ISCTE 2 1UL
REPOSITORIO

INSTITUTO UNIVERSITARIO DE LISBOA

Repositério ISCTE-IUL

Deposited in Repositdrio ISCTE-IUL:
2023-01-14

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:

Andrei-Cristian, 1., Gasiba, T. E., Zhao, T., Lechner, U. & Pinto-Albuquerque, M. (2022). A large-scale
study on the security vulnerabilities of cloud deployments. In Wang, G., Choo, K.-K. R., Ko, R. K. L.,
Xu, Y., and Crispo, B. (Ed.), Ubiquitous Security. UbiSec 2021. Communications in Computer and
Information Science. (pp. 171-188). Guangzhou: Springer.

Further information on publisher's website:
10.1007/978-981-19-0468-4_13

Publisher's copyright statement:

This is the peer reviewed version of the following article: Andrei-Cristian, I., Gasiba, T. E., Zhao, T.,
Lechner, U. & Pinto-Albuquerque, M. (2022). A large-scale study on the security vulnerabilities of
cloud deployments. In Wang, G., Choo, K.-K. R., Ko, R. K. L., Xu, Y., and Crispo, B. (Ed.), Ubiquitous
Security. UbiSec 2021. Communications in Computer and Information Science. (pp. 171-188).
Guangzhou: Springer., which has been published in final form at https://dx.doi.org/10.1007/978-
981-19-0468-4_13. This article may be used for non-commercial purposes in accordance with the
Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
¢ a link is made to the metadata record in the Repository
o the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Servicos de Informagdo e Documentagdo, Instituto Universitario de Lisboa (ISCTE-IUL)
Av. das Forgas Armadas, Edificio II, 1649-026 Lisboa Portugal
Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1007/978-981-19-0468-4_13

A Large-Scale Study on the Security
Vulnerabilities of Cloud Deployments

Tosif Andrei-Cristian!-2[0000-0003—1867—1542] ' ja06 Espinha
Gasiba»3[0000-0003—-1462—-6701] ' Tjap0e Zhao! 3[0000-0003-1518—-473] {J]jke

Lechner3 [0000—0002—4286—3184]

Pinto-Albuquerque?!

, and Maria
0000—0002—2725—7629)

1 Technische Universitiat Miinchen, Munich, Germany
andrei.jiosif@tum.de
2 Siemens AG, Munich, Germany
{andrei-cristian.iosif,tiago.gasiba,tiange.zhao}@siemens.com
3 Universitét der Bundeswehr Miinchen, Germany
{tiago.gasiba,tiange.zhao,ulrike.lechner }@unibw.de
* Instituto Universitdrio de Lisboa (ISCTE-IUL), ISTAR, Lisboa, Portugal

maria.albuquerque@iscte-iul.pt

Abstract. As cloud deployments are becoming ubiquitous, the rapid
adoption of this new paradigm may potentially bring additional cyber
security issues. It is crucial that practitioners and researchers pose ques-
tions about the current state of cloud deployment security. By better
understanding existing vulnerabilities, progress towards a more secure
cloud can be accelerated. This is of paramount importance especially
with more and more critical infrastructures moving to the cloud, where
the consequences of a security incident can be significantly broader.
This study presents a data-centric approach to security research — by
using three static code analysis tools and scraping the internet for pub-
licly available codebases, a footprint of the current state of open-source
infrastructure-as-code repositories can be achieved. Out of the scraped
44485 repository links, the study is concentrated on 8256 repositories
from the same cloud provider, across which 292538 security violations
have been collected. Our contributions consist of: (1) understanding on
existing security vulnerabilities of cloud deployments, (2) contributing
a list of Top Guidelines for practitioners to follow to securely deploy
systems in the cloud, (3) providing the raw data for further studies.

Keywords: Cloud - Security - Industry - Critical Infrastructures - Aware-
ness - Infrastructure as Code - Terraform - Secure Coding

1 Introduction

Cloud computing, as per the NIST definition [I4], is ”a model for enabling ubig-
uitous, convenient, on-demand network access to a shared pool of configurable
computing resources”, with rapid provisioning and minimum management re-
quirements. Industry needs and trends correlate well with the advantages of

2 Tosif et al.

using cloud-based resources — on-demand availability, reliability, and a strong
accent on flexibility of the cloud have all contributed to the accelerated adop-
tion of the cloud paradigm.

Cloud computing can be seen as a combination of existing successful tech-
nologies (i.e. virtualization, distributed storage, etc.). Recent demands for more
robust infrastructure, as well as the underlying paradigm shift to Fverything-
as-Service (XaaS) have only heightened the adoption rate of companies using
cloud resources for software deployment, due to both economic and performance
considerations [4/].

All previous points make cloud deployment inherently resilient to DDoS at-
tacks, natural disasters, and large-scale power cuts — which also makes it an
appropriate and viable implementation option for critical infrastructures. On
this topic, The Cloud Security Alliance points out, notwithstanding all advan-
tages, that cloud critical infrastructures need to account for concentration of
resources, i.e. having many resources in the same data center rather than dis-
tributed [I8]. This can be an issue since exploits in widely used software are
awaiting to be discovered, and the impact of a cyber attack can therefore be
devastating. Cloud adoption within critical infrastructure sectors accentuates
the imperative for ensuring resilience and security of deployment practices.

On the other hand, ensuring the security of cloud resources is an emerging
research field, offering ample space for fruitful research. Whereas software vulner-
abilities would be intrinsically related with secure coding, secure cloud deploy-
ment is more amorphous and multifaceted by comparison. Recent developments
in terms of cloud practices have given birth to Infrastructure as Code (IaC),
which allows to capture the architecture and configuration details of the deploy-
ment infrastructure with code (e.g. type and number of required resources). IaC
as a practice thus enables version control and automation of operations.

Codebases, in the traditional sense of programming, can be developed and
compared against a set of Secure Coding Guidelines, which are principles and
practices for developers to follow for ensuring proper, verifiable, security [9].
Deployment code, on the other hand, namely IaC, has yet to currently mature
enough to encompass similar directionality in its own ecosystem. DevSecOps [19]
is a first step in constructing a similar set of principles, serving as a security-
centric production lifecycle paradigm. The cornerstone of DevSecOps is that all
development stages keep best practices into consideration and share responsibil-
ity, which consequentially leads to a smaller bridge to gap between development
and operations teams.

Past cloud security incidents point to a consistent pattern, in which even a
small misconfiguration can incur catastrophic consequences. Incidents focusing
on Amazon Web Services (AWS) Scalable Storage Solution (S3) buckets have
offered various news stories in the past, as the data breaches usually impress
in size and negativity of outcome [15], usually due to improper access control
policies. Moreover, searching publicly accessible S3 buckets is trivial [I0]. As a
notable example, the U.S. Department of Defense unintentionally disclosed login
credentials and government intelligence data [21].

A Large-Scale Study on the Security Vulnerabilities of Cloud Deployments 3

To the best of our knowledge, no study looks at real-world problems of In-
frastructure as Code. Namely, the question of which most prominent problems
exist in cloud deployments is seldom explored systematically. This current work
addresses this question — our work focuses on Terraform as an IaC solution, and
explores publicly available repositories with the help of three static code analy-
sis tools to understand existing problems. A total of 8256 repositories have been
analysed, all of which contain Terraform deployment code and use AWS as a
cloud provider.

The main contributions of our study are the following;:

— Providing an understanding of the most prominent security vulnerabilities
for cloud environments.

— Deriving a list of Top IaC Guidelines for Security for Terraform projects

— Publishing the data gathered from all repositories, for further studies of
similar nature.

This paper is organized as follows: Section [2] will introduce related work
pertaining to standards and guidelines related to cloud security. Section [3] pro-
vides an overview of the experimental methodology employed for completing this
study. Section [4] follows by presenting the technical details behind the methodol-
ogy. The results are showcased and examined in section[5} Based on these results,
the section also includes a discussion centered around recommendations given
the currently available security toolkits. Finally, section [6] epitomizes through
our work and presents further tangent research directions based on our findings.

2 Related Work

While the security services are the same between traditional and cloud deploy-
ments (Integrity, Confidentiality, Availability, Accountability, Authenticity, Pri-
vacy), the means of achieving them can differ due to the underlying distributed
implementation. Furthermore, the convenience and deployment speed gained
through the inherent abstraction provided by IaC may lead to quick bugs and
vulnerabilities [I7].

A generalized taxonomy of cloud security issues has been elaborated by
Tabrizchi et al. [20], in which threats, attacks and solutions are discussed. While
this security classification may serve as a consistent introductory reading to cloud
architectures and their potential issues, it does not address the real-world prob-
ability of cloud security. Another study conducted by Rahman et al. provides an
onlook of open-source software (OSS) repository security and outlines the top
8 malpractices for TaC. Nonetheless, the authors’ study is limited to the OSS
repositories of solely one organization, and thus paints an incomplete picture of
the overall security of OSS projects [17].

There is a number of ongoing standardisation efforts to refine the issue of
cloud security into a practical, applicable formula. For example, The Cloud Con-
trols Matrix (CCM) is a cybersecurity control framework for cloud computing,
based on best practices recommended by the Cloud Security Alliance, ”that is
considered the de-facto standard for cloud security and privacy”[2]. The CCM is

4 Tosif et al.

constantly updated to reflect the newest developments and threats in the Cloud
ecosystem. Additionally, government agency branches are developing usage and
security guidelines alongside these efforts — one such example is the BSI (German
Federal Office for Information Security), which released two documents in 2021,
pertaining to the secure usage of cloud services [87]. Similarly to the Cloud
Security Alliance, the BSI Whitepaper on Cloud Security draws a stark warn-
ing about concentration of resources [0], with respect to critical infrastructures
deployed in the cloud.

Other industry branches also employ their own set of security guidelines:
IEC 62443 [12] is a set of standards, developed starting in 2009, focusing around
Industrial Automation and Control Systems (IACS) security. However, the stan-
dard does not currently cover cloud security explicitly, which poses a severe risk
— as more critical infrastructures begin relying on cloud resources, their certifi-
cation will be only on par with an outdated standard.

On the issue of assessing the robustness of IaC deployment scripts, there are
no standardised coding guidelines and best practices yet. According to industry
practitioners surveyed by Guerriero el al. [I1], lack of testability is quoted as the
leading drawback of IaC solutions. The IaC ecosystem provides, however, a set
of static code analyisis (SAST) tools, which serve as a (semi-)automated way to
ensure that a given piece of code does not present vulnerabilities. The practice
of augmenting development pipelines with such SAST tools in the early stages
is refered to as the shift-left security paradigm, as it offsets potential threats
earlier before the code gets deployed.

All SAST tools accounted for in this study (tfsec, terrascan, checkov)
share the following common information in the output format for a security vio-
lation: the tool would provide an error ID, a short description, a documentation
link with secure and insecure code examples pertaining to the detected vulnera-
bility, and a vendor-specific severity rating. All aforementioned tools are under
constant development, with rapidly evolving security policy indexes, reflecting
the underlying emergence of cloud technologies. The integration of the SAST
tools into the methodology pipeline shall be presented in the following section.

3 Method

To assess real-world security of TaC implementations, we decided to focus on
open-source repositories. The rationale behind this decision relies on the fact
that openly available projects are very often used as either starting points, or
directly as a paste-in-place solution. By analysing open-source repositories, we
can estimate a vulnerability footprint of IaC based on the results of the security
assessment each repository shall be subjected to. The collated results shall thus
serve as a security snapshot of the open-source IaC ecosystem.

Figure [l introduces an overview of the employed methodology, which we will
describe in the following. The methodology can be divided into 3 phases, as
shown in the same figure.

A Large-Scale Study on the Security Vulnerabilities of Cloud Deployments 5

I. Link Scraping Il. Security Analysis lll. Data Analysis

GitHub H Raw Reslts
API H b S H

Timed Pre-filter
e

Requests
\4 {
|:> (e D Security Exploration
C 5 Scanning
Repositories

Raw Tool
Outputs

Interpretation

Fig. 1. Research design

I. Link Scraping: A list of GitHub repositories containing Terraform code
was constructed by querying the website’s API. The underlying syntax of Ter-
raform itself is Hashicorp Configuration Language (HCL). The paper will refer
to HCL code as Terraform code, as the latter term provides a more transparent
understanding. GitHub’s API documentation provides useful options for search-
ing within a given timespan and filtering for the HCL language. In terms of
limitations, each query is limited to 10 pages of 100 results each, totalling a pos-
sible maximum of 1000 results. The constructed query for collecting the links,
with string-interpolated query parameters, is:

api.github.com/search/repositories?q=language:HCL
+pushed: {start}..{end}&per page=100&page={page}

We have explored and collected results from the GitHub database in one-month
increments. The result of this step is a collated list of 44485 repository links and
their associated metadata, labeled by GitHub as Terraform code.

II. Security Analysis: Starting from the aforementioned list, the next step
centers on static code analysis. Each repository is downloaded, then subjected
to a number of sanity checks and filters. First, we assess whether the repository
contains Terraform code or not, as one discovery consisted in uncovering that
GitHub’s labeling mechanism is prone to a small number of false positives (i.e.
non-Terraform and empty repositories were initially included in the scraping re-
sults set). Next, the repository is evaluated by three security evaluation tools:
tfsec, terrascan and checkov. Particular tools timed out on various reposito-
ries, which lead to the need of pruning such cases out of the evaluation loop. The
process was parallelized across 4 machines, by splitting the list of repositories in
4, each quarter being further split to maximize the number of available threads
in the used machines. The scanners’ output is collected as-is, with further pro-
cessing steps being left for the next stages of the processing pipeline.

6 Tosif et al.

ITI. Data Analysis: Since three different static code analysis tools are em-
ployed, all developed by different teams, the initial program output is hetero-
geneous, and thus initially inadequate for analyzing. Therefore, a first step for
analysis consists of normalizing the tool’s output — this comprises of manually
evaluating each tool’s output format and transforming it under a unified scheme
that captures the essential information from each tool report.

The captured information for each reported security violation is: repository
metadata (ID, name, creation date, date of last update, stargazers count, forks
count), violation name, resource type, guideline, and severity of the violation.
The consolidated dataset encompasses 292538 security violations, over 13627
repositories. The final steps of this research consists of using the available data
to formulate conclusions, which shall be presented in Section [5] Data explo-
ration, analysis and visualisation was performed in both R (v4.1.1) and Python
(v3.8.10), with some intermediary data transformations being obtained through
bash scripting and jq.

4 Experiment

This section will describe the relevant technical details behind the first two stages
of the implementation effort of the present study, in order to present a complete
and transparent outlook on the resource and time requirements of the study.

The execution time of the webscraper for collecting links was approximately
3 hours. This step resulted in the construction a dataset consisting of 44485
repository links, along with their relevant metadata: date created, date of last
update, number of stars, number of forks, etc. The links were collected on July 15
2021, and their ’last pushed date’ ranges from 07-2015 to 06-2021. After pruning
for AWS-only providers and non-Terraform downloads, this list was narrowed
down to 8256 repository links. A total of 70 repositories were rejected for not
containing any Terraform code, and less than 10 repositories from the list of col-
lected links had either turned private or been deleted in the timeframe between
link acquisition and repository cloning. As the operation of querying the API is
not resource-intensive, the machine running the script was sized accordingly — a
t3.small AWS instance was used, with 2GB RAM and 2 virtual CPU’s (up to
3.1GHz Intel Xeon Platinum).

The second stage, constituting of scanning individual repositories for po-
tential security malpractices, was parallelized across 4 machines. Each of the 4
machines ran 16 parallel threads, thus reducing the overall time of this oper-
ation 64-fold. The execution time was approximately 36 hours. The employed
resources for running the static code analysis tools and collecting results were
AWS t3.2xlarge instances with 8 vCPU’s, 2 threads per core (up to 3.1GHz
Intel Xeon Platinum) and 16GB RAM. The software versions of the employed
security scanning tools were: tfsec v0.48.7, terrascan v1.4.0, and checkov
v2.0.46.

A Large-Scale Study on the Security Vulnerabilities of Cloud Deployments 7
5 Results and Discussions

The consolidated dataset has been explored and analysed to determine the dis-
tribution of resource types and subtypes, which widespread security malpractices
reside in the most widely used resource types, and to determine underlying se-
curity trends in IaC repositories. These findings shall be presented in the first
part of this section.

5.1 Cloud Vulnerability Trends

Looking at the yearly statistics outlined in Figures [2| and |3| we observe that
the the number of Terraform repositories has increased over time, indicating
the rise in popularity of the IaC paradigm. However, we also observe that the
number of security violations has risen alongside the number of repositories over
the years. Analysing the number of average violations per repository, our results
indicate that the average count of violations for a given public repository has
stabilised in the past two years around a value of 15 violations per repository.
We find this result to be alarming, since it can imply that security awareness
for TaC is stagnating, a trend which is reflected by the lack of overall decline
in the yearly statistic of average vulnerabilities per repository. The three static
code analysis tools employed for this study offer subjective severity ratings —
the ranking between the severity ratings does not change over the years, with
security findings ranked as high-severity being the most prevalent, and critical-
severity ones being the least prevalent.

AvgViolationsPerRepo
154
104
5] .
O -
nrFails
‘£ 40000 A I
3
20000 A
O]
N - ™|
nrRepos
3000
2000 1
1000 4
] =1 =1 |

T T T T T T T
2015 2016 2017 2018 2019 2020 2021
year

Fig. 2. Yearly Evolution - Repositories, Violations

8 Tosif et al.

severity
4
—e— CRITICAL pa
30000~ 59
-4 HIGH AN
/I,l
; &
-= LOW A . ;"_/,,'
10000- =+~ MEDIUM BN %
w7 N -

3000-

Findings Count

1000 -

300~

| | \ \ \] |

2015 2016 2017 2018 2019 2020 2021
Year

Fig. 3. Yearly Evolution - Severity

Resource distribution (Fig. Ié-_l[) highlights the fact that variables (6.32%) and
outputs (5.03%) account together for more than 10% of the overall used types
in Terraform code. Despite the notably high prevalence of variable and resource
usage in Terraform code, there is almost no ruleset built into the security scan-
ners employed in this study to account and spot for security violations in these
generic types — tfsec is the sole exception, providing four rules that scan for
secret values stored in attributes, templates, default values and variables.

10.0-

Percentage
o N
o o
V |

" |

N
(9]
'
N
a

@

v

X
e:‘?
=

5
X
S

Ky
- B

<\
%
S
’V
=

o
“e - S8
- S
XX
XX

e, o
A
e
M/ay

- ANNANANANANAY

[Z
o
by, -
Gl
~97, Y -
//7&’6
‘G,
aze
70,
L
<
ag,
0
Uy Ry
s 0, -
NS 7
e, > Yy, te
00/ ~ ‘?’49 5 4
liey, o Ne, -
001"77
)

[
Resource

Fig. 4. Top 15 Used Types

A Large-Scale Study on the Security Vulnerabilities of Cloud Deployments 9

Accounting only for resource subtypes, figure [5] highlights the top 10 most
vulnerable AWS resources, based on the count of total associated observed se-
curity violations from the three SAST tools.

0.15-

0.10-

0.05- II

0.00- I...-—

Resource

Percentage (normalised)

Fig. 5. Top 10 Vulnerable Resources

The security of a given public Terraform repository can also be discussed from
a probability standpoint. For this, the cumulative probability of the number of
total tool findings was analysed. The results are presented in Figure [f] for up
to 15 tool findings. One may see that the probability distribution resembles

a sigmoid function,
of 3 vulnerabilities.

with a sharp increase in probability starting at the count
An alarming conclusion based on this analysis is that the

average rounded median value is 5, which is an alarmingly high average number
of potential vulnerabilities in code used for deploying infrastructure.

Fig. 6.

1.0-
2
= 0o
2 0.9
o
2 8-
a - Tool
g
E 0.7- —e— checkov
2 go===tC -4 terrascan
Eoes- S ..
O -t -=- tfsec
05+
\ \ \
1 3 10

Number of Tool Findings

Cumulative Probability - SAST security violations

10 Tosif et al.

5.2 Most commonly observed malpractices

We present the most prevalent security findings from the three SAST tools,
ranked by occurrence, in table [I} The last column clusters the results across
different areas for interest. The data was collected such that each violation’s
rule ID is only collected once per repository. The rationale is that this approach
allows for conveying the security of a given repository, irrespective of the size of
its codebase — if two repositories of vastly different size and complexity trigger
the same rule violation, regardless of the number of observations from the SAST
tools, they are considered equally insecure.

Table 1. Most Observed Security Violations across SAST tools

Ranking Rule Tool ‘ Category
1 AWS079 tfsec Hardening
2 AWS009 tfsec Insecure defaults
3 CKV_AWS_8 checkov Encryption
4 AC-AWS-NS-IN-M-1172 terrascan Hardening
5 AWS.ALLLM.HIGH.0070 terrascan Logging
6 AWS.CloudTrail.Logging.Medium.008 |terrascan Best practices
7 AWS008 tfsec Insecure defaults
8 CKV_AWS_79 checkov Insecure defaults
9 AWS.VPC.Logging. Medium.0470 terrascan Logging
10 AWS018 tfsec Code Documentation
11 CKV_AWS_135 checkov Best practices
12 CKV_AWS_126 checkov Logging
13 AWS002 tfsec Logging
14 AWS098 tfsec Hardening
15 AWS005 tfsec Access control
16 AWS.S3Bucket. LM.MEDIUM.0078 terrascan Logging
17 AWS017 tfsec Encryption
18 AWS099 tfsec Access control
19 AWS077 tfsec Logging
20 AC_AWS_0228 terrascan |Access control (AC)
21 AC_AWS_0227 terrascan AC & Insecure defaults
22 AWS.S3Bucket. EKM.High.0405 terrascan Encryption
23 CKV_AWS_24 checkov Logging
24 AWS.S3Bucket.IAM.High.0370 terrascan Logging
25 AC-AW-IS-IN-M-0144 terrascan Insecure defaults
26 AWS014 tfsec Encryption
27 AC-AW-CA-LC-H-0439 terrascan Insecure defaults
28 AWS012 tfsec Access control
29 CKV_AWS_144 checkov Hardening
30 CKV_AWS_52 checkov N/A (deprecated)
31 AC_AWS_0276 terrascan Access control
32 CKV_AWS_18 checkov Logging

A Large-Scale Study on the Security Vulnerabilities of Cloud Deployments 11

Overall, our findings about the nature of the most frequently occurring se-
curity violations correlate well with the ones from Rahman et al. [I7]. Namely,
based on the top seven observed malpractices, the clustering revealed the fol-
lowing areas of blindsidedness in IaC scripts, which list, in the following, from
what we consider most to least severe:

1. Encryption: Unencrypted resources deserve a category of their own , sepa-
rate from insecure defaults, due to the implications of not using encryption
— a data breach on an unencrypted database can have consequences ranging
from downtime to identity theft and privacy violations.

2. Access control: Misconfigured access control consequences range from sim-
ple data breaches/loss/corruption to intellectual property implications and
ransomware. This topic is refered to as CWE-200 [3] and results in exposing
sensitive information to an actor that is not explicitly authorized to have
access to that information. The OWASP project has rated Broken Access
Control as the first-ranking web vulnerability in their 2021 Top 10 ranking
of vulnerability classes [16].

3. Insecure defaults: Some resources come with very relaxed default security
options, such as public access and no login gatekeeping. These defaults must
be overridden before any other configuration options are accounted for.

4. Enabling readily available hardening: As the cloud providers’ API need
to account for more and more usecases, the configuration options are evolving
to include more and more security hardening options. Some of these options
are not enabled by default, and their addition is not always brought to the
forefront of the providers’ update notes. Therefore, the duty of routinely
investigating into the addition of such options and enabling them in already
deployed infrastructure lies with the practitioner.

5. Logging: As resources are no longer in-house, quantitative logging gains
greater importance within the cloud paradigm.

6. Best practices — enabling readily available options: Similar to en-
abling security options, cloud providers offer out-of-the box customizations
which can result in great performance boosts

7. Best practices — documented code: Due to the inherent complexity
of large infrastructure, having a well-documented codebase related to the
deployed architecture can ease security auditing and prevent unintended
misconfigurations along the time.

5.3 SAST Tools Comparison

In the following, we provide a comparison between the static code analysis tools,
based on the gathered results and experience, that focuses on their performance
and clarity of delivering results. In terms of scanning duration, measuring the
time between the three tools revealed that tfsec is two orders of magnitude
faster than the other two SAST tools (avg 0.01s/scan), with the latter being
comparable in this regard (avg. 1s/scan).

Documentation-wise, both tfsec and terrascan offer built-in, proprietary
severity ratings, whereas checkov only does so on the website of its parent

12 Tosif et al.

company. Each severity rating of a checkov rule had to be compiled from the
webpage of the rule, since the link and rule nomenclature lacked homogeneity.

Furthermore, a deeper look into the tools’ ruleset documentation revealed
that terrascan exhibits duplicate rules, listed under different rule ID’s (i.e
AWS .83Bucket.IAM.High. [0378]0379]0381]). Similarily, checkov exhibits mis-
labeled rules (i.e. CKV_AWS_21, labeled as an S3 bucket rule, states that ”all IAM
users should be members of at least one IAM group”, which refers to an unre-
lated resource). Another, less concerning finding about documentation is that
rules which get deprecated are no longer included in the documentation in the
case of checkov (i.e. CKV_AWS_52). Further metrics which the discussion about
the SAST tools will rely on are presented in Tables [2] and [3]

Table 2. Tools - Detection Overlap

Number of Errors Found by Tool

Tool | 0 [1 [2 [3]
tfsec 1.65%]19.56%
terrascan|44.02%(3.10%[18.11%| 34.77%
checkov 2.04%(19.17%

Table 3. Tools - Violation Metrics

lMetric ‘ tfsec ‘terrascan‘checkov‘
zero violations [50.8%| 51.22% | 58.05%
avg. violation #| 6.66 4.87 3.14

total rules 90 296 118

We observe that the distribution of available rules for each resource type
varies between all three tools — some tools offer good coverage for certain resource
types, while others do not. Due to this fact, we conclude that, from the tools we
have analyzed, none offers can promise better overall coverage than the others.
Tables [2] and [3] comprise of notable metrics between the tools and point to a
similar conclusion — there is a great discrepancy between the available number
of rules of each tool, and table [2| further cements the intuitive conclusion that
the tools have no unclear overlap between their coverage.

Having these points considered, our recommendation is that any [aC security
pipeline should include all three. A security scan shall thus rather report dupli-
cate violations from multiple tools, or include false positives, rather than the
incident-prone alternative of having a false negative scan from a smaller number
of SAST tools.

A Large-Scale Study on the Security Vulnerabilities of Cloud Deployments 13
5.4 Discussion

Improving the current situation in terms of cyber security of cloud environments
can be addressed through raising awareness surrounding the security of cloud
deployments. This can be done through campaigns, either informative or struc-
tured as hands-on trainings [BI22].

Furthermore, increasing the popularity of the already-existing SAST tools
for TaC can not only boost the security of codebases, but also enforce pressure
on the development teams to improve the tools’ coverage and better tackle false
positives/negatives.

Considering the rapid, constant evolution of cloud solutions, security practi-
tioners and researchers alike must always stay informed about the latest changes
to resource deployment methodologies, reasons behind the deprecation of se-
curity options and the introduction of updates. Ideally, cloud providers and
SAST tool development teams should congregate to provide up-to-date, holistic
changelogs that always reflect the current conditions.

Based on the priorly introduced results, we elaborate the following findings
to augment our discussion:

— As the number of Terraform repositories is increasing, so does the number
of vulnerabilities. Whereas the first conveys an increase in adoption of IaC,
we must argue about the latter trend observed in security malpractices is a
problem for cloud deployments, especially in the case of critical infrastruc-
tures.

— As the number of Terraform repositories is increasing over time, while the
average count of vulnerabilities stays constant (flattening out at 15), we can
conclude that security awareness is lacking for cloud deployment using IaC.

— An unexpected result from analysing the data came in the form of the dis-
crepancy between the most vulnerable observed resources, when compared to
news outlets — the S3 bucket was not the highest finding, being ranked fourth
in our assessment. The top 3 vulnerable resources are instance, module
and security group. As these resources are more widely used than the S3
bucket, the security impact of malpractices concerning them can be higher.

— Another unexpected conclusion is the high vulnerability ranking of the module
Terraform type. However, malpractices concerning these type are firstly vio-
lations in terms of best practices and DevOps, rather than introducing prob-
lems in the deployed infrastructure.

— We observed two classes of problems:

1. Before-deployment, related to best practices (i.e. logging of variables)

2. After-deployment, succeeding the application of a Terraform configura-
tion, and resulting in potentially misconfigured and/or vulnerable re-
sources (i.e. unencrypted S3 bucket)

— We observe that tfsec outputs more finding than the other tools, followed by
checkov and terrascan. This is an unanticipated finding, as tfsec employs
the least amount of rules in its policy index, yet results in the highest amount
of findings (cf. table [2| Overall, this indicates that either the quality of the

14 Tosif et al.

employed SAST tools can differ significantly, or that tfsec’s rules are more
targeted.

— Our experience has shown that tools are constantly evolving and changing.
According to our experience, such ever-changing requirements can be seen
as a wicked problem for software developers, in which practitioners struggle
to always be up to date. Based on the present work, as well as experience
in the field of cyber security, we thus recommend practitioners to take the
following guidelines into consideration:

1. Relying on a single SAST tool can be perilous, as our results indicate
that findings between them are disperse and the overlap in coverage
varies.

2. Paste-in-place solutions should be heeded cautiously, as our study re-
vealed a multitude of problems in open source repositories, and drasti-
cally variable quality between repositories. Code should be analysed for
potential vulnerabilities before being inserted into a deployable architec-
ture.

Practitioners may use table |1f to guide their decisions on tool selection.

4. In practical deployments, we recommend the use of a baseline of tools, in
order to avoid introducing unstable requirements due to rule deprecation
and/or creation.

5. Implementing awareness campaigns in an industrial setting with the goal
of trying to raise awareness of secure cloud deployment problems can
have a benefic impact. In a non-corporate setting, the use of employing
SAST tools can provide the same exposure to security malpractices and
enhance one’s code quality

bad

5.5 Threats to Validity

In terms of threats to validity, the study cannot account for false positives and
negatives — the data spans across too many repositories to properly quantify
and asses such metrics. The closest figures are presented in table [2| where coarse
detection overlap is highlighted between the three employed SAST tools. Fur-
thermore, the data is specialised, in the sense that only repositories that have
AWS as a provider have been considered, as there is no one-to-one mapping
between cloud providers. Nonetheless, we believe that our work can extend to
other cloud providers, with different results between them. Another underlying
feature of the data consists in the fact that some repositories are ”collections
of snippets” (i.e. book examples), which might be incomplete, thus unintention-
ally increasing the number of findings. This latter point is easily refutable, since
published snippets should include security measures nonetheless.

6 Conclusions and Further Work

As trends in information technology are all congregating towards cloud comput-
ing, distributed infrastructures and off-site deployment become more and more

A Large-Scale Study on the Security Vulnerabilities of Cloud Deployments 15

ubiquitous. The industry is exerting sufficient pressure in this direction for cloud
solutions to become more widely adopted, due to their inherent attractiveness
in terms of lower, variable, costs and significantly shortened operations lifecy-
cle. In terms of security, the deployment of infrastructure is currently ongoing a
discovery phase before a unified body of security standards emerges.

Since deploying architectures is faster and more straightforward through the
use programming languages for Infrastructure as Code, the pre-existing security
problems of cloud deployment can potentially be amplified. Furthermore, due to
the multitude of openly available, ready-to-use IaC repositories for any general
use-case, the issue of propagating security malpractices thus gains fundamental
importance.

In this work we look at the most prominent security vulnerabilities in cloud
deployments. The study focuses on Terraform as an IaC solution, and AWS as a
cloud provider. By using three tools for static code analysis, we conducted a secu-
rity analysis on 13627 public repositories, over which 292538 security violations
were detected.

Analysing the collected data, we conclude on a list of the most wide-spread
vulnerable cloud resources. We clustered the most prevalent categories of vulner-
abilities across seven categories, and on their basis propose a security guidelines
list, acting as a security footprint snapshot for the current state of cloud deploy-
ment security across publicly available Terraform code.

We intend that the proposed list of seven cloud security guidelines may act as
a valuable source of information for industry practitioners, such that the security
of their own deployments may improve, along with the overall security awareness
in the cloud deployment landscape.

In a further work, the authors would like to explore mechanisms on how to
raise the awareness of security vulnerabilities in IaC using Terraform. Addition-
ally, the conclusions of the study can be adapted for cloud service providers apart
from AWS, to explore whether the observed vulnerability trends are universally
aplicable or vendor-specific. Furthermore, as development concerning the static
code analysis progresses, and as the number of newly created Terraform reposi-
tories is on the rise, this study provides a high degree of repeatability, in terms
of assessing a time evolution of the security of open-source projects relying on
Terraform.

Supporting Research Data

The consolidated dataset, which is the cornerstone of this work, is publicly
available for inspection and further research on the Zenodo Platform [I3]. The
data is provided in Comma Separated Values (CSV) format, and comprises
292538 security violations collected across 13627 Terraform repositories (AWS-
only provider).

16

Tosif et al.

References

10.

11.

12.

13.

Achilleos, A.P., Georgiou, K., Markides, C., Konstantinidis, A., Papadopoulos,
G.A.: Adaptive Runtime Middleware: Everything as a Service. In: Nguyen, N.T.,
Papadopoulos, G.A., Jedrzejowicz, P., Trawinski, B., Vossen, G. (eds.) Compu-
tational Collective Intelligence. pp. 484-494. Springer International Publishing
(2017). https://doi.org/10.1007/978-3-319-67074-4_47

Cloud Security Alliance: Cloud Controls Matrix. https://cloudsecurityallianc
e.org/artifacts/cloud-controls-matrix-v4/ (2021)

Common Weakness Enumeration: Exposure of Sensitive Information to an Unau-
thorized Actor (2021), https://cwe.mitre.org/data/definitions/200.html
Duan, Y., Fu, G., Zhou, N.; Sun, X., Narendra, N.C., Hu, B.: Everything as
a Service (XaaS) on the Cloud: Origins, Current and Future Trends. In: 2015
IEEE 8th International Conference on Cloud Computing. pp. 621-628 (2015).
https://doi.org/10.1109/CLOUD.2015.88

Espinha Gasiba, T., Andrei-Cristian, I., Lechner, U., Pinto-Albuquerque, M.: Rais-
ing Security Awareness of Cloud Deployments using Infrastructure as Code through
CyberSecurity Challenges. In: The 16th International Conference on Availability,
Reliability and Security. pp. 1-8 (2021)

Federal Office for Information Security: Security Recommendations for Cloud Com-
puting Providers — Minimum information security requirements. White Paper - (06
2011), https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications
/CloudComputing/SecurityRecommendationsCloudComputingProviders.html
Federal Office for Information Security: OPS.2: Cloud-Nutzung. White Paper -
(2021), https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschut
z/Kompendium_Einzel PDFs_2021/04_0PS_Betrieb/0PS_2_2_Cloud-Nutzung Editi
on_2021.pdf?__blob=publicationFile&v=2

Federal Office for Information Security: Sichere Nutzung von Cloud-Diensten.
White Paper - (2021), https://www.bsi.bund.de/SharedDocs/Downloads/D
E/BSI/Publikationen/Broschueren/Sichere Nutzung Cloud Dienste.pdf?__blo
b=publicationFile&v=1

Gasiba, T., Lechner, U., Cuellar, J., Zouitni, A.: Ranking Secure Coding
Guidelines for Software Developer Awareness Training in the Industry. In:
First International Computer Programming Education Conference (ICPEC
2020). OpenAccess Series in Informatics (OASIcs), vol. 81, pp. 11:1-11:11.
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany (2020).
https://doi.org/10.4230/OASIcs. ICPEC.2020.11, https://drops.dagstuhl.de/
opus/volltexte/2020/12298

Greyhat Warfare: Public S3 Buckets (2021), https://buckets.grayhatwarfare
.com/

Guerriero, M., Garriga, M., Tamburri, D.A., Palomba, F.: Adoption, support, and
challenges of infrastructure-as-code: Insights from industry. In: 2019 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME). pp. 580-589.
IEEE, Cleveland, OH, USA (2019)

International Standard Organization: Industrial communication networks - Net-
work and system security. Standard, International Electrical Commission (2009-
2021)

Tosif Andrei-Cristian: Raw Results on the Study on the Security Vulnerabilities
of Cloud Deployments. https://doi.org/XX.XXXX /zenodo.XXXXXXX| https:
//zenodo . org/record/XXXXXXX, online, Accessed XX. MONTH 2021

https://doi.org/10.1007/978-3-319-67074-4_47
https://cloudsecurityalliance.org/artifacts/cloud-controls-matrix-v4/
https://cloudsecurityalliance.org/artifacts/cloud-controls-matrix-v4/
https://cwe.mitre.org/data/definitions/200.html
https://doi.org/10.1109/CLOUD.2015.88
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/CloudComputing/SecurityRecommendationsCloudComputingProviders.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/CloudComputing/SecurityRecommendationsCloudComputingProviders.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium_Einzel_PDFs_2021/04_OPS_Betrieb/OPS_2_2_Cloud-Nutzung_Edition_2021.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium_Einzel_PDFs_2021/04_OPS_Betrieb/OPS_2_2_Cloud-Nutzung_Edition_2021.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium_Einzel_PDFs_2021/04_OPS_Betrieb/OPS_2_2_Cloud-Nutzung_Edition_2021.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Broschueren/Sichere_Nutzung_Cloud_Dienste.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Broschueren/Sichere_Nutzung_Cloud_Dienste.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Broschueren/Sichere_Nutzung_Cloud_Dienste.pdf?__blob=publicationFile&v=1
https://doi.org/10.4230/OASIcs.ICPEC.2020.11
https://drops.dagstuhl.de/opus/volltexte/2020/12298
https://drops.dagstuhl.de/opus/volltexte/2020/12298
https://buckets.grayhatwarfare.com/
https://buckets.grayhatwarfare.com/
https://doi.org/XX.XXXX/zenodo.XXXXXXX
https://zenodo.org/record/XXXXXXX
https://zenodo.org/record/XXXXXXX

14.

15.
16.

17.

18.

19.

20.

21.

22.

A Large-Scale Study on the Security Vulnerabilities of Cloud Deployments 17

Mell, P., Grance, T.: The NIST Definition of Cloud Computing (2011-09-28 2011).
https://doi.org/https://doi.org/10.6028 /NIST.SP.800-145

Nag Media: List of AWS S3 Leaks (2021), https://github.com/nagwww/s3-1leaks
Open Web Application Security Project: OWASP Top 10 (2017), https://owasp.
org/Top10/A01_2021-Broken_Access_Control/

Rahman, A., Parnin, C., Williams, L.: The Seven Sins: Security Smells in In-
frastructure as Code Scripts. In: 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). pp. 164-175. ACM, Montreal Quebec Canada
(2019). https://doi.org/10.1109/ICSE.2019.00033

Samani, R.: Critical Infrastructure and the Cloud (2013), https://cloudsecurit
yalliance.org/blog/2013/02/01/critical-infrastructure-and-the-cloud/
Sénchez-Gordén, M., Colomo-Palacios, R.: Security as Culture: A Systematic Lit-
erature Review of DevSecOps. In: Proceedings of the IEEE/ACM 42nd Interna-
tional Conference on Software Engineering Workshops. pp. 266-269. IEEE, Seoul
Republic of Korea (2020)

Tabrizchi, H., Rafsanjani, M.K.: A survey on security challenges in cloud comput-
ing: issues, threats, and solutions. The Journal of Supercomputing 76(12), 9493—
9532 (Feb 2020). https://doi.org/10.1007/s11227-020-03213-1, https://doi.org/
10.1007/s11227-020-03213-1

UpGuard Team: Black Box, Red Disk: How Top Secret NSA and Army Data
Leaked Online. https://www.upguard.com/breaches/cloud-leak-inscom (2017)
Zhao, T., Gasiba, T.E., Lechner, U., Pinto-Albuquerque, M.: Exploring a Board
Game to Improve Cloud Security Training in Industry. In: Henriques, P.R., Portela,
F., Queirds, R., Simdes, A. (eds.) Second International Computer Programming
Education Conference (ICPEC 2021). Open Access Series in Informatics (OA-
Slcs), vol. 91, pp. 11:1-11:8. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany (2021). https://doi.org/10.4230/OASIcs.ICPEC.2021.11, http
s://drops.dagstuhl.de/opus/volltexte/2021/14227

https://doi.org/https://doi.org/10.6028/NIST.SP.800-145
https://github.com/nagwww/s3-leaks
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://doi.org/10.1109/ICSE.2019.00033
https://cloudsecurityalliance.org/blog/2013/02/01/critical-infrastructure-and-the-cloud/
https://cloudsecurityalliance.org/blog/2013/02/01/critical-infrastructure-and-the-cloud/
https://doi.org/10.1007/s11227-020-03213-1
https://doi.org/10.1007/s11227-020-03213-1
https://doi.org/10.1007/s11227-020-03213-1
https://www.upguard.com/breaches/cloud-leak-inscom
https://doi.org/10.4230/OASIcs.ICPEC.2021.11
https://drops.dagstuhl.de/opus/volltexte/2021/14227
https://drops.dagstuhl.de/opus/volltexte/2021/14227

