need to be slender. Compared to pappose seeds like the dandelion, Alsomitra macrocarpa
has a higher wing loading, yet it reaches a comparable terminal velocity. It also achieves
a stable flight in the absence of both a vertical stabiliser and active control. What enables
these remarkable flight abilities, which inspired the design of the first manned gliders, are
yet to be understood. The investigation herein utilised image analysis, three-dimensional
scans and wind tunnel tests. The morphological study highlighted Alsomitra macrocarpa’s
uniqueness in terms of dimensions and shape. Through the use of depth cameras, the gliding
path of 15 seeds was recorded. While existing literature treats Alsomitra macrocarpa as a flat,
two-dimensional shape, drop tests evidenced a preferential flight orientation for every seed
sample. Hence, and contrary to previous belief, the membrane wing has an intrados and an
extrados. The majority of the seeds presented a helical path, while some moved in a straight
oscillatory path that has not been previously reported, with oscillations on the vertical and
horizontal plane. This gliding trajectory assumed to be two-dimensional, could be described
by a simplified dynamics model. The phugoid style flight coupled the horizontal motion of
a tumbling wing with the oscillation of a fluttering wing. Wind tunnel tests revealed how
the membrane wing undergoes spanwise deformation under the loads experienced during a
glide. This deformation displaces the aerodynamic centre from the plane of the membrane
wing. Low-order dynamical models, which included a non-uniform mass distribution, were
employed to recreate these oscillations in the vertical plane and showed good qualitative
agreement with the experiments. Overall, this work provides new insights into the remarkably
stable and efficient flight of Alsomitra macrocarpa. The aerodynamic conditions under
which these seeds fly are in the range experienced by Micro Aerial Vehicles (MAVs). Thus,
the outcomes of this thesis could aid the design of more efficient MAVs, just as early aviation
pioneers were inspired when they saw Alsomitra macrocarpa glide down through the forest
canopy.
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Lay summary

Humankind has always been fascinated with flight. Alsomitra macrocarpa, also known as
Javan cucumber, is a gliding seed that grows on high trees in tropical Asian forests. This
gliding seed does not rely on gusts or a slight breeze to cover long distances. It has been a
source of inspiration for the design of the first man manned gliders. Differently from the other
gliding seeds, the Javan cucumber presents an unusual shape, more similar to a business card
or a paper plane. A business card would tumble through the air, a paper plane would perform
a steady glide, while the Javan cucumber presents a glide that is mainly affected by his
deformability and weight distribution. The terminal velocity, hence the vertical component of
velocity is close to the terminal velocity of dandelion seeds, known to be excellent in terms of
dispersal capabilities. The investigation required classical tools commonly applied to study
flying seeds like image analysis, 3D scanner and wind tunnel together with new tools such as
depth cameras. While the Javan cucumber was commonly thought as a flat, two-dimensional
shape, the use of a 3D scanner and drop tests showed a preferential flight orientation for all
seeds studied. Wind tunnel tests highlighted the deformation of the membrane wing under
the loads experienced during the glide. This deformation coupled with the weight distribution
is at the origin of the phugoid motion. The phugoid style flight couples the horizontal motion
of a tumbling wing and the oscillation of a fluttering wing. The gliding conditions, fall in
the range experienced by Micro Air Vehicle (MAV), hence the outcomes of this thesis might
help the design of more efficient MAVs, as early aviation pioneers were inspired.
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Chapter 1

Introduction

1.1 Seed dispersed by the wind: a source of inspiration

The dream of flying has always fascinated humankind. It has been a driving force for the
foundation of the science commonly known as Bionics. The term Bionics, introduced by Jack
E. Steele in 1958, refers to the application of construction principles available in nature, to
implement technological solutions (Srisuwan, 2020). Bio-inspiration is a more comprehensive
domain instead, it involves Bionics, Biomimetics and Design and it adopts “phenomena in
biology to stimulate research in non-biological science and technology” (Whitesides, 2015).
The simple gliding of birds and the wind dispersal of seeds were an inspiration for engineers
and scientists. The full spectrum of natural fliers provides a rich source of solutions for all
kinds of flying machines (Kulfan, 2009). Seed dispersal allows plants to have some sort
of mobility and it is a means of reproduction. Seeds present mass and energy efficiency,
together with robustness and complete autonomy. Leonardo da Vinci was probably inspired
by the descent of the maple seed, to design his aerial screw. Otto Lilienthal built the first
gliders near the end of the 19th century and was awarded the first worldwide bionic patent
in 1893 (Knippers et al., 2016). After Otto’s tragic death while flying one of his gliders,
Ignaz and Igo Etrich, Austrian aviation pioneers, carried on his work. In order to build an
inherently stable surface, Igo Etrich studied Alsomitra macrocarpa (Kulfan, 2009) and built
the Taube, a monoplane-type aircraft (Srisuwan, 2020). It proved to aviation pioneers that it
was possible to have a tailless air-plane, gifted with stability (Kulfan, 2009). “Plants mastered
the art and science of aviation long before Orville and Wilbur Wright propelled their frail
craft into the air” Dr McMasters once said (Chen and McMasters, 1981).
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1.1.1 The natural glider

Alsomitra macrocarpa pictured in figure 1.1, is a genus of the plant family Cucurbitaceae
and a perennial climber (Singapore, 2021). Alsomitra macrocarpa is a diaspore, a seed, that
has a function in plant dispersal. For ease of readability, seed could be used in place of
diaspore. The plant can reach up to 50m in length and the base of stems of mature plants up

Fig. 1.1 A diaspore of Alsomitra macrocarpa, the scale bar is 1cm.

to 15cm in width (Singapore, 2021). It grows on high trees (figure 1.2a), towards the canopy,
looking for sunlight in football-sized pods (figure 1.2b). Alsomitra macrocarpa is a type of
climbing gourd, commonly known as the Javan cucumber, that climbs trees, adhering to
trunks for support via adhesive discs, on the tip of the bifid tendrils. It is found in the tropical
Asian forests of the Malay Archipelago: Southern Thailand, Peninsular Malaysia, Borneo,
Indonesia, Philippines and New Guinea (Gardens, 2022). The tropical areas where Alsomitra
macrocarpa grows, lack seasons (Sobel, 2012). Tropical plants tend to follow their nutritional
levels and maturity to set up their life. Each pod is 20cm to 30cm in diameter and contains
hundreds of individual seeds (figure 1.2c), peeled away by the wind. When the diaspores
of Alsomitra macrocarpa are ripe the pod becomes brown. The glider, shown in figure 1.1,
is composed of a seed containing pericarp of brown colour, placed near the leading edge
and centred on the longitudinal axis, with a circular shape of 2cm to 3cm in diameter
and a membranous wing of 17cm in span. The gliding flight of seeds is usually unstable
oscillations due to the nonlinear behaviour of the air which can lead to rocking, spinning
and spiral gliding paths; Alsomitra macrocarpa is an exception (Minami and Azuma, 2003).
Another key feature is that, unlike seeds from pioneer trees and maples (Lentink et al., 2009),
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(a) Lianas hanging from a tree. (b) A liana with a pod. (c) A pod full of seeds.

Fig. 1.2 These images highlight the various elements of the plant: liana, pod and seeds.

Alsomitra macrocarpa does not rely on wind, gusts and updrafts to cover distances up to
hundreds of meters (Viola et al., 2022). It has the highest descent time T =

√
0.5ρ DF/(W/S),

where ρ is the density of the fluid, air, in this case, DF is the descent factor, W is the weight
and S is the surface area (Lentink et al., 2009). Alsomitra macrocarpa outperforms the
autorotating seeds, demonstrating how its design provides unique capabilities (Lentink et al.,
2009). Descent time is proportional to the square root of descent factor DF = (1+(u/w)2)CL,
where u is the horizontal velocity and w is the descent velocity or terminal velocity, hence
the vertical component of the velocity vector, and CL the lift coefficient. The descent factor
gives an indication of the aerodynamic efficacy, it is divided by the wing loading (W/S), ratio
between weight (W ) and surface (S) of Alsomitra macrocarpa in the equation for the descent
time (Lentink et al., 2009). Figure 1.3 highlights how Alsomitra macrocarpa, represented by
a red diamond, is far from the average, it is a specialised gliding seed (Lentink et al., 2009),
in terms of size, distance covered and type of flight, just to name a few.

1.1.2 Historical notes

Igo Etrich constructed a kite and then an unmanned glider, based on the shape of Alsomitra
macrocarpa, in 1904 (Hertel, 1966). In 1910 Etrich built the Dove, a successful aircraft,
where the concept of an inherently stable flying-wing like Alsomitra macrocarpa had to
be replaced by birds, as an inspiration (Hertel, 1966). Birds have a tail and are capable
of active control of their surfaces: wing and tail. The stability of Alsomitra macrocarpa,
instead, is related to its shape, which is fixed. Its majestic flight more recently caught the
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Fig. 1.3 The plot, adapted from Lentink et al. (2009), relates the descent time of autorotating
seeds (⋅), such maple seeds, with that of straying seeds and gliding seeds (□), such as Alsomi-
tra macrocarpa, which has the lowest descent time (Azuma and Okuno, 1987). The green
star (∗) at the top right is the Dandelion, plotted with data available in Cummins et al. (2018).
The coloured hyperbolic curves indicate the descent time as a function of wing loading at a
constant descent factor.
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attention of Sir David Attenborough, who featured Alsomitra macrocarpa in his award-
winning TV series Life in 2009 (BBC, 2009) and a book (Attenborough, 1995) that he
previously published. In 2016 the BBC briefly featured Alsomitra macrocarpa in Life
in the Air: Defying Gravity (BBC, 2016). Studies from scientists and engineers are the
result of Alsomitra macrocarpa’s exceptional glide. The pitching stability, for instance, is
given by the centre of gravity being correctly positioned in front of the mean aerodynamic
centre (Azuma and Okuno, 1987). The seed has an elliptical shape, whose centroid coincides
with the centre of gravity. It is located on the axis of symmetry of the wing, towards the
leading edge, it defines the location of the centre of gravity for Alsomitra macrocarpa. The
membrane wing, whose mass is assumed to be negligible, is shaped as a flying wing, locating
the mean aerodynamic centre to the rear of the centre of gravity (Azuma and Okuno, 1987).
This highlights how a fixed geometry gives an important contribution to the stability of
flight. Other contributions come from the tapered plan form of the wing, twisted (washout)
and dihedral angle and reflected airfoil (Azuma and Okuno, 1987). Igo Etrich designed
a stable glider by scaling up the shape of Alsomitra macrocarpa, however the addition of
weights, in the form of a pilot and an engine, was changing the position of the centre of
gravity, so some sort of control was required, hence the design inspired by a bird, the Dove.
The change in scale, from the size of a seed, a few centimetres, to the size of a glider,
three orders of magnitude bigger, had a great impact on the fluid dynamics. The Reynolds
number (Re =UL/ν , where U is the relative flow speed experienced by the diaspore, L is a
characteristic length like the wing chord at the wing centre of Alsomitra macrocarpa and ν

the kinematic viscosity of air) gives an indication of the relative magnitude of two crucial
forces acting on a flying body: inertial and viscous forces. It is a few thousand for Alsomitra
macrocarpa, while of the order of millions for a glider. This difference in the Reynolds
number indicates a completely different flow behaviour, hence flow topology. Despite
totally different fluid dynamics, Igo Etrich got a deep insight into flight. The knowledge
acquired helped, later, the Horten brothers to develop the first flying wing aircraft, the Ho 229
in 1944 (Barba, 2011). The 20th century was the era of planes and rockets, instead, the 21st
century will be characterised by autonomous drones (UAVs). The applications range from
agriculture, environment preservation and disaster mitigation to space exploration (Floreano
and Wood, 2015). A new class of UAVs has recently emerged: micro air vehicles (MAVs),
defined as drones with no length dimension greater than 150 mm and weight below 200 g,
requirements that perfectly fit the morphology of Alsomitra macrocarpa (Azuma and Okuno,
1987). MAVs work in a low Reynolds number environment (102

< Re < 104), a flow regime
full of complex flow phenomena, optimised by nature over thousands of years (Lentink et al.,
2009), (Cummins et al., 2018). The type of flight performed by Alsomitra macrocarpa is
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gliding, commonly used by birds, like Fregata minor, to sleep in mid-flight, allowing them
to fly over the ocean for up to 10 days (Rattenborg et al., 2016). Insects use gliding for
thermo-regulation (Church, 1960), in order to protect the performance of the flight muscles.
Nature is a source of inspiration to improve the efficiency and aerodynamic performance of
MAVs.

1.2 Research questions, aims and objectives

Alsomitra macrocarpa performs either spiral or straight gliding flights (Minami and Azuma,
2003), a unique feature that distinguishes it from the majority of seeds which show only a
type of flying behaviour. This unique flight is not only due to the flight mechanics but also to
the aerodynamics of Alsomitra macrocarpa, and thus the: lift (L) and drag (D) driving the
flight. The aim of the thesis is to describe the gliding flight of Alsomitra macrocarpa, the
trajectory, velocity and acceleration, and the flow structures and shape changes during the
glide. The research questions:

1. What are the flow structures around the seed when it is gliding? Is the lift provided by
a Leading Edge Vortex (LEV) as in autorotating seeds of maples (Lentink et al., 2009)
and swift wings (Muir et al., 2017) or is it given by a distribution of vortices in the
valley of corrugated wings, as for dragonflies (Vargas et al., 2008) and (Murphy and
Hu, 2010). Is it a combination of Leading Edge Vortex and distribution of vortices?
Could it be a completely new flow topology, such as the recently discovered Separated
Vortex Ring (SVR) of the dandelion (Cummins et al., 2018)?

2. Can the three-dimensional gliding flight of Alsomitra macrocarpa be described, cap-
turing the time dependence of position, velocity and acceleration?

3. What causes different Alsomitra macrocarpa to exhibit different gliding paths: spiral
or straight gliding? Can we define a quasi-steady model that describes the gliding
path?

These research objectives were pursued:

1. Measure morphological parameters that describe the shape on a statistically significant
sample size;

2. Evaluate the deformation of the membrane wing in a low-speed wind tunnel;

3. Describe the flow field;
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4. Track Alsomitra macrocarpa during its glide;

5. Development of a phenomenological model based on ordinary differential equations to
predict straight gliding flight.

1.3 Thesis synopsis

Following on from this introductory chapter, the remainder of the thesis consists of as follows.
Chapter 2: Materials and methods
This chapter describes the experimental tools used to address the research questions: an-
alytical balances, 3D scanner, wind tunnels, spectrofluorometer and depth cameras. The
post-processing techniques are also described: morphometric analysis, Particle Image Ve-
locimetry (PIV), principal component analysis (PCA) and vortex identification.
Chapter 3: Results
This chapter presents the results from the analysis of the data collected with the methods
listed in the previous Chapter.
Chapter 4: Discussion
This chapter discusses some concepts from flight Mechanics and results available in the
literature. It introduces the low-order model developed to study the gliding trajectory of Al-
somitra macrocarpa.
Chapter 5: Conclusions
This chapter summarises key findings and outcomes from this thesis.
Chapter 6: Future Work
In the last chapter, the future work conducted by the author and his collaborators on the
results obtained is briefly outlined.

1.4 Publications

The body of research listed in this section was instrumental in developing some of the
experimental tools and the scientific approach used in this thesis. The characterisation of the
morphology, design of drop tests, object tracking, and definition of simple models to capture
some aspects of the flight of seeds are some examples.
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the aerodynamics of the gliding seeds of Javan cucumber. UK Fluids Conference,
Cambridge, UK, 27/08/2019 - 29/08/2019.
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Chapter 2

Materials and methods

2.1 The seeds

In order to perform a representative description of the morphology of Alsomitra macrocarpa
and understand the differences in the morphology that lead to different flight behaviours, 32
seeds were purchased from two different suppliers. Jam-Kobayashi provided 28 seeds in two
shipments of 20 and 8 seeds respectively, while the remaining 4 were supplied by Onszaden.
Unfortunately, three seeds, supplied by Jam-Kobayashi, were damaged during preliminary
tests in the wind tunnel. Figure 2.1 displays the 31 Alsomitra macrocarpa used to have a
characterisation of the morphology.

2.2 Morphometric analysis

Morphometric analysis is a technique commonly used in areas of plant biology such as
agriculture (de Oliveira et al., 2016), evolution (Rose et al., 2016) and ecology (Gómez et al.,
2016), to describe multiple quantitative characters among the population investigated, for
instance, lengths, angles, masses, followed by inferential statistics on the data collected to
uncover hidden structures (Chuanromanee et al., 2019). This analysis is the so-called tra-
ditional morphometric. It has been crucial to define species as shown by Boyd (2002)
and Bateman and Rudall (2006). Geometric morphometrics instead requires a quantitative,
analytical representation of a shape, involving outlines, in order to compare different shapes,
for instance, flowers, leaves and seeds. The outline of Alsomitra macrocarpa pictured on
a white background was the starting point to perform elliptical Fourier analysis, crucial in
pattern recognition problems to describe image contours (Kuhl and Giardina, 1982). Digi-
tised herbarium specimens of Alsomitra macrocarpa could not be analysed, because of
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Fig. 2.1 Alsomitra macrocarpa used in the experimental investigations.
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the state of conservation of the pictured Alsomitra macrocarpa (Gardens, 2022; ITHAKA,
2022). Elliptical Fourier analysis is an analytical tool used to characterise the shape of
different objects (Neto et al., 2006). This technique allowed Innes and Bates (1999) to build
a connection between the morphology of shells and their genotype. McLellan and Endler
(1998) reviewed different morphometric methods and found that 15 harmonics of the Elliptic
Fourier method accurately drew boundaries of Acer palmatum, Acer saccharum and Acer
saccharinum leaves. As a consequence, 15 harmonics were treated as sufficient for Alsomitra
macrocarpa. The combination of traditional morphometric and geometric morphometrics
has lead to the understanding of patterns, for instance in Passiflora leaves (Chitwood and
Otoni, 2017). The lack of clearly identifiable, meaningful landmarks, excluded the use of
Procrustes analysis, a shape comparison that scales the data equally, providing an analysis
that focuses on differences among shapes. Procrustes analysis is based on landmark data that
identify homologous points of shape.

2.2.1 Mass

Two analytical balances: Sartorius Extend, Model ED822-CW and Mettler Toledo XP4002S
both with a readability of 0.01g measured the mass of 31 Alsomitra macrocarpa. The results
are reported in Table 3.1 and Table A.1. While most Alsomitra macrocarpa had a mass (m)
of 0.36g (0.32g to 0.39g (95% confidence interval)); n = 31 seeds), four showed a mass
less than half of the mean mass and were considered underdeveloped.

2.2.2 Morphological analysis of size and shape

Pictures of 29 Alsomitra macrocarpa were taken by a camera phone, under natural lightning
conditions. The phone had automatic focus on and was placed around 200 mm above the
imaged seed, with the light behind the phone. The resolution of the images was set to 3024px
times 4032px, resulting in a resolution of 20px/mm. The seeds were imaged on both
sides, lying on a flat, white surface (Fig. 2.2a). Images were processed with the commercial
software Photoshop to get a homogeneously white background, performing background
subtraction (Fig. 2.2b) and covering Alsomitra macrocarpa with a black mask, in order to
avoid errors given by the irregular and transparent surface (Fig. 2.2c). A ruler in each image
allowed to have a size-scale for image calibration, to define the physical size scale of pixels
in the image (Fig. 2.2). A similar quality of the processed pictures was obtained with the
image processing software Fiji (Schindelin et al., 2012), that was discarded, because of time
constraints. Subsequently, MASS, a tool for MATLAB, described in Chuanromanee et al.
(2019), was used to analyse the pictures to extract the measures highlighted in figure 2.3 and
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(a) Original picture. (b) Background subtracted. (c) Black mask.

Fig. 2.2 Editing of the picture used as input for MASS (Chuanromanee et al., 2019).

Fig. 2.3 Diagram showing the geometrical characteristics reported in table A.1.

reported in Table A.1. MASS was developed focusing on leaves, it can also be applied to
flowers and seeds (Chuanromanee et al., 2019). The centroid of the seed and its principal axes
were calculated from a binarised version of the original image. The images were then rotated
to align the longitudinal axis with the vertical direction. These geometrical transformations
allowed the recording of basic measurements of Alsomitra macrocarpa. Wing-span and
wing chord on the longitudinal axis were measured fitting the planar shape of Alsomitra
macrocarpa with a bounding box, whose height was directly linked to the wing chord, while
the width with the wing-span. The wing area was extracted as the difference between the area
of the bounding box and that of the white pixels in the bounding box. Values are reported in
Table A.1. An important parameter to describe the shape of leaves, flowers and seeds is the
fluctuating asymmetry (FA), a form of biological asymmetry, listed in Table A.3. It highlights
small and usually random variations away from perfect bilateral symmetry (Van Valen, 1962).
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Fluctuating asymmetry was investigated as a potentially insightful parameter influencing the
type of flight path described.

FA = 2(WL−WR
WL+WR) , (2.1)

where WL and WR represented the euclidean distance from the longitudinal axis of Alsomitra
macrocarpa to the left and right edge of the wing, respectively. The denominator of (2.1) is
the wing span of Alsomitra macrocarpa. Fluctuating asymmetry ranges between −2 and 2. A
perfectly symmetrical specimen has FA = 0, a positive value, caused by WL > WR means that
the shape skews to the left of the longitudinal axis, while a negative value, the opposite, i.e.
WR > WL. In Table A.3 the value of each Alsomitra macrocarpa is reported, it is a positive
measure of the symmetry. The binarised image was subsequently employed to extract the
Elliptical Fourier Descriptors (EFD) of each Alsomitra macrocarpa (Chitwood and Otoni,
2017; Klein and Svoboda, 2017). Elliptical Fourier analysis is a curve-fitting technique used
to describe closed outline shapes. The perimeter of an object is described by a finite sum of
sine and cosine functions. The perimeter is captured in a continuous manner at a precision
related to the number of harmonics recorded. The Procrustes analysis, on the contrary,
captures information in discrete locations, with the details falling in between landmarks
failing to be taken (Caple et al., 2017). Elliptical Fourier analysis required Alsomitra
macrocarpa to be scaled to a normalised length and be a closed contour (Kuhl and Giardina,
1982). Nearest-neighbour searching algorithm identified pixels belonging to the perimeter
of the wing. This closed contour was then converted in an 8-bit chain code (Kuhl and
Giardina, 1982), to be analysed by the Elliptical Fourier for Shape Analysis tool available in
MATLAB’s File Exchange (Manurung, 2016). The chain code that described the edge of
the wing was fitted by a Fourier series with 15 harmonics as in Chuanromanee et al. (2019).
The leading edge has a smooth, almost parabolic shape, easily described by a low (N < 15)
number of harmonics. The main contribution achieved by increasing N was improving the
number of details captured at the trailing edge, an indented profile. The EFD-generated
outline for one Alsomitra macrocarpa using N = 10, N = 15 and N = 20 harmonics, is
displayed in Fig. 2.4. The Alsomitra macrocarpa object of this thesis was accurately fitted by
N = 15 harmonics. The four Fourier coefficients that define each harmonic were extracted
and compared across the population of 29 Alsomitra macrocarpa. This fitting was followed
by Principal Component Analysis (PCA), in order to compare the planar shape across the
population.
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Fig. 2.4 Three EFD outlines highlighting results with N = 10, N = 15 and N = 20 harmonics.
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Fig. 2.5 Outline comparison of 29 Alsomitra macrocarpa.
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Fig. 2.6 Mean outline of the 29 Alsomitra macrocarpa.

2.2.3 Principal component analysis

The morphological values recorded in Table A.1 and Table A.2 represented a set of high-
dimensional data with intrinsic complexity. Principal component analysis (PCA) performs a
dimensional reduction of the data set while retaining patterns. It is similar to clustering (Lever
et al., 2017). PCA performs a geometrical projection of the data onto lower dimensions, the
principal components (PCs). The goal is to summarise the data studied using a limited number
of PCs. The first PC (PC1), minimises the distance between the data and their projection onto
PC1. The variance of the projected points is maximised, as a consequence. The following
PCs follow the same goal, plus they need to be uncorrelated with all the previous PCs. The
PCs are geometrically orthogonal and independent. The maximum number of PCs is then
given by the number of samples (31 Alsomitra macrocarpa) or the number of features studied
(8), depending on which is the smaller. Correlation is maximised by the PC selection process.
These coefficients compose a matrix, and from a geometrical perspective, it can be interpreted
as a rotation matrix. It rotates the data so that the projection with the greatest variance goes
along the first axis. Linear regression minimises the distance between the response variable
and the calculated value, while PCA minimises the perpendicular distance between a data
point and a principal component. In most studies not all the extracted PCs are typically used,
given that the majority of variance, the patterns in the data set, are usually limited to the first
PCs. By limiting the number of PCs taken into account to 2 or 3 it is possible to plot the data
in a scatter plot as in figure 2.7a and figure 2.8a, where it is possible to spot clusters (Lever
et al., 2017). PCA is a process that summarises large data sets (Lever et al., 2017) and is
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Fig. 2.7 Principal component analysis loading and score plots of the descriptive morphological
values of 29 diaspores.

especially effective when the searched patterns produce an increase in the variance of the
projections onto orthogonal components.

Results of the PCA

Descriptive morphological values were collected for all 31 Alsomitra macrocarpa and listed
in Table A.1, Table A.2, Table A.3 and Table A.4. Table 3.1 later on reports the mean
value and the 95% confidence interval for the geometrical characteristics of Alsomitra
macrocarpa. The 95% confidence intervals are calculated by applying bias-corrected and
accelerated bootstrapping as in Cummins et al. (2018). The majority of the morphological
data reported in Tables A.1, A.2 and A.3 proved to be normally distributed. Mass, centre
of gravity, wing loading, density, fluctuating asymmetry and circularity were not normally
distributed. The calculation of confidence intervals, usually requires the assumption that
the data analysed are normally distributed. This is not required if the confidence intervals
are obtained by bootstrapping. Elliptical Fourier Descriptors (EFD) were extracted from
29 Alsomitra macrocarpa with 15 harmonics to describe the planar shape of each specimen.
Results produced by EFD were analysed with PCA and reported in figure 2.8 to look
at variations in the morphology that could help explain the different flight behaviours.
Figure 2.7a and figure 2.8a are loading plots that highlight how strongly each characteristic
influences the two principal components. The loading plot in figure 2.7a presents 29 red
dots, 29 diaspores provided the 8 morphological values used in the analysis, that led to 8
principal components with a decreasing weight. The blue vectors show how much weight the
remaining 6 components have on the 2 selected principal components. Similarly, figure 2.8a
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Fig. 2.8 Principal component analysis loading and score plots of the Elliptical Fourier
Descriptors on 29 diaspores.

displays the influence of the remaining 13 Elliptical Fourier Descriptors on the two principal
Elliptical Fourier Descriptors. Figure 2.7b and figure 2.8b are score plots, projection of the
data in two dimensions defined by the two principal components.

2.3 3D scanner

A diaspore of Alsomitra macrocarpa was scanned with a high-resolution 3D scanner, a
ROMER absolute arm with Integrated Scanner RS4, as shown in Fig. 2.9. The scanner is
made of two cameras and a laser that projects a red line, comprising 7520 points at 100Hz,
on the scanned object. The maximum width of the line is 150mm, so Alsomitra macrocarpa
was scanned along the spanwise direction. The single point repeatability is 0.027mm with a
volumetric accuracy (accuracy of multiple scans) of ±0.038mm. The point cloud generated
by the investigated surface is built by the differences in the returned light detected by the
two cameras. These values allowed for a detailed, non-destructive, description of the surface
of Alsomitra macrocarpa and the different cross sections, but not a characterisation of the
thickness distribution. The seed containing pericarp is about 1-2mm thick. The membrane
wing, instead presents a thickness distribution spanning from a few µm at the edges, to
around 200µm at the point of maximum thickness, as reported by Azuma and Okuno (1987);
Nachtigall (2011b). A Vernier calibre, with an accuracy of 0.001mm, allowed to measure the
thickness on different points of three Alsomitra macrocarpa. These measurements were per-
formed to check that the diaspores were representative of the values reported in the literature.
The uneven, flexible and transparent surface of Alsomitra macrocarpa, posed a challenge.
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Fig. 2.9 3D scanner setup.

The average density of points on the membrane wing was 396points/mm2. Karasik et al.
(2018), employed a high resolution 3D scanner to describe and subsequently classify grape
pips, they reported a similar average density of points on the surface.

2.4 Visualisation Tunnel

Fig. 2.10 Experimental set-up in the visualisation tunnel to study the deformation of the
membrane wing.
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Fig. 2.11 Measurement of wing tip displacement.

The Visualisation Tunnel at the University of Glasgow is a low-speed, closed test section,
open circuit wind tunnel, developed and built for flow visualisations (Giuni and Green,
2013). It presents a square, closed test section, with side 0.91m. Alsomitra macrocarpa
was mounted on a custom-made support and held in place by magnets, figure 2.10. The
Visualisation Tunnel allowed investigation of the deformation of the membrane wing un-
der gliding conditions, with the experimental set-up in figure 2.10. Calibration of the
Visualisation Tunnel was performed to link the fan’s duty cycle with the free stream ve-
locity in the test section. A DSLR camera (Canon EOS 70D) with a Tamron 180 mm
F3.5 SP AF Di Macro Lens, placed eight mean geometric chords downstream of Al-
somitra macrocarpa took pictures of the wing during the experiment. A settling time
of 30s was interposed between reaching the desired free stream velocity in the test section
and taking the pictures. Two separate sets of experiments were performed to investigate
the tip deflection of the left and right sides of the wing. The angles of attack studied
were 0deg, 5deg, 10deg and 15deg. The trimmed angle of attack reported by Minami and
Azuma (2003) and Azuma and Okuno (1987) is around 12deg. The free stream velocities
tested were 0ms−1, 1.13ms−1, 1.23ms−1, 1.33ms−1, 1.43ms−1, 1.55ms−1, 1.63ms−1

and 2.07ms−1. The range was defined, based on the data available in Azuma and Okuno
(1987); Minami and Azuma (2003); Nachtigall (2011a). The test in quiescent conditions
described the resting coordinate of the tip. The tip displacement δ was calculated as the
difference in the vertical position of the tip between quiescent conditions and vertical position
at a free stream velocity, with an accuracy of 0.2mm, figure 2.11.
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(a) Diaspore mounted on the support. (b) Green laser illuminating the wake.

Fig. 2.12 Alsomitra macrocarpa in the test section of the Anatomy Wind Tunnel, before and
during the PIV test.

2.5 Anatomy Wind Tunnel

This section describes the wind tunnel used to perform Particle Image Velocimetry (PIV)
on Alsomitra macrocarpa. The set-up in the test section is presented in figure 2.12. The
flow structures present in the wake and on the suction side of the membrane wing were
investigated.

The Anatomy Wind Tunnel at the University of Glasgow is low-speed, low turbulence,
closed-return wind tunnel. It has a rectangular test section of 1.15m×0.85m and a turbulence
level of approximately 0.3% (Green et al., 2005). A continuous laser sheet, 2mm thick,
generated by a diode laser of 5W power at 532nm created the plane of investigation. The
laser was placed at the top of the test section with the laser sheet perpendicular to the free
stream flow.

A custom-designed and 3D printed rigid support held Alsomitra macrocarpa more
than 0.2m above the test section floor, out of the boundary layer. Two couples of magnets
were applied to the seed containing pericarp to keep Alsomitra macrocarpa in place during
the measurements, without damaging the thin and fragile membrane wing and minimising
the disturbance to the airflow. The maximum blockage ratio (ratio between the projected area
of Alsomitra macrocarpa together with the support rig and the cross-sectional area of the test
section) was lower than 0.5%, thus no blockage corrections were made.

2.5.1 Diaspores tested

A randomly selected Alsomitra macrocapa, number 17, was tested in the Anatomy Wind
Tunnel to get insights on the flow topology around the tip of the membrane wing. This
diaspore, as reported in Tables A.1 and A.4, has a mean geometric chord of m.g.c = 57mm
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and a wing-span of b = 166mm, resulting in an aspect ratio AR = 2.9. The free stream
velocity was fixed at 1.5ms−1, in agreement with the average gliding velocity reported in
the literature Azuma and Okuno (1987); Nachtigall (2011a). The chord-based Reynolds
number was Re = 5790. The diaspore was tested at an angle of attack of 5deg. The laser
sheet illuminated the wake one mean geometric chord downstream of the trailing edge, as
shown in figure 2.12b, to avoid reflections from the surface of the wing.

Another randomly selected Alsomitra macrocapa, number 14, was painted matt black to
reduce the reflections coming from the wing (Muir et al., 2017) and was tested to investigate
the flow topology near the wing in the vicinity of the leading edge. This diaspore, as detailed
in Tables A.1 and A.4, has a mean geometric chord of m.g.c. = 59mm and a wing-span
of b = 172mm, resulting in an aspect ratio AR = 2.9. The free stream velocity of the test was
the same as the previous test, as was the angle of attack. The chord-based Reynolds number
was Re = 5990.

2.5.2 Particle Image Velocimetry

Time-resolved particle image velocimetry (TR-PIV) is implemented to characterise the flow
field near the tip and on the suction side of the membrane wing. The set-up used for the
measurements was based on a Spectra-Physics Lab-130-10 double-pulsed frequency-doubled
Nd:YAG laser for illumination and a Kodak Megaplus ES1.0 digital video camera, with
a resolution of 2048px times 2048px in triggered double-exposure mode for photography.
The laser repetition rate was 10Hz, and the inter-pulse separation for the laser was set to
125 µs (for narrow field of view investigation of the flow field between the leading edge and
half of the chord on the suction side of the membrane wing) or 150 µs (for wide field of
view investigation of the domain near the tip). Both time intervals between image pairs were
selected such that the particle displacement within image pairs was less than 5px.

The light sheet was delivered into the wind-tunnel working section from above using
beam shaping optics, mirrors and a cylindrical lens. The camera was fitted with a Nikkor
50mm f/2.8 lens which was set to f/4 during the experiment. The camera was synchronised
with the laser to 1 µs accuracy, with a National Instruments PC-TIO-10 counter timer, and
the digital images were captured using a National Instruments PCI-1424 digital image frame
grabber. A C. F. Taylor scientific smoke generator generated the seeding needed. It used an
electrical heater to vaporise Shell Ondina EL oil and form a fine mist gently pumped in the
settling chamber, using carbon dioxide. It was introduced upstream from the test section
and circulated for approximately 1min, until evenly distributed. The oil mist has a nominal
particle diameter of 2 µm and an average density of 1kgm−3. The resulting Stokes number
is approximately 9.2× 10−8, therefore seeding particles accurately follow the fluid flow.
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A calibration plate, located in the same position as the laser sheet was used to get spatial
calibration of the PIV system. The narrow field of view produced images with a resolution
of 48pxmm−1, while the wide field of view had 22pxmm−1. The Anatomy Wind Tunnel
had been used for studies on rotors Green et al. (2000) and Green et al. (2005).

Analysis of the collected images was undertaken using the LaVision software (DaVis
8.4, LaVision Inc.) and a multipass cross-correlation algorithm. A Fast Fourier Transform
(FFT) algorithm with a window size of 96px times 96px and 50 % overlap was applied. This
analysis was subsequently refined with three passes at 48px times 48px of window size and
75 % overlap. Results presented in this thesis are averages of over 100 image pairs.

2.5.3 Vortex identification

The boundary of the identified vortex was defined using swirling strength λci (Zhou et al.,
1999). Swirling strength, λci is based on the concept that the velocity gradient tensor, in
Cartesian coordinates, can be decomposed as follows:

∂u j

∂xi
= [di j] = [ν̄rν̄crν̄ci]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λr 0 0
0 λcr λci

0 −λci λcr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[ν̄rν̄crν̄ci]T (2.2)

where λr is the real eigenvalue with corresponding eigenvector ν̄r and the complex conju-
gate pair of complex eigenvalues is λcr ± iλci with corresponding eigenvectors ν̄cr ± iν̄ci.
By expressing the local streamlines in a coordinate system spanned by the three vectors
(ν̄r, ν̄cr, ν̄ci) we can see that the local flow is either stretched or compressed along the axis ν̄r

while on the plane spanned by the vectors ν̄cr and ν̄ci the flow is swirling. The strength of
this swirling motion can be quantified by λci, called the local swirling strength of the vortex.
Onoue and Breuer (2016), Ōtomo et al. (2021) and Wilroy et al. (2018) have successfully
employed this method to define coherent vortices in PIV data. Each vortex is considered as
the centroid of its circulation distribution.

2.6 Emission

A collaboration with Dr Taani, from King’s College London, was established to measure the
emission spectrum of a diaspore. This test campaign was carried out to check if the light
emitted by the seed containing pericarp and the membrane wing of Alsomitra macrocarpa was
at the same wavelength as the incident light. The emission spectrum of the seed containing
pericarp and of the membrane wing were investigated in two separate experiments. A JASCO
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Fig. 2.13 A schematic diagram of an emission spectrum measurement diagram.
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FP-6500 spectrofluorometer, which emits and measures light of precise wavelengths, was
used for the measurements. A diagram of the setup is presented in figure 2.13. A Xenon lamp
emits light which is then filtered by a monochromator that selects the wavelength of interest.
A beam splitter subsequently splits the light, hence the intensity of the incident light can
be measured. The light then hits the wavelength shifting sample, either the seed containing
pericarp or the membrane wing, in our experiments. Light is absorbed and fluorescent light
is emitted. The emitted light goes through a monochromator and its intensity is measured by
a photomultiplier tube. This setup allowed to determine the emission spectrum for different
wavelengths of the incident light, among whom lies the wavelength emitted by the Azure
Kinect depth cameras to define the distance of the object from the camera.

2.7 Flight experiments

Alsomitra macrocarpa gently glides in the tropical Asian forests, trading the height where
the parent pod rests, hence the potential energy, for horizontal displacement. The problem of
detecting and tracking flying birds, insects and objects has been studied by various research
groups, trying to answer different research questions. Tracking the flight of seeds, pieces
of paper and insects with Azure Kinect DK depth cameras is an interesting investigation
method, because it requires no manipulation of the investigated subject, provides high spatial
resolution and can be quickly implemented in a laboratory. The raw data define the position
in space, these measurements can be further analysed, providing values for velocity and
acceleration (Hedrick, 2008). Two-dimensional video analysis is implemented in Biology
and Fluid Mechanics to study the flight of seeds like maple seeds (Varshney et al., 2011),
dandelions (Casseau et al., 2015; Cummins et al., 2018) and dispersal units of Zelkova
abelicea (Certini et al., 2020). Photogrammetry and video analysis gather information from
two or more cameras to extract coordinates in three dimensions.

2.7.1 Drop test

When an Alsomitra macrocarpa takes off from its parent pod, containing up to 400 individual
seeds (BBC, 2009), it usually performs a helical path (table B.2 and table B.3), rather
than a straight path (table B.1) or a curved path, but with a large (i.e. a few meters)
radius of curvature (Azuma and Okuno, 1987). Simple drop tests of hand-held seeds
allowed to get an idea of the different flight behaviour and extent of the transient of the
31 Alsomitra macrocarpa available. Drop tests performed on Alsomitra macrocarpa and
detailed in the literature (Azuma and Okuno, 1987; Nachtigall, 2011a; Saito et al., 2008)
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2.7 Flight experiments

(a) Back view of set-up for straight flight. (b) Release mechanism.

(c) Front view of set-up for straight flight. (d) Back view of set-up for helical flight.

Fig. 2.14 The experimental apparatus; two depth cameras, a robotic arm, Alsomitra macro-
carpa, three soft-boxes (pyramid-shaped light diffusers), a black curtain and a desktop.
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gave further details on how to design the experimental set-up. These drop tests were
also performed with Alsomitra macrocarpa taking off from 4 different initial orientations.
Starting from the horizontal position, where Alsomitra macrocarpa is parallel to the ground,
the other three initial positions were achieved by turning Alsomitra macrocarpa by 90◦.
After a short transient, less than 5 m.g.c. in the vertical direction, all the diaspores reached
their gliding position and landed on the same side of the seed-containing pericarp. The
majority, 27 exhibited helical gliding, while the remaining ones (i.e. 4) had a straight
trajectory. These observations agreed with the experiments of Azuma and Okuno (1987) who
tested 10 seeds and 3 flew in front of the camera used for the drop test. McCutchen (1977)
reported that Zanonia samaras, old taxonomic denomination for Alsomitra macrocarpa, fly
in circles, a meter or less in diameter, and a minority glides in a straight path. The free flights
of 15 Alsomitra macrocarpa were investigated using the experimental set-ups in figure 2.14.
The collected data allowed to confirm the results about the diaspores expected to fly straight
or in a helical path. Two Azure Kinect depth cameras facing the ground recorded the flight in
a closed room of 5.5m in width, 9.0m in length and 3.0m in height, in still air conditions. A
thermal hot-wire anemometer (Testo 405-V1 (Lentink et al., 2009)) measured air temperature
and flow speed before the flight of each Alsomitra macrocarpa. The range of temperatures
recorded during the glides was 16.9 °C to 20.3 °C, hence air density was considered constant
and convection negligible as stated by Vogel (1996). The range of flow speeds measured
was 0.01 ms−1 to 0.02 ms−1. Two different release positions, hence two different locations
of the robot arm (figure 2.14c and figure 2.14d) were used as release points depending on
the flight path. The height of the release point was kept constant at 1.74m. The planar
position, with respect to the cameras, was changed to maximise the portion of the flight path
falling into the investigated volume. Each Alsomitra macrocarpa performed at least 5 glides,
so 5 technical repeats minimum. The seeds were held in place by a Nyrio One robotic arm
with an electromagnet and a metal disk pressing on the seed containing pericarp, the only
rigid part of Alsomitra macrocarpa. The robot arm with the metal disk pressing against the
seed containing pericarp is pictured in figure 2.14b. A vacuum pump gripper was tested
as an alternative. It produced enough suction force to counteract the average weight of the
seeds (0.003N), but the uneven surface of the seed containing pericarp did not allow its
deployment. The set-up, controlled by two personal computers, was operated remotely to
minimise the disturbances (Vincent et al., 2020a). All seeds were released from a horizontal
position, with zero translational or angular velocity (Vincent et al., 2020a). The gliding
path was captured using two Azure Kinect depth cameras facing the ground, in order to
increase the camera coverage of the glide. The orientation of the two depth cameras was
changed according to the gliding path of the diaspore. The data were captured at 30 fps
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2.7 Flight experiments

with a resolution of 3840px times 2160px for the RGB camera and 640px times 576px for
the depth camera. A sampling rate of 30 fps is enough to capture events happening at a
frequency lower than 15 fps, according to the Nyquist–Shannon sampling theorem (Shannon,
1949). The comparison between two videos of the same flight of one seed, recorded at 15 fps
and 60 fps with a camera proved that 15 fps was sufficient to capture the dynamics of the
glide. The volume investigated was around 6m3. A custom made Matlab script, that worked
with the combined data of the two depth cameras, extracted the instantaneous x, y and z
coordinates of the position of Alsomitra macrocarpa during the glide, the velocity u, v,
w and acceleration ax, ay, az components. The vertical distance covered during the glide
was 1.74 m. After the release, Alsomitra macrocarpa goes through a quick transient, followed
by the periodic motion that it experiences during the glide. The transient, in all cases, ended
within 0.3m of the fall.

2.7.2 The Azure Kinect DK sensor

Two Azure Kinect DK sensors tracked the different gliding flights of 15 Alsomitra macro-
carpa. Each Kinect sensor combines a depth sensor, a spatial microphone array, with a video
camera and an orientation sensor that provides the reference system. The Azure Kinect DK
sensor comprises two different cameras: a 3D range sensor, called a depth camera and a
monocular colour camera, called RGB camera (Microsoft, 2019; Nakamura, 2011). The
depth camera has an infrared laser projector combined with a manochrome CMOS sensor
developped by Nakamura (2011). It implements the Amplitude Modulated Continuous Wave
(AMCW) Time-of-Flight (ToF) principle. The camera projects a modulated illumination in
the near infrared (NIR) onto the investigated scene. It then measures the time it takes to the
light to travel from the source (i.e. the camera) to the scene and back. This measurement
allows to build a depth map, a three dimensional representation of the scene. The depth map
is a set of z-coordinate values linked to every pixel in the image, the x and y-coordinate of
the scene. Millimetres is the SI unit applied by the sensor. A clean infrared reading is a
byproduct of the depth map. A clean infrared reading is a 2D image where the intensity of
the pixels is proportional to the amount of light returned by each pixel in the 2D scene. Some
relevant technical characteristics of the depth camera, reported in (Microsoft, 2019) are:

• 1-Megapixel ToF imaging chipwith advanced pixel technology enabling higher modu-
lation frequencies and depth precision;

• two NIR Laser diodes enabling near and wide field-of-view (FoV) depth modes;

• the world’s smallest ToF pixel, at 3.5 µm by 3.5 µm;
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• automatic per pixel gain selection enabling large dynamic range allowing near and far
objects to be captured cleanly;

• global shutter that allows for improved performance in sunlight;

• multi-phase depth calculation method that enables robust accuracy even in the presence
of chip, laser, and power supply variation;

• systematic and random errors are low.

The raw modulated infrared images captured by the depth cameras were transferred to the
host PC. An HP EliteDesk 800 G4 TWR running Windows 10, with 8th Generation Intel
Core i7 Processor and 32.0GB of RAM was exploited. The GPU accelerated depth engine
software of the PC converts the raw signal into depth maps. The depth camera of the Azure
Kinect DK sensor supports several modes. The narrow field of view (FoV) modes are applied
to scenes where two dimensions, given the reference system linked to the sensor, x and y, are
smaller than the z coordinate Microsoft (2019). On the contrary, when the scene has large
x and y coordinate values, but smaller z coordinate ranges, the wide FoV modes are better
suited. All glides of Alsomitra macrocarpa were recorded with the narrow field of view. It
proved to give a better resolution of the flight in preliminary tests. The depth camera supports
2× 2 binning modes to extend the z-range in comparison to the corresponding unbinned
modes. The binning mode lowers the image resolution. All modes presented, narrow field of
view binned and unbinned, wide field of view binned and unbinned, can record at a maximum
of 30fps, with the exception of the 1Mpx mode which records at a maximum frame rate of
15fps. The depth camera also has a passive infrared mode. The infrared mode disallows the
source of infrared light and the only source of illumination is ambient light.

Camera errors in static conditions

The camera’s performance was assessed in static conditions, where it is tracking a static
scene. Two types of errors were identified: systematic and random errors.

Systematic error The systematic error is the difference between the measured depth
after noise removal and the real (ground truth) depth. The position of the black carpet,
lying 1787mm under the depth camera, was utilised to quantify the systematic error in the
experiments.
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The computation of the temporal average over many frames of a static scene defines the
depth noise caused by the systematic error. Systematic error is defined as:

Esystematic =
∑N

t=1 dt

N −dgt (2.3)

Where dt is the measured depth at time t, N is the total number of frames used to calculate
the average, N = 10 in this analysis, and dgt is the ground truth depth, dgt = 1787mm. The
depth camera’s systematic error in our experiments was less than 1mm, hence considered
negligible. This calculation of the systematic error does not take into account multi-path
interference (MPI). Multi-path interference is mitigated by the depth camera using higher
modulation frequencies, coupled with depth invalidation.

Random error The depth of the investigated scene is slightly different in each of the 30
images acquired in a second. This subtle difference is caused by the so-called shot noise.
Shot noise is defined as the total number of photons that reach the sensor, it varies by a
random factor over time. The random error is described in Microsoft (2019), as the standard
deviation of the measured depth, a function of time, over a static scene.

Erandom =

√
∑N

t=1 (dt − d̄)2

N (2.4)

In the above equation, N represents the total number of depth measurements, N = 10 in this
evaluation, dt the depth measurement at time t and d̄ the mean value computed over all depth
measurements dt . The random error in the data collected was around 1mm.

2.7.3 Invalidation

The depth camera, under certain conditions, light conditions, for example, may not provide
the right depth values for some pixels composing the scene. Related pixels, as a consequence,
are invalidated and the corresponding depth values are assigned to zero. There are various
reasons why the depth engine might be incapable of assigning the right depth, some include:

• multi-path interference;

• the investigated object is outside of the active infrared illumination;

• the infrared signal is either saturated or low.

Pixels are invalidated when they belong to a part of the scene which is outside of the active
infrared illumination mask. The edges of Alsomitra macrocarpa, during sections of the glide,
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Fig. 2.15 The invalidated pixels, belong to Alsomitra macrocarpa and are highlighted with a
red ellipse.

were affected by invalidation. Figure 2.15 shows the result of the invalidation due to the
illumination mask. Some invalidated pixels are plotted as black-colour pixels outside of the
hexagon in the narrow field of view mode.

The strength of the infrared signal is also a cause for pixel invalidation. Saturated pixels
are invalidated because the phase information is lost. Invalidation can also occur when the
infrared signal is not strong enough to generate a depth value. A source of ambiguous depth
that leads to pixel invalidation is when a pixel receives the depth signal from more than one
object in the scene. This happens at the edges of objects, where pixels can contain mixed
signals from foreground and background (see Figure 2.15). This phenomenon is known as
the flying pixel problem Tölgyessy et al. (2021). The reflected light causes ambiguity in the
depth assigned to the pixels, but filters implemented in the depth algorithm (Microsoft, 2019)
detect this issue and invalidate the pixels. The use of multiple Azure Kinect DK sensors can
be an approach to tackle this problem if the sensors investigate the same scene from different
perspectives as in our set-up. Object edges are a source of multipath interference because
they tend to contain a mixed signal of foreground and background. Fast motion is a common
cause of invalidated pixels around the edges.

The coordinate system

Depth and colour cameras have an independent 2D coordinate system. The x-y coordinate
system has units of pixels, with x and y ranging between 0 and 1. The pixel coordinate
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[0,0] represents the top-left pixel of the image. Sub-pixel coordinates are shown as fractions.
The 2D coordinate system is centred in zero, while the sub-pixel coordinate of the centre
is [0.0,0.0]. The depth and RGB cameras present an independent 3D coordinate system.
Every point in the 3D coordinate system has a triplet of coordinates [x,y,z] with units in
millimetres. The origin [0,0,0] is located at the focal point of each camera. The orientation
of the coordinate system is fixed: the positive x-axis points right, the positive y-axis points
down and the positive z-axis points forward. The fixed orientation of the coordinate system,
together with the position of the Azure Kinect cameras required geometrical transformations
during the post-processing. Every Azure Kinect camera is calibrated, but a calibration was
required to merge the two point clouds. A point cloud is a set of data points in a volume and
it describes three-dimensional objects. Each point of a point cloud is represented by an x, y,
and z geometric coordinate.

2.8 Analysis of a glider performance

In this section we describe the two non-dimensional parameters that characterise the gliding
flight: aspect ratio AR and Reynolds number Re. Section 2.8.1 and 2.8.2 are a detailed analysis
of the gliding flight (Ennos, 1989), while section 2.8.3 applies this knowledge to Alsomitra
macrocarpa. The gliders that fly up in the sky have high aspect ratio wings, sometimes
over 50, like the Eta glider. The aspect ratio (AR) is a dimensionless parameter defined as:

AR =
b2

S , (2.5)

where b is the wingspan, the distance between the wing tips and S is the planform area of the
wing, as seen from above. Alsomitra macrocarpa, an incredible gliding diaspore has a low
aspect ratio, as reported in table 3.1. Man-manned gliders fly at a Reynolds number over 106,
while the Reynolds number of gliding seeds is of the order of 103. The Reynolds number is a
non-dimensional parameter describing the relative importance of inertial and viscous forces
in a fluid. It is expressed by:

Re =
Uc
ν

, (2.6)

where U is the velocity of the body, c a characteristic length and ν the kinematic viscosity. Al-
somitra macrocarpa has a flight speed of 1.12ms−1 and a wing chord at the wing centre
of 70mm, so its Re is approximately 5000. Table 2.1 records the flight characteristics of the
four Alsomitra macrocarpa that flew in a straight glide. In this section, we will examine how
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Table 2.1 Mean value and 95% Confidence interval of flight characteristics of four Alsomitra
macrocarpa.

Mean value 95% Confidence interval

Terminal velocity, w [ms−1] 0.41 0.38 to 0.45
Velocity, U [ms−1] 1.12 0.97 to 1.29
Glide angle, γ [deg] 23 21 to 25

the aspect ratio, a geometric parameter that describes the planar shape of a wing, affects flight
performance and show the reason for different aspect ratios at different Reynolds numbers.

Rewriting the calculations in Ennos (1989), we find that the drag which opposes the
motion of a glider on a plane consists of two components. The frictional component, the
profile drag, Dpro, is (Alexander, 1982):

Dpro =
1
2ρU2SCDpro , (2.7)

where ρ is the fluid density and CDpro is the profile drag coefficient. Profile drag is defined as
the sum of form drag and skin friction. The induced drag Dind is related to the production of
lift, so it is a property of streamlined bodies and is approximately (Alexander, 1982):

Dind =
(mg)2

2ρU2S AR
, (2.8)

where m is the mass of the glider and g is the acceleration due to gravity. Lift (L) generated
by a streamlined body is equal to or close to the weight W = mg during a cruise flight or a
low gliding angle (Alexander, 1982). The spanwise lift distribution is assumed to be elliptical
and L =

1
2ρU2SCL. The total drag (D) on a glider is the sum of the profile (Dpro) and induced

drag (Dind). It can be expressed as:

D =
1
2ρU2SCDpro +

(mg)2

2ρU2SAR
, (2.9)

At low speeds, induced drag dominates, while at high speeds, profile drag dominates.
Total power, plotted in figure 2.16, is the product of force time velocity:

P =
1
2ρU3SCDpro +

(mg)2

2ρUSAR , (2.10)

Differentiating the last two equations (2.9) and (2.10) with respect to U it is possible to
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Fig. 2.16 Total power is the sum of profile power and induced power as expressed in
equation 2.10.

derive the expressions for the minimum drag speed (U3), at which a glider achieves its
shallowest glide angle (γ) and the minimum power speed (U2) that minimises the rate of
sink. While U3 maximises the horizontal distance travelled for a unit vertical height loss, U2

maximises the time spent in the air for a unit vertical height loss. It is also known as the flight
path angle, the angle between the velocity vector and the horizontal plane. The minimum
drag speed is

U3 = ( N2

ρ2 ARCDpro
)

1/4

, (2.11)

where N is the wing loading mg/S. Flying at U3 gives Dpro = Dind. When the glide angle is
minimised the horizontal distance, x is maximised:

»»»»»»
∂x
∂h

»»»»»» =
1
∣γ∣ = E =

L
D , (2.12)

here h is the vertical distance. Assuming γ small, so that cos(γ) ≈ 1 and sin(γ) ≈ γ . E is
the efficiency and it is the ratio of lift (L) and drag (D). The minimum power speed (U2) is
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obtained from the first derivative of the total power P, equation 2.10, with respect to U :

U2 = ( N2

3ρ2 ARCDpro
)

1/4

= 0.75U3 , (2.13)

It minimises the rate of sink, maximising the time spent in the air, hence the ability to use
updrafts and wind to be carried around.

»»»»»»
∂ t
∂h

»»»»»» =
1

∣Uγ∣ =
»»»»»»

W
UD

»»»»»» , (2.14)

Gliders with high wing loading N will therefore have high optimal flight speeds. Higher
aspect ratio wings will provide lower optimal flight speeds. At the minimum drag speed (U3)
profile drag equals induced drag and the minimum glide angle (γmin) is:

sin(γmin) = (
CDpro

AR )
1/2

, (2.15)

Gliders with higher aspect ratio wings, like those we see sailing the skies, possess a better
glide performance, achieved at a low speed.

2.8.1 Minimum flight speed

The previous discussion assumes that the glider is capable of flying at the minimum drag and
power speeds (Ennos, 1989). A free body diagram, displayed in figure 2.19, highlights the
forces involved.

L = mg =
1
2ρU2SCL , (2.16)

Hence the minimum flight speed (Umin) is:

Umin = ( 2N
ρCLmax

)
1/2

. (2.17)

equation 2.17 shows that there is a minimum velocity Umin, which depends on the maximum
lift coefficient CLmax as proven in Ennos (1989). According to Ennos (1989) the minimum
flight speed Umin rises with the wing loading N. The minimum drag speed is reachable if and
only if it is higher than the minimum flight speed (Ennos, 1989), so Umin <U3 gives:

AR <
C2

Lmax
4CDpro

. (2.18)
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The aspect ratio appears to have an upper bound. It is low for small gliders, like wind-
dispersed seeds, because they operate at low Reynolds numbers where the profile drag is the
main source of drag.

2.8.2 Why do gliding seeds have a low aspect ratio?

Small gliders like Alsomitra macrocarpa experience a Reynolds number of the order of a few
thousand during their flight. The friction drag at such Reynolds numbers is much greater than
the pressure drag, the profile drag coefficient decreases with the Reynolds number (Vogel,
1996). For aerofoils, operating at a Reynolds number of less than a few thousand, the profile
drag coefficient can be approximated by Ellington (1984) formula:

CDpro =
7

Re1/2
(2.19)

The Reynolds number is

Re = ( 2mg
ρSCL

)
1/2

c
ν
= ( 2mg

ρCLν2 AR
)

1/2

(2.20)

where c is the mean chord. The drag coefficient is

CDpro = 7(ρCLν
2AR

2mg )
1/4

, (2.21)

and the profile drag is:

Dpro = 7(mg
CL

)
3/4

(ρν
2 AR
2 )

1/4
(2.22)

i.e. the profile drag increases with aspect ratio to the power of one-quarter. The induced drag
is (Ennos, 1989)

Dind =
(mg)2

2ρSU2 AR
=

mgCL
4AR , (2.23)

when a glider operates at a fixed CL, Dind if fixed. The minimum glide angle is achieved with
maximum efficiency E = L/D =CL/CD. When flying at a constant CL, it will be achieved
when the total drag (Dpro +Dind) is minimised and the differential of drag with respect to the
aspect ratio equals zero (Ennos, 1989; Torenbeek and Wittenberg, 2009). This happens when
the profile drag is equal to four times the induced drag

Dpro = 4Dind , (2.24)
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and the aspect ratio is

AR = 0.20C
7/5
L (2mg

ρν2 )
1/5

(2.25)

The total drag is five times the induced drag and the minimum glide angle at this speed
becomes:

sin(γ) = 5.93C
−2/5
L (ρν

2

2mg)
1/5

(2.26)

Therefore, Ennos (1989) has shown that the shape and performance of the gliders depend on
the lift coefficient. The higher the lift coefficients, the lower the speed to generate enough lift
and the higher the aspect ratio shallower glides can be achieved. Stall sets an upper limit on
the lift coefficient that can be produced by an airfoil. The optimum aspect ratio increases and
the best glide angle decreases with increasing mass.

2.8.3 Shape and flight of Alsomitra macrocarpa

Ennos (1989) proved that gliding seeds do not need a high aspect ratio, differently from
planes and man-manned gliders. Figure 2.18a highlights that the glide angle γ changes with
the aspect ratio AR and a minimum is reached for AR ≃ 4.3, close to the value reported in
table 3.1 and listed in the literature (Azuma and Okuno, 1987; Minami and Azuma, 2003).
Around a similar value of the aspect ratio, the vertical component of velocity w is close to
its minimum, figure 2.18b. When AR ≥ 6.0, the vertical component of velocity is almost
constant, the plot in figure 2.18b shows that there would not be any significant reduction of
w further increasing AR. Below the aspect ratio indicated by equation (2.18), the glider is
able to fly at the minimum drag speed (U3), reaching its minimum glide angle (γmin) (Ennos,
1989). Alsomitra macrocarpa flies at U = 1.12ms−1 (Azuma and Okuno, 1987), it is double
the value of minimum drag speed, which minimises the glide angle reported in table 2.2.
The plot in figure 2.17a displays that the minimum glide angle (γ ≃ 14) is reached when the
angle of attack α is approximately 5deg. The terminal velocity provided by the experiments
with depth cameras, 0.53ms−1, similar to the value of 0.41ms−1 presented by (Azuma and
Okuno, 1987) and points at an angle of attack lower than 5deg , figure2.17b. The glide angle
measured by (Azuma and Okuno, 1987) is 21deg, slightly bigger than the minimum glide
angle that would maximise the distance covered. The profile drag is more than four times
higher than the induced drag, because of the low Reynolds. Alsomitra macrocarpa, Ulmus
glabra, Parthenos Sylvia and Neptis sappho are examples of small natural gliding seeds and
insects with large, low aspect ratio wings, which optimise their glide performance over a
range of speeds due to the environment and the natural variation. The simplest design is
an equivalent flat plate which keeps the mean wing span, surface and aspect ratio listed in
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(a) Glide angle γ versus angle of attack α . (b) Velocity w versus angle of attack α .

Fig. 2.17 Two graphs showing the influence of the angle of attack α on glide angle γ and
vertical component of velocity w.

table 3.1 of the studied population (n=24). This shape gives aerodynamic coefficients and
dependence on the angle of attack similar to that of the artificial model tested in the wind
tunnel by Minami and Azuma (2003). A flat plate has the aerodynamic centre at a quarter
of the chord from the leading edge, hence in front of the centre of gravity which coincides
with the centroid, making it an unstable configuration. This lack of pitching stability is key
to excluding this design because stability is as essential to flying, as lift itself. To get stability
we will introduce the sweep angle which moves the wing backwards, hence the centroid in
front of the aerodynamic centre. The planform of Alsomitra macrocarpa presented sweep
angle, listed in table 3.1. The location of the centre of mass, instead, is related to the position
of the seed-containing pericarp, where the mass is concentrated. The location of the centre of
mass was defined with a static test conducted on the 31 diaspores available. Each Alsomitra
macrocarpa was balanced on a 3D printed cylindrical support with a radius of 2mm and the
centre of mass was always located in the seed containing pericarp.

2.9 Aerodynamic coefficients of Alsomitra macrocarpa

The lift coefficient CL, drag coefficient CD and the efficiency E =CL/CD reported by Azuma
and Okuno (1987) are the results of drop tests and describe the 3D wing. These coefficients
can be obtained by solving the equations that describe a steady symmetric glide as reported
in the free body diagram of figure 2.19. The lift coefficient is defined by:
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(a) Glide angle γ versus aspect ratio AR. (b) Velocity w versus aspect ratio AR.

Fig. 2.18 Two graphs showing the influence of the aspect ratio AR on glide angle γ and
vertical component of velocity w

Table 2.2 Optimal performance of Alsomitra macrocarpa.

Lift coefficient 0.425
Drag coefficient 0.163
Efficiency 2.61
Reynolds number 5336
CLmax airfoil (Azuma and Okuno, 1987) 1.19
Minimum drag speed, [ms−1] 0.52
Minimum rate of sink, [ms−1] 0.39
Minimum flight speed, [ms−1] 0.69
Minimum glide angle, [deg] 20
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Fig. 2.19 Free body diagram of Alsomitra macrocarpa in trimmed gliding.

CL =
2cos(γ)

ρV 2
W
S , (2.27)

and the drag coefficient:

CD =
2sin(γ)

ρV 2
W
S , (2.28)

where the air density (ρ) is assumed to be 1.225kgm−3, while the wing loading (W/S) and
the flight speed (V ) are given in Azuma and Okuno (1987). The gliding angle γ , being the
angle between the plane of the horizon and the path of Alsomitra macrocarpa, is calculated:

γ = arctan(1/E) (2.29)

The angle of attack α is the angle between the horizontal component of velocity and the
flight speed V (total velocity), it can be written as:

α = arcsin(w/V) (2.30)

Where w is the terminal velocity, the vertical component.

2.10 Theoretical analysis

The lift coefficient (CL) for low aspect ratio (AR < 4) swept wings (Λ, sweep angle at half of
the chord line) with an elliptical lift distribution in incompressible flow, is predicted by the
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following equation Anderson Jr (2010):

CL =
2π cos(Λ)√

1+ [(2π cos(Λ))/(π AR)]2 + [2π cos(Λ)/(π AR)]
α (2.31)

and plotted in figure 2.20.

Fig. 2.20 The solid black line is the lift coefficient versus the angle of attack of a flat plate
with a simplified planar shape mimicking Alsomitra macrocarpa, plotted from Minami and
Azuma (2003). The analytical formula (2.31) is graphed with a dashed line. Alsomitra
macrocarpa (∗) at the measured CL in Azuma and Okuno (1987) and the flat plate (◦) at the
angle of attack α = αtrim.
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2.11 The polar curve

Each sample of Alsomitra macrocarpa flies at a lift coefficient, drag coefficient and in a
range of angles of attack. In order to get the polar curve, hence the lift coefficient versus the
drag coefficient, each seed Azuma and Okuno (1987) had to artificially change the trimmed
angle of attack (αtrim). Azuma and Okuno (1987) applied a thin column along the plane
of symmetry, as shown in figure 2.21, which shifted the position of the centre of mass by
applying additional weights. The different position of the weight, hence of the centre of
mass, changed αtrim. Results of polar curves of two and three-dimensional wings are plotted
in figure 2.22.

Fig. 2.21 Modified diaspore. Additional weights were attached to the column. Picture
from Azuma and Okuno (1987).

2.12 The real seed and the flat plate

The drop tests performed by Azuma and Okuno (1987), on three different Alsomitra macro-
carpa and ten flights gave an average CL = 0.337 and CD = 0.090. These are the average
aerodynamic coefficients of real seeds, a 3D wing. Azuma and Okuno (1987) reported a
CL = 0.476 for a 2D wing and a CL = 0.337 for a 3D wing, given that CL = 4.72α (Azuma
and Okuno, 1987), the range of possible trimmed angles of attack (αtrim) is between 4.09°
and 5.78°. This range is totally different from the value stated in Minami and Azuma (2003),
αtrim =12°. Minami and Azuma (2003) attributed αtrim =12° to Azuma and Okuno (1987),
but the value never appears in their paper (“In the case of the Alsomitra macrocarpa, the
trimmed angle of attack αtrim is 12° (Azuma and Okuno, 1987)”). The experimental mea-
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surements performed by Minami and Azuma (2003) on a flat plate with the same planform
of Alsomitra macrocarpa showed that, at 4.09° to 5.78°, ∂Cm

∂α
> 0, so the flat plate would

be unstable (Torenbeek and Wittenberg, 2009). Minami and Azuma (2003) had αtrim =12°,
angle obtained with Cm = 0. The corresponding CL is 0.85, hence 2.5 times higher than
the value in Azuma and Okuno (1987), produced by experiments on real Alsomitra macro-
carpa. Azuma and Okuno (1987) stated: “the flight at high lift coefficients CL showed a
slight tendency to spiral instability ”. Figure 2.22 shows that in the range of CD and CL

where Alsomitra macrocarpa operates, the real seed is closer to a rectangular flat plate with
an aspect ratio of 2 than to the artificial model described in Minami and Azuma (2003). Drop
tests of a flat piece of paper, with the geometry reported in table 3.1, displayed a tumbling
motion. Section 3.5 highlighted recirculation areas behind the wrinkles of the corrugated
membrane wing, a flow feature that does not belong to flat plates (Murphy and Hu, 2010).
This analysis highlighted the importance of collecting independent data with a bespoke glide
arena and depth cameras.

Fig. 2.22 Polar curves of Alsomitra macrocarpa (3 Dpolar) (Azuma and Okuno, 1987),
rectangular flat plate with aspect ratio 2 (AR2) (Okamoto and Azuma, 2011), flat plate
with the planform of the real seed (Model) (Minami and Azuma, 2003) and 2D wing
(2Dpolar) (Azuma and Okuno, 1987).
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Table 2.3 Geometric parameters of the ellipses.

a [m] b [m] c [m] d [m] e/a

0.03 0.003 0.012 0.001 [0,0.9]

2.13 Dynamics model

Leaves and seeds falling from trees do not fly in a straight line but exhibit complex dynam-
ics. Maxwell (1854) performed a qualitative analysis of the tumbling motion. Kirchhoff
(1882) analytically described the motion of a solid body in an inviscid fluid with a set of
ordinary differential equations. Quasi-two-dimensional plates have been extensively stud-
ied (Andersen et al., 2005a,b; Belmonte et al., 1998; Mahadevan et al., 1999; Tanabe and
Kaneko, 1994; Vincent et al., 2020a,b). In these papers the centre of gravity and the centre of
buoyancy or centre of exterior geometry coincide, hence all the forces are applied to the same
point and no net torque is produced. The centre of gravity describes three different kinds of
non-chaotic, two-dimensional, trajectories: steady vertical descent, oscillatory flutter and
rotary tumbling (Huang et al., 2013). These flight paths are exhibited by different seeds, for
instance Taraxacum officinale and Tragopogon pratensis display a vertical descent (Casseau
et al., 2015; Cummins et al., 2018), Betula platyphylla glides with a fluttering path (Minami
and Azuma, 2003) and Ailanthus altissimashows a tumbling behaviour (Overbeck et al.,
2007). In the experiments performed as part of this thesis, Alsomitra macrocarpa that flew
in a straight path, displayed a motion that merged a periodic oscillation of the angle of
attack, typical of fluttering and a net horizontal displacement characteristic of tumbling. A
quasi-steady numerical model developed by Andersen et al. (2005a,b), was adapted to model
this flying behaviour.

2.14 Alsomitra macrocarpa a two dimensional shape

A schematic drawing of the two-dimensional body is shown in figure 2.23. The mass m per
unit length is:

m = ρpπab+ (ρa −ρp)πcd. (2.32)

where ρp = 1.2kgm−3 is the density of the ellipse with semi-major axis a, while ρa =

2.7kgm−3 is the density of the ellipse with semi-major axis c. The set of parameters is
reported in table 2.3. The centre of gravity of the ellipse is marked by O and the offset of O
and O′ is

e =
(ρa −ρp)cd

m h. (2.33)
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The moment of inertia of the ellipse with respect to the axis through O into the plane of the
ellipse is

I = ρpπab(a2 +b2

4 + e2)+ (ρa −ρp)πcd[c2 +d2

4 + (h− e)2] . (2.34)

2.14.1 The equations of motion

The flight of four Alsomitra macrocarpa that glided in a straight path was assumed to be
two-dimensional. Straight flight allows Alsomitra macrocarpa to disperse over long distances,
without being carried by the wind (Minami and Azuma, 2003). The three-dimensional helical
paths are well beyond the scope of this thesis but will be studied, building on the data
already collected. The straight flight path, representing two-dimensional dynamics, was
modelled using ordinary differential equations. Pesavento and Wang (2004), described the
free fall of leaves and business cards, developing Kirchoff’s differential equations which
model the dynamics of a solid body in an inviscid and irrotational flow (Aref and Jones,
1993; Kozlov, 1989; Lamb, 1945). The forces taken into account were: weight and fluid
force, composed of lift, drag, buoyancy-corrected gravity and added mass (Andersen et al.,
2005a,b; Pesavento, 2006; Pesavento and Wang, 2004). A quasi-steady approximation was
implemented following Andersen et al. (2005a,b); Sedov (1980), the fluid forces depend
on the kinematic variables alone, as in Andersen et al. (2005a,b). The Reynolds number
was based on the semi-major axis a and the average descend velocity Ū . The body that
represented Alsomitra macrocarpa had an elliptical cross-section with half major axis a and
half minor axis b. The model was written in the coordinate system linked to the moving
elliptical body, a non-inertial reference frame. The angle θ was defined as the angle between
the gravity vector (g) and the minor axis of the ellipse. Instantaneous velocities of the centre
of gravity and centre of buoyancy were written as:

Vb = ubi+ vbj, Vg = ugi+ vgj. (2.35)

They were connected by:
ub = ug, vb = vg − eθ̇ . (2.36)

The angular velocity θ̇ = ω . The velocity of the centre of mass Vg was then re-written in the
inertial reference frame of the laboratory

u = ug cos(θ)− vg sin(θ), v = ug sin(θ)+ vg cos(θ). (2.37)
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Membrane wing

Fig. 2.23 Cross section of Alsomitra macrocarpa along the longitudinal plane and elliptical 2D
geometry with two different densities used to model it.

where u is the horizontal velocity component and v is the vertical velocity component. The
following set of second-order coupled differential equations describes the dynamics.

(m+m11) u̇g = (m+m22) θ̇vg −ρ f Γvg −m′gsinθ −Fν

gx (2.38a)

(m+m22) v̇g = −(m+m11) θ̇ug +ρ f Γug −m′gcos(θ)−Fν

gy (2.38b)

(I + Ia) θ̈ = (m11 −m22)ugvg + lτρ f Γ

√
u2

b + v2
b −ρ f πabgecos(θ)− τ

ν (2.38c)

Alsomitra macrocarpa gliding through the air was subjected to fluid forces and gravity. The
buoyancy corrected gravity, as defined in Pesavento (2006), with the values reported in
table 3.1 is 392gs−2, comparable to the buoyancy corrected gravity of 88gs−2 in Pesavento
(2006). The lift, by definition, is orthogonal to the direction of motion and depends on
the circulation Γ = Γ(ug,vg, θ̇) (Andersen et al., 2005a). The drag is orthogonal to the lift
and opposite to the direction of motion Fν

= Fν (ug,vg, θ̇) (Andersen et al., 2005a). The
dissipative torque is opposite to the direction of rotation τ

ν
= τ

ν (ug,vg, θ̇) (Andersen et al.,
2005a). The added mass coefficients m11 and m22 and the added mass moment of inertia
Ia of an elliptical object with inhomogeneous mass distribution were derived from inviscid
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Fig. 2.24 The velocity components ug and vg of Vg, in the laboratory reference frame were
defined with respect to the coordinate system that follows the rotation of the elliptical body,
as in Andersen et al. (2005a,b); Huang et al. (2013). The velocity components u and v are
the horizontal and the vertical velocity component in the inertial reference frame, attached to
the laboratory. The angle θ is the angle between the axis yg, perpendicular to the major axis
of the ellipse, and the direction of gravity g.
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2.14 Alsomitra macrocarpa a two dimensional shape

theory (Andersen et al., 2005a; Huang et al., 2013; Sedov, 1980):

m11 = πρ f b2
, m22 = πρ f a2

, Ia =
1
8πρ f (a2

−b2)2
+πρ f a2e2

. (2.39)

The second term in the expression for Ia is related to the fact that the origin of the non-inertial
reference frame is placed at the centre of gravity which is displaced with respect to the centre
of exterior geometry (Sedov, 1980).

Circulation and lift

Experiments performed by Andersen et al. (2005a,b), coupled with direct numerical sim-
ulations of Pesavento and Wang (2004) allowed to express the lift in a self-consistent
form. Andersen et al. (2005a) discovered that the circulation of fluttering and tumbling cards,
with Reynolds number between 100 and 1000 is related to translational speed and angular
velocity. The circulation can be written in terms of the velocity components of the centre of
exterior geometry, ub,vb and the angular velocity θ̇ , as follows:

Γ = −CT a
ubvb√
u2

b + v2
b

+
1
2CRa2

θ̇ , (2.40)

where CT and CR are dimensionless constants, weighing the contributions from translational
and rotational velocity respectively. The translational component of the lift provides fluid
forces during the straight gliding sections, fluttering for Andersen et al. (2005a,b), whereas
the rotational component is dominant during tumbling, as described by Andersen et al.
(2005a,b). The translational term is the Kutta-Joukowski lift at low angles of attack and it
allows to consider stall at high angles of attack. Most of Alsomitra macrocarpa’s gliding path
is like fluttering, while the sudden change in angle of attack α resembles tumbling, which
may be caused by a stall of the wing. The elevation of the centre of mass is given by the
rotational lift.
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Table 2.4 Fitting parameters for the quasi-steady model as in (Huang et al., 2013).

CT CR C0 Cπ/2 Cτ

4.5 1.8 0.2 0.5 1.9

Drag and dissipative torque

Drag and dissipative torque depend on the Reynolds number. Wang et al. (2004) gave an
equation for drag which is quadratic and depends on the angle of attack α:

Fx = −
ρ f a

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
C0

u2
g√

u2
g + v2

g

+Cπ/2
v2

g√
u2

g + v2
g

⎤⎥⎥⎥⎥⎥⎥⎥⎦
ug,

Fy = −
ρ f a

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
C0

u2
g√

u2
g + v2

g

+Cπ/2
v2

g√
u2

g + v2
g

⎤⎥⎥⎥⎥⎥⎥⎥⎦
vg,

τ
v
=Cτ

ρ f a4
θ̇ ∣θ̇ ∣

64
,

(2.41)

where C0, Cπ/2 and Cτ are dimensionless constants. The dissipative torque is described with
a single term which depends on the squared angular velocity θ̇ . It has to be highlighted
that the circulation in Eq. 2.40 and the components of drag in Eq. 2.41 are only related to
the plate’s instantaneous motion, no history dependence is present. This is a quasi-steady
assumption that greatly simplifies the full flow-structure interaction problem. The dynamic
equations 2.38 coupled with the kinematic relations form a closed system that was solved
with the MATLAB ode45 routine. This routine ode45 is based on an explicit Runge-Kutta
formula, the so-called Dormand-Prince pair. It is a single-step solver because, in solving the
first order ordinary differential equations, it only needs the solution at the preceding time
step (Videler et al., 2004). The solution was made by the velocities ub, vb and θ , which were
further integrated to get the trajectories in the inertial reference frame, i.e. the laboratory
frame. The five parameters involved in the model (CT , CR, C0, Cπ and Cτ ), which are present
in equation 2.40 and equation 2.41 are mainly related to the outer shape of the ellipse with
semi-major axis a. In the experimental drop test, Alsomitra macrocarpa was released with
zero initial velocity and zero initial tilt angle θ , these were also the initial conditions for the
numerical model.
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2.15 Simplified dynamics model

2.14.2 Limits of the quasi-steady approximation

A quasi-steady force model, described in the previous sections and in Andersen et al.
(2005a,b) misses two types of effects:

• unsteady effects related to the acceleration;

• interaction of the body with existing vortices.

The lift could be generated during translational acceleration from rest at a low angle of attack.
Unsteady forces could be caused by the formation of vortices, both at the leading edge and
the trailing edge during translational acceleration at a high angle of attack (Pullin and Wang,
2004). The second kind of unsteady effect, instead, is negligible for Alsomitra macrocarpa
and fluttering or tumbling cards (Andersen et al., 2005a). It is relevant for flapping insects,
where the wing, oscillating back and forth, dives into its own wake.

2.15 Simplified dynamics model

In drop tests, performed as part of this work, Alsomitra macrocrpa exhibited a straight gliding
flight that may be modelled as a simple steady-state trimmed glide (Anderson Jr, 2010). The
dynamic effects, presented in the previous sections 2.14.1, had to be included to capture the
oscillations, not displayed by some diaspores. The torque due to circulatory lift τLi f t could
be a driver of the observed dynamics. The steady-state glide, at small angles of attack, of
flat plates and symmetric aerofoils, develops a pitching moment (Anderson Jr, 2010). The
dominant contribution to the pitching moment is the moment due to aerodynamic lift, shown
in figure 2.25. A first representation of the gliding flight is a plate with a centre of mass
forward of the aerodynamic centre, granting static stability (Torenbeek and Wittenberg, 2009),
figure 2.25. The moment due to translational lift, and the dissipative drag, could be sufficient
to capture some of the gliding trajectories displayed in chapter 3. This model represents
a glider, trimmed at zero lift (Minami and Azuma, 2003). The trimmed flight condition
presents a lift contribution equal to zero (Anderson Jr, 2010). In Andersen et al. (2005b),
some results highlight that, during parts of the tumbling and fluttering flight of plates, some
periods have a moment due to translational lift higher than the moment measured with the
experiments. This observation is based on the assumption that the lift acts at the quarter chord
for all angles of attack (Anderson Jr, 2010). A flat plate model, subject to the acceleration
due to gravity, where the centre of mass is placed at the leading edge and taking into account
circulatory lift and moment, dissipative drag is studied, as displayed in figure 2.26. The
addition of a zero-lift pitching moment coefficient (Cm0), allows considering the moment
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Fig. 2.25 Flat plate with the centre of mass at the leading edge.

Fig. 2.26 Flat plate with the centre of mass at the leading edge and curved trailing edge.
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2.15 Simplified dynamics model

generated by camber τcamber, figure 2.26. This zero-lift pitching moment allows the plate to
be trimmed at a positive lift and consequently achieve an inclined glide path as shown by
gliding aircrafts (Pajno, 2010). While a diaspore like Alsomitra macrocarpa is capable of
achieving a cambered airfoil through passive aero-elastic deformation, observed during the
test campaign performed in the wind tunnel, a plate would require negative camber, mainly
located towards the trailing edge (Anderson Jr, 2010; Torenbeek and Wittenberg, 2009). The
modelling of the local wing aerodynamics and aero-elastic effects is an interesting research
topic, but beyond the scope of this thesis.
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Chapter 3

Results

3.1 Morphology

The description of the morphology of Alsomitra macrocarpa required the purchase of 31
diaspores from two different suppliers, in order to get a broad sample variability. The
geometrical characteristics of the 31 diaspores are provided in tables A.1, A.2, A.3 and A.4.
The mean values and 95% confidence intervals are reported in table 3.1, showing good
agreement with the values reported by Azuma and Okuno (1987); Nachtigall (2011b). The
seed containing pericarp presented a thickness of 1 or 2 millimetres and was assumed to be
the centre of gravity of the diaspore. The membrane wing is extremely thin, from a few µm at
the edges to a few hundred µm in the thickest part. The thickness contributes to making some
parts of the membrane wing transparent. The geometrical sweep angle is key to moving the
aerodynamic centre behind the centre of mass and stabilising the pitching motion. Some
cross sections of the wing are presented later in figure 3.2. The reflected airfoil mentioned
by Azuma and Okuno (1987) as a source of pitching stability was not detected. A correlation
matrix was applied to the values of mass, wing span, wing surface, geometrical sweep angle
and mean geometric chord, with a threshold on the correlation coefficient of 0.6 and a p-value
of 0.05, no unexpected correlation was detected.

3.2 Planform

A quadratic equation was developed, building on the results of the morphometric analysis,
to describe the average planar form of 24 diaspores. The idea of representing the outline of
a wing with a simple mathematical function has already been implemented by Weis-Fogh
(1973) and Faisal and Filippone (2016a,b) to study the fluid mechanics of wings of hovering
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Table 3.1 Mean value and 95% Confidence interval of morphological characteristics Alsomitra
macrocarpa.

Morphology Mean value 95% Confidence interval

Mass, m [g] 0.36 0.32 to 0.39
Wing-span, b [mm] 171 168 to 175
Wing chord, ccentre [mm] 70 68 to 73
on the roll axis
Wing surface, S [mm2] 10244 9787 to 10656
Geometrical sweep angle, Λ [deg] 17.5 16.9 to 18.2
Centre of gravity, CG [mm] 22 22 to 23
distance from leading edge
Aspect ratio, AR = b2/S 2.84 2.77 to 2.92
Mean geometric chord, m.g.c. [mm] 60 58 to 61
Wing loading, W/S [Nm−2] 0.35 0.32 to 0.37
Density, ρ [gm−2] 35 32 to 37

Table 3.2 Coefficients of the quadratic equation 3.1.

Coefficient Value

aam 0.38
bam 0.80
cam 0.39
dam -0.96

insects. This simple, two-dimensional, geometrical shape presents a sweep, tapered form, as
required to perform a stable gliding flight, as presented in figure 3.1.

(yam − cam∣xam∣bam)2
+ (camxam)2

−dam = 0 (3.1)

where yam = y/b is the normalised wing-span, xam = x/b is the normalised chord and b is the
average wing-span of the 24 Alsomitra macrocarpa analysed. The coefficients are listed in
table 3.2.

3.3 Three-Dimensional Shape

The 3D scanner produced a point cloud with more than 3000000 points. Wing roughness
height of the Alsomitra macrocarpa studied turned out to be 1 to 3 % of the chord length on the
membrane wing, similarly to swift wings (Lentink and De Kat, 2014), 10000 times rougher
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Fig. 3.1 Data points from the planar form of 24 diaspores fitted with the quadratic equation.

than sailplane wings. Sailplanes rely on smooth wings to increase the area of laminar flow
over the wing and minimise drag, with the scope of extending the gliding distance. Corrugated
wings are common in the insect kingdom, some examples include Aeschna cyanea, Locusta
migratoria and Tipula. The wing has to provide aerodynamic efficiency during flight.From a
structural perspective, the effect of corrugations, or wrinkles is that of raising the moment of
inertia I of the cross-section and as a consequence, the flexural stiffness EI (Rees, 1975a).
The aerodynamic contribution of a corrugated airfoil is linked to the roughness height,
relative to the thickness of the air layer that flows over the wing, known as the boundary
layer (Schlichting and Gersten, 2015; White and Majdalani, 2006). At the coordinate where
roughness height and boundary layer thickness are similar, disturbances trigger the laminar
to turbulent transition (Schlichting and Gersten, 2015; White and Majdalani, 2006). The
boundary layer thickness δ is a function of chord length L and the velocity of the wing U
through the Reynolds number. This dimensionless number describes the ratio of inertial
to viscous forces in the boundary layer (Schlichting and Gersten, 2015). Re ≈ 5000 is the
average Reynolds number experienced by Alsomitra macrocarpa during the glide. The
Reynolds number is always around a few thousand, taking into account natural variation
and unsteady glide. Adopting a flat plate approximation, δ/L = 5Re−0.5

≈ 0.07 as reported
by Schlichting and Gersten (2015), the boundary layer thickness at the trailing edge is 7%
of the chord length.The mean geometric chord, reported in table 3.1 is 60mm, hence the
boundary layer thickness at the trailing edge is around 4mm. The measured roughness
on the scanned Alsomitra macrocarpa was 1 to 3 %, hence it may disturb the laminar
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Fig. 3.2 Alsomitra macrocarpa scanned at the top, with the corresponding cross sections of
the wing at the bottom.

airflow, forcing a transition to a turbulent state (Schlichting and Gersten, 2015; White and
Majdalani, 2006). Surface roughness elements that force airflow to become turbulent are
usually called “turbulators” (Schlichting and Gersten, 2015). Turbulators can increase lift and
decrease drag by reducing laminar flow separation (Nachtigall, 1985). In order to understand
the effectiveness of a turbulator, the roughness Reynolds number, defined as Rek = Re× k/L
has to be calculated. The roughness height is k. Alsomitra macrocarpa had a Rek ≈ 167.
The lowest value of Rek required to force the laminar to turbulent transition is 80, but for
a Reynolds number of 100000 (Lyon et al., 1997). This was the lowest Reynolds number
found in the literature. Alsomitra macrocarpa could have sufficient aerodynamic roughness
to trigger turbulence.

3.4 Tip deformation

Experiments performed in the Visualisation Tunnel showed that during its glide Alsomitra
macrocarpa’s membrane wing experiences noticeable deformations. The pattern of wrinkles
and the spatial distribution of thickness defined the scale of this deformation.

Data from the experiments are plotted in figure 3.3 and 3.4. Different markers are related
to different angles of attack, ◦ for 0deg, ⋄ for 5deg, ▵ for 10deg and ∗ for 15deg.

The membrane wing, from a structural perspective, was modelled as a cantilever beam,
fixed on the longitudinal plane, with a uniform load distribution over the span (Combes and
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3.4 Tip deformation

Fig. 3.3 Deflection of the left wing tip.

Daniel, 2003a,b). The load applied in the vertical direction, that caused the tip deflection
is lift L. The lift can be expressed as L =

1
2ρScLU2, where ρ is the density of the fluid, S is

the wing surface, CL is the lift coefficient and U the free stream velocity. Lift depends on
the squared value of free stream velocity, hence δ ∝U2. The values measured were then
fitted with a second-order polynomial, as shown in figure 3.3 and 3.4 to extend the results
over the range of velocities experienced by Alsomitra macrocarpa during the glide. All the
fitted curves are monotonically increasing with free stream velocity (figure 3.3 and 3.4),
however, for both tips, the deflection δ is maximum when the angle of attack is 10deg. The
lift coefficient CL is the only term of the lift equation that depends on the angle of attack. A
lower lift at a higher angle of attack would mean that 15deg is over the stall angle, differently
from what is claimed by Azuma and Okuno (1987); Minami and Azuma (2003); Nachtigall
(2012). The dihedral angle produced by the deformation has a crucial role in guaranteeing
rolling stability (Torenbeek and Wittenberg, 2009) and elevating the aerodynamic centre
relative to the centre of gravity (Thomas and Taylor, 2001).
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Fig. 3.4 Deflection of the right wing tip.
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3.5 Particle Image Velocimetry

(a) Streamlines superimposed to the vorticity plot. (b) Swirling strength.

Fig. 3.5 Flow field near the leading edge.

3.5 Particle Image Velocimetry

This section presents the results of the experiments conducted in the Anatomy Wind Tunnel.
Figure 3.6 shows the tip vortex on the right side of the membrane wing. In figure 3.5a the
streamlines on the suction side of the corrugated airfoil are bent, behaving exactly how they
do on an airfoil. The flow over a corrugated wing, presented in figure 3.5a and 3.5b seemed
to involve some fluid becoming trapped in the folds where it rotates slowly about an axis
parallel to the span of the wing (Rees, 1975a). As shown by the recirculation zones near half
of the chord (chordwise coordinate around 40mm). However the streamlines that seem to
originate from the solid (chordwise coordinate 15mm) reveal a significant spanwise flow. At
the Reynolds number experienced by Alsomitra macrocarpa during the glide, the corrugated
airfoil offers a range of advantages: low mass, high stiffness and a reduced stress due to
bending (Rees, 1975a,b), while providing an aerodynamic performance comparable to that
of a smooth profile. Wings that operate at a Reynolds number of a few thousands do not
show a deterioration in performance due to roughness.

3.6 Emission results

The results of measurements performed with the spectrometer at King’s college by Dr
Taani (Taani, 2020) are shown in Figure 3.7 and 3.8. These results confirmed that Azure
Kinect cameras could get the position of the object from the received infrared light, allowing
the depth cameras to track Alsomitra macrocarpa’s flight. Figure 3.7a and 3.8a are 3D
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(a) Streamlines superimposed to the vorticity plot. (b) Swirling strength.

Fig. 3.6 Images highlighting the tip vortex one mean geometric chord downstream of the
trailing edge.

reflection spectrum plots that show the wavelengths of reflected light on the vertical axis
versus the wavelengths of incident light on the horizontal axis. Both axes cover a wavelength
range spanning between 600 and 900nm. The colour map represents the intensity of the
detected light. The 2D graphs in figure 3.7b and 3.8b were obtained extracting the values
from figure 3.7a and 3.8a respectively, when the incident light has a frequency of 850nm,
i.e. frequency at which the Azure Kinect depth cameras operate (Microsoft, 2019). When
the seed containing pericarp or the membrane wing are illuminated with light at 850nm they
reflect at 850nm, if they were absorbing all the incident light, there would not have been
peaks in figure 3.7b and 3.8b.

3.7 Point cloud analysis

A total of 15 Alsomitra macrocapra were recorded, with at least 5 technical repeats per
diaspore and an average of 51 frames per glide, almost 2s. The flow chart drawn in figure 3.10
highlights the main steps used to process the point clouds generated by the depth cameras.
The analysis was performed with a custom-written program in MATLAB (MathWorks,
Inc., Natick, MA, USA). Firstly, point clouds independently generated by the two cameras
were acquired. In each frame recorded, the two point clouds were merged to generate a
single point cloud. Three geometrical transformations, two rotations, around x and y axes
and a translation along the z axis were executed, aligning the reference frame of the point
cloud with the reference frame of the laboratory. The z axis is perpendicular to the ground
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3.7 Point cloud analysis

(a) Spectrum of reflected light for the seed con-
taining pericarp.

(b) Spectrum of reflected light when the seed con-
taining pericarp is illuminated with 850nm light.

Fig. 3.7 Results of spectrometer measurements performed on the seed containing pericarp.

(a) Spectrum of reflected light for the membrane
wing.

(b) Spectrum of reflected light when the mem-
brane wing is illuminated with 850nm light.

Fig. 3.8 Results of spectrometer measurements performed on the membrane wing.
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Fig. 3.9 Example of a set of centroid positions fitted with the function circfit.

and the x axis points in the direction of the glide for a straight flight. A region of interest
(ROI) was then defined to reduce the number of points taken into consideration, reducing
the computational time and performing raw denoising. Points within the specified ROI
were obtained with the MATLAB function findPointsInROI. This function is built around
a Kd-tree based search algorithm (Muja and Lowe, 2009). The point cloud inside the ROI
was then denoised with the function pcdenoise (Rusu et al., 2008), obtaining a point cloud
representative of the surface of the diaspore. The arithmetic mean of the coordinates was
identified as the centroid of the point cloud. The extent of the initial transient, between
the release at zero initial velocity and the gliding flight in a steady or periodic state, was
determined with the qualitative investigation of hand-held diaspores dropped in a quiescent
environment and with the literature Azuma and Okuno (1987); Nachtigall (2011a); Saito
et al. (2008). The different flight trajectories, straight and helical, required two different
approaches. In order to confirm the qualitative analysis conducted with simple drop tests,
the centroids projected on the horizontal plane x y were fitted with a circle, employing the
Matlab function circfit, as shown in figure 3.9. The function circfit executes the least squares
fitting of two-dimensional data to a circle. The results of this analysis led to an average radius
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3.8 Gliding path

of 0.573m. The maximum radius obtained was 1.574m, any trajectory that led to a radius
three orders of magnitude bigger was considered a straight glide.

3.7.1 Data processing

A total of four diaspores flew with a straight gliding path, while the majority, eleven, displayed
a helical gliding path. Data points depicting the position of the centroid in each frame, and
in straight gliding were fitted with a straight line. The data points were then rotated rigidly
around the z axis, placing the fitting line on the vertical plane x-z. The horizontal axis x
followed the glide’s projection onto the floor and the vertical axis z pointed vertically up,
opposite to gravity, with the last position detected set as the origin. The data points were then
interpolated with a Fourier series with six harmonics, describing the coordinates x, y and z as
a function of time. In MATLAB, Fourier series are expressed in trigonometric form. The
following equation, for instance, represents the approximation of x(t) with a Fourier series:

x(t) = a0 +
n

∑
k=1

ak cos(kξ t)+bk sin(kξ t), (3.2)

the constant a0, known as the intercept, is associated with the k = 0 cosine term, ξ is the
fundamental frequency and n is the number of harmonics in the series, n = 6 in our analysis.
Various interpolating methods were tested, Fourier series with 6 harmonics was selected
because it produced the best balance between smoothness and accuracy. A coefficient of
determination, Ordinary R-squared, greater than 0.95 defined an accurate fitting. The Fourier
series allowed to move from a discrete to a continuous description of the position in time.
Velocity and acceleration components were calculated as first and second derivative of
the Fourier series, thanks to the MATLAB function differentiate. The terminal velocity,
vertical component of velocity, was calculated as ratio of the distance covered over the time
interval, similarly the total velocity was obtained from the vector sum of the three averaged
components.

3.8 Gliding path

The gliding flight of 15 Alsomitra macrocarpa was tracked. Gliding is an efficient form of
travel adopted by plants (Minami and Azuma, 2003) and terrestrial vertebrates (Bahlman
et al., 2013). To understand the kinematics of Alsomitra macrocarpa the glide was tracked
with two depth cameras, operating at 30 Hz. Velocities and accelerations were extracted from
the trajectories in cartesian coordinates.
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Acquisition of point-clouds from two depth cameras

Merge the point-clouds

Perform geometrical transformations

Align the point-cloud to the laboratory reference frame

Define a region of interest (ROI)

Clean and de-noise the ROI

Extract the centroid of the point-cloud

Fig. 3.10 High-level flowchart of the MATLAB analysis of the point-clouds.
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3.9 Different gliding paths

3.9 Different gliding paths

Alsomitra macrocarpa exhibits different gliding paths, 15 diaspores were tracked with
depth cameras. A helical trajectory was displayed by 11 diaspores depicted in figure 3.15,
figure 3.16, figure 3.17, while the remaining 4 glided in a straight path (figure 3.14). The
time series of the x, y and z coordinates for the straight glide are reported in figure 3.11,
figure 3.12 and figure 3.13, while the time series regarding the helical glide are presented
in figure 3.18, figure 3.19 and figure 3.20. Both helical and straight trajectories exhibited a
phugoid motion which is linked to displacement of the centre of mass and centre of buoyancy
as shown in previous sections and by the literature (Li et al., 2022). The analysis of the planar
form of the diaspores with the parameters commonly adopted in aviation, to characterise
wings (table 3.1, Azuma and Okuno (1987)) and leaves (Chuanromanee et al., 2019) did not
give conclusive results, because of a small sample size. Studies on insect wings (Alba et al.,
2021) and leaves (Chuanromanee et al., 2019) involved hundreds of samples. The proportion
of diaspores that performed different gliding behaviours agrees with the data reported in
the literature (Azuma and Okuno, 1987). Taraxacum officinale and Zelkova abelicea have
different dispersal mechanisms, wind dispersal for the former (Cummins et al., 2018) and
animal dispersal for the latter (Egli, 1997), nonetheless the majority of the seeds germinate
in the proximity of the mother plant (Howe and Smallwood, 1982). The gliding flight of 4
diaspores, tracked with depth cameras displayed a straight path, as reported in figure 3.14
and figure 3.12 where the oscillations are between −120mm and 130mm. The four time
series in figure 3.11 are monotonically increasing as the diaspores advance during their fall
(figure 3.13). The gliding trajectories were recorded once the diaspores had reached their
steady or periodic flight. The initial transient was kept outside the investigated volume. The
time series of x, y and z highlight that, given the biological variation, it was not always possible
to capture a full period. The gliding flight of Alsomitra macrocarpa was considered straight
when the lateral displacement, plotted in figure 3.12, was of the same order of magnitude of
the wing-span b in table 3.1. The lateral displacement can be inferred from figure 3.12. The
lateral oscillations depicted in figure 3.14 could be related to an asymmetric development of
the three-dimensional separation bubble as documented in Gresham et al. (2010). Low aspect
ratio wings at low Reynolds number showed self-induced roll oscillations (Gresham et al.,
2010). The horizontal velocity component u, in the direction of the gliding flight, oscillates
around a positive value, reaching negative values for diaspore 21 and 26. A negative value for
the horizontal velocity u means that Alsomitra macrocarpa is moving backwards, opposite to
the direction of flight. The lateral velocity component v, oscillates around 0ms−1. In a planar
motion, which is two-dimensional, v would be 0. The vertical velocity component w oscillates
around a negative value, Alsomitra macrocarpa is falling, for a glider it would have a constant
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Fig. 3.11 Time series of the x component of the straight glide of 4 diaspores. Each glide is
represented by a different colour.

value. A positive value of w, showed by figure 3.14 for diaspore 21 and 26 means that the
diaspore is climbing, moving in a direction opposite to the gravity vector. The acceleration
plots display the three components of acceleration ax, ay and az, oscillating around a zero
mean value in a maximum range −10ms−2 to 10ms−2. The lateral acceleration component
ay presents the shallowest range as the respective velocity v is almost constant and has a
narrow range of values.

3.9.1 Helical gliding path

The gliding flight of the remaining 11 diaspores featured a helical gliding path as recorded in
figure 3.15, figure 3.16 and figure 3.17. The time series are plotted in figure 3.18, figure 3.19
and figure 3.20. The gliding trajectories were recorded once the diaspores had reached their
steady or periodic flight. The time series highlight that, given the biological variation, a
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3.9 Different gliding paths

Fig. 3.12 Time series of the y component of the straight glide of 4 diaspores. Each glide is
represented by a different colour.
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Fig. 3.13 Time series of the z component of the straight glide of 4 diaspores. Each glide is
represented by a different colour.
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3.9 Different gliding paths

(a) Diaspore 1, 3D trajectory, (b) Velocity components, (c) Acceleration components.

(d) Diaspore 21, 3D trajectory, (e) Velocity components, (f) Acceleration components.

(g) Diaspore 23, 3D trajectory, (h) Velocity components, (i) Acceleration components.

(j) Diaspore 26, 3D trajectory, (k) Velocity components, (l) Acceleration components.

Fig. 3.14 Alsomitra macrocarpa 1, 21, 23 and 26 that flew in a straight line.
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full period of the motion was not always recorded. The vertical velocity component w has
a negative value with small oscillations around the mean absolute value of 0.5ms−1, in
agreement with 0.41ms−1 reported in the literature (Azuma and Okuno, 1987). The other
two velocity components u and v, which belong to the motion on the horizontal plane, present
oscillations in a range of absolute values spanning from 0ms−1 to 1.50ms−1. The accelera-
tion components reported in figure 3.15 and figure 3.16 show a range of values admissible
for seed dispersal (Minami and Azuma, 2003). Limitations on the time available prevented
the analysis of velocity and acceleration components for the 5 diaspores in figure 3.17 and
further analysis on the plots. Helical paths are a ubiquitous feature in nature (Lentink
et al., 2007), the DNA molecule is made of two intertwined helices, climbing plants have
helical appendages and a charged particle in a uniform magnetic field describes a helical
trajectory. The majority of Alsomitra macrocarpa tested, 11, flew in a helical path, some
with oscillations in the direction of flight similar to a phugoid, others in a smooth helix with
a radius smaller than 1 m. This research focused on the four diaspores performing a straight
gliding path, the three-dimensional helical flight will be the subject of future studies. In
mathematics, a helix is a smooth space curve with tangent lines forming a constant angle
to a fixed axis. In cartesian coordinates, the parametrisation used to fit the 3D coordinates
collected by the depth cameras is:

x = Rcos(ωt) (3.3a)

y = Rsin(ωt) (3.3b)

z = wt (3.3c)

where R is the radius of curvature and ω is the frequency. The instantaneous velocity and
acceleration are obtained as the first and second derivatives of x, y and z versus time. The
total velocity is U = (R2

ω
2 +w2)0.5. Figure 3.21 shows, as an example, the fitting of the 3D

trajectory, data points are represented by ◦ with the fitting curve described in equations 3.3.
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3.9 Different gliding paths

(a) Diaspore 2, 3D trajectory, (b) Velocity components, (c) Acceleration components.

(d) Diaspore 12, 3D trajectory, (e) Velocity components, (f) Acceleration components.

(g) Diaspore 15, 3D trajectory, (h) Velocity components, (i) Acceleration components.

(j) Diaspore 25, 3D trajectory, (k) Velocity components, (l) Acceleration components.

Fig. 3.15 Alsomitra macrocarpa 2, 12, 15 and 25 that flew in a helical path.
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(a) Diaspore 27, 3D trajectory, (b) Velocity components, (c) Acceleration components.

(d) Diaspore 31, 3D trajectory, (e) Velocity components, (f) Acceleration components.

Fig. 3.16 Alsomitra macrocarpa 27 and 31 that flew in a helical path.
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3.9 Different gliding paths

(a) Diaspore 4, 3D trajectory, (b) Diaspore 9, 3D trajectory, (c) Diaspore 10, 3D trajectory.

(d) Diaspore 18, 3D trajectory, (e) Diaspore 20, 3D trajectory

Fig. 3.17 Alsomitra macrocarpa 4, 9, 10, 18 and, 20 that flew in a helical path.

73



Results

Fig. 3.18 Time series of the x component of the helical glide of 11 diaspores. Each glide is
represented by a different colour.
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3.9 Different gliding paths

Fig. 3.19 Time series of the y component of the helical glide of 11 diaspores. Each glide is
represented by a different colour.
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Fig. 3.20 Time series of the z component of the helical glide of 11 diaspores. Each glide is
represented by a different colour.
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Fig. 3.21 Two plots showing the three-dimensional helical path of Diaspore 2 and Diaspore 5.
The discrete data points from the flights of two Alsomitra macrocarpa are fitted with equa-
tions 3.3.
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Chapter 4

Discussion

4.1 A gentle glide

Winged seeds like black pine, maple, hornbeam and ash exhibit autorotation during their fall
to the ground (Azuma and Yasuda, 1989; McCutchen, 1977). The gliding flight of Alsomitra
macrocarpa was first studied by Ahlborn (1897) and subsequently by Azuma (2007); Azuma
and Okuno (1987); Hagiwara (1992); Hertel (1966); Minami and Azuma (2003); Nachtigall
(2011a, 2012) and Saito et al. (2008), who modelled the flight with the laws of equilibrium
gliding. This specific form of gliding is based on the assumption that the glider, Alsomitra
macrocarpa for instance, flies in equilibrium, hence in a steady state. This flight requires
that lift and drag produce a total force of the same magnitude as the weight, but in opposite
direction. Equilibrium gliding produces a linear glide path, at constant velocity and constant
glide angle (Minami and Azuma, 2003). Aerodynamic forces depend on the squared value of
velocity. Consequently, a specific speed is associated with each wing shape and orientation
to develop a total force that precisely balances the weight. A constant gliding velocity is
also associated with a fixed gliding angle (Bahlman et al., 2013). Gliding, straying and
parachuting seeds, which are passive gliders (Minami and Azuma, 2003), reach their steady
falling conditions after a short transient, a few body lengths from the release position (Seiichi
et al., 2008). They behave as a falling object that eventually reaches terminal velocity.
The non-equilibrium phases in steady gliding are present at the beginning of the glide,
given the influence of the dynamics of take-off (Bahlman et al., 2013) and towards the end
as a result of the ground effect. Azuma and Okuno (1987); Minami and Azuma (2003)
and Nachtigall (2011a) recorded some of the parameters listed in table B.1, B.2 and B.3,
but those descriptors characterise equilibrium gliding and do not address time-resolved
changes. Time-resolved trajectories are needed to understand if the path, hence the velocity
and acceleration components evolve during the flight (Bahlman et al., 2013). In the following
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sections we look at the whole glide performance of 15 Alsomitra macrocarpa, most of
them performed a helical glide while 4 a straight glide. Some diaspores flew with a lateral
oscillation, known as “wing rock”in aeronautics. This oscillation was linked by Minami and
Azuma (2003) to the nonlinear behaviour of the local separation point and lateral oscillations
of vortex breakdown (Gresham et al., 2010).

4.1.1 Unsteady effects

A steady flow, like the one produced by a wind tunnel, could interact with a solid body and
produce an unsteady flow. Vortex shedding behind a cylinder and self-excited oscillations
of a flexible object are two examples (Vogel, 1996). Aircraft and gliding seeds can follow
an oscillating path, composed of two under-damped oscillatory modes, with different time
scales: the mode with a longer period and lightly damped is called phugoid mode. The
descent or a local wind gust increases the speed and the lift, its effect is to stop the descent
and slow the craft, reducing the lift and so forth. This alternation produces a wave-like
path. It is commonly observed in model aeroplanes and gliders. Alsomitra macrocarpa
is a pale species from Java, gliding in the forests of southeast Asia. Its habitat is made of
forests up to 800 m, with rich soils along rivers (Singapore, 2021). This environment might
be shielded by trees, but the air cannot be considered steady and the membrane wing is not
rigid, as shown by the wind tunnel experiments performed in the Flow Visualisation Tunnel.
This deformability of the membrane wing is another element that differentiate Alsomitra
macrocarpa from a rigid flat plate. The study of the unsteady effects affecting the flight of
seeds, insects and birds gives a better understanding of their flight (Godoy-Diana and Thiria,
2018). A rule of thumb suggested by Vogel (1996), helps to uncover if unsteady effects
can be safely ignored. Vogel (1996) introduced a dimensionless parameter, the aerodynamic
frequency parameter also named reduced frequency:

fa =
2πωnc

u0

where ωn is the frequency of the oscillation and c is the chord at the wing centre. This
parameter is a ratio of chord-wise flow speed to free stream speed u0. It is usually high for
short, broad wings, hence a low aspect ratio. A locust in full forward flight has the fore-wing
operating at 0.25 and the hind-wing at about 0.5, same for a fruit fly wing (Vogel, 1996). Our
samples, with a wing span of 171mm, a chord of 70mm and an aspect ratio of 2.84 have
similar dimensions. The flight speed reported by (Azuma and Okuno, 1987) is 1.12ms−1.
The reduced frequency fa is 0.48, extremely close to the 0.5, limit for unsteady effects to
be negligible (Vogel, 1996). These calculations were executed with the morphological data

78

https://www.gla.ac.uk/schools/engineering/research/divisions/aerospace/researchfacilities/fluiddynamictestingfacilities/


4.2 Results of the low order model

coming from the diaspores acquired, but the gliding properties documented in Azuma and
Okuno (1987), a comparison with data produced by the drop tests tracked with depth cameras
was not possible because of time constraints.

4.2 Results of the low order model

Falling paths

This section displays the computed (equations 2.38) falling trajectories of the centre of
gravity of an elliptical body, with five different values of e (figure 2.23) and five different
trajectories in the vertical plane. The dimensions of the semi-axes of the two ellipses are
reported in table 2.3. The geometrical dimensions were kept constant, only the offset e,
the distance between the centre of the exterior geometry O′ and the centre of gravity O,
was changed, figure 2.23. All the trajectories calculated were independent of the initial
conditions in terms of the initial position; x and y and the angle θ that were set to zero.
The trajectories highlighted a periodicity that emerged after a short transient. In figure 4.1,
the two-dimensional trajectory of the elliptical body with a small offset, i.e. e = 0.02, is
displayed. The efficiency E of the tumbling motion plotted in Fig. 4.1 is 1.04. The tumbling
motion generates lift due to the “Magnus effect ” (Magnus, 1853; Vincent et al., 2020a). Lift
has a rotational contribution, a contribution similar to the Magnus effect (Li et al., 2022).
This tumbling-induced horizontal displacement is part of the strategies employed by seeds
like Ailanthus altissima to disperse (Vogel, 1996) and it does not rely on wind gusts, because
of the lift generated. The behaviour of the falling body was changed, by displacing the centre
of gravity of the ellipse by more than 10% of the ellipse semi-major axis a. The ellipse
changed its flight path, instead of tumbling in the direction of the negative x axis, it fluttered.
The shift of the centre of gravity, represented by the increase in the value of e, directly affected
equation 2.38c, where the magnitude of the moment generated by the buoyancy force scales
linearly with e. Figure 4.2 pictures the trajectory, similar to flutter (Pesavento, 2006), where
the falling body alternates between gliding at a low angle of attack and fast rotational motion
and centre of mass elevation at the turning points (Andersen et al., 2005a; Pesavento, 2006;
Pesavento and Wang, 2004). Fluttering is characterised by symmetrical oscillations on the
vertical plane, and because of these oscillations the horizontal displacement is always close
to zero, hence the efficiency is close to zero. A further increase in the offset e to 0.36, leads
to a falling trajectory that resembles that of Alsomitra macrocarpa, figure 4.3. The efficiency
increased with respect to the fluttering motion. When the offset was increased to 0.91, as
shown in figure 4.3 and to 0.97, in figure 4.4, the flight path converged towards an almost
parabolic fall. The offset was further increased, and the torque generated by the displaced
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Fig. 4.1 Numerical solution of equations 2.38 for e = 0.02.

Fig. 4.2 Numerical solution of equations 2.38 for e = 0.16.
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4.2 Results of the low order model

Fig. 4.3 Numerical solution of equations 2.38 for e = 0.36.

centre of mass became a relevant term in equation 2.38c. This flight path is an edge-on
configuration, where the heavier side, the side of the elliptical shape where the centre of mass
is located, points downward.

Temporal Dynamics

The temporal dynamics are discussed to better understand the falling trajectories plotted in
figure 4.1, figure 4.3 and figure 4.4. Figure 4.3 presents a two-dimensional trajectory that
resembles the trajectory displayed by Alsomitra macrocarpa in straight glide. Figure 4.6
plots the horizontal velocity component against time, in cases where e = 0.02, e = 0.36
and e = 0.91. The horizontal velocity component oscillates around a negative value when
e = 0.02 and the ellipse performs a tumbling motion. The horizontal velocity oscillates
around a positive value when e = 0.36 with the oscillation converging towards a constant
positive velocity. When e = 0.91 the horizontal velocity is monotonically decreasing and
tends to zero. The trajectory is not perfectly vertical and presents a horizontal displacement,
hence the horizontal velocity different from zero. The damping is more pronounced when
e = 0.36. Figure 4.7 shows the vertical velocity component related to the same cases. As
expected it is negative for all three cases, but for the tumbling motion, e = 0.02, it presents
periodic oscillations while for the case e = 0.36 the oscillations are damped. When e = 0.91
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Fig. 4.4 Numerical solution of equations 2.38 for e = 0.91.

Fig. 4.5 Numerical solution of equations 2.38 for e = 0.97.
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4.2 Results of the low order model

(a) Velocity u for e = 0.02. (b) Velocity u for e = 0.36. (c) Velocity u for e = 0.91.

Fig. 4.6 Temporal records of the horizontal velocity component u, in the laboratory reference
frame, for two values of e.

(a) Velocity v for e = 0.02. (b) Velocity v for e = 0.36. (c) Velocity v for e = 0.91.

Fig. 4.7 Temporal records of the vertical velocity component v, in the laboratory reference
frame, for three values of e.

the vertical velocity component tends to a constant value, the terminal velocity of the falling
body. The angular velocity in figure 4.8 shows a similar trend for e = 0.02 and e = 0.36.
In tumbling motion, the angular velocity oscillates between negative values. The angular
velocity ω for e = 0.36 presents damped oscillations around zero and for 0.91 tends to zero.
The time dependence of the forces, Lift and Drag, is shown in figure 4.9. The rotational
lift is plotted as a red line, while the translational lift is a blue line and drag is a black line.
Rotational lift is a relevant part of the total lift produced in tumbling flight and becomes
almost negligible for e = 0.36 and 0.91. The dependence over time of the four torques listed
in equation 2.38 is shown by figure 4.10. The term (m11 −m22)ugvg from ideal fluid theory
is depicted by the black line. The term that takes into account the circulation Γ and describes
the torque due to rotational and translational lift is represented by the red line, while the
dissipative torque τ

v by the green line, the torque produced by buoyancy force acting at
the centre of buoyancy is the blue line. In the three cases examined the ideal fluid torque
produced the largest contribution and the dissipative torque tended to be negligible.
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(a) ω for e = 0.02. (b) ω for e = 0.36. (c) ω for e = 0.91.

Fig. 4.8 Temporal records of the angular velocity ω for three values of e.

(a) Lift and Drag for e = 0.02. (b) Lift and Drag for e = 0.36. (c) Lift and Drag for e = 0.91.

Fig. 4.9 Temporal records of translational lift (blue), rotational lift (red), and drag (black) for
three values of e.

(a) Torque for e = 0.02. (b) Torque for e = 0.36. (c) Torque for e = 0.91.

Fig. 4.10 Temporal records of the total torque for three values of e. The term (m11 −m22)ugvg
from ideal fluid theory (black), the torque due to buoyancy force (blue), the dissipative torque
(green) and the torque produced by translational and rotational lift (red).
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4.3 Results of the simplified dynamics model

The simple model described in 2.15 can capture some of the behaviours seen in the straight
glides depicted in figure 3.14. In this section, the trajectories computed from a simplified
model, developed following Anderson Jr (2010); Torenbeek and Wittenberg (2009) are
presented. The morphological dimensions of Alsomitra macrocarpa, listed in table 3.1, lead
to the two-dimensional gliding paths displayed in figure 4.11. The dotted line represents a
vertical fall similar to the vertical fall presented in figure 4.5, while the other three trajectories
resemble the damped oscillations of figure 4.4. Static stability is guaranteed by the centre
of mass being displaced with respect to the aerodynamic centre (Torenbeek and Wittenberg,
2009). Lift and drag act at the aerodynamic centre, located at a quarter chord from the
leading edge, generating a moment with respect to the centre of mass, where weight W
is applied (Anderson Jr, 2010). This assumption stands when the angle of attack α is
small (Anderson Jr, 2010). The lift coefficient is CL =CLmax sin(2α) (Anderson Jr, 2010),
while the drag coefficient is CD = CD0 +CDmax sin(α

2) (Anderson Jr, 2010). The dotted
line (⋯) displays the gliding path of a flat plate, while the empty circles (◦), the black
circles (•) and the triangles (△) depict the flight of a plate with camber, which generates an
additional moment M0 =

1
2ρScCM0U2. The empty circles (◦) correspond to a cambered plate

with CM0 = −0.0041 while the black circles (•) to CM0 = −0.0047 and the triangles to (△)
CM0 = −0.0055. The model assumes that the gliding flight happens at a small angle of attack
α and CM0 is considered constant. This simple model captures parts of the gliding flight of
the Alsomitra macrocarpa that flew in a straight line and were assumed to fly only in the
vertical plane, without any motion in the lateral direction.
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Fig. 4.11 Glide trajectories on the vertical plane.
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Chapter 5

Conclusions

This study reveals some of the key morphological features of Alsomitra macrocarpa that
enable its unique flight. Each diaspore shows either a straight or a helicoidal flight. Both
types of flights can include a phugoid mode, which results in a lower terminal velocity. In
figure 5.1 the Alsomitra macrocarpa that presented a phugoid mode are highlighted with a
red circle (◦). Hence, the phugoid is not only a fluctuation around the mean flight path but
could also be a feature that enhances the seed dispersal.

By modelling Alsomitra macrocarpa with a simplified dynamics, described in sec-
tion 2.15, model we were able to capture the dynamics of the diaspores flying in a two-
dimensional straight trajectory, reproducing some of the oscillations observed in the drop
tests. The model of a two-dimensional ellipsoid with inhomogeneous mass distribution,
showed that there is a range of positions of the centre of gravity with respect to the centre of
buoyancy that allows the diaspore to glide without tumbling or falling in a parabolic motion.

Secondly, differently from what was previously thought, we discovered that Alsomitra
macrocarpa has an intrados and an extrados. In fact, independently from the initial conditions,
every diaspore always glides with the same face upwards as described in section 2.7.1. Hence,
the wing of Alsomitra macrocarpa is not two-dimensional, nor is its airfoil symmetrical,
hence it cannot be modelled as a rigid flat plate in order to capture this behaviour.

Thirdly, wind tunnel tests revealed significant wing deformations, which is critical to
ensure pitch stability. In fact, coupled with the position of the centre of gravity, located in
front of the aerodynamic centre, as a result of the wing swept, the upward displacement of
the aerodynamic centre gives stability to the gliding flight.

Finally, we investigated the flow field around Alsomitra macrocarpa during a constrained
flight in a wind tunnel. As described in section 3.5 the flow separates at the leading edge and
recirculates between the corrugations of the wing, tip vortices were also detected.
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Fig. 5.1 Terminal velocity versus wing loading of the 15 Alsomitra macrocarpa tested. Al-
somitra macrocarpa that showed a phugoid are represented by a red circle (◦). Low wing
loading and phugoid mode, are contributing factors to a lower terminal velocity.
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In summary, this work provides new insights into the unique flight of Alsomitra macro-
carpa, which may contribute to the design of future micro aerial vehicles.

89





Chapter 6

Future Work

6.1 Estimate of the aerodynamic parameters

To examine the aerodynamics of Alsomitra macrocarpa in greater detail, several aerodynamic
parameters have to be calculated. The instantaneous glide angle γ(t), for instance, could not
be extracted, because of the noise in the interpolated data. A Savitzky-Golay filter (Schafer,
2011) could solve the problem (Galler and Rival, 2021). The angle between the horizontal
and the net velocity vector gives the instantaneous glide angle (Bahlman et al., 2013).

γ = arctan(w
u ) , (6.1)

where w is the vertical component of the velocity vector and u is the horizontal component.
The instantaneous values of Lift (L), the aerodynamic force perpendicular to the direction of
flight, and Drag (D) the aerodynamic force perpendicular to lift, are then determined from
the following equations

L = m(ax sin(γ)+az cos(γ)) , (6.2)

and
D = m(az sin(γ)+ax cos(γ)) , (6.3)

where m represents the mass of each diaspore, ax and az are the horizontal and vertical
components of the instantaneous acceleration. This information allows the extraction of the
lift coefficient (CL) and drag coefficient (CD) as function of time t

CL =
L

1/2ρU2S
(6.4)
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and
CD =

D
1/2ρU2S

(6.5)

with U being the total velocity, ρ air density and S the surface area of the body. The
dependence of the Efficiency (E), lift-to-drag ratio is

E =
CL
CD

(6.6)

The interplay between kinetic energy (Ek), potential energy (Ep) and total energy (ET ),
normalised by the body mass m is written as follows

EP
m = gh

EK
m =

1
2U2

ET
m =

EP
m +

EK
m = gh+

1
2U2

(6.7)

where the height of the gliding path, above an arbitrarily chosen reference height, the ground
of the laboratory for instance, is h. When the diaspore takes off the total energy is simply
potential energy, because the initial total velocity is zero. With the aerodynamic coefficients
derived from equations 6.4 and 6.5, it would be possible to derive a low-order model of the
flight of Alsomitra macrocarpa. The model developed by Andersen et al. (2005a,b) assumes
a homogeneous mass distribution and a constant density, but this is not the case for biological
organisms. Alsomitra macrocarpa has most of its mass concentrated in the seed containing
pericarp. Experiments proved that the centre of mass of our 31 Alsomitra macrocarpa
is located in the seed containing pericarp. The centre of mass position in our 2D model
replicated this positioning. The planar shape, similar to an inverse Zimmerman (Chen and
Qin, 2013) moves the aerodynamic centre backwards. The distance between the aerodynamic
centre and the centre of mass is a key requisite for static stability and causes an external
torque which breaks the symmetry of the rotational motion, moves the mean tilting position
from the horizontal plane and causes a horizontal displacement (Huang et al., 2013; Li et al.,
2022). The offsetting of aerodynamic centre and centre of mass experienced by Alsomitra
macrocarpa in gliding flight has a longitudinal and a vertical component. The deformation
moves the aerodynamic centre along the vertical axis and generates an external torque that
alters the fluttering dynamics. The position of the seed containing pericarp prescribes the
location of the centre of mass along the longitudinal axis.
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6.2 Collaborations

A collaboration with Professor Mintchev at ETH Zurich was established to understand
the super-stability of Alsomitra macrocarpa. The stability of Alsomitra macrocarpa, its
dynamic response to impacts and critical stability loss is promising for the design of bio-
inspired drones operating in cluttered environments. Preliminary experiments highlighted the
capability of Alsomitra macrocarpa to recover stable gliding flight from stall or spin. The
collaboration will focus on understanding the contribution of morphology and aerodynamics
to the quick recovery of stable gliding flight with the end goal of designing a novel type of
unmanned aerial vehicle with inherently superior dynamic stability.

A collaboration with Dr Alam at the University of Edinburgh will characterise the
physical, material and mechanical properties of the membrane wing of Alsomitra marocarpa
to absorb impacts and deform, dissipating the energy without breaking. The aim would be to
reproduce these mechanical properties of the membrane wing in a bio-inspired material.

A collaboration with Dr Zhdanov and Dr Busse at the University of Glasgow aims at
investigating the contribution of the rough surface of the membrane wing to the flow field,
using direct numerical simulations. The experiments performed in the wind tunnel at the
University of Glasgow showed promising results and highlighted all the limitations of an
experimental approach, hence the necessity to tackle the problem numerically.
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Appendix A

Morphological Analysis

In this appendix chapter the morphological and geometrical values of 31Alsomitra macro-
carpa are presented.
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Morphological Analysis

Table A.1 Principal dimensions measured on 31 Alsomitra macrocarpa.

Diaspore
Mass, m Wing-span, b Wing-chord on the roll axis, ccentre

[g] [mm] [mm]
Accuracy ±0.01 ±2 ±1

1 0.36 162 64
2 0.39 167 70
3 0.33 153 60
4 0.14 159 54
5 0.41 178 81
6 0.39 152 68
7 0.46 168 78
8 0.41 171 75
9 0.45 182 85
10 0.37 176 65
11 0.42 175 81
12 0.31 166 66
13 0.38 177 63
14 0.38 172 70
15 0.44 178 76
16 0.41 177 76
17 0.31 166 66
18 0.16 154 58
19 0.42 178 84
20 0.43 186 74
21 0.37 188 71
22 0.38 191 68
23 0.37 178 67
24 0.37 178 78
25 0.42 176 79
26 0.17 170 68
27 0.41 171 70
28 0.42 171 71
29 0.45 169 76
30 0.30 161 59
31 0.14 158 61
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Table A.2 Principal dimensions measured on 31 Alsomitra macrocarpa.

Diaspore
Wing surface, S Geometrical sweep angle, Λ Centre of gravity, CG

[mm2] [deg] [mm]
Accuracy ±200 ±1 ±1

1 87750 18 21
2 10435 20 22
3 80090 21 23
4 84220 16 22
5 11380 19 21
6 88130 17 20
7 10238 19 20
8 10523 17 22
9 12044 18 24
10 99250 17 24
11 97410 17 23
12 94250 18 23
13 97240 17 23
14 10205 15 22
15 11728 15 22
16 11248 17 23
17 94780 18 24
18 82190 16 24
19 11950 18 23
20 11608 16 23
21 10969 15 24
22 11471 22 22
23 10359 20 21
24 11459 16 20
25 10886 17 21
26 10026 15 22
27 11582 19 22
28 11582 20 23
29 10875 17 23
30 82100 18 23
31 82640 15 23
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Morphological Analysis

Table A.3 Values describing the planar form of 31 Alsomitra macrocarpa.

Diaspore Fluctuating Asymmetry Roundness Circularity Solidity

1 0.01 1.92 0.58 0.90
2 1.44 1.72 0.63 0.89
3 1.60 1.75 0.63 0.88
4 1.36 1.59 0.62 0.90
5 1.06 1.83 0.62 0.94
6 1.09 1.25 0.66 0.90
7 0.00 1.64 0.58 0.88
8 0.89 1.89 0.67 0.94
9 0.00 1.69 0.68 0.94
10 0.00 1.64 0.59 0.90
11 0.00 1.64 0.59 0.90
12 1.20 1.91 0.65 0.92
13 1.25 2.10 0.63 0.92
14 Missing Missing Missing Missing
15 1.17 1.44 0.63 0.91
16 1.02 1.69 0.69 0.94
17 0.00 1.58 0.65 0.91
18 0.00 1.86 0.66 0.94
19 0.00 1.44 0.61 0.92
20 1.17 2.06 0.63 0.94
21 0.01 1.69 0.49 0.88
22 1.75 1.64 0.45 0.83
23 1.96 1.63 0.47 0.83
24 Missing Missing Missing Missing
25 1.01 1.70 0.61 0.93
26 0.00 1.61 0.55 0.88
27 1.48 1.63 0.64 0.91
28 1.48 1.63 0.64 0.91
29 0.00 1.73 0.64 0.93
30 1.37 1.57 0.58 0.88
31 0.94 2.10 0.64 0.93
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Table A.4 Geometrical configuration of 31 Alsomitra macrocarpa.

Diaspore
Aspect ratio, AR Mean geometric chord, m.g.c. Wing loading, W/S Density, ρ

[mm] [Nm−2] [gm−2]

1 3.0 54 0.409 41
2 2.6 62 0.392 37
3 2.9 52 0.400 41
4 3.1 53 0.170 17
5 2.7 64 0.368 36
6 2.8 58 0.430 44
7 2.8 61 0.415 45
8 2.8 62 0.394 39
9 2.6 66 0.396 37
10 3.1 56 0.381 37
11 2.6 56 0.366 43
12 2.8 57 0.335 33
13 3.1 55 0.394 39
14 2.9 59 0.365 37
15 2.6 66 0.394 38
16 2.7 64 0.373 36
17 2.9 57 0.331 33
18 2.9 53 0.198 19
19 2.5 67 0.368 35
20 2.8 62 0.376 37
21 3.1 58 0.329 34
22 3.2 60 0.333 33
23 3.1 58 0.349 36
24 2.8 64 0.317 32
25 2.8 62 0.381 39
26 2.9 59 0.178 17
27 2.8 68 0.399 35
28 2.4 68 0.368 36
29 2.6 64 0.404 41
30 3.2 51 0.362 37
31 3.0 52 0.172 17
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Appendix B

Flight test results

In this appendix chapter the average flight performance for Alsomitra macrocarpa is pre-
sented.

101



Flight test results

Table B.1 Results from the flight tests of 4 Alsomitra macrocarpa gliding in a straight path.

Diaspore
Drop Terminal velocity Total velocity Gliding angle

[ms−1] [ms−1] [deg]

1 1 0.37 1.41 15
2 0.42 1.38 18
3 0.52 1.33 23
4 0.40 1.40 17
5 0.47 1.47 19

21 1 0.39 0.85 27
2 0.33 0.74 26
3 0.42 0.86 29
4 0.47 0.90 31
5 0.41 0.90 27
6 0.32 0.82 23
7 0.33 0.75 26

23 1 0.39 1.15 20
2 0.48 1.70 16
3 0.63 1.87 19
4 0.45 1.59 17
5 0.53 1.72 18
6 0.53 1.69 18

26 1 0.32 0.81 23
2 0.34 0.72 28
3 0.38 0.81 28
4 0.26 0.60 26
5 0.34 0.69 29
6 0.35 0.73 28
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Table B.2 Results from the flight tests of 6 Alsomitra macrocarpa gliding in a helical path.

Diaspore
Drop Terminal Radius of

velocity curvature
ms−1 m

2 1 0.53 1.078
2 0.49 0.746
3 0.54 1.574
4 0.38 Missing
5 0.53 1.004

4 1 0.75 0.381
2 0.91 0.363
3 0.74 0.358
4 1.02 0.529
5 0.64 0.518

9 1 0.57 0.428
2 0.67 0.452
3 0.46 0.406
4 0.64 0.470
5 0.66 0.507
6 0.66 0.454

10 1 0.58 0.373
2 0.44 0.338
3 0.51 0.323
4 0.42 0.380
5 0.43 0.351
6 0.51 0.310

12 1 0.52 0.915
2 0.39 0.903
3 0.50 1.342
4 0.47 1.489
5 0.45 0.978

15 1 0.44 0.620
2 0.54 0.646
3 0.46 0.739
4 0.54 0.722
5 0.90 0.896
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Flight test results

Table B.3 Results from the flight tests of 5 Alsomitra macrocarpa gliding in a helical path.

Diaspore
Drop Terminal Radius of

velocity curvature
ms−1 m

18 1 0.38 0.430
2 0.33 0.362
3 0.34 0.353
4 0.31 0.309
5 0.38 0.233

20 1 0.68 0.305
2 0.87 0.315
3 0.60 0.298
4 Missing Missing
5 0.43 0.289

25 1 0.51 0.847
2 0.62 0.599
3 0.57 0.602
4 0.70 0.460
5 0.56 0.462

27 1 0.62 0.567
2 0.56 0.521
3 0.69 0.589
4 0.47 0.497
5 0.22 0.505

31 1 0.23 0.322
2 0.28 0.353
3 0.23 0.238
4 0.28 0.347
5 0.24 Missing
6 0.23 0.512
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