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the discussions we had during my Ph.D. amongst the most interesting, stimulating, and
inspiring ones I have had this far. Thank you for your invaluable advice, which significantly
helped me navigate the academic world, and your infectious enthusiasm for logic.

I would like to thank Dirk Pattinson for his precious advice at different stages of my
Ph.D., and for lending me well-needed tools. Your analytic skills will always impress me,
whether in front of a mathematical problem, a life decision, or an engine.

To Revantha Ramanayake, thank you for guiding me in understanding the proof theory
of provability logics. You motivated the development of the mhd proof technique presented
in this thesis. I am grateful to you for that.

Without the help of Dominik Kirst, my formalisation of first-order bi-intuitionistic
logics would not have existed. Thank you for sharing your knowledge about Coq, which
will be retributed with 147 beers and Aperol spritz, as promised.

To Ahmad and Jim, thank you for being such amazing friends since our arrival in
Australia. Our parties, Indian dinners, road trips, hikes, lunch walks, discussions, and
campfires are memories I will always cherish.

To my Australo-French friends Clément, Grégory, Jarred, and Rachel, know that I
would certainly not call Canberra “home” without your presence. My life here would
not be as enjoyable without our weekends by the coast, our trip to Queensland, our stay
in Nimmitabel during Christmas, our weekly coinches, or our Messina-Assembly-Fiction
combos.

To the Dolphins, the moments we shared on the pitch, during training, at OCI, during
end-of-season trips, or at Scott’s, have clearly not made a better player out of me (this is
hopeless anyway). Still, they allowed me to obtain something much more precious: a pod
of fantastic friends. And don’t worry, I am sure that we will end up winning a grand final
one day.

To Dan, Richard and Elliott, my Ph.D. experience would have been much more stressful
without our countless hours spent single-track-riding on our dirt bikes, in the middle of
the Canberran bush. Thanks to you, Cotter and Tallaganda are high on my list of happy
places.
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Abstract

We contribute to the shift towards logic as a fully formalised science by formalising in
the interactive theorem prover Coq both new and known results. Our contribution is
threefold.

First, we define pen-and-paper general notions required in our dissertation: propo-
sitional and first-order syntax, axiomatic calculus, sequent calculus, Kripke semantics,
soundness and completeness results. Furthermore, we instantiate these notions in modal
logic, both in pen-and-paper and in Coq. Consequently, we constitute a readily available
and usable Coq library containing foundational elements of the study of modal logic, which
can thus serve as a basis for the formalisation of further works in non-classical logics.

Second, we exhibit and rectify a mistake that has gone unnoticed for almost fifty
years in the foundations of propositional and first-order bi-intuitionistic logic. We show
that both in the propositional and first-order case, what was conceived of as a unique
bi-intuitionistic logic is in fact two distinct logics. We trace these confusions back to
a fundamental problem in the axiomatic proof theory of propositional and first-order
bi-intuitionistic logic: traditional Hilbert calculi are not designed to treat logics as conse-
quence relations. They lead to an ambiguous notion of deduction from assumptions that
can cause us to conflate distinct rules and thus distinct logics. More precisely, we show
that the bi-intuitionistic rule (DN) is ambiguous in a traditional context and splits into two
distinct rules in the context of generalized Hilbert calculi. As a consequence, we obtain two
generalized Hilbert calculi in the propositional (wBIH and sBIH) and first-order (FOwBIH
and FOsBIH) case, for bi-intuitionistic logic that differ only in the disambiguated version
of the (DN) rule they incorporate. Unsurprisingly, these systems capture two distinct
propositional logics (wBIL and sBIL) and first-order logics (FOwBIL and FOsBIL), which
have been conflated in the literature.

Third, we obtain cut-elimination results for the sequent calculi GLS and GL4ip, which
are sequent calculi for, respectively, the classical modal provability logic GLL and the in-
tuitionistic modal provability logic iGLL. These results involve a novel proof technique
for the admissibility of additive-cut called the “mhd proof technique”, which relies on the
fact that terminating backward proof-search allows us to attribute a “maximal height of
derivations” to each sequent. So, for each of the calculi GLS and GL4ip, we define a back-
ward proof-search procedure for it and develop a thorough termination argument using a
local measure on sequents and a well-founded relations along which this measure decreases
upwards in the proof-search. Then, we directly prove the admissibility of additive-cut for
both calculi using the mhd proof technique. We use this number, the mhd of a sequent, as
an induction measure in arguments involving local and syntactic transformations, allowing
us to exhibit and hence extract from our Coq formalisation Haskell programs constituting
cut-elimination procedures.
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Introduction

Our proofs are unreliable. On the contrary to Brouwer [20, 3], we do not believe that this
unreliability comes from the principles we, logicians, use in our proofs. Instead, we believe
that it emerges from our practice of proving.

What is our practice of proving? To understand this, we need to explain what is the
bread and butter of a nowadays logician. Abstractly, a logician produces formal definitions,
states lemmas and theorems using these definitions, and builds proofs justifying the stated
lemmas and theorems - all of these pertaining in some way or another to what is designated
by “logic”. Concretely, a logician most commonly does all of the above by writing these
definitions, lemmas, theorems, and proofs (we call them productions) on a piece of paper,
a whiteboard, or in LATEX. We refer to this practice as the pen-and-paper practice. Thus,
our practice of proving is the way we build proofs in the pen-and-paper practice.

Why do we trust productions of the pen-and-paper practice? We do so for two main
reasons: education and control.

First, one does not become a logician in a day. Acquiring the skills required for this
profession comes at the cost of several years spent at universities studying the common
elements encountered in this scientific discipline, the core theorems of various aspects of
logic, and the mathematical rigor inherent to the production of results in this field. Thus,
at the end of their education students have wide and technical knowledge about the sci-
entific discipline of logic, allowing them to design innovative and/or complex productions.
So, we trust productions of the pen-and-paper practice notably because its practitioners
are well-trained.

Second, any production of the pen-and-paper practice is reviewed before becoming an
accepted item in the field. In a nutshell, the reviewing process is a control mechanism at
the core of the scientific approach, which consists of the assessment of a journal article,
a conference paper, or a dissertation, by one or several persons who are recognized as
“experts” by the scientific community. These experts are meant to read the journal ar-
ticle, say, and amongst other things determine whether the productions are correct. The
acceptance for publication of the journal article consequently implies that after a careful
analysis the experts believe the productions of the pen-and-paper practice contained in
the article, and thus label them as correct. This labeling carries the weight of the experts’
status, thus generally leading the community to accept these productions.

Because of the education required to perform the pen-and-paper practice and the
control enforced on any production of this practice, it seems that we have reasons to trust
the productions thus obtained. So, why should we believe, as suggested above, that the
pen-and-paper practice is unreliable? Because logicians and experts are humans after all,
and hence fallible. More precisely, in face of this fallibility of humans, the combination of
education and control cannot guarantee the reliability of the productions of the pen-and-
paper practice. How so? Despite being well trained, a logician can: want their result to be
true, and convince themselves of it ; be absent-minded and forget about technical aspects
of a definition, say ; simply misunderstand ; have a bad day (being sad, tired, or hungover)
thus leading them to be less careful in the design of their productions ; have deadlines
to meet, inciting them to speed up their production process, potentially at the cost of
quality ; deal with complex proofs with many more or less similar cases, thus tempting
them to bundle many cases they believe to be very similar ; etc. Consequently, a logician

1
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can perfectly produce a mistake, contained in an article they submit to a journal or a
conference. The control imposed by the reviewing process should prevent the publication of
the article, right? In theory, yes. In reality, reviewers are also fallible, and very frequently
cannot dedicate the required time to the evaluation of these productions. In fact, it is
not uncommon for reviewers to not check the proofs of an article in detail, as this is a
significantly time-consuming activity.

As a result mistakes in productions can make their way through the publication pro-
cess. Once published, flawed productions are automatically disguised as items of scientific
knowledge, allowing the creation of further flawed productions relying on them. This phe-
nomenon can lead to at least two issues. First, entire scientific fields can be developed
on shaky foundations, potentially causing their collapse once the mistakes are discovered.
Second, mistakes can be present in proofs for statements that luckily happen to be hold-
ing. While this is less dramatic, it can be the source of great confusions, notably on the
range of applicability of certain proof techniques. Both issues should obviously be avoided
in any serious scientific approach.

All of the above is well-known, and so is a remedy to the unreliability of the pen-
and-paper practice: the formalised practice. In the latter, we use interactive theorem
provers (ITPs), which are systems providing an environment to write definitions, lemmas,
theorems, and proofs in a formal language. The interaction between the ITP and the
(human) user consists of the mechanical verification by the computer of the correctness of
the elements written by the user, notably the steps of proofs. In particular, a proof of a
statement is verified in an ITP only if the computer recognizes all the steps in the proof as
applications of rules already agreed on, i.e. readily available in the ITP or declared by the
user as an accepted rule. We refer to such proofs as formalised (sometimes called formal
proofs [69]).

Why is the formalised practice more reliable than the pen-and-paper one? Because
formalised proofs are verified by computers, which are far less fallible than we are when it
comes to verification. Indeed, computers are not absent-minded, do not misunderstand,
do not have bad days, have no deadlines to meet, and can deal with a great number of
cases without forgetting one or confusing two. Because of this, formalised proofs are highly
reliable: they are necessarily built using only rules and assumptions that are explicitly
given. Thus, to determine with certainty whether the formalised proof of a statement
constitutes a correct proof of this statement, it suffices to check, first, that the computer
verifies the proof and, second, that we accept all the explicit rules and assumptions given
in the ITP on which this proof relies.

While the formalised practice eliminates many issues encountered in the pen-and-paper
practice, its use comes at a cost. First, the use of a specific ITP requires several months
of learning. Formal languages used in ITPs can be alien to logicians, even in those ITPs
which possess a language mimicking steps in pen-and-paper proofs. Their mastering is
consequently a long process, which is best accomplished in a logician’s education in univer-
sity courses. Second, the reading of formalised proofs can be difficult. Often, formalised
proofs are constituted by hundreds of lines of uncommented code, and can thus be very
hard to identify with the pen-and-paper proofs. As a consequence, the content of some
formalised proofs, e.g. the proof techniques used in them, can be intricate to extract. This
intricacy can impede both the reviewing process and the teaching of proof techniques.
Third, the multiplicity of ITPs, and their lack of compatibility, leads to philosophical
problems about the universality of mathematics (see Dowek’s recent paper [39]).

So, the formalised practice has greater reliability but is not perfect. Still, we believe
that logic should shift to the formalised practice, thus transitioning to a fully formalised
science, but with a twist. More precisely, we believe that formalised proofs and pen-and-
paper proofs should always come together, to obtain the best of both worlds. With this
combination, we can have clear communication of proofs and proof techniques on pen-
and-paper, while having the reliability of formalised proofs. As a consequence, we concur
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with Avigad and Harrison’s view [4, p.73]:

Formal verification is not supposed to replace human understanding or the
development of powerful mathematical theories and concepts. Nor are formal
proof scripts meant to replace ordinary mathematical exposition. Rather, they
are intended to supplement the mathematics we do with precise formulations
of our definitions and theorems and assurances that our theorems are correct.

In what follows, we contribute to this shift towards a fully formalised science by both
producing new results in logic which we formalised in the interactive theorem prover Coq,
and formalising known results. Consequently, the work outlined below should be of interest
to both the logic community and the ITP community. Our contribution is threefold.
First, alongside the general notions we need in our dissertation, we constituted a library
containing the formalisation of instances for modal logic of these general notions. This way,
our library treats many foundational elements of the study of modal logic: propositional
and first-order syntax, axiomatic calculus, sequent calculus, Kripke semantics, soundness
and completeness results. Second, we justify the need to formalise proofs by exhibiting
and rectifying a mistake that has gone unnoticed for almost fifty years in the foundations
of bi-intuitionistic logic. More precisely, we show that both in the propositional and first-
order case, what was conceived of as a unique bi-intuitionistic logic is in fact two distinct
logics. Their treatment through axiomatic systems and Kripke semantics is explored and
formalised, as well as their soundness and completeness proofs (only relative completeness
proof in the first-order case). So, we claim to have produced the only coherent and correct
account of bi-intuitionistic logic as two, rather than one, logics. Third, we obtain cut-
elimination results for two provability logics GLL and iGLL using a novel, simpler proof
technique. Our formalisation of these results provides us with Haskell programs that
effectively eliminate cuts in the sequent calculi for these logics augmented with the cut
rule.

Our dissertation is consequently divided into three parts. First, in Part I we introduce
all the general notions and tools we use in this dissertation and instantiate them both on
pen-and-paper and in Coq using the running example of modal logic. Second, in Part II
we present all our results on bi-intuitionistic logics, propositional and first-order. Third,
in Part III we exhibit our findings on sequent calculi for the provability logics GLL and
iGLL.
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In this part, we introduce all the general notions and tools we use in this disserta-
tion. To make these notions more digestible, we instantiate them in the familiar setting
of classical modal logic. Furthermore, we introduce the reader to key elements of our for-
malisation in Coq by exhibiting the formalisation of the aforementioned elements about
classical modal logic.

Each chapter introducing a notion that we can instantiate in classical modal logic is
thus divided into three parts:

1. general notions;

2. The classical modal logic example: on paper;

3. The classical modal logic example: in Coq.

Now, how should the reader use this chapter? Disclaimer: it is meant to be read
neither as a preamble to this dissertation nor in a linear way. Instead, this chapter is built
as a toolbox, which one goes to for a specific tool whenever one needs it. So, we specify at
the beginning of each chapter which parts of this dissertation are required to understand
the aforementioned chapter. Finally, note that the parts on the Coq formalisation can be
altogether disregarded by the reader who is an exclusively pen-and-paper logician.
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Chapter 1

Generalities and Notation

Any result that we formalised is accompanied by a clickable keyboard symbol “Ï” leading
to the location of its formalised version. We flag non-formalised proofs by proof environ-
ments starting by “Proof-.”.

In proofs, we often use the notion of strong induction, which relies on what is called
a strong induction principle. This type of principle assumes given a type X and a binary
relation R on elements of type X. Then, the strong induction principle is presented
as follows, where ⇒ is the meta-level implication, WellFounded is a predicate for the
property of binary relations of being well-founded (there are no infinite descending R-
chains of the shape . . . x2Rx1Rx0), and Prop is a predicate for a property on elements of
type X.

WellFounded(R) ⇒ (∀x, (∀y, (xRy ⇒ Prop(y))⇒ Prop(x))) ⇒ (∀x, Prop(x))

In essence, this principle tells us that we can prove that a property Prop holds for all
elements of type X (i.e. (∀x, Prop(x))) under two conditions. The first condition consists
in proving that the relation R is well-founded (i.e. WellFounded(R)). The second amounts
to proving that for any x, if all the R-predecessors of x satisfy Prop, then x also satisfies
Prop (i.e. (∀x, (∀y, (Rxy ⇒ Prop(y))⇒ Prop(x)))).

In this dissertation we use the letters ϕ,ψ, χ, . . . for formulas and Γ,∆,Φ,Ψ, . . . for
sets and multisets of formulas, which should be clear from context. We also make use of
apostrophes and numbers to designate formulas (ϕ′, ϕ′′, . . . , ϕ0, ϕ1, . . . ) and sets of formu-
las (Γ′,Γ′′, . . . ,Γ0,Γ1, . . . ).

Below is a definition of some general notations we use throughout this dissertation.

Definition 1.0.1. We define the following:

- N is the set of all natural numbers;

- S is the successor operator on natural numbers;

- For a set X the set Pow(X) = {X ′ | X ′ ⊆ X} is the power set of X;

- An arity function for a set X is a function ArX : X → N;

- For a pair (X,Y ), we define proj1((X,Y )) = X and proj2((X,Y )) = Y to be respec-
tively the first and second projection of (X,Y ).

9
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Chapter 2

Syntax

The study of formal logics essentially relies on formal languages and ultimately their
interpretation. In this context, the definition of formal languages is often said to constitute
the syntax of a logic. So, we proceed in this chapter to provide the syntax for the two
types of logics we consider throughout this dissertation: propositional and first-order.

2.1 Propositional languages

We start by defining propositional languages and their constituents.

Definition 2.1.1. A propositional language L is a pair (V, C) where:

- V is a countable set {p, q, r . . . } of propositional variables on which equality is de-
cidable ;

- C is a pair (Con,ArCon) such that Con is a countable set of connectives on which
equality is decidable, and ArCon : Con→ N is an arity function for connectives.

Note that our requirement on the decidability of equality on the set V is necessary if
one wants equality on formulas to be decidable. This is often overlooked (or implicit) in
the literature.

For each propositional language, we define its set of propositional formulas.

Definition 2.1.2 (Propositional Formulas). Let L = (V, C) be a propositional language
where C = (Con,ArCon). The set FormL of propositional formulas of L is inductively
defined by the following prefix grammar.

ϕ ::= p ∈ V | •(ϕ, ..., ϕ)

where • ∈ Con and (ϕ, ..., ϕ) is a tuple of length ArCon(•).

As FormL is inductively defined, we automatically get from this definition an inductive
principle, which we use when we do “proofs by induction”. More precisely, we have the
following principle for any property Prop on formulas where & and⇒ are respectively the
meta-level conjunction and the meta-level implication.

(∀p, p ∈ V⇒ Prop(p))⇒

(∀ϕ1 . . . ϕn, (Prop(ϕ1)& . . .&Prop(ϕn))⇒ Prop(•(ϕ1, ..., ϕn)))⇒
(∀ϕ,ϕ ∈ FormL ⇒ Prop(ϕ))

Put simply, we can prove that a property Prop holds for all formulas (the last line), if we
can prove that (1) the property holds for all propositional variables (the first line), and
(2) that it holds for any complex formula •(ϕ1, ..., ϕn) under the assumption that Prop
holds for all of ϕ1, ..., ϕn (the second line). This very powerful principle is used to prove
statements in various places in this dissertation.

A particularly useful notion is the one of subformula of a formula, defined as follows.

11
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Definition 2.1.3 (Propositional Subformulas). Let L be a propositional language, and
ϕ ∈ FormL. We define Subf(ϕ) the set of subformulas of ϕ by recursion on the structure
of ϕ:

ϕ = p : Subf(p) := {p};

ϕ = •(ϕ0, . . . , ϕn) : Subf(•(ϕ0, . . . , ϕn)) := {•(ϕ0, . . . , ϕn)} ∪
⋃

0≤i≤n
Subf(ϕi).

We abuse the notation to designate the set (resp. multiset) of subformulas of all formulas
in the set (resp. multiset) Γ by Subf(Γ).

We define the notion of propositional variable substitution, which allows us to replace
propositional variables in a formula with formulas

Definition 2.1.4. Let L = (V, C) be a propositional language. A propositional variable
substitution for L is a function σ : V→ FormL.

Definition 2.1.5. Let L = (V, C) be a propositional language and σ a propositional
variable substitution for L. We define ϕσ the propositional variable substitution of ϕ
through σ by recursion on the structure of ϕ:

ϕ = p : pσ := σ(p);

ϕ = •(ϕ0, . . . , ϕn) : (•(ϕ0, ..., ϕn))σ := •(ϕσ0 , . . . , ϕσn).

We abuse the notation to designate the set (resp. multiset) of propositional variable sub-
stitution of formulas through σ of all formulas in the set (resp. multiset) Γ by Γσ.

On top of the inductive principle given by the inductive definition of formulas, we
often use additional measures on formulas which allow us to prove statements using the
decreasing of these measures along a well-founded order on them. In this dissertation, the
measures on formulas we use are natural numbers attributed to formulas. Consequently,
we can use the well-founded order < on N to obtain an inductive principle useful to prove
statements about formulas.

For example, we use the notion of size of a formula.

Definition 2.1.6. Let L = (V, C) be a propositional language and ϕ ∈ FormL. For a
formula ϕ, we define the size, size(ϕ), by recursion on the structure of ϕ.

ϕ = p : size(p) := 1;

ϕ = •(ϕ0, ..., ϕn) : size((•(ϕ0, ..., ϕn))) := 1 + size(ϕ0) + · · ·+ size(ϕn).

Throughout this dissertation, we fix V = {p, q, r . . . } to be an infinite set of proposi-
tional variables. Furthermore, we require that equality is decidable on this set.

Hypothesis 2.1.1. For all p, q ∈ V, we can decide whether p = q or p 6= q.

2.1.1 The classical modal logic example: on paper

Now, let us consider a specific set of connectives for Classical Modal logic CCM =
(ConCM, ArConCM

) where:

- ConCM = {⊥,→, } ;

- ArConCM
is such that:

ArConCM
(⊥) = 0 ArConCM

(→) = 2 ArConCM
( ) = 1
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We can thus define the propositional language LCM = (V, CCM) and obtain its set of
modal formulas FormLCM

through its prefix grammar:

ϕ ::= p ∈ V | ⊥ |→ (ϕ,ϕ) | (ϕ)

However, we usually prefer the use of infix grammars. In infix notation, the above grammar
takes its common shape:

ϕ ::= p ∈ V | ⊥ | ϕ→ ϕ | ϕ

As an example, the expression p → q is indeed an element of FormLCM
because

p, q ∈ V are formulas, and thus q and in turn p → q are formulas. Furthermore, we
can compute Subf(p→ q) to obtain the set {p→ q, p, q, q}.

2.1.2 The classical modal logic example: in Coq

All the elements presented in this subsection can be found here: Ï.
To formalise our work, we need to encode the above usual pen-and-paper definitions.
We encode modal formulas as a type MPropF over some implicit parametric set V of

propositional variables (Ï), over which we assume equality to be decidable. Note that <>
stands for 6= in Coq, while + stands here for the Type sum.

Parameter eq_dec_propvar :

forall p q : V, {p = q} + {p <> q}.

Thus, we encode our set of propositional variables in the following way (Ï).

Inductive MPropF {V : Set} : Type :=

| Var : V -> MPropF

| Bot : MPropF

| Imp : MPropF -> MPropF -> MPropF

| Box : MPropF -> MPropF.

This inductive definition essentially captures the grammar given above: propositional
variables constitute formulas with the constructor Var ; there is a constructor for each
connective (Bot for ⊥, Imp for →, Box for ) ; the arity of each connective is respected
(Bot takes no argument, Imp takes two, Box takes one). Note how each case is flagged by
the vertical bar |. For example, the formula p → q we listed previously becomes the
Coq term Imp (Var p) (Box (Var p)).

We can add notations for connectives (Ï), which allow us to use them in an infix
way. We add a notation for the implication symbol, where parentheses on the second line
specify properties of the notation for Coq to read it.

Notation "ϕ --> ψ" := (Imp ϕ ψ)
(at level 16, right associativity).

For convenience, we also introduce the following notation for propositional variables
(Ï).

Notation "# p" := (Var p)

(at level 1).

Once modal formulas are defined, we can encode the notion of subformulas (Ï).

Fixpoint subform (ϕ : MPropF) : Ensemble MPropF :=

match ϕ with

| Var p => Singleton _ (Var p)

| Bot => Singleton _ Bot

| Imp ψ χ => Union _ (Singleton _ (Imp ψ χ))
(Union _ (subform ψ) (subform χ))

| Box ψ => Union _ (Singleton _ (Box ψ)) (subform ψ)
end.

https://github.com/ianshil/PhD_thesis/blob/0e3bca29eb40e86a0bdf32c175ee47fefa323ff9/Toolbox_ModLog/Syntax/K_Syntax.v
https://github.com/ianshil/PhD_thesis/blob/eea53af16d17f2057168629ac97ced02d80257c7/Toolbox_ModLog/Syntax/K_Syntax.v#L12
https://github.com/ianshil/PhD_thesis/blob/eea53af16d17f2057168629ac97ced02d80257c7/Toolbox_ModLog/Syntax/K_Syntax.v#L24
https://github.com/ianshil/PhD_thesis/blob/eea53af16d17f2057168629ac97ced02d80257c7/Toolbox_ModLog/Syntax/K_Syntax.v#L32
https://github.com/ianshil/PhD_thesis/blob/eea53af16d17f2057168629ac97ced02d80257c7/Toolbox_ModLog/Syntax/K_Syntax.v#L31
https://github.com/ianshil/PhD_thesis/blob/eea53af16d17f2057168629ac97ced02d80257c7/Toolbox_ModLog/Syntax/K_Syntax.v#L34
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There is a crucial use of recursion on the structure of a formula ϕ in this definition.
This can be detected by two elements. First, the expression Fixpoint explicitly expresses
the fact that the definition we are about to give relies on the structure of some inductively
defined objects, formulas in this case [145]. Second, this recursion shows in the case-by-case
analysis over the structure of ϕ and its declaration via the expression match ϕ with.

The content of the definition itself should be rather clear: on input ϕ (i.e. a formula),
subform outputs the set of subformulas of ϕ, which is an element of type Ensemble MPropF

(Ensemble is French for “set”). For example, to the boxed formula Box ψ we attach the
Union of the Singleton {Box ψ} and the set subform ψ of subformulas of ψ. It has to be
noted that the constructors Singleton and Union require the type of entities it contains
to be specified, but we can ask Coq to infer the type by using the dash _. If Coq cannot
infer which type we meant, an error message will be displayed.

The above definition uses the mathematical notion of sets via Ensemble. In Coq, sets
are identified with their characteristic function. So, a set of formulas Γ is nothing but a
function from FormL to Prop, the type of propositions in Coq. Thus, the elementhood
of ϕ in Γ can be detected in Coq by the holding of the Γ ϕ. That being said, note that
we can reproduce the notion above it using the notion of list instead of Ensemble (Ï).

Fixpoint subformlist (ϕ : MPropF) : list MPropF :=

match ϕ with

| Var p => (Var p) :: nil

| Bot => Bot :: nil

| Imp ψ χ => (Imp ψ χ) ::

(subformlist ψ) ++ (subformlist χ)
| Box ψ => (Box ψ) :: (subformlist ψ)

end.

There exists a well-developed library for lists in Coq [146] which uses a polymorphic
definition, i.e. one which is parametrized in a type of objects. For example, we define lists
of formulas with the type list MPropF and lists of natural numbers with list nat. For
any type of lists, the empty list is nil and the usual operations “append” and “cons” are
respectively represented by ++ and ::. However, Coq also allows us to write lists in infix
notation using ;. Thus the terms ϕ1 :: ϕ2 :: ϕ3 :: nil and [ϕ1] ++ [ϕ2] ++ [ϕ3]
and [ϕ1 ; ϕ2 ; ϕ3] all encode the same list ϕ1, ϕ2, ϕ3.

We formalise the common notion of propositional variable substitution of ϕ through σ
(Ï). We use such substitutions later on to define logics.

Fixpoint subst (σ : V -> MPropF) (ϕ : MPropF) : MPropF :=

match ϕ with

| Var p => (σ p)

| Bot => Bot

| Imp ψ χ => Imp (subst σ ψ) (subst σ χ)
| Box ψ => Box (subst σ ψ)

end.

Finally, we formalise the notion of size of formulas (Ï).

Fixpoint size (ϕ : MPropF) : nat :=

match ϕ with

| Var p => 1

| Bot => 1

| Imp ψ χ => 1 + (size ψ) + (size χ)
| Box ψ => 1 + (size ψ)

end.

https://github.com/ianshil/PhD_thesis/blob/0e3bca29eb40e86a0bdf32c175ee47fefa323ff9/Toolbox_ModLog/Syntax/K_Syntax.v#L42
https://github.com/ianshil/PhD_thesis/blob/0e3bca29eb40e86a0bdf32c175ee47fefa323ff9/Toolbox_ModLog/Syntax/K_Syntax.v#L104
https://github.com/ianshil/PhD_thesis/blob/0e3bca29eb40e86a0bdf32c175ee47fefa323ff9/Toolbox_ModLog/Syntax/K_Syntax.v#L98
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2.2 First-order languages

First-order languages differ from propositional languages in two main ways. First, while
the elementary building blocks of propositional languages are propositional variables, in
the first-order case these blocks are atoms, or atomic formulas. More precisely, atoms
are expressions of the shape P (t1, ..., tn) where P is a predicate symbol with a certain
arity, here n, and t1, ..., tn are terms. Thus, to define a first-order language we need to
characterize predicate symbols as well as terms. We call such characterizations signatures.

Definition 2.2.1. A signature S is a pair (F ,P) where:

- F is a pair (Fun,ArFun) of a countable set Fun of function symbols f, g, h . . . on
which equality is decidable, and ArFun an arity function on Fun;

- P is a pair (Pred,ArPred) of a countable set Pred of predicate symbols P,Q,R . . .
on which equality is decidable, and ArPred an arity function on Pred.

It may come as a surprise that we do not explicitly consider constant symbols in
signatures. However, it has to be noted that we do not need to give a special place to
constant symbols: they are nothing but function symbols c ∈ Fun such that ArFun(c) = 0.

With a signature, we already have characterized a set of predicate symbols. However,
we have not reached the characterization of a set of terms yet. We proceed to define terms
next.

Definition 2.2.2. Let S = (F ,P) be a signature. We define inductively the set of terms
TermS of S in the following way:

- if n ∈ N then n ∈ TermS ;

- if t1, ..., tn ∈ TermS , f ∈ Fun and ArFun(f) = n, then f(t1, ..., tn) ∈ TermS .

In other words, we have the following grammar:

t ::= n ∈ N | f(t, ..., t)

Usually one would expect variable symbols to appear as basic constituents of terms,
as in the usual syntax with names. Here instead, we involve natural numbers as we use
a syntax à la de Bruijn [34]. This decision to deviate from the usual syntax is motivated
by formalisation issues: binders, hence quantifiers, are difficult to formalise. However, a
well-developed approach in Coq uses de Bruijn indices [140]. We consequently decided
to follow this approach in our formalisation, hence the need to adopt this syntax in this
dissertation.

So, with the notion of signature, we now have a thorough definition of the building
blocks of our first-order languages. However, there is a second way in which first-order
languages differ from propositional ones: the use of variable binders called quantifiers.

Definition 2.2.3. A set of quantifiers Q is a countable set of symbols, called quantifiers,
on which equality is decidable.

In this dissertation we only consider unary quantifiers, hence the absence of an arity
function in Q.

We now have all the material to define first-order languages.

Definition 2.2.4. A first-order language L is a triple (S, C,Q) where S is a signature, C
is a set of connectives and Q is a set of quantifiers.

On the contrary to propositional languages, where we use a fixed set V of propositional
variables, here we do not work with a fixed signature. As a consequence, when a first-order
language is based on a signature S, we say that it is a first-order language in S.

With the above definition of a language, we define the set of formulas of a first-order
language L in S.
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Definition 2.2.5. Let L = (S, C,Q) be a first-order language where S = (F ,P). We
define inductively the set FormL of formulas of L in the following way:

- if P ∈ P and ArP(P ) = n and t1, . . . , tn ∈ TermS , then P (t1, . . . , tn) ∈ FormL;

- if • ∈ Con and ArCon(•) = n and ϕ1, . . . , ϕn ∈ FormL, then •(ϕ1, . . . , ϕn) ∈ FormL;

- if O ∈ Q and ϕ ∈ FormL, then Oϕ ∈ FormL.

In other words, we have the following grammar:

ϕ ::= P (t1, . . . , tn) | •(ϕ, ..., ϕ) | Oϕ

Formulas of the form P (t1, . . . , tn) are called atoms or atomic formulas.

Here are two examples of formulas, assuming that we have the binary connective →
and two quantifiers ∀ and ∃.

∀(P (0)→ ∃Q(0, 1, 7)) ∀R(0, 0)→ ∃∀P (1)

The left expression is a formula because of the following. Q is a ternary predicate, and
0, 1 and 7 are terms, hence Q(0, 1, 7) is a formula. Consequently, we get that ∃Q(0, 1, 7) is
a formula. Note that in ∃Q(0, 1, 7) the variable 0 is bound by the quantifier ∃, as between
the occurrence of ∃ and the location where the second occurrence of 0 is we encounter
no other quantifiers. Then, we have that P (0) is a formula. Thus, P (0) → ∃Q(0, 1, 7)
is a formula too. Finally, we obtain that ∀(P (0) → ∃Q(0, 1, 7)) is a formula. In this
resulting formula, we see that the outermost quantifier bounds both 0 in P (0) and 1 in
Q(0, 1, 7). The first bounding of 0 can be explained as above: no quantifier is interleaved
in the structure of the formula between ∀ and 0. The second bounding of 1 happens as
there is one quantifier, i.e. ∃, interleaved between ∀ and the location of 1. Note that the
formula ∀(P (0)→ ∃Q(0, 1, 7)) is thus not a “closed” formula, as 7 is a “free” variable here.
The right expression can be shown to be a formula in a similar way. In this formula, the
quantifier ∃ in ∃∀P (1) bounds 1, and the quantifier ∀ in ∀R(0, 0) bounds both occurrences
of 0. We can now see that in the usual syntax these formulas can be represented as:

∀x(P (x)→ ∃yQ(y, x, z)) ∀xR(x, x)→ ∃y∀zP (y)

Note how the above are just constituting one among many representations of the formulas
in the syntax à la de Bruijn: we could use other bound variables. In the de Bruijn syntax,
there is only one representation for these formulas hence we avoid having to “rename”
variables in a formula as is usual in the usual notation.

We now turn to the definition of variable substitution. Given that in a syntax à la de
Bruijn natural numbers play the role of variables in a named syntax, we define the notion
of variable substitution over terms on natural numbers.

Definition 2.2.6. Let L be a first-order language. A variable substitution for L is a
function τ : N→ TermS .

The next definition provides the details on how to apply such variable substitution on
a term t.

Definition 2.2.7. Let S = (F ,P) be a signature, t ∈ TermS a term and τ : N→ TermS a
variable substitution. We define t[τ ], the application of τ to t, recursively on the structure
of t as follows:

t = n : then n[τ ] := τ(n);

t = f(t1, ..., tn) : then f(t1, ..., tn)[τ ] := f(t1[τ ], ..., tn[τ ]).
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Before stating and proving some lemmas about variable substitution on terms, we list
some commonly used operations and variable substitutions.

Definition 2.2.8. We define the following.

- id is the identity function such that id(n) = n;

- For a type X, x an element of type X and a function f : nat → X, x .: f is the
function such that (x .: f)(0) = x and (x .: f)(S n) = f(n);

- ↑ is the function such that ↑ (n) = S n;

- g◦f is composition of g and f , i.e. the function such that forall n we have (g◦f)(n) =
g(f(n));

- λt.t[↑] is the function which takes a term t as an input and outputs the term t[↑];

- up(τ) = 0 .: (λt.t[↑] ◦ τ).

The first lemma shows how the substitution of the first variable for a term [s . : id]
cancels out with a prior use of the substitution [↑].

Lemma 2.2.1. For all first-order language L = (S, C,Q) and terms t, s ∈ TermS , we
have: t[↑][s .: id] = t.

Proof. (Ï) Informally, we can simply notice that the application of the substitution [↑]
transforms n into S n, making the substitution of the first variable by t ineffective. In
addition to that, the substitution [s .: id] has as effect of decreasing all but the first variable
by 1, thus transforming S n into n. Thus, the term t is unchanged. For a formal proof we
refer to the formalisation. �

The second lemma explains how two specific substitutions can be inverted. This comes
in handy in many situations.

Lemma 2.2.2. For all first-order language L = (S, C,Q), t ∈ TermS and variable substi-
tution τ , we have:

t[↑][up(τ)] = t[τ ][↑]

Proof. We refer to the formalisation (Ï). �

Naturally, the definition of variable substitution on terms ports to formulas. In the
next definition we precisely define the notion of variable substitution on formulas.

Definition 2.2.9. Let L = (S, C,Q) be a first-order language, ϕ ∈ FormL a formula and
τ a variable substitution. We define ϕ[τ ], the application of τ to ϕ, recursively on the
structure of ϕ as follows:

- ϕ := P (t1, . . . , tn): then P (t1, . . . , tn)[τ ] = P (t1[τ ], . . . , tn[τ ]);

- ϕ := •(ψ1, . . . , ψn): then (•(ψ1, . . . , ψn))[τ ] = •(ψ1[τ ], . . . , ψn[τ ]);

- ϕ := Oψ: then (Oψ)[τ ] = O(ψ[up(τ)])

We abuse the notation and write ϕ[t] for ϕ[t .: id].

The lemmas we considered for variable substitutions on terms also hold for formulas.

Lemma 2.2.3. For all first-order language L = (S, C,Q), t ∈ TermS and ϕ ∈ L, we have:

ϕ[↑][s .: id] = ϕ

Proof. (Ï) The intuition is similar to the one of Lemma 2.2.1. �

https://github.com/ianshil/PhD_thesis/blob/0e3bca29eb40e86a0bdf32c175ee47fefa323ff9/Toolbox_ModLog/Syntax/K_FO_Syntax.v#L328
https://github.com/ianshil/PhD_thesis/blob/0e3bca29eb40e86a0bdf32c175ee47fefa323ff9/Toolbox_ModLog/Syntax/K_FO_Syntax.v#L334
https://github.com/ianshil/PhD_thesis/blob/0e3bca29eb40e86a0bdf32c175ee47fefa323ff9/Toolbox_ModLog/Syntax/K_FO_Syntax.v#L401
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Lemma 2.2.4. For all first-order anguage L = (S, C,Q), ϕ ∈ L and variable substitu-
tion τ , we have:

ϕ[↑][up(τ)] = ϕ[τ ][↑]

Proof. We refer to the formalisation (Ï). �

In this dissertation, we use an unusual notion of free variables in a formula. More
precisely, we define the property of variables of being unused in a formula.

Definition 2.2.10. Let L = (S, C,Q) be a first-order language. We define the property
of a variable n ∈ N of being unused in a term t ∈ TermS recursively on the structure of t
as follows:

t = m: then n is unused in m if n 6= m;

t = f(t1, ..., tk): then n is unused in f(t1, ..., tk) if n is unused in ti, for all 1 ≤ i ≤ k.

Then, we define the property of n of being unused in a formula ϕ ∈ FormL recursively
on the structure of ϕ.

ϕ = P (t1, . . . , tm): then n is unused in P (t1, . . . , tn) if n is unused in ti for all 1 ≤ i ≤ m;

ϕ = •(ψ1, . . . , ψm): then n is unused in •(ψ1, . . . , ψm) if n is unused in ψi for all 1 ≤ i ≤ m;

ϕ = Oψ: then n is unused in Oψ if S n is unused in ψ, where S is the successor function.

In essence, if a variable n is unused in a formula ϕ then this variable has no “occurrence”
in ϕ which is not bound by a quantifier. What has to be noted here is that we use the term
“occurrence” in a loose way. In a syntax with names, the occurrences of a variable x are
detected by the symbol x itself. Here, what we mean by “occurrences” when considering
the statement “n is unused in ϕ” is all the variable occurrences that would be modified
by a substitution of n on ϕ. For example, when considering whether 0 is unused in
P (1)→ ∀Q(0, 1), we need to check in P (1) whether 0 is unused and in Q(0, 1) whether 1
is unused, given that once we go through a quantifier a variable m becomes S m. This fact
is dealt with in the last clause of Definition 2.2.10. So, in our example P (1) → ∀Q(0, 1)
we get that 0 is not unused, as 1 is not unused in Q(0, 1) hence 0 is not unused in ∀Q(0, 1).

With this reading in mind, we can see that n being unused in ϕ implies the intuitive
idea that n is not a free variable of ϕ. Thus, we write n 6∈ FV (ϕ) if n is unused in ϕ.
Also, we write FV (ϕ) = ∅ if for all n ∈ N we have n 6∈ FV (ϕ). Finally, we port these
definitions to sets of formulas in the obvious way.

As in the propositional case, we need to obtain a definition of substitution of basic
constituents of the language. We proceed to define the notion of atom substitution.

Definition 2.2.11. Let L = (S, C,Q) be a first-order language. An atom substitution for
L is a function σ : ∀P ∈ Pred, (t0, . . . , tArPred(P ))→ FormL.

Technically, the above definition describes a function taking a predicate P and a tuple
of terms (t0, . . . , tArPred(P )) to output a formula ϕ. So, in essence this functions takes an
atomic formula P (t0, . . . , tArPred(P )) and outputs a formula ϕ. We proceed to define the
application of such functions on complex formulas.

Definition 2.2.12. Let L be a first-order language and σ an atom substitution for L. We
define ϕσ the atom substitution of ϕ through σ by recursion on the structure of ϕ:

ϕ = P (t1, . . . , tm): then P (t1, . . . , tn)σ := σ(P, (t1, . . . , tn));

ϕ = ψ0 • ψ1: then (ψ0 • ψ1)σ := ψσ0 • ψσ1 ;

ϕ = Oψ: then (Oψ)σ := O(ψσ).

https://github.com/ianshil/PhD_thesis/blob/0e3bca29eb40e86a0bdf32c175ee47fefa323ff9/Toolbox_ModLog/Syntax/K_FO_Syntax.v#L407
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While general, this definition is not satisfying. Indeed, it allows to substitute an
atomic formula P (t1, . . . , tn) by whatever formula ψ in a formula ϕ, regardless of whether
this substitution will create or delete variables captured by quantifiers inside of ϕ. As a
concrete example, for an atom substitution σ such that σ(P, 0) = > and σ(P, 1) = ⊥, we
have that (∀P (0) → P (1))σ = ∀> → ⊥. The initial formula expresses the instantiation
of universal quantifiers, which we want to be a principle holding in the logics considered
here, while the substituted one is equivalent to ⊥ in our setting. So, the notion of atom
substitution of ϕ through σ defined above does not preserve important properties of the
logic, such as “being a holding principle”.

To avoid such issues, we restrict atom substitutions in the following way.

Definition 2.2.13. Let L be a first-order language and σ an atom substitution for L.
We say that σ is a restricted atom substitution if it satisfies the following property for all
atomic formulas P (t1, . . . , tn) and variable substitutions τ .

(σ(P, (t1, . . . , tn)))[τ ] = σ(P, (t1[τ ], . . . , tn[τ ]))

Intuitively, this restriction on the interplay between atom substitutions and variable
substitutions does the following: it makes sure that (1) the structure of formulas outputted
by atom substitutions are only parametric in predicate symbols, and that (2) no new free
variable is introduced.

If an atom substitution σ is such that the structure of formulas it outputs is parametric
not only in predicate symbols but also in the terms alongside these symbols, then we could
obtain two radically different formulas by applying σ to the same predicate symbol with
different terms. For example, we can consider the atom substitution parametric in terms
we exhibited above, specified by σ(P, 0) = > and σ(P, 1) = ⊥. It is clear that σ fails the
property above: we have that (σ(P, 0))[↑] = >[↑] = >, while σ(P, 0[↑]) = σ(P, 1) = ⊥,
making the equality fail. Thus, this type of atom substitution is avoided by the restriction
above, hence (1) is satisfied.

Similarly, we can show that (2) is enforced by this restriction. Consider σ an atom
substitution such that σ(P, 0) = Q(0, 1) and σ(P, 1) = Q(1, 1). In this case, σ introduces
a new free variable: 1. Now, we see that the equality above fails again: we have that
(σ(P, 0))[↑] = Q(0, 1)[↑] = Q(1, 2), while σ(P, 0[↑]) = σ(P, 1) = Q(1, 1). Consequently, we
know that such atom substitutions are prohibited.

We consider the properties (1) and (2) as sufficient for a satisfying notion of atom
substitution. Consequently, in the rest of this dissertation we only use restricted atom
substitutions. A nice property of these restricted atom substitutions is that they commute
with variable substitutions.

Lemma 2.2.5. For all languages L, ϕ ∈ L, variable substitution τ and restricted atom
substitution σ, we have:

ϕσ[τ ] = (ϕ[τ ])σ

Proof. (Ï) We reason by induction on the structure of ϕ:

- ϕ = P (t1, . . . , tn): on one hand we have that P (t1, . . . , tn)σ[τ ] = (σ(P (t1, . . . , tn)))[τ ],
and on the other hand we have that P (t1, . . . , tn)[τ ]σ = P (t1[τ ], . . . , tn[τ ])σ =
σ(P (t1[τ ], . . . , tn[τ ])). However, the fact that σ is a restricted atom substitution gives
us that (σ(P (t1, . . . , tn)))[τ ] = σ(P (t1[τ ], . . . , tn[τ ])).

- ϕ = •(ψ1, . . . , ψn): on one hand we have the following.

•(ψ1, . . . , ψn)σ[τ ] = (•(ψσ1 , . . . , ψσn))[τ ] = •(ψσ1 [τ ], . . . , ψσn[τ ])

On the other hand, we have the following.

•(ψ1, . . . , ψn)[τ ]σ = •(ψ1[τ ], . . . , ψn[τ ])σ = •(ψ1[τ ]σ, . . . , ψn[τ ]σ)

https://github.com/ianshil/PhD_thesis/blob/0e3bca29eb40e86a0bdf32c175ee47fefa323ff9/Toolbox_ModLog/Syntax/K_FO_Syntax.v#L480
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We can then link the two sequences of equalities using the induction hypothesis,
giving us:

•(ψσ1 [τ ], . . . , ψσn[τ ]) = •(ψ1[τ ]σ, . . . , ψn[τ ]σ)

- ϕ = Oψ: on one hand we have the following.

Oψσ[τ ] = (Oψσ)[τ ] = O(ψσ)[up(τ)]

On the other hand, we have the following.

(Oψ)[τ ]σ = Oψ[up(τ)]σ = O(ψ[up(τ)])σ

We can then link the two sequences of equalities using the induction hypothesis,
giving us:

O(ψσ)[up(τ)] = O(ψ[up(τ)])σ

�

Now that we presented all the ingredients to obtain a first-order language in general,
we turn to the specific instance of first-order classical modal logic.

2.2.1 The classical modal logic example: on paper

For the classical modal logic, we consider the same connectives: CCM. In addition to that,
we consider the set of quantifiers Q = {∀, ∃}. As this is the only set of quantifiers we
consider in this dissertation we fix the notation Q to refer to this set.

Given a signature S, we can define the first-order language LCM = (S, CCM,Q) and
obtain its set of modal formulas FormLCM

through its infix grammar:

ϕ ::= P (t1, . . . , tn) | ⊥ | ϕ→ ϕ | ϕ | ∀ϕ | ∃ϕ

As an example, the expression⊥ → ((∀P (0))→ Q((f2), 3)) is an element of FormLCM
,

provided that f ∈ Fun is such that ArFun(f) = 1, and P,Q ∈ Pred are such that
ArPred(P ) = 1 and ArPred(Q) = 2. In this formula, the instance of 2 and 3 are both free
variable instances. A representation of this formula in the usual syntax is as follows.

⊥ → ((∀xP (x))→ Q((fy), z))

2.2.2 The classical modal logic example: in Coq

All the elements presented in this subsection can be found here: Ï.

In this subsection, we present our instantiation of the syntax for first-order logic pre-
sented in the Coq library called “undecidability” [48], following the work of Kathryn
Stark[141]. This library provides general tools to obtain a representation à la de Bruijn
of first-order syntaxes, as witnessed in the various works where it has been put to use [46,
48, 75, 79, 71, 82, 80].

The first element we defined to obtain a first-order language is a signature. We con-
sequently follow Definition 2.2.1 and define sets of function and predicate symbols with
their arity (Ï).

Class funcs_signature :=

{ syms : Type; ar_syms : syms -> nat }.

Class preds_signature :=

{ preds : Type; ar_preds : preds -> nat }.
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A funcs_signature is an entity having a collection of syms (i.e. symbols) and an arity
function ar_syms. In a similar way, we can see that preds_signature is a collection of
predicate symbols with an arity function on them.

For the rest of this subsection we assume given a signature consisting of two elements:
a funcs_signature called Σ_funcs and a preds_signature called Σ_preds. In Coq, we
declare these as Context, i.e. variables on which depend the definitions which follow (Ï).

Context {Σ_funcs : funcs_signature }.

Context {Σ_preds : preds_signature }.

Then, we can turn to the formalisation of terms, defined in Definition 2.2.2 (Ï).

Inductive term : Type :=

| var : nat -> term

| func : forall (f : syms), vec term (ar_syms f) -> term.

To distinguish natural numbers in general and natural numbers we use in our syntax,
we use the constructor var. Consequently, we know that 1 is of type nat, while var 1

is of type term. The constructor func takes a function symbol f and a vector of arity
of f, i.e. vec term (ar_syms f), and outputs a term. In essence, vectors in Coq are
determined by two things: a type of elements constituting the vector, here term, and a
length, here ar_syms f. This is why the constructor vec needs the two arguments term

and ar_syms f, thus informing us that we are dealing with a vector of terms of length
equal to the arity of f. Consequently, we can see that in the formalisation we are presenting
strings of terms like (t1, . . . , tn) are in fact vectors.

Now that we formalised terms in a very general way, we can define formulas in a not less
general way. We obtain this generality by defining what a collection of logical operators
and quantifiers is (Ï).

Class operators :=

{unop : Type ; binop : Type ; quantop : Type}.

A collection of operators is thus constituted by a collection unop of unary operators,
a collection binop of binary operators, and a collection quantop of quant ifiers. We assume
given such a collection of operators to give a general definition of formulas (Ï).

Context {ops : operators }.

Relying on this collection of operators, we can define formulas (Ï).

Inductive kform : Type :=

| Bot : kform

| atom : forall (P : preds), vec term (ar_preds P) -> kform

| un : unop -> kform -> kform

| bin : binop -> kform -> kform -> kform

| quant : quantop -> kform -> kform.

Obviously, the constructor Bot is corresponding to nothing but ⊥. The constructor
atom needs some explaining. In essence, it requires a predicate symbol P and a vector of
terms of length equal to the arity of P, i.e. vec term (ar_preds P), to output a formula
which we call an atom. Finally, the constructors un, bin and quant can be explained in a
similar way, so we only focus on un. The latter requires an element of type unop, i.e. unary
operator, as well as an element of type kform, i.e. a formula, to provide a formula. Note
that there is no need for variables in the constructor quant as we are in a syntax à la de
Bruijn.

As we can see, the definition above is very general given that it implicitly relies on a
variable ops, a collection of operators. Now, if we want to focus on a specific collection of
operators we can instantiate this variable and get automatically a definition of formulas
for this collection. We proceed to do so for the collection of operators of LCM (Ï).

https://github.com/ianshil/PhD_thesis/blob/0e3bca29eb40e86a0bdf32c175ee47fefa323ff9/Toolbox_ModLog/Syntax/K_FO_Syntax.v#L157
https://github.com/ianshil/PhD_thesis/blob/0e3bca29eb40e86a0bdf32c175ee47fefa323ff9/Toolbox_ModLog/Syntax/K_FO_Syntax.v#L43
https://github.com/ianshil/PhD_thesis/blob/0e3bca29eb40e86a0bdf32c175ee47fefa323ff9/Toolbox_ModLog/Syntax/K_FO_Syntax.v#L60
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Inductive full_logic_un_sym : Type :=

| Box : full_logic_un_sym.

Inductive full_logic_bin_sym : Type :=

| Imp : full_logic_bin_sym.

Inductive full_logic_quant : Type :=

| All : full_logic_quant

| Ex : full_logic_quant.

Definition full_operators : operators :=

{| unop := full_logic_un_sym ; binop := full_logic_bin_sym

; quantop := full_logic_quant |}.

The above first defines a collection full_logic_un_sym of unary operators constituted
by Box only. Second, we get the collection full_logic_bin_sym of binary operators with
Imp as sole element. Third, we define the collection full_logic_quant of quantifiers with
the universal All and existential Ex quantifiers. With these three collections in hand we
can finally define our collection of operators and quantifiers full_operators, which has
full_logic_un_sym as unary operators, full_logic_bin_sym as binary operators and
full_logic_quant_sym as quantifiers.

This collection of operators can thus be used to define a specific language and its
formulas. Next, we introduce some notations for formulas in our language (Ï).

Notation "∀ ϕ" := (@quant _ _ full_operators All ϕ)
(at level 50) : syn.

Notation "∃ ϕ" := (@quant _ _ full_operators Ex ϕ)
(at level 50) : syn.

Notation "ϕ ’-->’ ψ" := (@bin _ _ full_operators Impl ϕ ψ)
(at level 43, right associativity) : syn.

In the remaining of this subsection, we treat the notion of variable substitution in a
first-order language. As we mentioned above, this notion is quite tricky to deal with in a
syntax à la de Bruijn. But this is the beauty of the library we are using: the tedious work
is already done. So, by simply giving a collection of operators as we did above, we get for
free not only a language and its formulas but also a notion of variable substitution. We
give an account of this notion below.

The easy part of the notion of variable substitution in a syntax ‘a la de Bruijn is its
application on terms. Indeed, it is simply applied without modifications (Ï).

Fixpoint subst_term (τ : nat -> term) (t : term) : term :=

match t with

| var n => τ n

| func f v => func f (map (subst_term τ ) v)

end.

Quite obviously, Definition 2.2.7 is formalised by the above. The application of the
variable substitution τ on the term t is defined recursively on the structure of the latter.
If it is a variable var n, then we simply apply τ to n, giving us a term. If t is a term of the
form func f v, then we simply push the substitution to the terms in the vector v: this is
what map (subst_term τ) v does, as map allows to apply the function subst_term τ to
all the terms in the vector v.

To obtain a notion of variable substitution for formulas, we need to define some op-
erations on functions. First, we have the usual operation of composition on functions, as
formalised below (Ï).

Definition funcomp {X Y Z} (g : Y -> Z) (f : X -> Y) :=

fun x => g (f x).

https://github.com/ianshil/PhD_thesis/blob/0e3bca29eb40e86a0bdf32c175ee47fefa323ff9/Toolbox_ModLog/Syntax/K_FO_Syntax.v#L143
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Given two functions g : Y -> Z and f : X -> Y, we can compose them in a new
function which consists in taking an x and apply f to x and then g to f x. This function
is expressed by fun x => g (f x).

Second, we need a function which “pushes” all the outputs of a function on natural
numbers by one on the inputs, and adds a new value to 0 (Ï).

Definition scons {X: Type} (x : X) (f : nat -> X) :=

fun n => match n with

| 0 => x

| S n => f n

end.

The function scons thus takes an element x of type X and a function f : nat -> X,
and creates a new function from nat to X. This new function outputs x on input 0, and
f n on the input S n. In essence, if we order the outputs of the function f, i.e. f 0= x0,
f 1= x1, f 2= x2, using the inputs, then we get an infinite string x0, x1, x2, . . . . What
scons x f does is adding x at the beginning of this list, and consequently pushing all the
elements of the infinite list by one place, thus giving x, x0, x1, x2, . . . .

We can put together the two above operations on functions to obtain a function that
is crucial to the definition of variable substitution (Ï).

Definition up (τ : nat -> term) : nat -> term :=

scons (var 0) (funcomp (subst_term (funcomp var S)) τ ).

So, we give a variable substitution τ to the function up. Now, let us decompose
this function from nat to term. Its main operation is scons, so we must expect a term

followed by a function of type nat -> term. The term which is given is var 0, i.e. the
0, so the outputs of the function which follows will all be pushed by one on input and
var 0 will be matched to 0. The function is funcomp (subst_term (funcomp var S))

τ . This function is a composition of two functions: subst_term (funcomp var S) and
τ . The latter, which will be the function first applied in the composition, is nothing but
the variable substitution which was initially given. The former is the application of the
variable substitution funcomp var S, which first changes n to S n and then makes it a
variable, to terms (subst_term).

In essence, the function up takes a variable substitution τ , fixes var 0 to 0 and shifts by
one the natural numbers occurring in the outputs of τ on the other inputs. For example, let
us say that τ 0 = f (g (var 4) (var 7)) and τ 1 = g (f (var 2)) (var 0). Then,
(up τ) 0 = var 0, as scons fixes the output var 0 to the input 0. When we consider
the input 1 we need to consider the function funcomp (subst_term (funcomp var S))

τ applied to 0 because of scons. So, (up τ) 1 is equal to (funcomp (subst_term (

funcomp var S)) τ) 0. To determine the value of the latter, we first need to apply τ
to 0 because of the function composition funcomp, giving us f (g (var 4) (var 7)) as
assumed. Now, we need to apply the function subst_term (funcomp var S) to f (g (

var 4) (var 7)). Using the definition of subst_term above, we get that this application
gives us: f (g ((funcomp var S) 4) ((funcomp var S) 7)). Thus, we are left with
apply (funcomp var S) to 4 and 7. Let us proceed: (funcomp var S) 4 forces us to
first apply S to 4, giving us 5, and then apply var, giving us var 5. Similarly, we get
(funcomp var S) 7 = var 8. So, we finally get that (up τ) 1 = f (g (var 5) (var

8)). Note that this is nothing but τ 0 = f (g (var 4) (var 7)) with all the natural
numbers “upped” by one.

This complex function up allows us to get a notion of substitution which avoids both
the modification of bound variables and the bounding of new variables. We can thus
finally formalise the application of a variable substitution to a formula (Ï), as defined in
Definition 2.2.9.

Fixpoint subst_kform (τ : nat -> term) (ϕ : kform) : kform :=

match ϕ with

Definition scons {X: Type} (x : X) (xi : nat -> X) :=
https://github.com/ianshil/PhD_thesis/blob/0e3bca29eb40e86a0bdf32c175ee47fefa323ff9/Toolbox_ModLog/Syntax/K_FO_Syntax.v#L70
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| Bot => Bot

| atom P v => atom P (map (subst_term τ ) v)

| un op ψ => un op (subst_kform τ ϕ)
| bin op ψ χ => bin op (subst_kform τ ψ) (subst_kform τ χ)
| quant op ψ => quant op (subst_kform (up τ ) ψ)

end.

The only interesting case is the case of quantifiers, i.e. the line where we consider
that ϕ is of the form quant op ψ. There, we define the application of τ to quant op

ψ as quant op (subst_kform (up τ) ψ). This essentially relies on the application of
the modified variable substitution (up τ) to ψ. Then the question is: how does (up τ)
modify ψ? Before encountering any quantifiers in ψ, it essentially does two things. First,
it makes sure that any occurrence of var 0 is not modified. This is to make sure that
the variable bounded by quantifiers are not modified. Second, it allows to substitute any
variable var (S n) by the application of the upped version of τ . The effect of this is to
avoid the introduction of new bound variables. For example, assume that the application
of τ to a variable in ψ would have introduced a var 0 where there was none, thus creating
a new bound variable. The modification of τ to (up τ) ensures that this var 0 will be
modified to var 1, thus avoiding the bounding. All of these comments hold for the first
layer between the quantifier mentioned here and the next quantifier in ψ, but the recursive
definition of subst_kform makes sure that this property of avoiding both the modification
of bound variables and the bounding of new variables is preserved.



Chapter 3

Logics

Now that we have languages, defining formulas, we want to define logics in a general way.

Here, we take a set-theoretic view of logic: they are specific sets of elements built using
languages.

In the literature, logics are commonly taken to be sets of formulas in a language L and
not consequence relations, i.e. relations of the type (Pow(FormL) × (FormL)) satisfying
some properties we provide below. The former takes the notion of theorem as central,
while the latter is founded on the notion of deduction.

It seems that the notion of consequence relation is more adequate to capture logics for
two reasons. First, intuitively deductions are the primary object we study in logic, which
establishes the correctness of arguments, but not theorems, which are isolated statements.
Second, it is more general than the notion of set of formulas, as sets of formulas are
consequence relations with the left component of their pair being the empty set ∅.

However, as mentioned above, the approach to logics as sets of formulas is more com-
mon in the literature. While this decision can be motivated in many ways, we believe
that it relies implicitly on the holding of properties like compactness and the deduction-
detachment theorem. By compactness, we mean the following.

Definition 3.0.1. Let L be a language (propositional or first-order) andR ⊆ (Pow(L)× L)
be a relation. We say that R is compact if (Γ, ϕ) ∈ R implies the existence of a finite
Γf ⊆ Γ such that (Γf , ϕ) ∈ R.

We say that pairs of the shape (Γ, ϕ) are consecutions. So, if a consequence relation
CR is compact, we can reduce any consecution (Γ, ϕ) ∈ CR with an infinite set Γ to a
consecution (Γ′, ϕ) ∈ CR with a finite set Γ′.

Now, in addition to that suppose a CR satisfies a type of deduction-detachment theo-
rem for some logical connective ⇀ in L, as shown below. This type of theorem expresses
the fact that the connective ⇀ is a proxy in L for the relation captured by CR.

(Γ ∪ {ϕ}, ψ) ∈ CR iff (Γ, ϕ ⇀ ψ) ∈ CR

Then, what we obtain is the following process. Take any pair (Γ, ϕ) ∈ CR. First,
make its left component finite using compactness and obtain (Γ′, ϕ) ∈ CR. Second, use
repetitively the deduction-detachment theorem to empty the left-hand side of the pair and
obtain: (∅ , γ′0 ⇀ γ′1 ⇀ . . . γ′n ⇀ ϕ) ∈ CR. Consequently, with these two properties, we
can reduce any pair (Γ, ϕ) to a pair (∅, ψ), i.e. a theorem: logics as sets of theorems or
logics as consequence relations are in this case indistinguishable.

However, in this dissertation, we consider logics for which such properties are not
granted. Thus, we adopt the more general approach and define logics to be consequence
relations [45, 84, 164], i.e. relations satisfying the following properties.

Definition 3.0.2. Let L be a language. A logic in L is a set L ⊆ {(Γ, ϕ) | Γ ∪ {ϕ} ⊆
FormL} satisfying the following properties:
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Identity: if ϕ ∈ Γ, then (Γ, ϕ) ∈ L;

Monotonicity: if (Γ, ϕ) ∈ L and Γ ⊆ Γ′, then (Γ′, ϕ) ∈ L;

Compositionality: if (Γ1, ϕ) ∈ L and (Γ2, γ) ∈ L for all γ ∈ Γ1, then (Γ2, ϕ) ∈ L;

Structurality: if (Γ, ϕ) ∈ L, then (Γσ, ϕσ) ∈ L for propositional variable substitu-
tion (resp. atom substitution) σ if L is a propositional (resp. first-order) language.

In this dissertation, we refer to a logic as defined above by using the suffix L.



Chapter 4

Proof Systems

To capture logics, one can use the proof-theoretic path. There, we define proof systems,
which are essentially constituted of rules manipulating judgements, and help define which
judgements hold in this system through the notion of proof.

While there are numerous types of proof systems (axiomatic [72], natural deduc-
tion [112], proof nets [55], sequent [53], tableaux [57], display [78], etc.), with various
structures being used to define proofs (graphs, lists, trees, upside-down trees, non-well-
founded structures, etc.), in this dissertation we focus on proof systems using trees as
crucial structures. Thus, we define some general notions for these proof systems. To at-
tain this generality, we assume given a set of judgements J , as well as notions of judgement
schema and instances of the latter. As type of judgements, we have in mind entities of the
shape ϕ, or Γ ` ϕ, or Γ ⇒ ∆, or Γ0 ⇒ ∆0 | Γ1 ⇒ ∆1 | Γ0 ⇒ ∆0, or Γ0 ⇒ ∆0/Γ1 ⇒ ∆1,
with their usual notions of schema and instances of a schema.

Definition 4.0.1. Let n ∈ N. A n-ary rule R is a pair (Prems,Concl), where Prems =
[Prem1, . . . , P remn] is a list of judgements schemas and Concl is a judgement schema. A
rule R is usually presented as follows:

Prem1 . . . P remn

Concl
(R)

Note that there can be conditions on the way the judgement schemas of R can be in-
stantiated. A rule instance is obtained by uniformly instantiating every variable in the
rule, i.e. in the judgement schemas contained in the rule, with a concrete object of the
corresponding type. This is the standard definition from structural proof theory. The set
of instantiations of a rule R is noted Ri.

A proof system P on J is a finite set {R0, . . . ,Rn} of rules.

Definition 4.0.2. Let J ′ ⊆ J be a set of judgements. A derivation d of j from J ′ in P
is a tree of judgements with root j, defined inductively as follows:

(Leaf): if j ∈ J ′, then j is a derivation from J ′ in P.

(Rule): if d1, d2, . . . , dk are derivations of respectively j1, j2, . . . , jk from J ′ in P, and
({j1, j2, . . . , jk}, j) ∈ Ri for some R ∈ P, then the following is a derivation from J ′
in P:

d1 . . . dk
j

(R)

If there is a derivation d of j from J ′ in P, we say that j is derivable from J ′ in P.
Furthermore, we say that j is derivable in P if j is derivable from J in P. If d is a
derivation of j from J ′ in P, we say that j is the root of d.

The definition of derivation we use is non-standard as it parametrizes derivations by
a set of judgements. This set of judgements describes which judgements are allowed to
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be leaves of the derivations. As a consequence, the usual notion of derivation, omitting
altogether the set of allowed leaves, is captured in our setting by derivations from J . Our
definition can thus be conceived as more general and fine-grained.

With this in mind, the notion of proof is easily defined: it is a derivation in which no
judgement is allowed as a leaf, i.e. the set of judgements allowed to be leaves is empty.

Definition 4.0.3. A proof p of j in P is a derivation of j from ∅ in P. If there is a proof
of j in P, we say that j is provable in P.

In what follows, it should be clear from context whether the word “proof” refers to the
object defined in Definition 4.0.3, or to the meta-level notion.

When clear from context, we do not mention the proof system considered and simply
talk about a “proof of j” and a “derivation of j from J ′”.

In many places, we prove lemmas ensuring the existence of a derivation or proof from
the existence of other derivations or proofs. For example, we could obtain a lemma stat-
ing that if a specific judgement j0 is derivable from {j2, j3} in P, then another specific
judgement j1 is derivable from {j2, j3} in P too. As we often make use of such lemmas
while proving other lemmas or theorems, we allow ourselves to insert these lemmas in
derivations as rules. To distinguish the use of lemmas, which are meta-level operations
on proofs and derivations, from the use of object-level rules, we use dashed lines for the
former and continuous lines for the latter. As an example, consider the tree below, where
([j2, j3], j0) ∈ Ri.

j2 j3
(R)

j0
Lem.

j1

As such a construction is not strictly speaking a derivation, we call it a semi-derivation.
Similarly, we talk about semi-proof when building trees establishing the provability of a
sequent in which such dashed lines are present.

Next, we define the height of a derivation.

Definition 4.0.4. Let d be a derivation of j from J ′. The height h(d) of d is defined
recursively on the structure of d.

- if d is of the form j, then h(d) = 1;

- if d is of the form
d1 . . . dk

j
(R)

then h(d) = 1+max(h(d1), . . . , h(dn)), where max(h(d1), . . . , h(dn)) is the maximum
of h(d1), . . . , h(dn).

Finally, we consider general properties of rules with respect to proof systems.

Definition 4.0.5. Let P be a proof system and R a rule. We say that R is:

- admissible in P if, for any ([j1, . . . , jn], j) ∈ Ri, j is provable in P whenever j1, . . . , jn
are all provable in P;

- invertible in P if, for any ([j1, . . . , jn], j) ∈ Ri, j1, . . . , jn are all provable in P whenever
j is provable in P;

- left-invertible (resp. right-invertible) in P if R is of the form

Prem1 Prem2

Concl
(R)

and for any ([j1, j2], j) ∈ Ri, j1 (resp. j2) is provable in P whenever j is provable in
P;
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- height-preserving admissible in P if, for any ([j1, . . . , jn], j) ∈ Ri, if there are proofs
p1, . . . , pn of j1, . . . , jn in P such that h(pi) = k, then there is a proof p of j in P
such that h(p) = k;

- height-preserving invertible in P if, for any ([j1, . . . , jn], j) ∈ Ri, if there is a proof p
of j in P such that h(p) = k, then there are proofs p1, . . . , pn of j1, . . . , jn in P such
that h(pi) = k for all 1 ≤ i ≤ n;

- height-preserving left-invertible (resp. right-invertible) in P if R is of the form

Prem1 Prem2

Concl
(R)

and for any ([j1, j2], j) ∈ Ri, if there is a proof p of j in P such that h(p) = k,
then there is a proof of p1 (resp. p2) of j1 (resp. j2) in P such that h(p1) = k
(resp. h(p2) = k).

With these general notions in hand, we can focus on the two type of proof systems in
this dissertation: Generalized Hilbert calculi and sequent calculi.

4.1 Generalized Hilbert calculi

The traditional approach to axiomatic systems, consisting in creating proofs manipulating
formulas starting from axioms, aims at capturing logics as sets of formulas. Here, to
capture logics as consequence relations, as defined in Chapter 3, we define calculi describing
relations between a set of formulas and a formula: generalized Hilbert calculi. Note that
these calculi are not an invention of ours, as witnessed in the literature [154, Section 2.4],
but are rarely used. Given that these are targeted at logics, the judgements manipulated
through rules of generalized Hilbert calculi are of the form Γ ` ϕ, read “Γ deduces ϕ”,
where Γ is a set of formulas while ϕ is a formula.

Definition 4.1.1. Let L be a language, propositional or first-order. We define the follow-
ing.

- An axiom is a formula schema of L.

- If A is a set of axioms, we define Ai to be the set of instances of axioms of A.

- The rule (Ax) is as follows, where ϕ ∈ Ai: Γ ` ϕ
(Ax)

- The rule (El) is as follows, where ϕ ∈ Γ: Γ ` ϕ
(El)

- A generalized Hilbert calculus in L is a set of rules H = (Ax,El,R) for a given set
of axiom A and some set of rules R.

In what follows we designate a generalized Hilbert calculus using the suffix H.

As a proof system, a generalized Hilbert calculus H defines a set of rules R divided
into two parts: rules shared by all generalized Hilbert calculi, i.e. (Ax) and (El) defined
below, and the ones particular to the calculus, i.e. RH. However, as it is characterized by
a set of axioms and a specific set of rules RH, we identify H with its corresponding pair
(A,RH).

To let a generalized Hilbert calculus define a binary relation we must say which judge-
ment of the form Γ ` ϕ follows from this calculus. To do so, we use the notion of proof
from Definition 4.0.3. If there is a proof p in H with Γ ` ϕ as root, we write Γ `H ϕ.



30 CHAPTER 4. PROOF SYSTEMS

4.1.1 The classical modal logic example: on paper

In this subsection, we define two generalized Hilbert calculi, wKH and sKH, on the propo-
sitional language LCM and prove some key properties of these calculi. The lemmas and
theorems presented here are of importance throughout this dissertation and constitute a
convenient occasion to present standard proof techniques we regularly use.

First, we consider AK a set of axioms for propositional classical modal logic based on
axioms for classical logic due to Tarski, Bernays, and Wajsberg. AK is shared by both
wKH and sKH.

Definition 4.1.2. We define the set of axioms AK below:

MA1 (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) MA4 ⊥ → ϕ
MA2 ϕ→ (ψ → ϕ) MA5 (ϕ→ ψ)→ ( ϕ→ ψ)
MA3 ((ϕ→ ψ)→ ϕ)→ ϕ

Second, we define the rules (MP), (wNec) and (sNec), respectively called modus ponens,
weak necessitation and strong necessitation.

Definition 4.1.3. We define the following rules:

Γ ` ϕ Γ ` ϕ→ ψ

Γ ` ψ
(MP)

∅ ` ϕ
Γ ` ϕ

(wNec)
Γ ` ϕ

Γ ` ϕ
(sNec)

We can finally define the generalized Hilbert calculi wKH and sKH.

Definition 4.1.4. We define the generalized Hilbert calculi below, alongside their set of
rules.

wKH = (AK ,Rw) Rw = {(MP), (wNec)}
sKH = (AK ,Rs) Rs = {(MP), (sNec)}

We abbreviate Γ `wKH ϕ by Γ `w ϕ and Γ `sKH ϕ by Γ `s ϕ.

As we mentioned above, we defined proof systems to capture logics. Here, we define
the consequence relation wKL = {(Γ, ϕ) | Γ `w ϕ} characterized by wKH, and the
consequence relation sKL = {(Γ, ϕ) | Γ `s ϕ} characterized by sKH.

In the remaining of this subsection, we proceed to show that wKL and sKL are logics
interacting in a specific way and satisfying characteristic properties.

First, we show that they are logics.

Lemma 4.1.1. The following holds for i ∈ {w, s}.

Monotonicity: If Γ ⊆ Γ′ and Γ `i ϕ then Γ′ `i ϕ.

Compositionality: If Γ `i ϕ and ∆ `i γ for all γ ∈ Γ, then ∆ `i ϕ.

Structurality: If Γ `i ϕ and σ is a propositional variable substitution then Γσ `i ϕσ.

Proof. Monotonicity: (Ï) Assume Γ `i ϕ. Then there is a proof p of Γ ` ϕ. We prove
by induction on the structure of p that Γ′ `i ϕ with Γ ⊆ Γ′.
If (El) is the last rule applied in p, then ϕ ∈ Γ. In this case we have ϕ ∈ Γ′ as Γ ⊆ Γ′,
hence Γ′ `i ϕ.
If (Ax) is the last rule applied in p, then ϕ ∈ Ai

K and thus Γ′ `i ϕ.
If (MP) is the last rule applied in p, then we simply apply the induction hypothesis on the
premises and apply the rule to obtain our result.
In the case of (iNec) we have to distinguish between the case where i = s and i = w. If
i = s then we can simply use the induction hypothesis on the premises and then apply
the rule. If i = w then we simply use the given premise to obtain Γ′ `w ϕ as desired.

Compositionality: (Ï) Assume Γ `i ϕ and that ∆ `i ψ for every ψ ∈ Γ. Then we have
a proof p of Γ ` ϕ. We show by induction on the structure of p that ∆ `i ϕ.

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_logics.v#L24
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_logics.v#L69
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If (El) is the last rule applied in p, then ϕ ∈ Γ and so we have ∆ `i ϕ by assumption.

If (Ax) is the last rule applied in p, then ϕ ∈ Ai
K and thus ∆ `i ϕ.

If (MP) is the last rule applied in p, then we simply apply the induction hypothesis on the
premises and apply the rule to obtain our result.

In the case of (iNec) we have to distinguish between the case where i = s and i = w. If
i = s then we can simply use the induction hypothesis on the premises and then apply
the rule. If i = w, we apply appropriately the rule, i.e. from ∅ `w ϕ to ∆ `w ϕ, to obtain
the desired result.

Structurality: (Ï) Assume Γ `i ϕ. Then we have a proof p of Γ ` ϕ. We show by
induction on the structure of p that Γσ `i ϕσ.

If (El) is the last rule applied in p, then ϕσ ∈ Γσ, hence Γσ ` ϕσ.

If (Ax) is the last rule applied in p, then we have that ϕσ ∈ Ai
K (Ï), hence Γσ `i ϕσ.

If (MP) is the last rule applied in p, then we simply apply the induction hypothesis on the
premises and apply the rule to obtain our result.

If it is (iNec) then for both values of i we apply the induction hypothesis on the premise
and then the rule. �

The above is interesting for two reasons. First, it establishes that wKL and sKL are
logics, as defined in Chapter 3. Second, the proof technique we just exhibited, by induction
on the structure of proofs, is one we often use throughout this dissertation when proving
proof-theoretic statements.

In addition to being logics, we can show that wKL and sKL are compact logics.

Lemma 4.1.2. For i ∈ {w, s}, if Γ `i ϕ, then Γ′ `i ϕ for some finite Γ′ ⊆ Γ.

Proof. (Ï) Assume Γ `i ϕ, giving a proof p with root Γ ` ϕ. We prove by induction on
the structure of p that there is a finite Γ′ ⊆ Γ such that Γ′ `i ϕ.

If (El) is the last rule applied in p, then {ϕ} ⊆ Γ and ϕ `i ϕ.

If (Ax) is the last rule applied in p, ∅ ⊆ Γ and ∅ `i ϕ.

If (MP) is the last rule applied in p, then apply the induction hypothesis on the premises
to obtain finite Γ′,Γ′′ ⊆ Γ such that Γ′ `i ψ and Γ′′ `i ψ → ϕ. Lemma 4.1.1 delivers
Γ′ ∪ Γ′′ `i ψ and Γ′ ∪ Γ′′ `i ψ → ϕ. Thus (MP) can be applied to get Γ′ ∪ Γ′′ `i ϕ, where
Γ′ ∪ Γ′′ ⊆ Γ is finite.

In the case of (iNec) we have to distinguish between the case where i = s and i = w. If
i = s, we apply the induction hypothesis on the premise and then the rule. If i = w, we
apply appropriately the rule to obtain the desired result. �

Second, we show how these two logics interact as consequence relations. They are
extensionally connected as follows: wKL is a subset of sKL, but they share the same set
of theorems.

Lemma 4.1.3. The following holds:

1. If Γ `w ϕ then Γ `s ϕ;

2. ∅ `w ϕ if and only if ∅ `s ϕ.

Proof. We prove each item separately.

1. (Ï) Assume Γ `w ϕ, giving a proof p with root Γ ` ϕ. We prove Γ `s ϕ by induction
on the structure of p.

If (El) is the last rule applied in p, then ϕ ∈ Γ hence Γ `s ϕ.

If (Ax) is the last rule applied in p, then Γ `s ϕ.

If (MP) is the last rule applied in p, then apply the induction hypothesis on the
premises to obtain Γ `s ψ and Γ `s ψ → ϕ. Thus (MP) can be applied to get Γ `s ϕ.

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_logics.v#L112
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_logics.v#L10
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_logics.v#L170
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_extens_interactions.v#L19
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If (wNec) is the last rule applied in p, then apply the induction hypothesis on the
premise to obtain ∅ `s ψ. Then, we use Lemma 4.1.1 to obtain Γ `s ψ. By an
application of (sNec) we obtain Γ `s ψ.

2. (Ï) From right to left, we simply use item 1 above. We are thus left with the
direction from left to right. Assume ∅ `s ϕ, giving a proof p with root ∅ ` ϕ. We
prove ∅ `w ϕ by induction on the structure of p.

If (El) is the last rule applied in p, then ϕ ∈ ∅ which is a contradiction.

If (Ax) is the last rule applied in p, then ∅ `w ϕ.

If (MP) is the last rule applied in p, then apply the induction hypothesis on the
premises to obtain ∅ `w ψ and ∅ `w ψ → ϕ. Thus (MP) can be applied to get
∅ `w ϕ.

If (sNec) is the last rule applied in p, then apply the induction hypothesis on the
premise to obtain ∅ `w ψ. By an application of (wNec) we obtain ∅ `w ψ.

�

The converse of item 1 above does not hold, as we shall see in Subsection 6.1.1. Thus,
wKL is a strict subset of sKL, making them two different logics.

Third, we proceed to show that these logics satisfy characteristic properties which they
do not share. To get to these results, we consider an intermediary lemma.

Lemma 4.1.4. For i ∈ {w, s} we have:

1. Γ `i ϕ→ ϕ

2. Γ `i (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

Proof. In each case, we only prove it for i = w and use item 1 of Lemma 4.1.3. For the
first item (Ï), consider the following proof, where ψ = (ϕ→ ((ϕ→ ϕ)→ ϕ))→ ((((ϕ→
ϕ)→ ϕ)→ ϕ)→ (ϕ→ ϕ)).

Γ ` ((ϕ→ ϕ)→ ϕ)→ ϕ
(Ax)

Γ ` ϕ→ ((ϕ→ ϕ)→ ϕ)
(Ax)

Γ ` ψ
(Ax)

Γ ` (((ϕ→ ϕ)→ ϕ)→ ϕ)→ (ϕ→ ϕ)
(MP)

Γ ` ϕ→ ϕ
(MP)

From left to right we have an instance of MA3, MA2 and MA1.
For the second item, we required several lemmas. In a nutshell, the proof relies on the

two following theorems:

(A) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ) (Ï)
(B) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)) (Ï)

With these in hand, we can construct the following semi-proof (Ï).

(Ax)
(ϕ→ ψ)→ ((ψ → (ϕ→ χ))→ (ϕ→ (ϕ→ χ)))

Thm.(A)
(ϕ→ ψ)→ ((ψ → (ϕ→ χ))→ (ϕ→ χ))

Thm.(B)
(ψ → (ϕ→ χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

Thm.(B)
(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

From bottom to top, we first use (B) to swap ϕ and ψ in ϕ→ (ψ → χ). Second, we reuse
(B) to swap ψ → (ϕ→ χ) and ϕ→ ψ. Third, we use (A) to replace ϕ→ ψ by ϕ→ (ϕ→
ψ). Finally, the formula obtained, i.e. (ϕ→ ψ)→ ((ψ → (ϕ→ χ))→ (ϕ→ (ϕ→ χ))), is
an instance of MA1. �

These lemmas allow us to prove that the logic wKL satisfies the deduction-detachment
theorem, a key result in this dissertation.

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_extens_interactions.v#L40
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_wKH_meta_interactions.v#L20
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_wKH_meta_interactions.v#L72
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_wKH_meta_interactions.v#L104
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_wKH_meta_interactions.v#L127
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Theorem 4.1.1 (Deduction-Detachment Theorem). wKL enjoys the deduction-detachment
theorem:

Γ, ϕ `w ψ iff Γ `w ϕ→ ψ

Proof. (⇐) (Ï) Assume Γ `w ϕ→ ψ. Then by monotonicity (Lemma 4.1.1) we obtain
Γ, ϕ `w ϕ→ ψ. Moreover we have that Γ, ϕ `w ϕ as ϕ ∈ Γ ∪ {ϕ}. So by (MP) we
obtain Γ, ϕ `w ψ.

(⇒) (Ï) Assume Γ, ϕ `w ψ, i.e. there is a proof p of Γ, ϕ ` ψ. We show by induction on
the structure of p that Γ `w ϕ→ ψ.

If (El) is the last rule applied in p, then ψ ∈ Γ∪ {ϕ}. If ψ = ϕ then we clearly have
Γ `w ϕ→ ψ by Lemma 4.1.4. If ψ ∈ Γ then we can deduce Γ `w ϕ→ ψ from the
fact that we have ∅ `w ψ → (ϕ→ ψ), by axiom MA2.

If (Ax) is the last rule applied in p, then ψ ∈ AIK and with a similar reasoning we
get Γ `w ϕ→ ψ.

If (MP) is the last rule applied in p, then we proceed as follows. We use the in-
duction hypothesis on the premises of the rule to obtain proofs of Γ ` ϕ→ χ and
Γ ` ϕ→ (χ→ ψ). We note that Γ `w (ϕ→ χ)→ ((ϕ→ (χ→ ψ))→ (ϕ→ ψ)) by
Lemma 4.1.4. Then, we use (MP) several times to arrive at the establishment of
Γ `w ϕ→ ψ.

If the last rule is (wNec), we have a proof of ∅ ` χ, so we can apply (wNec) to obtain
∅ `w χ. Then we can use the axiom MA4 to get ∅ `w χ→ (ϕ→ χ) and to
obtain ∅ `w ϕ→ χ. By monotonicity we obtain Γ `w ϕ→ χ.

�

The deduction-detachment theorem, first proven by Herbrand [70] and given its name
by Hilbert and Bernays [72], shows a profound connection between the object-level connec-
tive → and the meta-level symbol `: the former gives an account in the object language
of the relation captured by the former. This specific connection holds in wKL, as shown
above, but is lost in sKL, as we shall in Subsection 6.1.1. However, a modified version of
the deduction-detachment theorem holds for the latter. To prove it, we need the following
lemma.

Lemma 4.1.5. For i ∈ {w, s} we have:

1. For all n,m ∈ N such that n ≤ m, we have the following.

Γ `i (ϕ→ ( ϕ→ . . . ( nϕ→ ψ) . . . ))→ (ϕ→ ( ϕ→ . . . ( mϕ→ ψ) . . . ))

2. For all n ∈ N, the following rule is admissible.

Γ `i ϕ→ ( ϕ→ . . . ( nϕ→ ψ) . . . ) Γ `i ϕ→ ( ϕ→ . . . ( nϕ→ (ψ → χ) . . . ))

Γ `i ϕ→ ( ϕ→ . . . ( nϕ→ χ) . . . )

3. Γ `i (ϕ→ ( ϕ→ . . . ( nϕ→ ψ) . . . ))→ ( ϕ→ ( ϕ→ . . . ( n+1ϕ→ ψ) . . . )).

Proof. Each proof goes by induction on natural numbers. For brevity we refer to their
respective formalisation: (1) Ï, (2) Ï and (3) Ï. Note that 2 is easily obtained using
(MP) twice with the theorem below, which we formalised.

(ϕ→ ( ϕ→ . . . ( nϕ→ ψ) . . . ))→
(ϕ→ ( ϕ→ . . . ( nϕ→ (ψ → χ) . . . )))→

(ϕ→ ( ϕ→ . . . ( nϕ→ χ) . . . ))

�

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_wKH_meta_interactions.v#L167
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_wKH_meta_interactions.v#L217
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_wKH_meta_interactions.v#L343
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_wKH_meta_interactions.v#L385
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_wKH_meta_interactions.v#L439


34 CHAPTER 4. PROOF SYSTEMS

Intuitively, each item of the above lemma says the following. First, item 1 shows that
if a formula ψ is implied by a formula ϕ and all the boxed versions of ϕ until nϕ, then we
can add more boxed versions of ϕ, e.g. until mϕ, while still preserving the provability of
the consecution. Second, item 1 pertains to a deep application of the rule (MP). Indeed,
it allows us to go from ψ and ψ → χ to χ, while preserving the layers of boxed versions of
ϕ. Third, Item 3 simply shows how the axiom MA5, showing that distributes over →,
can be generalized to nested implications.

With this lemma in hand, we can finally prove the modified deduction-detachment
theorem for sKH.

Theorem 4.1.2 (Boxed Deduction-Detachment Theorem).

Γ, ϕ `s ψ iff ∃n ∈ N s.t. Γ `s ϕ→ ( ϕ→ . . . ( nϕ→ ψ) . . . )

Proof. (⇒) (Ï) Assume that Γ, ϕ `s ψ, i.e. that we have a proof p of Γ, ϕ ` ψ. We
reason by induction on the structure of p.

If the last rule applied is (Ax), then we get ∅ `s ψ. As we have that ∅ `s ψ → (ϕ→ ψ)
by axiom MA4, we obtain ∅ `s ϕ→ ψ by (MP). By Lemma 4.1.1 we get Γ `s ϕ→ ψ.
So, it suffices to take n = 0.

If the last rule applied is (El) then Γ `s ϕ→ ψ as Γ `s ψ → (ϕ→ ψ) and Γ `s ψ.

If the last rule applied is (MP) then we have by induction hypothesis the two fol-
lowing statements, for some χ ∈ FormLBI

and m, k ∈ N.

Γ `s ϕ→ ( ϕ→ . . . ( kϕ→ χ) . . . )
Γ `s ϕ→ ( ϕ→ . . . ( mϕ→ (χ→ ψ)) . . . )

Then, by using item 1 of Lemma 4.1.5 we obtain the following.

Γ `s ϕ→ ( ϕ→ . . . ( max(k,m)ϕ→ χ) . . . )

Γ `s ϕ→ ( ϕ→ . . . ( max(k,m)ϕ→ (χ→ ψ)) . . . )

Thus, we can use item 2 of Lemma 4.1.5 on these results to obtain the following.

Γ `s ϕ→ ( ϕ→ . . . ( max(k,m)ϕ→ ψ) . . . )

If the last rule applied is (sNec) then we get by induction hypothesis that Γ `s
ϕ→ ( ϕ→ . . . ( mϕ→ χ) . . . ) for some m ∈ N. We apply (sNec) on the latter to
obtain Γ `s (ϕ→ ( ϕ→ . . . ( mϕ→ χ) . . . )). Then, by item 3 of Lemma 4.1.5
we get Γ `s ( ϕ→ ( 2ϕ→ . . . ( m+1ϕ→ χ) . . . )). Via (MP) and Lemma 4.1.4,
we easily obtain Γ `s ϕ→ ( ϕ→ ( 2ϕ→ . . . ( m+1ϕ→ χ) . . . )).

(⇐) (Ï) Assume that there is a n ∈ N such that Γ `s ϕ→ ( ϕ→ . . . ( nϕ→ ψ) . . . ).
Then by monotonicity (Lemma 4.1.1) we obtain Γ, ϕ `s ϕ→ ( ϕ→ . . . ( nϕ→ ψ) . . . ).
Moreover we have that Γ, ϕ `s ϕ as ϕ ∈ Γ∪{ϕ}. Furthermore, we obtain Γ, ϕ `s mϕ
for all m ∈ N by repeated applications of (sNec) on Γ, ϕ `s ϕ. So by repetitive appli-
cations of (MP) with the latter and Γ `s ϕ→ ( ϕ→ . . . ( nϕ→ ψ) . . . ), we obtain
Γ, ϕ `s ψ.

�

This theorem “patches” the deduction-detachment theorem by strengthening ϕ by
adding boxed versions of it. This patch gives an account of the strength of the rule
(sNec), which allows to prove ϕ `s nϕ for any n ∈ N.

So, we proved that wKL and sKL are (compact) logics such that: (1) wKL ⊆ sKL, (2)
wKL and sKL share the same set of theorems, (3) wKL satisfies the deduction theorem,
(4) sKL only satisfies a modified version of the deduction theorem.

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Generalized_Hilbert_calculi/K_sKH_meta_interactions.v#L102
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4.1.2 The classical modal logic example: in Coq

All the elements presented in this subsection can be found here: Ï.
To build our generalized Hilbert calculi wKH and sKH, we rely on the definition of

modal formulas given in Subsection 2.1.2.
We define our five axioms individually (Ï).

Definition MA1 (ϕ ψ χ : MPropF) : MPropF :=

(ϕ --> ψ) --> ((ψ --> χ) --> (ϕ --> χ)).

Definition MA2 (ϕ ψ : MPropF) : MPropF := ϕ --> (ψ --> ϕ).

Definition MA3 (ϕ ψ : MPropF) : MPropF :=

((ϕ --> ψ) --> ϕ) --> ϕ.

Definition MA4 (ϕ : MPropF) : MPropF := Bot --> ϕ.

Definition MA5 (ϕ ψ : MPropF) : MPropF :=

Box (ϕ --> ψ) --> (Box ϕ --> Box ψ).

In each of these definitions, we give: a name to the entity we are defining, the param-
eters we are relying on with their type, the type of the entity, and finally the entity itself.
For example, we give the name MA1 to our first axiom. Then, we specify that the axiom
MA1 needs three elements ϕ ψ χ of type MPropF, i.e. formulas. The output of MA1, once
given three elements of the adequate type MPropF, is also a formula (MPropF). Now, we
specify the structure of MA1 by explicitly giving the formula (ϕ --> ψ) --> ((ψ --> χ
) --> (ϕ --> χ)), which relies on the parameters ϕ ψ χ. Note how in Coq we do not
need a notion of axiom schema: an axiom is simply a function from formulas to a formula.

We can thus define the convenient notion of being an instance of one of the axioms
defined above (Ï).

Inductive KAxioms (ϕ : MPropF) : Prop :=

| MA1_I : (exists ψ χ γ, ϕ = (MA1 ψ χ γ)) -> KAxioms ϕ
| MA2_I : (exists ψ χ, ϕ = (MA2 ψ χ)) -> KAxioms ϕ
| MA3_I : (exists ψ χ, ϕ = (MA3 ψ χ)) -> KAxioms ϕ
| MA4_I : (exists ψ, ϕ = (MA4 ψ)) -> KAxioms ϕ
| MA5_I : (exists ψ χ, ϕ = (MA5 ψ χ)) -> KAxioms ϕ.

This definition tells us how we can claim for a formula ϕ that KAxioms ϕ, i.e. the
property (Prop) of ϕ being an instance of an axiom, holds. It does so by cases: if ϕ is
identical to an instantiation of one of the axioms, then we get KAxioms ϕ. So, we give
each of our axioms a specific constructor. For example, MA1 it is MA1_I, where I stands for
“introduction”. This constructor allows to obtain KAxioms ϕ under one condition: that
we satisfy (exists ψ χ γ, ϕ = (MA1 ψ χ γ)), i.e. that we show the existence of three
formulas ψ χ γ such that ϕ is equal to (MA1 ψ χ γ) the instantiation of MA1 with these
three formulas.

Thus, we can formalise the rule (Ax) which we name AxRule (Ï).

Inductive AxRule : rls (( Ensemble MPropF) * MPropF) :=

| AxRule_I : forall Γ (ϕ : MPropF),

(KAxioms ϕ) -> AxRule [] (Γ , ϕ).

Rules in a generalized Hilbert calculus are constituted by finitely many premises of
the form Γ ` ϕ and a conclusion of the same form. The type rls ((Ensemble MPropF

) * MPropF) of AxRule gives an account of this: judgements of the shape Γ ` ϕ are
of the type ((Ensemble MPropF) * MPropF), and rls is a type constructor in Prop for
pairs of a finite list of elements of a given type and an element of the same type. The
constructor AxRule_I allows to claim that we have AxRule [] (Γ , ϕ), i.e. a correct

https://github.com/ianshil/PhD_thesis/tree/main/Toolbox_ModLog/Generalized_Hilbert_calculi
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(Ax) rule application for some Γ and ϕ, under the condition that we can prove that ϕ is
an axiom instance, i.e. KAxioms ϕ. Note that the fact that the (Ax) rule has no premises
is encapsulated in AxRule by the presence of the empty list [] as premises of the rule.

We define the remaining rules in a similar way (Ï).

Inductive IdRule : rls (( Ensemble MPropF) * MPropF) :=

| IdRule_I : forall ϕ (Γ : Ensemble _),

(In _ Γ ϕ) -> IdRule [] (Γ , ϕ).

Inductive MPRule : rls (( Ensemble MPropF) * MPropF) :=

| MPRule_I : forall ϕ ψ Γ,
MPRule [(Γ , ϕ --> ψ) ; (Γ , ϕ)]

(Γ , ψ).

Inductive wNecRule : rls (( Ensemble MPropF) * MPropF) :=

| wNecRule_I : forall (ϕ : MPropF) Γ,
wNecRule [( Empty_set _ , ϕ)]

(Γ , Box ϕ).

Inductive sNecRule : rls (( Ensemble MPropF) * MPropF) :=

| sNecRule_I : forall (ϕ : MPropF) Γ,
sNecRule [(Γ , ϕ)]

(Γ , Box ϕ).

The IdRule corresponds to the rule (El), as it relies on a proof of (In _ Γ ϕ), i.e. the
fact that ϕ is an element of Γ. Note that in all other rules the list of premises is not empty,
and is filled with the adequate premises corresponding to the rules. For example, the rule
wNecRule takes as premises all the elements in the list [(Empty_set _ , ϕ)], i.e. ∅ ` ϕ,
and as conclusion (Γ , Box ϕ), i.e. Γ ` ϕ.

We can finally define our calculi wKH and sKH (Ï) (Ï).

Inductive wKH_rules (s : (( Ensemble _) * MPropF)) : Prop :=

| Id : IdRule [] s -> wKH_rules s

| Ax : AxRule [] s -> wKH_rules s

| MP : forall ps,

(forall prem , List.In prem ps -> wKH_rules prem) ->

MPRule ps s -> wKH_rules s

| wNec : forall ps,

(forall prem , List.In prem ps -> wKH_rules prem) ->

wNecRule ps s -> wKH_rules s.

Inductive sKH_rules (s : (( Ensemble _) * MPropF)) : Prop :=

| Ids : IdRule [] s -> sKH_rules s

| Axs : AxRule [] s -> sKH_rules s

| MPs : forall ps,

(forall prem , List.In prem ps -> sKH_rules prem) ->

MPRule ps s -> sKH_rules s

| sNec : forall ps,

(forall prem , List.In prem ps -> sKH_rules prem) ->

sNecRule ps s -> sKH_rules s.

In essence, the above definition creates the notion of proof, relying on correct rule
applications in the adequate calculus with the corresponding rules. For example, we can
have a proof of s if we have a rule application wNecRule ps s and proofs for all the
elements of the list of premises ps, i.e. (forall prem, List.In prem ps -> wKH_rules

prem). All the other rules can be read similarly. We define a more intuitive macro for
provability in these calculi (Ï).
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Definition wKH_prv s := wKH_rules s.

Definition sKH_prv s := sKH_rules s.

In the remaining of this subsection, we exhibit and comment on all the results we
presented in the previous subsection about the logics wKL and sKL.

First, we showed via Lemma 4.1.1 and Lemma 4.1.2 that both were compact logics, as
defined in Definition 3.0.2. For the sake of brevity, we only show the results for wKL. We
start with monotonicity (Ï).

Theorem wKH_monot : forall s, (wKH_prv s) ->

(forall Γ1, (Included _ (fst s) Γ1) ->

(wKH_prv (Γ1, (snd s)))).

This theorem shows the holding of monotonicity for wKL once we realize that s is an
expression of the form Γ ` ϕ. More precisely, it is a pair of the shape pair Γ ϕ, on which
we can use the projection function fst and snd to obtain, respectively, the first and second
element of the pair. Then, we read that this theorem has as assumptions wKH_prv s the
provability of s, and the set-theoretic inclusion of (fst s), i.e. the left component Γ of
Γ ` ϕ, in another set Γ1. The conclusion of this theorem is the provability of the pair
(Γ1, (snd s)), i.e. Γ1 ` ϕ. It is now obvious that this is nothing but monotonicity.

Then, we turn to compositionality (Ï).

Theorem wKH_comp : forall s, (wKH_prv s) ->

(forall Γ, (forall ϕ, ((fst s) ϕ) -> wKH_prv (Γ, ϕ)) ->

wKH_prv (Γ, (snd s))).

We first start with the provability of s. Then, in the second line, we assume that
all the elements in the left component of s, i.e. fst s, are provable from a given set Γ.
Finally, in the third line, we claim the provability of (Γ, (snd s)). This corresponds to
compositionality.

Structurality can be captured in a similar way using a propositional variable substitu-
tion f (Ï).

Theorem wKH_struct : forall s, (wKH_prv s) ->

(forall (f : V -> MPropF),

(wKH_prv

((fun y => (exists ϕ, prod ((fst s) ϕ) (y = (subst f ϕ)))),
(subst f (snd s))))).

Under the assumption that s is provable in wKH, we get the provability of the pair
expressed on the two last lines. Say that s is of the shape Γ ` ϕ. In the last line, we
have the right component of the pair: it is nothing but ϕf the propositional variable
substitution of ϕ through f. On the line right before, we have the left component of the
pair. In essence, it is Γf , which is using defining the characteristic function of the latter.
The result of the application of the characteristic function (fun y => (exists ϕ, prod

((fst s) ϕ) (y = (subst f ϕ)))) on input ψ holds only if we can show that there is

ϕ such that ϕ ∈ Γ and ψ = ϕf . This condition is expressed by the expression (exists

ϕ, prod ((fst s) ϕ) (y = (subst f ϕ))), which requires the exhibition of a witness
and a proof of the conjunction of both statements we mentioned. It should appear that
the theorem above corresponds to structurality.

We showed that wKL is compact in Lemma 4.1.2, which is formalised as follows (Ï).

Theorem wKH_finite : forall s, (wKH_prv s) ->

(exists Γ, prod (Included _ Γ (fst s))

(prod (wKH_prv (Γ, snd s))

(exists l, (forall ϕ, ((Γ ϕ) -> List.In ϕ l) *

(List.In ϕ l -> (Γ ϕ)))))).
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Under the assumption that s is provable, we show that there is set Γ such that: (1)
(Included _ Γ (fst s)) it is included in the left component of s, (2) (wKH_prv (Γ,
snd s)), and (3) it is finite. The third point is obtained via the existence of a list l, which
is finite by definition and contains the same formulas as Γ. This is what the two last lines
express.

Second, we showed in Lemma 4.1.3 that wKL was a subset of sKL, while both share
the same set of theorems. These results are respectively formalised as follows (Ï) (Ï).

Theorem sKH_extens_wKH : forall s,

(wKH_prv s) -> (sKH_prv s).

Theorem wKH_sKH_same_thms : forall ϕ,
wKH_prv (Empty_set _, ϕ) <-> sKH_prv (Empty_set _, ϕ).

Third, we proved in Theorem 4.1.1 that the deduction theorem holds for wKL, while
only a modified version was holding for sKL as shown in Theorem 4.1.2. The next two
theorems express this (Ï) (Ï).

Theorem wKH_Detachment_Deduction_Theorem : forall ϕ ψ Γ,
wKH_prv (Union _ Γ (Singleton _ ϕ), ψ) <->

wKH_prv (Γ, ϕ --> ψ).

Theorem sKH_Boxed_Detachment_Deduction_Theorem: forall ϕ ψ Γ,
sKH_prv (Union _ Γ (Singleton _ ϕ), ψ) <->

exists n, sKH_prv (Γ, (Imp_Box_power n ϕ ψ)).

While the first theorem is clear, we provide some details on the second. The only new
element there is the use of the constructor Imp_Box_power. It captures the wrapping of
the formula ψ under the implication of n boxed version of ϕ, as in the following formula.

ϕ→ ( ϕ→ . . . ( nϕ→ ψ) . . . )

More precisely, we formalised this notion in the following way (Ï).

Fixpoint Imp_Box_power (n : nat) (ϕ ψ : MPropF) : MPropF :=

match n with

| 0 => ϕ --> ψ
| S m => ϕ --> (Imp_Box_power m (Box ϕ) ψ)

end.

This definition is defined recursively on n ∈ N. If n is 0, it simply outputs the im-
plication ϕ → ψ. If n is S m for some m, then we first add ϕ as an antecedent in an
implication, and then apply Imp_Box_power on m with now ϕ instead of ϕ. This has the
effect of adding ϕ, decreasing n, and adding a box in front of ϕ for the next application.

We showed the formalisation of all the main results we exhibited in the previous sub-
section. We consequently close this section on generalized Hilbert calculi.

4.2 Sequent calculi

Sequent calculi are proof systems that were first invented by Gerhard Gentzen [53] in an
attempt to obtain better-behaved proof systems to capture logics.

Indeed, finding a proof for a judgement Γ ` ϕ in a generalized Hilbert calculus can be
an extremely complicated matter. First, the presence of axioms leads to great difficulties
when trying to find a proof, summarized by the following questions: ”Which axiom needs
to be used?” or ”Which instantiations of the axiom?”. Second, rules like (MP) are tricky
to use. While they can reduce the task of finding a proof for Γ ` ϕ to the finding of proofs
for both Γ ` ψ → ϕ and Γ ` ψ, they require us to guess what the adequate formula ψ is
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with very few hints. Thus, generalized Hilbert calculi are not well-behaved when it comes
to the finding of proofs.

Instead of the hard-to-guess proofs of generalized Hilbert calculi, sequent calculi allow
a somewhat mechanical construction of proofs from the judgements we are trying to prove,
as we shall see below. In a nutshell, sequent calculi rules are goal-oriented, that is targeted
at deconstructing the elements of judgements they manipulate in a most deterministic way,
thus avoiding the introduction of random elements like the formula ψ in the rule (MP).

The judgements manipulated through rules of sequent calculi are called sequents and
are of the form Γ⇒ ∆, where Γ and ∆ are finite multisets of formulas of a given (propo-
sitional or first-order) language L. For multisets Γ and ∆, the multiset sum Γ ]∆ is the
multiset whose multiplicity (at each formula) is the sum of the multiplicities of Γ and ∆.
We write Γ,∆ to mean Γ ]∆. For a formula ϕ, we write ϕ,Γ and Γ, ϕ to mean {ϕ} ] Γ.

Following Definition 4.0.1, a sequent calculus S consists of a finite set R of sequent rule
schemas. If a rule schema has no premise sequents, then it is called an initial sequent. In
what follows we designate a sequent calculus using the suffix S.

A sequent calculus S can capture a logic in the sense of Chapter 3 with the set
{(Γ, ϕ) | there is a finite Γ′ ⊆ Γ s.t. Γ′ ⇒ ϕ is provable in S}. As a consequence, we can
only capture compact logics with sequent calculi.

In proof theory, there are several properties of a sequent calculus we are interested in.
We present them in the shape of rules in the following definition.

Definition 4.2.1. We say that a sequent calculus S admits:

- exchange on the left if the following rule is admissible.

Γ0, ψ, ϕ,Γ1 ⇒ ∆

Γ0, ϕ, ψ,Γ1 ⇒ ∆

- exchange on the right if the following rule is admissible.

Γ⇒ ∆0, ϕ, ψ,∆1

Γ⇒ ∆0, ψ, ϕ,∆1

- weakening on the left if the following rule is admissible.

Γ⇒ ∆
ϕ,Γ⇒ ∆

- weakening on the right if the following rule is admissible.

Γ⇒ ∆
Γ⇒ ∆, ϕ

- contraction on the left if the following rule is admissible.

ϕ,ϕ,Γ⇒ ∆

ϕ,Γ⇒ ∆

- contraction on the right if the following rule is admissible.

Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ

- multiplicative cut if the following rule is admissible, where ϕ is called the cut-formula.

Γ0 ⇒ ∆0, ϕ ϕ,Γ1 ⇒ ∆1

Γ0,Γ1 ⇒ ∆0,∆1
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- additive cut if the following rule is admissible, where ϕ is called the cut-formula.

Γ⇒ ∆, ϕ ϕ,Γ⇒ ∆

Γ⇒ ∆

Let us comment on these properties, their use, and their importance.

When considering sequents Γ ⇒ ∆ where Γ and ∆ are finite multisets, any sequent
calculus S admits exchange on the left and right: in multisets, the order of elements is
irrelevant. So, why do we mention these at all? Simply because in our formalisation in
Coq we decided to encode sequents using lists of formulas, and not multisets, as we explain
below. When considering sequents based on lists, the admissibility of exchange becomes
relevant.

The rules of weakening convey the idea that the relation between Γ and ∆ expressed
in Γ⇒ ∆ is stable under the extension of either multiset by any formula. Note that this
stability implies the stability under extension by finite multisets of formulas: if Γ⇒ ∆ is
provable, then Γ′,Γ⇒ ∆,∆′ is also provable.

The multiplicity of formulas in multisets is made unnecessary by the rules of contrac-
tion. Indeed, in the presence of contraction, it suffices to focus on sequents having no mul-
tiple occurrences of a formula in either Γ or ∆. As for weakening, the multiplicity of finite
multisets is also made unnecessary by contraction: if Γ′,Γ′,Γ ⇒ ∆ (resp. Γ ⇒ ∆,∆′,∆′)
is provable, then Γ′,Γ⇒ ∆ (resp. Γ⇒ ∆,∆′) is also provable.

While the additive and multiplicative versions of the cut rule are equivalent in the
presence of weakening and contraction (left and right) [154, Section 3.2], in this dissertation
we only make use of the additive version, which we name (cut) from now on. For a sequent
calculus S, we write S + (cut) to designate the system S extended with the rule (cut).

As we mentioned above, sequent calculi are designed to make the task of determining
the provability of a sequent easier. Consequently, we want to remove the cut rule from the
collection of acceptable rules, as it permits to reduce the provability of a sequent Γ⇒ ∆ to
the provability of the sequents Γ⇒ ∆, ϕ and ϕ,Γ⇒ ∆ where ϕ can be any formula. Thus,
this rule can introduce an arbitrary formula which can be extremely hard to guess when
just looking at the sequent Γ ⇒ ∆. However, we want our calculi to have the strength
of the cut rule by admitting it as it pertains to the crucial compositionality property of
logics shown in Definition 3.0.2.

On top of the admissibility of cut in a sequent calculus S, proof theorists are often
interested in the eliminability of cut : the property that each proof p of Γ⇒ ∆ in S+(cut)
can be transformed into a proof p′ of Γ ⇒ ∆ in S. Usually, if the admissibility of cut
is obtained in a purely proof-theoretic way through local transformations, then a cut-
elimination result is straightforwardly obtained. Indeed, it suffices to tackle the topmost
cut in a proof p in S + (cut), and follow the local transformations described in the cut-
admissibility proof to eliminate this instance of cut.

With a sequent calculus S which admits cut but does not contain it, one can hope
to define a general strategy to find proofs for sequents starting from the latter: this is
called backward proof-search procedure. In backward proof-search, we start from a sequent
Γ ⇒ ∆ and mechanically apply restricted versions of the rules of S backwards. The way
rules are applied is determined by the backward proof-search procedure, which constitutes
an algorithm. Ideally, the design of this procedure should lead to two key properties.

First, a backward proof-search procedure for S should be equivalent to S: we can
build a proof of a sequent following the backward proof-search procedure if and only if
this sequent is provable in S. This ensures that the designed procedure allows to find a
proof for a sequent if there is one in S, thus giving a complete account of provable sequents
in S.

Second, the algorithm described by the strategy should terminate: given a sequent
Γ⇒ ∆, the backward application of rules of S following the strategy comes to an end in
finite time. If this is the case, then we say that backward proof-search terminates.
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With these two properties, we obtain an amazing result: the decidability of provability
of sequents in S. Indeed, we can decide whether there is a proof of a given sequent Γ⇒ ∆
following the backward proof-search procedure, as the latter is terminating, and thus tell
whether Γ⇒ ∆ is provable in S because of the equivalence of the procedure.

In this dissertation, we identify terminating and equivalent backward proof-search
procedures for sequent calculi with sequent calculi we prefix with PS for Proof-Search.
For example, if we define such a procedure for a sequent calculus S, we use the name PSS
for the calculus identified with the procedure. Our justification in taking this decision
pertains to the fact that such a procedure captures a subset of the set of all derivations of
S, i.e. those which are built using the restricted version of the rules of S. So, if we
consider the system PSS, consisting of the restricted rules of S, we capture the same set
of derivations as the one obtained through the backward proof-search procedure.

4.2.1 The classical modal logic example: on paper

In this subsection we first define the sequent calculus wKS, which captures the logic wKL.
Second, we show that wKS admits the rule of exchange, weakening, and contraction.
Third, also show that wKS itself embodies a terminating proof-search procedure, which
would grant this system the prefix PS. We finally use the termination of wKS to show
the admissibility of cut through in this calculus through local transformations, giving us
a cut-elimination result.

The sequent calculus wKS

The sequent calculus wKS is given in Figure 4.1.

(IdP)
p,Γ⇒ ∆, p

(⊥L)
⊥,Γ⇒ ∆

Γ⇒ ∆, ϕ ψ,Γ⇒ ∆
(→L)

ϕ→ ψ,Γ⇒ ∆

ϕ,Γ⇒ ∆, ψ
(→R)

Γ⇒ ∆, ϕ→ ψ

Γ⇒ ψ
(wKR)

Φ, Γ⇒ ψ,∆

Figure 4.1: The sequent calculus wKS. Here, Φ does not contain any (top-level) boxed
formulas.

In a rule instance of (→L) or (→R), the formula instantiating the featured ϕ → ψ
is the principal formula of that instance. In (IdP), a propositional variable instantiating
either featured occurrence of p is principal. In (⊥L), the formula ⊥ is principal. In (wKR),
the formula instantiating the featured ψ is the principal formula.

Properties of wKS

Here, we show the (height-preserving) admissibility of the rules of weakening and contrac-
tion, as defined in Definition 4.2.1. To obtain these results we notably need to show that
the rules (→R) and (→L) are (height-preserving) invertible as defined in Definition 4.0.5.
All these results are useful in proving the admissibility of the additive cut rule.

First, we prove that the rules of weakening on the left and right are height-preserving
admissible in wKS.

Lemma 4.2.1. The following holds.

(i) The rule of weakening on the right is height-preserving admissible in wKS.

(ii) The rule of weakening on the left is height-preserving admissible in wKS.

Proof. We prove each statement independently.
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(i) (Ï) Let p be a proof of Γ ⇒ ∆ of height n. We prove by strong induction on n
that there is a proof p′ of Γ⇒ ∆, ϕ such that h(p′) ≤ n. We consider the last rule r
applied in p:

(a) r ∈ {(IdP), (⊥L)}: then either p ∈ Γ ∩∆ or ⊥ ∈ Γ. In all cases Γ⇒ ∆, ϕ is an
instance of an initial sequent.

(b) r = (wKR): then r is

Γ0 ⇒ ψ
(wKR)

Φ, Γ0 ⇒ ψ,∆0

Then we can apply (wKR) on the premise to obtain Φ, Γ0 ⇒ ψ,∆0, ϕ. Note
that the height of the proof is preserved.

(c) r = (→R): then r is

χ,Γ⇒ ∆0, ψ
(→R)

Γ⇒ ∆0, χ→ ψ

Then we can apply the induction hypothesis on the premise to get a proof of
χ,Γ⇒ ∆0, ϕ, ψ of height less than or equal to h(p)− 1. We can thus apply the
rule (→R) to get a proof of Γ ⇒ ∆0, ϕ, χ → ψ of height less than or equal to
h(p).

(d) r = (→L): then r is

Γ0 ⇒ ∆, χ ψ,Γ0 ⇒ ∆
(→L)

χ→ ψ,Γ0 ⇒ ∆

Then we can apply the induction hypothesis on both premises to get proofs of
height less than or equal to h(p) − 1 of Γ0 ⇒ ∆, ϕ, χ and ψ,Γ0 ⇒ ∆, ϕ. We
can consequently apply the rule (→L) to obtain a proof of χ → ψ,Γ0 ⇒ ∆, ϕ
of height less than or equal to h(p)− 1.

(ii) (Ï) Let p be a proof of Γ ⇒ ∆ of height n. We prove by strong induction on n
that there is a proof p′ of ϕ,Γ⇒ ∆ such that h(p′) ≤ n. We consider the last rule r
applied in p:

(a) r ∈ {(IdP), (⊥L)}: then either p ∈ Γ ∩∆ or ⊥ ∈ Γ. In all cases ϕ,Γ⇒ ∆ is an
instance of an initial sequent.

(b) r = (wKR): then r is

Γ0 ⇒ ψ
(wKR)

Φ, Γ0 ⇒ ψ,∆0

Either ϕ is boxed, i.e. ϕ = χ for some χ, and then we can apply the induction
hypothesis to obtain a proof of χ,Γ0 ⇒ ψ of height less than or equal to h(p)−1.
We can then apply the (wKR) rule to obtain a proof of Φ, χ, Γ0 ⇒ ψ,∆0

of height less than or equal to h(p). Or ϕ is not boxed and then we can apply
(wKR) on the premise to obtain a proof of ϕ,Φ, Γ0 ⇒ ψ,∆0 of height h(p).

(c) r = (→R): then r is

χ,Γ⇒ ∆0, ψ
(→R)

Γ⇒ ∆0, χ→ ψ

Then we can apply the induction hypothesis on the premise to get a proof of
χ,Γ, ϕ⇒ ∆0, ψ of height less than or equal to h(p)− 1. We can thus apply the
rule (→R) to get a proof of Γ, ϕ ⇒ ∆0, χ → ψ of height less than or equal to
h(p).

(d) r = (→L): then r is

Γ0 ⇒ ∆, χ ψ,Γ0 ⇒ ∆
(→L)

χ→ ψ,Γ0 ⇒ ∆

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_wkn.v#L355
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_wkn.v#L204
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Then we can apply the induction hypothesis on both premises to get proofs of
height less than or equal to h(p)− 1 of Γ0, ϕ⇒ ∆, χ and ψ,Γ0, ϕ⇒ ∆. We can
consequently apply the rule to obtain a proof of χ → ψ,Γ0, ϕ ⇒ ∆ of height
less than or equal to h(p).

�

Second, we prove that the implication rules (→R) and (→L) are height-preserving
invertible as defined in Definition 4.0.5.

Lemma 4.2.2. The following holds.

(i) The rule (→L) is height-preserving invertible in wKS.

(ii) The rule (→R) is height-preserving invertible in wKS.

Proof. (Ï) We prove the two statements, which we respectively call (i) and (ii), simulta-
neously by strong induction on the height of the given proof.

(i) Let p be a proof of ϕ→ ψ,Γ⇒ ∆. We consider the last rule r applied in p:

(a) r ∈ {(IdP), (⊥L)}: then either p ∈ Γ ∩ ∆ or ⊥ ∈ Γ. In all cases Γ ⇒ ∆, ϕ
and ψ,Γ⇒ ∆ are instances of an initial sequent.

(b) r is (wKR): then r is

Γ0 ⇒ χ
(wKR)

ϕ→ ψ,Φ, Γ0 ⇒ χ,∆0

Then we can apply (wKR) on the premise to obtain a proof of Φ, Γ0 ⇒
χ,∆0,Ψ, ϕ of height h(p). Now, to get a proof for the other desired sequent

Φ, ψ, Γ0 ⇒ χ,∆0, we need to distinguish two cases. If ψ is boxed, i.e. there
is a δ such that ψ = δ, then we apply Lemma 4.2.1(ii) on Γ0 ⇒ χ to get a
proof of δ,Γ0 ⇒ χ of height less than or equal to h(p)− 1. We can thus apply
(wKR) on the latter to obtain a proof of Φ, ψ, Γ0 ⇒ χ,∆0 of height less than
or equal to h(p). If ψ is not boxed, then we can simply apply (wKR) on Γ0 ⇒ χ
to obtain a proof of Φ, ψ, Γ0 ⇒ χ,∆0 of height less than or equal to h(p).

(c) r is (→R):

χ, ϕ→ ψ,Γ⇒ ∆, δ
(→R)

ϕ→ ψ,Γ⇒ ∆, χ→ δ

Applying the induction hypothesis to the proof of χ, ϕ→ ψ,Γ⇒ ∆, δ we obtain
a proof of height less than or equal to h(p)− 1 for

χ,Γ⇒ ∆, δ, ϕ (4.1)

ψ, χ,Γ⇒ ∆, δ (4.2)

Applying (→R) to the proof of (4.2) yields a proof of ψ,Γ⇒ ∆, χ→ δ of height
less than or equal to h(p). Also, we can apply (→R) to the proof of (4.1) to
obtain a proof of Γ⇒ ∆, χ→ δ, ϕ of height less than or equal to h(p). We have
obtained proofs for the desired sequents.

(d) Now suppose that r is (→L). If ϕ → ψ is principal in r then the premises are
Γ⇒ ∆, ϕ and ψ,Γ⇒ ∆ so we are done. If ϕ→ ψ is not principal in r then we
have the following.

ϕ→ ψ,Γ⇒ ∆, χ δ, ϕ→ ψ,Γ⇒ ∆
(→L)

ϕ→ ψ, χ→ δ,Γ⇒ ∆

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_inv_ImpR_ImpL.v#L64
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Applying the induction hypothesis to the proofs of the premises we can obtain
proofs of height less than or equal to h(p)− 1 of

Γ⇒ ∆, χ, ϕ (4.3)

ψ,Γ⇒ ∆, χ (4.4)

δ,Γ⇒ ∆, ϕ (4.5)

ψ, δ,Γ⇒ ∆ (4.6)

From the proofs of (4.3) and (4.5) we get a proof of height less than or equal to
h(p) for one of the desired sequents.

Γ⇒ ∆, χ, ϕ δ,Γ⇒ ∆, ϕ
(→L)

χ→ δ,Γ⇒ ∆, ϕ

Also, from the proofs of (4.4) and (4.6):

ψ,Γ⇒ ∆, χ ψ, δ,Γ⇒ ∆
(→L)

ψ, χ→ δ,Γ⇒ ∆

So we have obtained a proof of height less than or equal to h(p) for the desired
sequents.

(ii) Let p be a proof of Γ⇒ ∆, ϕ→ ψ. We consider the last rule r applied in p:

(a) r ∈ {(IdP), (⊥L)}: then either p ∈ Γ ∩∆ or ⊥ ∈ Γ. In all cases Γ, ϕ⇒ ∆, ψ is
an instance of an initial sequent.

(b) r is (wKR): then r is

Γ0 ⇒ χ
(wKR)

Φ, Γ0 ⇒ χ,∆0, ϕ→ ψ

We need to distinguish two cases. If ϕ is boxed, i.e. there is a δ such that
ϕ = δ, then we apply Lemma 4.2.1(i) on the proof of Γ0 ⇒ χ to get a proof
of δ,Γ0 ⇒ χ of height less than or equal to h(p)− 1. We can thus apply (wKR)
on the latter to obtain a proof of Φ, ϕ, Γ0 ⇒ χ,∆0, ψ of height less than or
equal to h(p). If ϕ is not boxed, then we can simply apply (wKR) on Γ0 ⇒ χ
to obtain a proof of Φ, ϕ, Γ0 ⇒ χ,∆0, ψ of height h(p).

(c) Suppose that r is (→R). If ϕ→ ψ is principal in r then the premise is ϕ,Γ⇒
∆, ψ so we are done. If ϕ→ ψ is not principal in r then we have the following.

χ,Γ⇒ ∆, ϕ→ ψ, δ
(→R)

Γ⇒ ∆, ϕ→ ψ, χ→ δ

Applying the induction hypothesis to the proof of χ,Γ ⇒ ∆, ϕ → ψ, δ we can
obtain a proof of ϕ, χ,Γ⇒ ∆, δ, ψ of height less than or equal to h(p)−1. Then
we can apply (→R) to get a proof of ϕ,Γ⇒ ∆, ψ, χ→ δ of height less than or
equal to h(p), so we have obtained a proof for the desired sequent.

(d) Finally, suppose that r is (→L).

Γ⇒ ∆, ϕ→ ψ, χ δ,Γ⇒ ∆, ϕ→ ψ
(→L)

χ→ δ,Γ⇒ ∆, ϕ→ ψ

Applying the induction hypothesis to the proofs of the premises we can obtain
proofs of height less than or equal to h(p)− 1 for

ϕ,Γ⇒ ∆, χ, ψ (4.7)

ϕ, δ,Γ⇒ ∆, ψ (4.8)

Then proceed:

ϕ,Γ⇒ ∆, χ, ψ ϕ, δ,Γ⇒ ∆, ψ
(→L)

ϕ, χ→ δ,Γ⇒ ∆, ψ
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So we have obtained proofs of height less than or equal to h(p) for the desired
sequent.

�

Third, we proceed to show that the left and right rules of contraction are height-
preserving admissible.

Lemma 4.2.3 (Height-preserving admissibility of contraction). For all Γ,∆, ϕ and ψ:

(i) The rule of contraction on the right is height-preserving admissible in wKS.

(ii) The rule of contraction on the left is height-preserving admissible in wKS.

Proof. (Ï) We prove (i) and (ii) simultaneously by strong induction on the height of the
given proof.

(i) Let p be a proof of Γ⇒ ∆, ϕ, ϕ of height n. We consider the last rule r applied in p:

(a) r ∈ {(IdP), (⊥L)}: either p ∈ Γ ∩ (∆ ∪ {ϕ,ϕ}) or ⊥ ∈ Γ. In all cases Γ⇒ ∆, ϕ
is an instance of an initial sequent.

(b) r = (wKR): then r is

Γ0 ⇒ ψ
(wKR)

Φ, Γ0 ⇒ ψ,∆0

Either is not principal, i.e. ϕ ∈ ∆0, and then we can apply (wKR) on the premise
to obtain a proof of height h(p) of Φ, Γ0 ⇒ ψ,∆1 where ∆1, ϕ = ∆0. Or ϕ is
principal, i.e. ϕ = ψ, and we consequently have that the second ψ appearing
in the conclusion is an element of ∆0 and then we can apply the rule on the
proof of the premise using ∆1 instead of ∆0.

(c) r = (→R): then r is

χ,Γ0 ⇒ ∆0, ψ
(→R)

Γ0 ⇒ ∆0, χ→ ψ

Either ϕ = χ→ ψ, and then we use Lemma 4.2.2(ii) on the premise of the form
χ,Γ0 ⇒ ∆1, χ → ψ,ψ to obtain a proof χ, χ,Γ0 ⇒ ∆1, ψ, ψ of height less than
or equal to h(p − 1). Then we can apply the induction hypothesis to contract
on both sides and obtain a proof of χ,Γ0 ⇒ ∆1, ψ of height less than or equal
to h(p− 1). It consequently suffices to apply (→R) on the latter to get a proof
of Γ0 ⇒ ∆1, χ → ψ of height less than or equal to h(p). Or ϕ 6= χ → ψ, and
then {ϕ,ϕ} ⊆ ∆0. Thus we can apply the induction hypothesis on the premise
to get a proof of height less than or equal to h(p − 1) of χ,Γ ⇒ ∆1, ψ where
∆1, ϕ = ∆0. We can thus apply the rule (→R) to get a proof of Γ⇒ ∆1, χ→ ψ
of height less than or equal to h(p).

(d) r = (→L): then r is

Γ0 ⇒ ∆, χ ψ,Γ0 ⇒ ∆
(→L)

χ→ ψ,Γ0 ⇒ ∆

Then we can apply the induction hypothesis on both premises to get proofs of
height less than or equal to h(p − 1) of Γ0 ⇒ ∆0, χ and ψ,Γ0 ⇒ ∆0 where
∆0, ϕ = ∆. We can consequently apply the rule to obtain a proof of height less
than or equal to h(p) of χ→ ψ,Γ0 ⇒ ∆0.

(ii) Let p be a proof of ϕ,ϕ,Γ⇒ ∆ of height n. We consider the last rule r applied in p:

(a) r ∈ {(IdP), (⊥L)}: either p ∈ ({ϕ,ϕ} ∪ Γ) ∩ ∆ or ⊥ ∈ {ϕ,ϕ} ∪ Γ. In all
cases ϕ,Γ⇒ ∆ is an instance of an initial sequent.

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_ctr.v#L473
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(b) r = (wKR): then r is

Γ0 ⇒ ψ
(wKR)

Φ, Γ0 ⇒ ψ,∆0

Either ϕ is boxed, i.e. there is a χ such that ϕ = χ, and consequently the
premise is of the form χ, χ,Γ1 ⇒ ψ, where Γ1, χ, χ = Γ0. Then we can apply
the induction hypothesis to obtain a proof of height less than or equal to h(p−1)
of χ,Γ1 ⇒ ψ. We can then apply the (wKR) rule to obtain a proof of height
less than or equal to h(p) of Φ, χ,Γ1 ⇒ ψ,∆0. Or ϕ is not boxed and
then we can apply (wKR) on the premise to obtain a proof of of height h(p) of
Φ0, Γ0 ⇒ ψ,∆0 where Φ0, ϕ = Φ.

(c) r = (→R): then r is

χ,Γ0 ⇒ ∆0, ψ
(→R)

Γ0 ⇒ ∆0, χ→ ψ

Then {ϕ,ϕ} ⊆ Γ0 and we can apply the induction hypothesis on the premise
to get a proof of height less than or equal to h(p − 1) of χ,Γ1 ⇒ ∆0, ψ where
Γ1, ϕ = Γ0. We can thus apply the rule (→R) to get a proof of height less than
or equal to h(p) of Γ1 ⇒ ∆0, χ→ ψ.

(d) r = (→L): then r is

Γ0 ⇒ ∆, χ ψ,Γ0 ⇒ ∆
(→L)

χ→ ψ,Γ0 ⇒ ∆

Either ϕ = χ → ψ, and then we use Lemma 4.2.2(i) on both premises to get
proofs of height less than or equal to h(p− 1) of:

Γ1 ⇒ ∆, χ, χ (4.9)

ψ,Γ1 ⇒ ∆, χ (4.10)

ψ,Γ1 ⇒ ∆, χ (4.11)

ψ,ψ,Γ1 ⇒ ∆ (4.12)

where Γ1, χ → ψ = Γ0. Then we can apply the induction hypothesis on the
proofs of (12.9) and (12.12) to obtain proofs of height less than or equal to
h(p− 1) of Γ1 ⇒ ∆, χ and, respectively, ψ,Γ1 ⇒ ∆. It consequently suffices to
apply (→L) on these sequents get a proof of height less than or equal to h(p) of
χ→ ψ,Γ1 ⇒ ∆. Or ϕ 6= χ→ ψ, and then {ϕ,ϕ} ⊆ ∆0. Thus we can apply the
induction hypothesis on the premise to get proofs of height less than or equal to
h(p−1) of χ,Γ1 ⇒ ∆ and Γ1 ⇒ ∆, ψ, where Γ1, ϕ = Γ0. We can thus apply the
rule (→L) to get a proof of height less than or equal to h(p) of χ→ ψ,Γ1 ⇒ ∆.

�

Termination of wKS

Our next task is to show that the naive proof-search procedure on wKS, which consists in
applying backwards any rule in any order, terminates.

To show termination we need to define a measure on sequents.

Definition 4.2.2. We define:

1. the number of occurrences of “→” imp(Γ⇒ ∆) of Γ⇒ ∆.

2. the number of occurrences of “ ” box(Γ⇒ ∆) of Γ⇒ ∆.

3. the measure Θ(Γ⇒ ∆) of Γ⇒ ∆ as
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Θ(Γ⇒ ∆) := imp(Γ⇒ ∆) + box(Γ⇒ ∆)

This measure is quite simple: it counts the number of → and in a sequent Γ ⇒ ∆,
and adds the two numbers. In a nutshell, it is the number of non-nullary operators in a
sequent.

We can show that this measure decreases on the usual < ordering on natural numbers,
which is well-known to be well-founded, upwards through the rules of wKS. This is the
essence of the next lemma.

Lemma 4.2.4. Let s0 and s1, ..., sn be sequents. If there is an instance of a rule r of wKS
of the following form, then Θ(si) < Θ(s0) for 1 ≤ i ≤ n.

s1 . . . sn
s0

r

Proof -. We reason by case analysis on r:

1. If r is (IdP) or (IdB) or (⊥L), then we are done as there is no premise.

2. If r is (→R), then it must have the following form.

Γ, ϕ⇒ ∆, ψ
(→R)

Γ⇒ ∆, ϕ→ ψ

Then we get that box(Γ, ϕ ⇒ ∆, ψ) = box(Γ ⇒ ∆, ϕ → ψ) but also imp(Γ, ϕ ⇒
∆, ψ) = imp(Γ⇒ ∆, ϕ→ ψ)− 1 hence Θ(Γ, ϕ⇒ ∆, ψ) < Θ(Γ⇒ ∆, ϕ→ ψ).

3. If r is (→L), then it must have the following form.

Γ⇒ ∆, ϕ ψ,Γ⇒ ∆
(→L)

ϕ→ ψ,Γ⇒ ∆

We can easily establish that Θ(Γ ⇒ ∆, ϕ) < Θ(ϕ → ψ,Γ ⇒ ∆) as one implication
symbol is deleted while the number of occurrences of boxes stays the same. We can
prove that Θ(ψ,Γ⇒ ∆) < Θ(ϕ→ ψ,Γ⇒ ∆) in a similar way.

4. If r is (wKR) then it must have the following form.

Γ⇒ ψ
(wKR)

Φ, Γ⇒ ψ,∆

We can straightforwardly show that Θ(Γ⇒ ψ) < Θ( Γ⇒ ψ), as at least one box
symbol is deleted, i.e. the one in front of ψ. Consequently, we get that Θ(Γ⇒ ψ) <
Θ(Φ, Γ ⇒ ψ,∆) as the addition of more formulas to a sequent cannot make the
measure decrease.

�

Next, we prove that each sequent has a (finite) list of premises through rules of wKS.

Lemma 4.2.5. For all sequent s there is a list Prems(s) such that for all s′, s′ is a premise
of the conclusion s for an instance of a rule r in wKS iff s′ is in Prems(s).

Proof. (Ï) Intuitively, this lemma is rather straightforward to prove: it suffices to check
which formula occurrences in a sequent can be principal in a rule, apply the rule back-
wards, and add the premises thus obtained to the list. As there are finitely many formula
occurrences and finitely many finitary rules, we get a finite list of premises. However, in
Coq, we need to give more fleshed-out details.

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_termination.v#L1016
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First, in Coq, we effectively construct such a list. More precisely, we prove that each
rule can be applied in only finitely many ways on a sequent and that we can list all of
the premises thus obtained. Once this is done for each rule, we can gather these lists of
premises to obtain our list of all premises.

Second, as mentioned previously, while we use sequents built on multisets here, in
our formalisation they are built on lists. So, we need to pay attention not only to the
formula occurrence which is principal in the rule, but also to the location where residues
of the principal formula, also called side formulas, are placed in the premise. For example,
we can apply (→R) backwards on r ⇒ p → q in two ways, giving the premise r, p ⇒ q
or the premise p, r ⇒ q. While these sequents are indistinguishable from the multiset
perspective, as order is irrelevant in multisets, they are distinct from the list point of
view. Our formalisation gives an account of these details.

Still, the idea of the proof in Coq follows the intuition initially given. �

Conjointly, the two previous lemmas imply the existence of a derivation in wKS of
maximum height for all sequent. We formally prove this theorem.

Theorem 4.2.1. Every sequent s has a wKS derivation of maximum height.

Proof. (Ï) We reason by strong induction on the ordered pair Θ(s). As the applicability
of the rules of wKS is decidable, we distinguish two cases:

(I) No wKS rule is applicable to s. Then the derivation of maximum height sought
after is simply the derivation constituted of s solely, which is the only derivation for s.

(II) Some wKS rule is applicable to s. Either only initial rules are applicable, in which
case the derivation of maximum height sought after is simply the derivation of height 1
constituted of the application of the applicable initial rule to s. Or, some other rules
than the initial rules are applicable. Then by Lemma 4.2.5 there is a list Prems(s) of all
sequents s0 such that there is an application of a wKS rule r with s as conclusion of r and
s0 as premise of r. By Lemma 4.2.4 we know that every element s0 in the list Prems(s)
is such that Θ(s0) < Θ(s). Consequently, the induction hypothesis allows us to consider
the derivation of maximum height of all the sequents in Prems(s). As Prems(s) is finite,
there must be an element smax of Prems(s) such that its derivation of maximum height
is higher than the derivation of maximum height of all sequents in Prems(s) or of the
same height. It thus suffices to pick that smax, use its derivation of maximum height, and
apply the appropriate rule to obtain s as a conclusion: this is by choice the derivation of
maximum height of s. �

As the previous lemma implies the existence of a derivation d of maximum height
in wKS, we are entitled to let mhd(s) denote the height of d. We crucially use this
measure later on in our cut-admissibility. In fact, the sole property of mhd we use in our
proof of cut-admissibility is the following.

Lemma 4.2.6. If r is a rule instance from wKS with conclusion s0 and s1 as one of the
premises, then mhd(s1) < mhd(s0).

Proof. (Ï) Suppose that mhd(s1) ≥ mhd(s0). Let d0 and d1 be the derivations of, respec-
tively, s0 and s1 witnessing Theorem 4.2.1. Then the following d2 is derivation of s0 of
height mhd(s1) + 1.

d1

s1 · · ·
rs0

Because of the maximality of d0, we get that the height of d0 is greater than the height of d2,
i.e. mhd(s1)+1 ≤ mhd(s0). As our initial assumption implies that mhd(s1)+1 > mhd(s0),
we reached a contradiction. �

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_termination.v#L1269
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_termination.v#L1460
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Note that the existence of a derivation of maximum height for each sequent in wKS
shows that in the backward application of rules of wKS on a sequent, i.e. the carrying of
the naive proof-search procedure, a halting point has to be encountered. As a consequence,
the naive proof-search procedure is terminating.

Next, we use the notion of mhd, obtained through the termination of wKS, to establish
cut-elimination for wKS.

Cut-Elimination for wKS

To prove cut-elimination we first prove through local proof transformations that additive
cut, as defined in Definition 4.2.1, is admissible.

Theorem 4.2.2. The additive cut rule is admissible in wKS.

Proof. (Ï) Let p1 (with last rule r1) and p2 (with last rule r2) be proofs in wKS of
Γ⇒ ∆, ϕ and ϕ,Γ⇒ ∆ respectively, as shown below.

p1

r1
Γ⇒ ∆, ϕ

p2

r2
ϕ,Γ⇒ ∆

It suffices to show that there is a proof in wKS of Γ ⇒ ∆. We reason by strong primary
induction (PI) on the size of the cut-formula ϕ, giving the primary inductive hypothesis
(PIH), and strong secondary induction (SI) on mhd(s) of the conclusion of a cut, giving
the secondary inductive hypothesis (SIH).

There are five cases to consider for r1: one for each rule in wKS. We separate them by
using Roman numerals. The SIH is invoked in all of the following cases: (III-a), (III-b-1),
(III-b-2) and (IV).

(I) r1 =(IdP) : If ϕ is not principal in r1, then the latter must have the following form.

(IdP)
Γ0, p⇒ ∆0, p, ϕ

where Γ0, p = Γ and ∆0, p = ∆. Thus, we have that the sequent Γ ⇒ ∆ is of the form
Γ0, p⇒ ∆0, p, and is an instance of an initial sequent. So we are done.

If ϕ principal in r1, i.e. ϕ = p, then Γ ⇒ ∆ is of the form Γ0, p ⇒ ∆. Thus, the
conclusion of r2 is of the form Γ0, p, p⇒ ∆. We can consequently apply Lemma 4.2.3 (ii)
to obtain a proof of Γ0, p⇒ ∆.

(II) r1 =(⊥L): Then r1 must have the following form.

(⊥L)
Γ0,⊥ ⇒ ∆, ϕ

where Γ0,⊥ = Γ. Thus, we have that the sequent Γ ⇒ ∆ is of the form Γ0,⊥ ⇒ ∆, and
is an instance of an initial sequent. So we are done.

(III) r1 =(→R) : We distinguish two cases.
(III-a) If ϕ is not principal in r1, then the latter must have the following form.

Γ, ψ ⇒ ∆0, χ, ϕ
(→R)

Γ⇒ ∆0, ψ → χ, ϕ

where ∆0, ψ → χ = ∆. Thus, we have that the sequent Γ ⇒ ∆ and ϕ,Γ ⇒ ∆ are
respectively of the form Γ ⇒ ∆0, ψ → χ and ϕ,Γ ⇒ ∆0, ψ → χ. We can apply Lemma
4.2.2 (ii) on the proof of the latter to get a proof of ϕ,Γ, ψ ⇒ ∆0, χ. Thus proceed as
follows.

Γ, ψ ⇒ ∆0, χ, ϕ ϕ,Γ, ψ ⇒ ∆0, χ
SIH

Γ, ψ ⇒ ∆0, χ
(→R)

Γ⇒ ∆0, ψ → χ

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_additive_cut.v#L27
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Note that the use of SIH is justified here since the last rule in this proof is an instance of
(→R) in wKS and hence mhd(Γ, ψ ⇒ ∆0, χ) < mhd(Γ⇒ ∆0, ψ → χ) by Lemma 4.2.6.
(III-b) If ϕ principal in r1, i.e. ϕ = ψ → χ, then r1 must have the following form.

ψ,Γ⇒ ∆, χ
(→R)

Γ⇒ ∆, ψ → χ

The conclusion of r2 must be of the form ψ → χ,Γ⇒ ∆. In that case, we distinguish two
further cases. In the first case, ψ → χ is principal in r2. Consequently, the latter must
have the following form.

Γ⇒ ∆, ψ χ,Γ⇒ ∆
(→L)

ψ → χ,Γ⇒ ∆

Proceed as follows.

Γ⇒ ∆, ψ

ψ,Γ⇒ ∆, χ

χ,Γ⇒ ∆
Lem.4.2.1 (ii)

χ, ψ,Γ⇒ ∆
PIH

ψ,Γ⇒ ∆
PIH

Γ⇒ ∆

In the second case, ψ → χ is not principal in r2. In the cases where r2 is one of (IdP)
and (⊥L) proceed respectively as in (I) and (II) when the cut-formula is not principal in
the rule considered. We are left with the cases where r2 is one of (→R), (→L) and (wKR).
(III-b-1) If r2 is (→R) then it must have the following form.

ψ → χ, δ,Γ⇒ ∆0, γ
(→R)

ψ → χ,Γ⇒ ∆0, δ → γ

where ∆0, δ → γ = ∆. In that case, note that the provable sequent Γ ⇒ ∆, ψ → χ is of
the form Γ ⇒ ∆0, δ → γ, ψ → χ. We can use Lemma 4.2.2 (ii) on the proof of the latter
to get a proof of δ,Γ⇒ ∆0, γ, ψ → χ. Proceed as follows.

δ,Γ⇒ ∆0, γ, ψ → χ ψ → χ, δ,Γ⇒ ∆0, γ
SIH

δ,Γ⇒ ∆0, γ
(→R)

Γ⇒ ∆0, δ → γ

Note that the use of SIH is justified here as the last rule in this proof is effectively an
instance of (→R) in wKS, hence mhd(Γ, D ⇒ ∆0, γ) < mhd(Γ ⇒ ∆0, δ → γ) by Lemma
4.2.6.
(III-b-2) If r2 is (→L) then it must have the following form.

ψ → χ,Γ0 ⇒ ∆, δ ψ → χ, γ,Γ0 ⇒ ∆
(→L)

ψ → χ, δ → γ,Γ0 ⇒ ∆

where Γ0, δ → γ = Γ. In that case, note that the provable sequent Γ ⇒ ∆, ψ → χ is of
the form Γ0, δ → γ ⇒ ∆, ψ → χ. We can use Lemma 4.2.2 (i) on the proof of the latter
to get proofs of both Γ0 ⇒ ∆, δ, ψ → χ and Γ0, γ ⇒ ∆, ψ → χ. Thus proceed as follows.

Γ0 ⇒ ∆, δ, ψ → χ ψ → χ,Γ0 ⇒ ∆, δ
SIH

Γ0 ⇒ ∆, δ

Γ0, γ ⇒ ∆, ψ → χ ψ → χ, γ,Γ0 ⇒ ∆
SIH

Γ0, γ ⇒ ∆
(→L)

Γ0, δ → γ ⇒ ∆

Note that both uses of SIH are justified here as the last rule in this proof is effectively
an instance of (→L) in wKS, hence mhd(Γ0 ⇒ ∆, δ) < mhd(Γ0, δ → γ ⇒ ∆) and
mhd(Γ0, γ ⇒ ∆) < mhd(Γ0, δ → γ ⇒ ∆) by Lemma 4.2.6.
(III-b-3) If r2 is (wKR) then it must have the following form.

Γ0,⇒ δ
(wKR)

Φ, ψ → χ, Γ0 ⇒ δ,∆0

where Φ, Γ0 = Γ and δ,∆0 = ∆. In that case, note that the sequent Γ ⇒ ∆ is of the
form Φ, Γ0 ⇒ δ,∆0. To obtain a proof of the latter, we apply the rule (wKR) on the
premise of r2 without weakening ψ → χ:
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Γ0 ⇒ δ
(wKR)

Φ, Γ0 ⇒ δ,∆0

(IV) r1 =(→L): Then r1 must have the following form.

Γ0 ⇒ ∆, ψ, ϕ χ,Γ0 ⇒ ∆, ϕ
(→L)

ψ → χ,Γ0 ⇒ ∆, ϕ

where ψ → χ,Γ0 = Γ. Thus, we have that the sequents Γ ⇒ ∆ and ϕ,Γ ⇒ ∆ are
respectively of the form ψ → χ,Γ0 ⇒ ∆ and ϕ,ψ → χ,Γ0 ⇒ ∆. It thus suffices to apply
Lemma 4.2.2 (i) on the proof of the latter to obtain proofs of both ϕ,Γ0 ⇒ ∆, ψ and
ϕ, χ,Γ0 ⇒ ∆, and then proceed as follows.

Γ0 ⇒ ∆, ψ, ϕ ϕ,Γ0 ⇒ ∆, ψ
SIH

Γ0 ⇒ ∆, ψ

χ,Γ0 ⇒ ∆, ϕ ϕ, χ,Γ0 ⇒ ∆
SIH

χ,Γ0 ⇒ ∆
(→L)

ψ → χ,Γ0 ⇒ ∆

Note that both uses of SIH are justified here as the last rule in this proof is effectively
an instance of (→L) in wKS, hence mhd(Γ0 ⇒ ∆, ψ) < mhd(ψ → χ,Γ0 ⇒ ∆) and
mhd(χ,Γ0 ⇒ ∆) < mhd(ψ → χ,Γ0 ⇒ ∆) by Lemma 4.2.6.

(V) r1 =(wKR): Then we distinguish two cases.

(V-a) ϕ is the principal formula in r1:

Γ0 ⇒ ψ
(wKR)

Φ, Γ0 ⇒ ψ,∆

where ϕ = ψ and Φ, Γ0 = Γ. Thus, we have that the sequents Γ ⇒ ∆ and ϕ,Γ ⇒ ∆
are respectively of the form Φ, Γ0 ⇒ ∆ and ψ,Φ, Γ0 ⇒ ∆. We now consider r2. If r2

is one of (IdP), (⊥L), (→R) and (→L) then respectively proceed as in (I), (II), (III) and
(IV) when the cut-formula is not principal in the rules considered by using SIH. We are
consequently left to consider the case when r2 is (wKR). Then r2 is of the following form:

ψ,Γ0 ⇒ χ
(wKR)

Φ, ψ, Γ0 ⇒ χ,∆0

where χ,∆0 = ∆. Then, proceed as follows.

Γ0 ⇒ χ
Lem.4.2.1

Γ0 ⇒ χ, ψ ψ,Γ0 ⇒ χ
PIH

Γ0 ⇒ χ
(wKR)

Φ, Γ0 ⇒ χ,∆1

(V-b) ϕ is not the principal formula in r1:

Γ0 ⇒ χ
(wKR)

Φ, Γ0 ⇒ χ, ϕ,∆0

where Φ, Γ0 = Γ and χ,∆0 = ∆. In that case, note that the sequent Γ ⇒ ∆ is of the
form Φ, Γ0 ⇒ χ,∆0. To obtain a proof of the latter, we apply the rule (wKR) on the
premise of r1 without weakening ϕ:

Γ0 ⇒ χ
(wKR)

Φ, Γ0 ⇒ χ,∆0

�

The previous operates local transformations on proofs. Thus, we can obtain from this
proof a cut-elimination procedure by eliminating topmost cuts first. So, the above proof-
theoretically establishes that cuts are eliminable in the calculus wKS extended with (cut),
as we show next.

Theorem 4.2.3. The additive cut rule is eliminable from wKS + (cut).
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Proof. (Ï) Let p be the proof in wKS+(cut) of the sequent s. We prove the statement by
induction on the structure of p. If the last rule applied is a rule in wKS, then it suffices to
apply the induction hypothesis on the premises and then the rule. If the last rule applied is
(cut), then we use the induction hypothesis on both premises and then Theorem 4.2.2. �

Thus, in this subsection, we managed to prove cut-elimination for wKS by relying on
the mhd measure we obtained through the proof of termination of the naive backward
proof-search procedure on wKS. Next, we show how we formalised these results in Coq.

4.2.2 The classical modal logic example: in Coq

All the elements presented in this subsection can be found here: Ï.

Our formalisation of sequent calculi heavily relies on tools developed by Jeremy E. Daw-
son and Rajeev Goré [27, 29, 30, 31, 32, 151]. The central notion from their work we need
to exhibit is derrec. In a nutshell, derrec is a function ultimately returning the type
of finite trees where nodes are labeled and built according to a specified set of rules,
and allowed leaves are explicitly given. We give more details by analyzing the following
definition, which is the most complex of this dissertation (Ï).

Inductive derrec X (rules : list X -> X -> Type)

(prems : X -> Type) : X -> Type :=

| dpI : forall concl ,

prems concl -> derrec rules prems concl

| derI : forall ps concl ,

rules ps concl -> dersrec rules prems ps ->

derrec rules prems concl

with dersrec X (rules : list X -> X -> Type)

(prems : X -> Type) : list X -> Type :=

| dlNil : dersrec rules prems []

| dlCons : forall seq seqs ,

derrec rules prems seq -> dersrec rules prems seqs ->

dersrec rules prems (seq :: seqs).

So, derrec is a function taking a type X, rules rules manipulating elements of X, a
function prems characterizing allowed leaves, and outputs a function of type X -> Type

. We explain the role of each of these elements. First, the type X dictates the type of
elements we can label the nodes our finite trees with. For example, if we use nat, we can
only create finite trees with natural numbers as nodes. Second, rules describes the way
we can create nodes with children. The type of rules is list X -> X -> Type, so we
can view an element of type rules as a usual rule on elements of X:

x0 . . . xn
xn+1

With this in mind, we can see that rules describes how we can build nodes in the finite
trees we are considering. Third, prems dictates which elements of X can appear in the
finite trees as leaves. Given the type X -> Type of prems, we can roughly think of it
as a characteristic function: for a given x of type X, prems x outputs an “accepted” or
“rejected” value. Thus, to build a leaf labeled with x we need the value of prems x to be
“accepted”.

Consequently, we have a way to build finite trees with nodes labeled by elements of
X and built according to rules, and with leaves labeled by elements described by prems.
However, it has to be noted that the expression derrec X rules prems is of type X ->

Type. Why is that? The core idea is that for an element x of type X, the expression
derrec X rules prems x is the type of all finite trees we described with root x. It is now
rather clear how this general type can be used in the context of sequent calculi.

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_cut_elim.v#L42
https://github.com/ianshil/PhD_thesis/tree/main/Toolbox_ModLog/Sequent_calculi
https://github.com/ianshil/PhD_thesis/blob/50f3e3648cf692010a8cb03615d7884f236d04d2/general/ddT.v#L46
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Now that we have a high-level understanding of what derrec is, let us turn to the
details of the inductive definition. An element of this definition is striking: we are induc-
tively defining derrec by relying on an inductive definition of dersrec, which also relies
on derrec. This complex definition is targeted at defining what are called mutually

defined inductive types [148]. We explain the constructors of each type individually.

The first constructor of derrec is dpI, which allows us to construct leaves. Indeed,
under the assumption that the element concl is an accepted leaf, i.e. prems concl, we get
that derrec rules prems concl (the type X is implicit). This means that if the element
concl is an accepted leaf, then concl standing on its own constitutes a finite tree of type
derrec rules prems concl. This corresponds to the clause (Leaf) of Definition 4.0.2.
The second constructor of derrec is derI, which allows to build trees with complex
nodes. Given a lists of elements ps and an element concl, we can create a tree with
a complex node if we have that ps and concl constitute a rule instance, i.e. rules ps

concl, and that we are in possession of an appropriate tree for all of the elements in
ps, i.e. dersrec rules prems ps. Under these two conditions, we get a tree with root
concl, i.e. derrec rules prems concl, which clearly corresponds to the clause (Rule) of
Definition 4.0.2.

We are thus left to show that dersrec formalises the idea that we possess a tree for all
the elements of a given list. dersrec requires the same inputs as derrec, unsurprisingly.
The constructor dlNil tells us that nothing is required to possess finite trees for all
elements of a given list if this list is empty. This is why we directly get dersrec rules

prems []. The second constructor dlCons allows us to get the desired trees for a list
seq :: seqs by requiring that we have a finite tree for seq, i.e. derrec rules prems

seq, as well as trees for all of the elements of seqs, i.e. dersrec rules prems seqs.

The fact that this definition captures mutually defined inductive types should now
appear clearly, as well as the content of each of these types. Quite crucially, to obtain an
inhabitant of type derrec rules prems concl, one needs to effectively build the deriva-
tion of that type, appearing as a term in Coq. This is why we are talking about a deep
embedding of finite trees [31].

Now that we have a very general way of capturing some types of finite trees, we can
define the height of such trees. The following formalises a slightly modified version of
Definition 4.0.4 (Ï).

Fixpoint derrec_height X rules prems concl

(der : @derrec X rules prems concl) :=

match der with

| dpI _ _ _ _ => 0

| derI _ _ ds => S (dersrec_height ds)

end

with dersrec_height X rules prems concls

(ders : @dersrec X rules prems concls) :=

match ders with

| dlNil _ _ => 0

| dlCons d ds => max (derrec_height d) (dersrec_height ds)

end.

We define the height derrec_height of a finite tree der of type derrec X rules

prems concl recursively on the structure of this tree. If it is a leaf built using dpI, then
the height of der is 0. If der is built with last step derI, i.e. through a complex node, then
its height is the height of its list of premises dersrec_height ds to which we add one.
dersrec_height also needs to be defined, and essentially gives 0 to the derivations of the
empty list, and takes the maximum out of derrec_height d and dersrec_height ds for
a list of elements d :: ds. This definition is nothing but Definition 4.0.4 modified in the
initial cases: here we decided to give height 0 to leaves, while there we gave them 1. This
difference does not technically matter.

https://github.com/ianshil/PhD_thesis/blob/50f3e3648cf692010a8cb03615d7884f236d04d2/general/dd_fc.v#L131
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In what follows, we consider finite trees which are derivations manipulating sequents.
So, the type we implicitly feed derrec with is the type of sequents. Thus, we proceed to
define sequents: they are pairs of lists of formulas (Ï).

Definition Seq := prod (list MPropF) (list MPropF).

The type prod, for product, takes a type A and a type B, and outputs the type of pairs
(a, b) with a an element of type A and b an element of type B. Consequently, we see that
prod (list MPropF) (list MPropF) is the type of all pairs of lists of modal formulas.
For example, (Γ0++Γ1 , ∆0++∆1) corresponds to Γ0,Γ1 ⇒ ∆0,∆1. Note that ([ϕ1 ;

ϕ2 ; ϕ3] , [ψ1 ; ψ2]) is different from ([ϕ2 ; ϕ1 ; ϕ3] , [ψ1 ; ψ2]) since the
order of the elements is crucial, so our lists do not capture multisets (yet).

The sequent calculus wKS

The way we formalise the calculus wKS is rather simple: it is nothing but the collection
of its rules. So, the effort lies in defining the rules from Figure 4.1. We start with general
remarks on the type of our rules and then present each of them individually.

The type of rules in this setting is rlsT Seq, where rlsT is the Type counterpart of
rls we presented in the rules of wKH_rules. So, rlsT Seq is the type in Type for pairs
of a finite list of sequents and a sequent. We use Type here instead of Prop as the former
contains computational content, on the contrary to the latter. By formalising in Type

we can thus extract programs from the results we obtain in our formalisation, notably
a cut-elimination program. In hindsight, our decision of using Prop instead of Type for
wKH_rules was motivated by one thing: in our work on this calculus, we had to use classical
logic as our meta-logic, which forces one to give up on the hope to get computationally
meaningful results. Here, we do not require classical logic, so we can preserve that hope
and use Type.

The rule (IdP) of identity on propositional variables is formalised as follows (Ï).

Inductive IdPRule : rlsT Seq :=

| IdPRule_I : forall (P : V) (Γ0 Γ1 ∆0 ∆1 : list MPropF),

IdPRule [] (Γ0 ++ # P :: Γ1 , ∆0 ++ # P :: ∆1).

This rule requires a propositional variable P as well as four lists of formulas Γ0, Γ1, ∆0

and ∆1. This rule is then applicable in the presence of no premises, as shows the empty
list [], on a sequent which has a propositional variable # P on each of its side, i.e. of
the shape (Γ0 ++ # P :: Γ1 , ∆0 ++ # P :: ∆1). Our use of four lists as context is
crucial, as it allows us to prove that exchange rules are admissible. Indeed, if the sequent (
Γ0 ++ ϕ :: # P :: Γ1 , ∆0 ++ # P :: ∆1) is provable using the rule IdPRule, then
we can show that the sequent (Γ0 ++ # P :: ϕ :: Γ1 , ∆0 ++ # P :: ∆1) also is
using the same rule: it suffices to change the instantiation of the variables for the context
around the propositional variable in the rule. More precisely, while in the first sequent the
context on the left of the propositional variable in the antecedent is Γ0 ++ [ϕ] and the
right context was Γ1, in the second second the left is Γ0 and the right is ϕ :: Γ1, making
the rule applicable. Note that if our rule was given in generality on sequents of the shape
(# P :: Γ , ∆0 ++ # P :: ∆1), then while (# P :: [ϕ] , [# P]) is provable the
sequent (ϕ :: [# P] , [# P]) is not, as the rule requires the propositional variable on
the leftmost position in the list. The admissibility of exchange is thus a feature we obtain
through this type of tailoring of our rules.

With these explanations in mind, the formalisation of the rule (⊥L) should be self-
explanatory (Ï).

Inductive BotLRule : rlsT Seq :=

| BotLRule_I : forall Γ0 Γ1 ∆,

BotLRule [] (Γ0 ++ Bot :: Γ1 , ∆).

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_calc.v#L161
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_calc.v#L169
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_calc.v#L174
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We are thus left with rules with premises: (→R), (→L) and (wKR). We start with
the implication rules (Ï).

Inductive ImpRRule : rlsT Seq :=

| ImpRRule_I : forall A B Γ0 Γ1 ∆0 ∆1,

ImpRRule [(Γ0 ++ A :: Γ1 , ∆0 ++ B :: ∆1)]

(Γ0 ++ Γ1 , ∆0 ++ (A --> B) :: ∆1).

Inductive ImpLRule : rlsT Seq :=

| ImpLRule_I : forall A B Γ0 Γ1 ∆0 ∆1,

ImpLRule [(Γ0 ++ Γ1 , ∆0 ++ A :: ∆1) ;

(Γ0 ++ B :: Γ1 , ∆0 ++ ∆1)]

(Γ0 ++ (A --> B) :: Γ1 , ∆0 ++ ∆1).

Their reading should be straightforward. As in the previous rules, we tailored these two
rules to make sure that exchange is admissible. However, the main difference here is the
presence of a list of premises: [(Γ0 ++ A :: Γ1 , ∆0 ++ B :: ∆1)] for ImpRRule and
[(Γ0 ++ Γ1 , ∆0 ++ A :: ∆1) ; (Γ0 ++ B :: Γ1 , ∆0 ++ ∆1)] for ImpLRule.
The premises of the rules (→R) and (→L) are easily recognized.

We finally turn to the more complex (wKR) (Ï).

Inductive wKRRule : rlsT Seq :=

| wKRRule_I : forall A BΓ Γ0 ∆0 ∆1,

(is_Boxed_list BΓ) ->

(nobox_gen_ext BΓ Γ0) ->

wKRRule [( unboxed_list BΓ , [A])]

(Γ0 , ∆0 ++ Box A :: ∆1).

This rule requires a single premise of the shape (unboxed_list BΓ , [A]) and a
conclusion of the shape (Γ0 , ∆0 ++ Box A :: ∆1). While we can recognize rather
easily the right-hand sides of the sequents present in the pen-and-paper rule (wKR), the
left-hand sides look rather mysterious. In the rule (wKR), the premise of the rule has
Γ as left-hand side, and the conclusion has Φ, Γ as left-hand side, where Φ contains no
top-level boxed formula. How do we get that unboxed_list BΓ corresponds to Γ and Γ0
corresponds to Φ, Γ. Let us first note that we have the assumption is_Boxed_list BΓ,
ensuring us that BΓ is a list of boxed formulas. So, by unboxing all the elements of BΓ
using the function unboxed_list, we get a set of formula corresponding to Γ in the rule
(wKR). Now that we see that BΓ corresponds to Γ, and unboxed_list BΓ corresponds
to Γ, how do we add Φ in the left-hand side of the conclusion sequent in our formalisation?
To answer this question, we need to define some general relation between lists (Ï).

Inductive univ_gen_ext (X : Type) (P : X -> Type) : relationT

(list X) :=

univ_gen_ext_nil : univ_gen_ext P [] []

| univ_gen_ext_cons : forall (x : X) (l le : list X),

univ_gen_ext P l le ->

univ_gen_ext P (x :: l) (x :: le)

| univ_gen_ext_extra : forall (x : X) (l le : list X),

P x ->

univ_gen_ext P l le ->

univ_gen_ext P l (x :: le).

With univ_gen_ext, we have a relation in Type (i.e. relationT) on lists of elements
of a given type X (i.e. list X). In essence, the holding of univ_gen_ext P l0 l1 tells
us that the list l1 of elements of type X is generated from l0 by interleaving elements
of type X satisfying the property P, at the end, or between elements of l0. In more
details, we can see that the constructor univ_gen_ext_nil allows us to say that the
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empty list satisfies univ_gen_ext with respect to itself for any property P. The constructor
univ_gen_ext_cons allows us to add the same element in front of two lists which satisfy
univ_gen_ext. Finally, under the assumption that two lists satisfy univ_gen_ext, the
constructor univ_gen_ext_extra allows us to add an extra element to the second list but
not to the first, under the condition that this element satisfies the property P. So, the
first constructor is the starting point, the second constructor makes sure that the list l0 is
“preserved” in l1, while the third constructor allows interleaving elements satisfying P in
l0.

Now, we can instantiate X with MPropF and P with the property of not being a boxed
formula (Ï).

Definition nobox_gen_ext :=

univ_gen_ext (fun x => (is_boxedT x) -> False).

nobox_gen_ext is an instance of univ_gen_ext with the property fun x => (is_boxedT

x) -> False, which holds only if (is_boxedT x) -> False does, i.e. x is not a boxed
formula. Consequently, nobox_gen_ext l0 l1 tells us that the list l1 is generated from
l0 by interleaving non-boxed formulas in front, at the end, or between elements of l0. For
example, we have nobox_gen_ext [P0 ; P1] [(P0 --> P1) ; P0 ; P3 ; P4 ; P1 ;

(P1 --> Bot) ; Bot] because we added (P0 --> P1) in front of the initial list, ϕ3 and
ϕ4 in between the elements ϕ0 and ϕ1, and finally (P1 --> Bot) and Bot at the end of
the initial list. Note that none of the formulas we added is a boxed formula.

With these elements in hand, we can explain the correspondence between Γ0 and Φ,Γ
via the assumption nobox_gen_ext BΓ Γ0: Γ0 is nothing but BΓ (i.e. the formulas of Γ)
with some additional non-boxed formulas interleaved (i.e. the formulas of Φ).

Why did we bother using such a complex structure, instead of simply separating the
boxed and non-boxed formulas? The whole point of our use of nobox_gen_ext is to allow
any interleaving, leading to the admissibility of exchange. Indeed, if we followed the pen-
and-paper rule and separated boxed and non-boxed formulas, an application of exchange
moving a boxed formula from Γ in the non-boxed component Φ would lead to a potentially
unprovable sequent.

As we formalised all our rules, we can finally define the collection of rules of our calculus
wKS, which we use to instantiate the variable rules in derrec (Ï).

Inductive wKS_rules : rlsT Seq :=

| IdP : forall ps c, IdPRule ps c -> wKS_rules ps c

| BotL : forall ps c, BotLRule ps c -> wKS_rules ps c

| ImpR : forall ps c, ImpRRule ps c -> wKS_rules ps c

| ImpL : forall ps c, ImpLRule ps c -> wKS_rules ps c

| wKR : forall ps c, wKRRule ps c -> wKS_rules ps c.

With derrec, we can use this collection of rules to define provability and derivability
from a set of assumptions. We create a macro wKS_prv for provability, but also wKS_drv

for derivability from the set of all assumptions (Ï).

Definition wKS_prv s := derrec wKS_rules (fun _ => False) s.

Definition wKS_drv s := derrec wKS_rules (fun _ => True) s.

In wKS_prv, the set of allowed leaves is described but the function (fun _ => False).
As a consequence, any derivation of type wKS_prv s cannot have sequents as leaves: any
attempt to create such a leaf will output False because of the given function. We can
thus see that wKS_prv expresses provability as defined in Definition 4.0.3. Similarly, we
can see that wKS_drv expresses derivability defined in Definition 4.0.2, i.e. from the set
of all possible sequents: the function (fun _ => True) allows us to use any sequent we
would like as leaf.

With our calculus and these macros defined, we can turn to the formalisation of our
results about wKS.
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Properties of wKS

An early result we can obtain is the decidability of the applicability of rules from wKS.
This result was used in the proof of Lemma 4.2.1 (Ï).

Lemma dec_wKS_rules : forall (concl :Seq) ,

(( existsT2 prems , wKS_rules prems concl) -> False) +

(existsT2 prems , wKS_rules prems concl).

For any sequent concl, we can determine whether there exists a an application of a
rule in wKS with list of premises prems, i.e. existsT2 prems, wKS_rules prems concl,
or not, i.e. (existsT2 prems, wKS_rules prems concl) -> False. Note that in this
context the symbol + denotes type sum. We can prove this result by showing that for each
rule we can determine whether this rule is applicable on concl. While tedious, it is rather
straightforward.

Next, we consider the exchange rules. As our formalisation used sequents based on
lists and not multisets, we had to make sure that exchange was admissible so that our
list-sequents would indeed mimic multiset-sequents (Ï).

Inductive list_exch_L : relationT Seq :=

| list_exch_LI Γ0 Γ1 Γ2 Γ3 Γ4 ∆ : list_exch_L

(Γ0 ++ Γ1 ++ Γ2 ++ Γ3 ++ Γ4, ∆)

(Γ0 ++ Γ3 ++ Γ2 ++ Γ1 ++ Γ4, ∆).

Inductive list_exch_R : relationT Seq :=

| list_exch_RI Γ ∆0 ∆1 ∆2 ∆3 ∆4 : list_exch_R

(Γ, ∆0 ++ ∆1 ++ ∆2 ++ ∆3 ++ ∆4)

(Γ, ∆0 ++ ∆3 ++ ∆2 ++ ∆1 ++ ∆4).

In the definition of list_exch_L, it should appear clearly that the second sequent is
nothing but the first sequent with two lists of formulas on the left-hand side, i.e. Γ1 and
lstinlineΓ3, swapped. Note that we decided to consider a version of exchange that moves
lists of formulas and not only formulas as it is more convenient to manipulate. The usual
notion of exchange, swapping simply two formulas, is an instance of our formalisation.
The property list_exch_R can be understood similarly.

So, we can formalise the result of admissibility of exchange rules as follows (Ï) (Ï).

Theorem wKS_adm_list_exch_L : forall s,

(wKS_prv s) ->

(forall se, list_exch_L s se ->

wKS_prv se).

Theorem wKS_adm_list_exch_R : forall s,

(wKS_prv s) ->

(forall se, list_exch_R s se ->

wKS_prv se).

We only analyze wKS_adm_list_exch_L as wKS_adm_list_exch_R can be explained in
a similar way. This states that if a sequent s is provable in wKS, i.e. wKS_prv s, then any
sequent se which is an exchanged version of s, i.e. list_exch_L s se, is also provable:
wKS_prv se.

As we explained above, the admissibility of exchange is not an accident, nor is it
hard-wired as an explicit rule in Coq. That is, our encoding of the multiset-based rules
shown in Figure ?? is designed to entail exchange. The list-encoding requires a very
pedantic analysis of the position of the occurrence of the principal formula, notably, in
rule instances. While this is a major disadvantage of our approach, this general framework
allows us to formalise sequent calculus for logics that require the presence of lists, like the
Lambek calculus [87].
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Let us now turn to the formalisation of weakening rules. Here again, we need properties
similar to list_exch_L and list_exch_R (Ï).

Inductive wkn_L (ϕ : MPropF) : relationT Seq :=

| wkn_LI Γ0 Γ1 ∆ : wkn_L ϕ
(Γ0 ++ Γ1, ∆) (Γ0 ++ ϕ :: Γ1, ∆).

Inductive wkn_R (ϕ : MPropF) : relationT Seq :=

| wkn_RI Γ ∆0 ∆1 : wkn_R ϕ
(Γ , ∆0 ++ ∆1) (Γ , ∆0 ++ ϕ :: ∆1).

These properties allow to express the fact that the second sequent is nothing but the
first sequent weakened, on the left or the right, with one formula ϕ. The height-preserving
admissibility of weakening rules is thus expressed as follows (Ï) (Ï).

Theorem wKS_hpadm_wkn_L : forall s (D0 : wKS_prv s),

(forall sw ϕ, (( wkn_L ϕ s sw) ->

existsT2 (D1 : wKS_prv sw),

derrec_height D1 <= derrec_height D0)).

Theorem wKS_hpadm_wkn_R : forall s (D0 : wKS_prv s),

(forall sw ϕ, (( wkn_R ϕ s sw) ->

existsT2 (D1 : wKS_prv sw),

derrec_height D1 <= derrec_height D0)).

We focus on wKS_hpadm_wkn_L. Given a sequent s and a proof D0 of s, this theorem
states that for any sequent sw which is a weakening on the left of the sequent s, i.e. wkn_L
ϕ s sw, there exists a proof D1 of sw which has its height lesser or equal to the height of
D0, i.e. derrec_height D1 <= derrec_height D0. Note that to be able to talk about the
height of the proof of s, we had to give it a name D0. To do so, we switched the assumption
wKS_prv s under the quantifier forall, allowing us to name the given derivation.

The invertibility of the implication rules (→L) and (→R) is next. Their reading should
be straightforward by now, so we do not comment on them (Ï) (Ï).

Theorem ImpL_inv : forall concl prem1 prem2 ,

(wKS_prv concl) ->

(ImpLRule [prem1;prem2] concl) ->

(wKS_prv prem1) *

(wKS_prv prem2).

Theorem ImpR_inv : forall concl prem , (wKS_prv concl) ->

(ImpRRule [prem] concl) ->

(wKS_prv prem).

Finally, we exhibit our formalisation about the contraction rules. Similarly to exchange
and weakening, we define properties on sequent showing that one is the contracted version
of the other (Ï).

Inductive ctr_L (ϕ : MPropF) : relationT Seq :=

| ctr_LI Γ0 Γ1 Γ2 ∆ : ctr_L ϕ
(Γ0 ++ ϕ :: Γ1 ++ ϕ :: Γ2, ∆)

(Γ0 ++ ϕ :: Γ1 ++ Γ2, ∆).

Inductive ctr_R (ϕ : MPropF) : relationT Seq :=

| ctr_RI Γ ∆0 ∆1 ∆2 : ctr_R ϕ
(Γ, ∆0 ++ ϕ :: ∆1 ++ ϕ :: ∆2)

(Γ, ∆0 ++ ϕ :: ∆1 ++ ∆2).
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The second sequent is a contracted version of the first, where the contracted formula
is ϕ. The design of these properties allows to contract two formulas occurrences into one
wherever these are standing on one side of the sequent. The height-preserving admissibility
of these rules can then straightforwardly be expressed as follows, where (ctr_L ϕ s sc

) + (ctr_R ϕ s sc) implies that sc is a contracted version of s on the right or on the
left (Ï).

Theorem wKS_hpadm_ctr_LR : forall s (D0 : wKS_prv s),

(forall sc ϕ, (( ctr_L ϕ s sc) + (ctr_R ϕ s sc)) ->

existsT2 (D1 : wKS_prv sc),

derrec_height D1 <= derrec_height D0).

Next, we give the formalisation of our results about the termination of wKS.

Termination of wKS

To show the termination of the naive backward proof-search strategy on wKS, we defined
in Definition 4.2.2 a measure Θ on sequents. We proceed to formalise this measure.

First, we need to give an account of the number of occurrences of the symbol →
in a sequent, which constitutes one part of the measure. To count the number of such
occurrences in a sequent, we need to be able to do so in a formula (Ï).

Fixpoint n_imp_subformF (ϕ : MPropF) : nat :=

match ϕ with

| # P => 0

| Bot => 0

| ψ --> χ => 1 + (n_imp_subformF ψ) + (n_imp_subformF χ)
| Box ψ => (n_imp_subformF ψ)

end.

Quite obviously, on input ϕ the function n_imp_subformF returns the number of oc-
currences of → in ϕ, a nat. It does so by adding 1 every time an implication symbol is
encountered in the structure of the formula. Thus, we can extend this counting to lists of
formulas (Ï).

Fixpoint n_imp_subformLF (l : list MPropF) : nat :=

match l with

| [] => 0

| h :: t => (n_imp_subformF h) + (n_imp_subformLF t)

end.

The function n_imp_subformLF crucially relies on the function n_imp_subformF in the
inductive case, by counting the number of implication symbols in the formula h. We can
now define the measure imp from Definition 4.2.2 (Ï).

Definition n_imp_subformS (s : Seq) : nat :=

(n_imp_subformLF (fst s)) + (n_imp_subformLF (snd s)).

Given a sequent s, which is a pair of lists of formulas, n_imp_subformS adds up the
number of occurrences of → in the left component of s, i.e. n_imp_subformLF (fst s),
with the number of such occurrences in the right component, i.e. n_imp_subformLF (snd

s). This is capturing the desired measure.

We can do a similar trick for counting the number of boxes in a sequent, i.e. the
measure box from Definition 4.2.2 (Ï) (Ï) (Ï).

Fixpoint n_box_subformF (ϕ : MPropF) : nat :=

match ϕ with

| # P => 0

| Bot => 0
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| ψ --> χ => (n_box_subformF ψ) + (n_box_subformF χ)
| Box ψ => 1 + (n_box_subformF ψ)

end.

Fixpoint n_box_subformLF (l : list MPropF) : nat :=

match l with

| [] => 0

| h :: t => (n_box_subformF h) + (n_box_subformLF t)

end.

Definition n_box_subformS (s : Seq) : nat :=

(n_box_subformLF (fst s)) + (n_box_subformLF (snd s)).

With n_imp_subformS and n_box_subformS, we can easily define the measure Θ from
Definition 4.2.2, which simply adds the two previously defined measures (Ï).

Definition term_meas (s : Seq) : nat :=

(n_imp_subformS s) + (n_box_subformS s).

To show that naive backward proof-search terminates using this measure, we need to
show that whichever rule we decide to apply backwards on a sequent makes the measure
decrease. So, we need to consider all possible premises of a sequent, through any rule
we have. The next lemma expresses that the set of such premises is finite, as it can be
represented in a list. Consequently, it is a formalisation of Lemma 4.2.5 (Ï).

Lemma finite_premises_of_S : forall (s : Seq),

existsT2 listprems , (forall prems ,

(( wKS_rules prems s) -> (InT prems listprems)) *

((InT prems listprems) -> (wKS_rules prems s))).

Any sequent is thus ensured to have a list listprems of lists of sequents (recall that
our rules take list of premises as input) such that the following are equivalent: (1) a list
of sequents prems with s constitute a rule application in wKS, i.e. wKS_rules prems s

; (2) prems is in listprems, i.e. InT prem prems. Note that we used InT here instead
of In, i.e. the computationally-loaded Type version of the latter. In a similar way, we
used existsT2, which is a Type version of exists. Thus, the above lemma allows us to
effectively compute this list of all (list of) premises. We use that fact to define the list of
all premises of a sequent (Ï).

Definition list_of_premises (s : Seq) : list Seq :=

flatten_list (proj1_sigT2 (finite_premises_of_S s)).

The lemma finite_premises_of_S, when applied on s, is a statement of existence
through existsT2. When holding, such a statement gives us two things: a witness, and
a proof that this witness satisfies the property expressed after existsT2. So, behind the
quantifier existsT2 lies a pair, on which we can apply projections. Thus, the expres-
sion proj1_sigT2 (finite_premises_of_S s) is nothing but the first projection of the
lemma finite_premises_of_S applied to s. In other words, it is the witness, the list
of all lists of premises of s. However, for convenience, we would like to obtain a list of
sequents, instead of having a list of lists of sequents. So, we simply flatten this list by using
flatten_list. We are now able to manipulate for any sequent its list of all premises.

In our pen-and-paper proof, we proved as a separate statement (Lemma 4.2.4) the
decreasing of the measure Θ in any rule application. However, in the formalisation, we
embedded this proof in the proof of the existence of a derivation of maximal height for
sequents. Thus, we turn to the formalisation of Theorem 4.2.1. For convenience, we first
define the property of being a derivation of maximal height for a sequent (Ï).

Definition is_mhd (s: Seq) (D0 : wKS_drv s): Prop :=
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forall (D1 : wKS_drv s), derrec_height D1 <=

derrec_height D0.

We have that is_mhd s D0, for D0 a proof of s, holds if for any proof D1 of s we
have that derrec_height D1 <= derrec_height D0. This clearly expresses the intended
property. We can now prove that there exists such a derivation for any sequent (Ï).

Theorem wKS_termin : forall s,

existsT2 (DMax : wKS_drv s), (is_mhd s DMax).

Here again, we make use of the existential quantifier existsT2, thus giving us a witness
which we can extract. We can consequently extract this witness, and check its height, thus
giving us for a sequent s the height of the derivation of maximal height for s. This is the
measure mhd, which we formalise next (Ï).

Definition mhd (s: Seq) : nat :=

derrec_height (proj1_sigT2 (@wKS_termin s)).

As clearly expressed, mhd s is a natural number. We can then show that this measure
decreases on the usual order on natural numbers < upwards in rule applications of the
calculus wKS (Ï).

Theorem RA_mhd_decreases : forall prems concl ,

(wKS_rules prems concl) ->

(forall prem , (In prem prems) -> (mhd prem) < (mhd concl)).

We proceeded to show how we formalised the measure mhd and exhibited the formal-
isation of the only property we use about this measure, expressed in Lemma 4.2.6. We
can finally turn to the formalisation of our results on the elimination of additive cuts.

Cut-Elimination for wKS

To reach cut-elimination we first proved cut-admissibility. The latter is formalised as
follows (Ï).

Theorem wKS_cut_adm : forall ϕ Γ0 Γ1 ∆0 ∆1,

(wKS_prv (Γ0 ++ Γ1, ∆0 ++ ϕ :: ∆1)) ->

(wKS_prv (Γ0 ++ ϕ :: Γ1, ∆0 ++ ∆1)) ->

(wKS_prv (Γ0 ++ Γ1, ∆0 ++ ∆1)).

The two premises of the additive cut rule are recognized in the second and third lines.
Note however that in the above code, the cut rule does not exist as such: it has not been
defined. To obtain a result of cut-elimination, we need to be able to talk about the calculus
wKS with cut. Indeed, cut-elimination is a result showing that we can take a proof built
with cut as a rule, and transform it into a proof without cut. So, we need to formalise
this rule (Ï).

Inductive CutRule : rlsT Seq :=

| CutRule_I : forall ϕ Γ0 Γ1 ∆0 ∆1,

CutRule

[(Γ0 ++ Γ1, ∆0 ++ ϕ :: ∆1) ; (Γ0 ++ ϕ :: Γ1, ∆0 ++ ∆1)]

(Γ0 ++ Γ1, ∆0 ++ ∆1).

The layout of the above is quite suggestive: we easily recognize the two premises of
the additive cut rule with its conclusion. With this rule defined, we can thus define the
set of rules for calculus wKS + (cut) (Ï).

Inductive wKS_cut_rules : rlsT Seq :=

| wKS_woc : forall ps c, wKS_rules ps c ->

wKS_cut_rules ps c

| wKS_cut : forall ps c, CutRule ps c ->

wKS_cut_rules ps c.

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_termination.v#L1420
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_termination.v#L1453
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_termination.v#L1460
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_additive_cut.v#L636
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_cut_elim.v#L28
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_cut_elim.v#L34
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The first constructor wKS_woc allows to use the already defined set of rules of wKS
w ithout cut. In addition to that, the second constructor wKS_cut allows us to use the cut
rule. For convenience, we define a macro for provability in this calculus containing the cut
rule (Ï).

Definition wKS_cut_prv s :=

derrec wKS_cut_rules (fun _ => False) s.

Finally, we use this macro to formalise Theorem 4.2.3: if we have a proof of a sequent
in wKS + (cut), then we have a proof of this sequent in wKS (Ï).

Theorem wKS_cut_elimination : forall s,

(wKS_cut_prv s) -> (wKS_prv s).

This theorem only relies on expressions in Type: the sequent s, the provability of s
in the cut-containing calculus wKS_cut_prv s, and the provability of s in the cut-free
calculus wKS_prv s. Given its shape, and its proof crucially using the admissibility of
cut (also in Type), we can extract a Haskell automatically using one of Coq’s features
(Ï). This code is certainly far from optimal, but constitutes an automatically generated
program extracted from a formally verified proof.

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_cut_elim.v#L39
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Sequent_calculi/wKS_cut_elim.v#L42
https://github.com/ianshil/PhD_thesis/blob/f614951ee1e32a3df077b19f0ad4122d3726233d/Toolbox_ModLog/Sequent_calculi/wKS_cut_extraction_theorem.v#L8


Chapter 5

Kripke Semantics

Another way to capture a logic is through what is called a semantics. While we capture
logics through the notion of proof in proof systems, by essentially relying on rules confer-
ring meaning to logical symbols, with semantics we grasp consequence relations via the
notion of truth in mathematical structures we call models.

The types of mathematical structures used in a semantics are legion: truth tables,
topological spaces [144], subset spaces [28], neighborhood frames [98, 131], algebras [12],
categories [88], Kripke frames [8, 73, 85]. All of these are not equivalent, as some allow to
capture particular logics while others cannot.

We restrict our attention to Kripke frames, which constitute the core elements of
what is canonically called Kripke semantics [8, 73, 85]. While this type of semantics is
named after Saul Kripke, Arnould Bayart and Jaako Hintikka also deserve credit as they
independently came up with a similar idea [8, 73]. Kripke semantics are philosophically
grounded on the idea of possible worlds, i.e. alternative worlds to ours. In a nutshell,
these worlds allow the evaluation of modal statements: “X is necessary” if X holds in all
possible worlds, while “X is possible” if X holds in one possible world.

From a mathematical point of view, Kripke semantics are based on Kripke frames. In
essence, the latter are directed multigraphs: a collection of vertices connected by edges of
several types.

Definition 5.0.1. A Kripke frame F is a pair (W, {Ri}i∈N) where W is a non-empty set
and Ri ⊆ W ×W for all i ∈ N. We call elements of W points and elements of {Ri}i∈N
accessibility relations.

Crucially, we can impose various restrictions on frames and thus obtain classes of
frames satisfying these restrictions. More precisely, we can restrict frames in two ways.
First, we can impose restrictions on the set of points W of a frame. For example, we can
restrict the cardinality of W , ask that equality is decidable on it, or demand that W = N.
Second, we can restrict accessibility relations in various ways. Commonly, an accessibility
relation R is required to satisfy some properties like reflexivity (i.e. ∀x.xRx), symmetry
(i.e. ∀x.∀y.(xRy → yRx)), transitivity (i.e. ∀x.∀y.∀z.(xRy → yRz → xRz)) or totality
(i.e. ∀x.∀y.(xRy ∨ yRx)).

Throughout this dissertation, we focus on Kripke frames with at most two accessibility
relations.

In the remaining of this chapter, we present propositional and first-order variants of
such semantics.

5.1 Propositional

Here we define Kripke semantics for propositional languages in a general way.

As mentioned above, semantics rely on models. So, we define Kripke models using
Kripke frames defined in Definition 5.0.1.
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Definition 5.1.1. Let L = (V, C) be a propositional language. A Kripke model M for L
is a tuple (W, {Ri}i∈N, I), where (W, {Ri}i∈N) is a Kripke frame and I : V → Pow(W ) is
an interpretation function or valuation.

In a similar way that we restricted Kripke frames, we can here obtain specific classes
of models by imposing restrictions on interpretation functions. The sole restriction on
such functions we consider in this dissertation is called persistence and pertains to the
preservation of the interpretation of propositional variables through accessibility relations.
More precisely, the interpretation function I is persistent on the accessibility relation R
in the modelM = (W,R, I) if the following is satisfied: for every w, v ∈W with Rwv and
p ∈ V, if w ∈ I(p) then v ∈ I(p).

Then, to obtain a semantics for a propositional language L = (V, C), we need to define
a forcing relation M, w  ϕ where M = (W,R, I) is a model, w ∈ W and ϕ ∈ FormL.
Canonically, this relation is defined recursively on the structure of ϕ with one clause for
each connective in C, determining its semantic behavior, and as base case at least the
following.

M, w  p iff w ∈ I(p)

The forcing relation expresses the notion of truth, crucial to the semantic approach to
logics. More precisely, the holding of M, w  ϕ expresses the fact that ϕ is true in the
point w in the model M.

Next, we introduce some notations related to the forcing relation.

Definition 5.1.2. Given Γ ∪ {ϕ} ⊆ FormL and a model M = (W,R, I) for L, we define
the following.

- M, w 6 ϕ if it is not the case that M, w  ϕ.

- M  ϕ if for every point w ∈W , M, w  ϕ.

- M, w  Γ for a given w ∈ W if for every γ ∈ Γ we have M, w  γ. In this case, we
say w is a Γ-point.

- M  Γ if for every γ ∈ Γ, M, w  γ. In this case, we say that M is a Γ-model.

Kripke semantics are traditionally used to define sets of formulas: the formulas valid
in a given class of frames or models. More formally, we say that ϕ is valid, and write
|= ϕ, if we have M  ϕ for all models M obeying the appropriate restrictions of the
class considered. We can thus define the set of validities of a semantics with the set
{ϕ ∈ FormL | |= ϕ}.

Traditionally, this set is intended to capture a logic understood as a set of formulas.
However, as explained in Chapter 3, in this dissertation we consider logics to be conse-
quence relations. So, we develop notions of semantic consequence relations using Kripke
semantics.

Definition 5.1.3. The local and global consequence relations are as below:

Γ |=l ϕ iff ∀M.∀w. (M, w  Γ ⇒ M, w  ϕ)
Γ |=g ϕ iff ∀M. (M  Γ ⇒ M  ϕ).

With these notions in hand, we can then also capture logics understood as consequence
relations with the sets {(Γ, ϕ) ∈ (Pow(FormL) × FormL) | Γ |=l ϕ} and {(Γ, ϕ) ∈
(Pow(FormL)× FormL) | Γ |=g ϕ} on given classes of frames or models.

We close our general presentation of Kripke semantics for propositional languages by
noting that in some instances, we extend the local and global consequence relations to the
following more general ones.

Γ |=l ∆ iff ∀M.∀w. (M, w  Γ ⇒ ∃δ ∈ ∆.M, w  δ)
Γ |=g ∆ iff ∀M. (M  Γ ⇒ ∀w ∈W. ∃δ ∈ ∆.M, w  δ).
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5.1.1 The classical modal logic example: on paper

The forcing relation for propositional classical modal logics is usually defined as follows.

Definition 5.1.4. Given a Kripke model M = (W,R, I), we define the forcing relation
as follows:

M, w  p iff w ∈ I(p)
M, w  ⊥ never
M, w  ϕ→ ψ iff if M, w  ϕ then M, w  ψ
M, w  ϕ iff for all v such that wRv we have M, v  ϕ

Later on we consider the class of all models for classical modal logic. In particular,
we will show that the local (resp. global) consequence relation on that class, i.e. the set
{(Γ, ϕ) | Γ |=l ϕ} (resp. {(Γ, ϕ) | Γ |=g ϕ}), is identical to the logic wKL (resp. sKL).

A central notion in the model theory of Kripke semantics is the notion of bisimulation
[11, Sect.2.2]. While it relies on the language at stake, it relates models with similar
structures, using a specific notion of “similarity”. We define below the canonical notion
of bisimulation when considering the language LCM.

Definition 5.1.5. Let M1 = (W1, R1, I1) and M2 = (W2, R2, I2) be models. A bisimu-
lation between M1 and M2 is a relation B ⊆ W1 ×W2 such that for all w1 ∈ W1 and
w2 ∈W2, if w1Bw2 we have:

(B1) for all p ∈ V, w1 ∈ I1(p) iff w2 ∈ I2(p);

(B2) for all v2 ∈W2, if w2R2v2 then there exists v1 ∈W1 such that w1R1v1 and v1Bv2;

(B3) for all v1 ∈W1, if w1R1v1 then there exists v2 ∈W2 such that w2R2v2 and v1Bv2.

If there is a bisimulation B such that w1Bw2, we say that w1 and w2 are bisimilar and
note M1, w1 �M2, w2.

This notion is usually a sought-after one, as it often entails logical equivalence for
points in models: two bisimilar points force the same formulas. This property, which will
be of crucial use later on, is obtained with the above definition.

Proposition 5.1.1. Let M1 = (W1, R1, I1) and M2 = (W2, R2, I2) be models, w1 ∈ W1

and w2 ∈ W2. If M1, w1 �M2, w2, then for all ϕ ∈ FormLCM
we have M1, w1  ϕ iff

M2, w2  ϕ.

Proof. (Ï) We reason by induction on the structure of ϕ.

- ϕ := p: As M1, w1 � M2, w2 we notably have w1 ∈ I1(p) iff w2 ∈ I2(p) by item
(B1) of Definition 5.1.5. So, we get that M1, w1  p iff M2, w2  p.

- ϕ := ⊥: We have M1, w1 6 ⊥ and M2, w2 6 ⊥ by definition. So we trivially get
the desired result.

- ϕ := χ → ψ: (⇒) Assume M1, w1  χ → ψ. We need to show M2, w2  χ → ψ.
Assume that M2, w2  χ. We need to show M2, w2  ψ. As M1, w1  χ → ψ
we get that if M1, w1  χ then M1, w1  ψ. But we know that M2, w2  χ,
so by M1, w1 � M2, w2 and induction hypothesis we get M1, w1  χ. Thus, we
get M1, w1  ψ. It then suffices to use the induction hypothesis again to obtain
M2, w2  ψ. Consequently, we proved that M2, w2  χ→ ψ.

(⇐) We proceed similarly to (⇒).

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Kripke_semantics/Propositional/K_bisimulation.v#L22
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- ϕ := ψ: (⇒) Assume M1, w1  ψ. We need to show M2, w2  ψ. Let v2 ∈W2

such that w2R2v2. By w1Bw2 and item (B2) of Definition 5.1.5 we get that there
is a v1 ∈ W1 such that w1R1v1 and v1Bw2. As w1R1v1 and M1, w1  ψ we get
M1, v1  ψ. By induction hypothesis and v1Bv2, we get M2, w2  ψ. As v2 is
arbitrary, we get M2, w2  ψ.

(⇐) We proceed similarly to (⇒), using the item (B3) of Definition 5.1.5 instead.

�

5.1.2 The classical modal logic example: in Coq

All the elements presented in this subsection can be found here: Ï.

In the above, to obtain a Kripke semantics for the language LCM we first defined
models. We follow this first step by formalising models as follows (Ï).

Class kmodel :=

{

nodes : Type ;

reachable : nodes -> nodes -> Prop ;

val : nodes -> V -> Prop ;

}.

A kmodel is an entity having a collection of nodes (or worlds), a relation reachable

on them, and a valuation function val. Then, it appears that a model is of the shape
(W,R, I), as expected.

We can turn to the definition of forcing (Ï).

Fixpoint wforces (M : kmodel) w (ϕ : MPropF) : Prop :=

match ϕ with

| # p => val w p

| Bot => False

| ψ --> χ => (wforces M w ψ) -> (wforces M w χ)
| Box ψ => forall v, reachable w v -> wforces M v ψ
end.

As we did in Definition 5.1.4, we define the notion of wforces (for world -force) relying
on the presence of a model M, a world w and a formula ϕ. The definition goes by recursion
on the structure of ϕ, and follows Definition 5.1.4. Indeed, we have that # p is forced
in w if val w p holds: the valuation describes w as a p-world. In addition to that, the
semantics of the operator is faithfully formalised as to force Box ψ in w we rely on the
forcing of ψ by all successor of w, using reachable w v for all v.

We can also define a notion of forcing for all points in a model rather straightforwardly
(Ï).

Definition mforces M ϕ : Prop := forall w , wforces M w ϕ.

The definition above is helpful to give a compact definition of the global semantic
consequence relation. We formalise the latter and its local version in the definition below
(Ï).

Definition loc_conseq Γ ϕ := forall M w,

(forall ψ, (In _ Γ ψ) -> wforces M w ψ) ->

(wforces M w ϕ).

Definition glob_conseq Γ ϕ := forall M,

(forall ψ, (In _ Γ ψ) -> mforces M ψ) ->

(mforces M ϕ).

https://github.com/ianshil/PhD_thesis/tree/main/Toolbox_ModLog/Kripke_semantics/Propositional
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Kripke_semantics/Propositional/K_Kripke_sem.v#L14
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Kripke_semantics/Propositional/K_Kripke_sem.v#L21
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Kripke_semantics/Propositional/K_Kripke_sem.v#L29
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Kripke_semantics/Propositional/K_Kripke_sem.v#L33
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We easily recognize both relations from Definition 5.1.3. First, loc_conseq is localized
in w by requiring that all formulas in Γ are forced in w (forall ψ, (In _ Γ ψ) ->

wforces M w ψ) and leading to wforces M w ϕ. Second, glob_conseq is globalized by
requiring that all formulas in Γ are forced in all worlds of M (forall ψ, (In _ Γ ψ) ->

mforces M ψ) and leading to mforces M ϕ.

We are thus left with the formalisation of bisimulation between models (Ï).

Definition bisimulation (M0 M1 : kmodel)

(B : (@nodes M0) -> (@nodes M1) -> Prop) : Prop :=

forall (w0 : @nodes M0) (w1 : @nodes M1),

(B w0 w1) ->

(*B1*) (( forall p, (@val M0) w0 p <-> (@val M1) w1 p)

/\

(*B2*) (forall v1 , (( @reachable M1) w1 v1) ->

(exists v0, (( @reachable M0) w0 v0) /\ (B v0 v1)))

/\

(*B3*) (forall v0 , (( @reachable M0) w0 v0) ->

(exists v1, (( @reachable M1) w1 v1) /\ (B v0 v1)))).

Following the formalisation of Definition 5.1.5, a relation B is a bisimulation between
M0 and M1 if for any world w0 of M0 and w1 of M1 in the relation B (i.e. B w0 w1), the
following holds. First, we need to satisfy the condition (*B1*) (note that (* and *) allow
to define an environment for comments). More precisely, the valuation function @val M0

of M0 and @val M1 of M1 must coincide in w0 and w1. We also need to satisfy the condition
(*B2*), which we add using the conjunction operation /\ of Coq. This condition requires
that for any v1, if we have that it is a successor of w1 in M1 (i.e. (@reachable M1) w1 v1),
then there must be a v0 successor of w0 (i.e. (@reachable M0) w0 v0) such that v0 and
v1 are in the relation B (i.e. B v0 v1). Finally, in a similar way, we can see that the
condition (*B3*) is faithfully capturing the condition B3 of Definition 5.1.5.

With the notion of bisimulation formalised, we can get a formalisation of Lemma 5.1.1
(Ï).

Lemma bisimulation_imp_modal_equiv : forall M0 M1 B,

(bisimulation M0 M1 B) ->

(forall ϕ w0 w1 , (B w0 w1) ->

(wforces M0 w0 ϕ <-> wforces M1 w1 ϕ)).

Clearly, this lemma simply says that if B is a bisimulation between the models M0 and
M1 (i.e. bisimulation M0 M1 B), then any two bisimilar points w0 and w1 (i.e. B w0 w1)
force the same formulas (i.e. wforces M0 w0 ϕ <-> wforces M1 w1 ϕ).

5.2 First-order

First-order languages contain elements other than propositional variables: predicate and
function symbols, as well as variables. So, we need to tailor models in such a way that we
can interpret these elements.

Definition 5.2.1. A constant domain FO Kripke model M is a tuple of the shape
(W, {Ri}i∈N, D, Ifun, Ipred) where:

- (W, {Ri}i∈N) is a Kripke frame as in Definition 5.0.1;

- D is a non-empty set called the domain;

- Ifun is a function interpreting each function symbol f ∈ Fun of arity n = ArFun(f)
by a function Ifun(f) : Dn → D;

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Kripke_semantics/Propositional/K_bisimulation.v#L14
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Kripke_semantics/Propositional/K_bisimulation.v#L22
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- Ipred is a function interpreting, in each w ∈ W , each predicate symbol P ∈ Pred of
arity n = ArPred(P ) by a set Ipred(w,P ) ⊆ Dn.

An assignment α on D is a function α : N→ D. When clear from context, we simply
say that α is an assignment.

Models can interpret all the syntactic elements mentioned above: predicate and func-
tion symbols using the function Ipred and Ifun, and variables using an assignment α.
Note that on top of the restrictions on W and the accessibility relations mentioned in the
propositional case, here we can decide to impose restrictions on Ifun or Ipred and hence
characterize classes of models.

Anyone familiar with the literature of Kripke semantics for first-order languages notices
the strong decision we made in our definition: the domain D is constant. Alternatively,
we could have decided to allow each point w of W to have its own domain Dw. However,
while less general, the definition above is sufficient for this dissertation as we only consider
first-order logics semantically captured by constant domain semantics.

Next, we show how we interpret terms in a FO Kripke model using the interpretation
function Ifun and the assignment α.

Definition 5.2.2. Let S be a signature, M = (W,R,D, Ifun, Ipred) a FO Kripke model,
α an assignment on D and t ∈ TermS . We define the interpretation of t in M given α,
noted α(t), inductively as following:

α(x) = α(x)
α(f(t1, ..., tn)) = Ifun(f)(α(t1), ..., α(tn))

We obtain a semantics for a first-order language L = (S, C,Q) by defining a forcing
relation M, w, α  ϕ where M = (W,R,D, Ifun, Ipred) is a model, w ∈ W , α is an
assignment on D and ϕ ∈ FormL. This relation is defined recursively on the structure of
ϕ with one clause for each connective in C and each quantifier in Q, and as base case at
least the following.

M, w, α  P (t1, . . . , tn) iff (α(t1), . . . , α(tn)) ∈ Ipred(w,P )

With the forcing relation in hand, we can define the following notations.

Definition 5.2.3. Given Γ ∪ {ϕ} ⊆ FormL, a model M = (W,R,D, Ifun, Ipred) for L
and an assignment α on D, we define the following.

- M, α  ϕ if for every point w ∈W , M, w, α  ϕ.

- M, w, α  Γ for a given w ∈ W if every γ ∈ Γ we have M, w, α  γ. In this case,
we say w is a Γ-point.

- M, α  Γ if for every γ ∈ Γ,M, w, α  γ. In this case, we say thatM is a Γ-model.

With the forcing relation and the notations above, we can port the notions of semantic
consequence relation to the first-order case.

Definition 5.2.4. The local and global consequence relations are as below:

Γ |=l ϕ iff ∀M.∀α.∀w. (M, w, α  Γ ⇒ M, w, α  ϕ)
Γ |=g ϕ iff ∀M.∀α. (M  Γ ⇒ M, α  ϕ).

We can then also capture logics understood as consequence relations with the following
two sets, using the appropriate class of models.

{(Γ, ϕ) ∈ (Pow(FormL)× FormL) | Γ |=l ϕ}
{(Γ, ϕ) ∈ (Pow(FormL)× FormL) | Γ |=g ϕ}

These notions can be extended to the following more general ones.

Γ |=l ∆ iff ∀M.∀α.∀w. (M, w, α  Γ ⇒ ∃δ ∈ ∆.M, w, α  δ)
Γ |=g ∆ iff ∀M.∀α. (M, α  Γ ⇒ ∀w ∈W. ∃δ ∈ ∆.M, w, α  δ).
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5.2.1 The classical modal logic example: on paper

The forcing relation for constant domain first-order classical modal logics is usually defined
as follows, where (d .: α) is the function defined in Definition 2.2.8.

Definition 5.2.5. Given a constant domain FO Kripke modelM = (W,R,D, Ifun, Ipred),
we define the forcing relation as follows:

M, w, α  P (t1, . . . , tn) iff (α(t1), . . . , α(tn)) ∈ Ipred(w,P )
M, w, α  ⊥ never
M, w, α  ϕ→ ψ iff if M, w, α  ϕ then M,w,α  ψ
M, w, α  ϕ iff for all v such that wRv we have M, v, α  ϕ
M, w, α  ∀ϕ iff for all d ∈ D we have M,w, (d .: α)  ϕ
M, w, α  ∃ϕ iff there exists d ∈ D such that M,w, (d .: α)  ϕ

The only additions to Definition 5.1.4, apart from the different nature of models,
concern the treatment of quantifiers. To treat them, we modify the assignment function α
to (d .: α), which ensures that the occurrences bound by ∃ or ∀ in ∃ϕ or ∀ϕ are interpreted
by d in the model.

It is well-known that the class of models for the first-order constant domain classi-
cal modal logic CDKL is the class of all constant domain models of the shape M =
(W,R,D, Ifun, Ipred) with no restriction [51]. However, to the best of our knowledge this
result has not been formalised in an interactive theorem prover.

5.2.2 The classical modal logic example: in Coq

All the elements presented in this subsection can be found here: Ï.

The main difference between propositional and first-order Kripke semantics lies in the
presence of domains. As we could see above, a lot of our definitions are parametric in a
given domain D. So, in most definitions below, we rely on a domain D given in the context.
To declare this domain, we write the following (Ï).

Variable D : Type.

Then, we proceed to define what interpretation functions for function symbols are (Ï).

Class interp_fun :=

{

i_func : forall f : syms , vec D (ar_syms f) -> D

}.

They satisfy a single property: given a function symbol f, and a vector of elements
of D of arity corresponding to f, i.e. vec D (ar_syms f), we get an element of D. This
captures the idea expressed in the clause for Ifun given in Definition 5.2.1.

To interpret terms in a model, we need both the type of functions described above and
assignments. So, we formalise what it is to be an assignment function on a domain D as
follows (Ï).

Definition assign := nat -> D.

We are now able to formalize the interpretation of terms given an interpretation func-
tion for function symbols and an assignment, which we noted α̂ above but call eval here
(Ï).

Fixpoint eval (α : assign) (t : term) : D :=

match t with

| var s => α s

| func f v => i_func f (Vector.map (eval α) v)

end.

https://github.com/ianshil/PhD_thesis/tree/main/Toolbox_ModLog/Kripke_semantics/First_order
https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Kripke_semantics/First_order/K_FO_Kripke_sem.v#L16
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It follows very closely Definition 5.2.2 as it goes by recursion on the structure of the
term t. If t is a natural number in the syntax (i.e. var s), then we simply apply the
assignment α to s. If t is a function symbol f with a vector of terms v of the correct
arity, then we use the interpretation function i_interp to interpret f as a function, and
give to this function the vector of interpreted terms from v (i.e. Vector.map (eval α)
v). Indeed, the function (eval α) is the interpretation function of terms α̂ defined in

Definition 5.2.2 and the function Vector.map allows the application of a function to all
elements of a vector.

Then, we are ready to define first-order Kripke models by following Definition 5.2.1
and enhancing kmodel into FOkmodel (Ï).

Class FOkmodel :=

{

nodes : Type ;

reachable : nodes -> nodes -> Prop ;

k_interp : interp D ;

k_P : nodes -> forall P : preds , Vector.t D (ar_preds P)

-> Prop

}.

As in the propositional case, we have an underlying Kripke frame: a collection of
nodes (or worlds) and a relation reachable on them. Then, we have a domain D which
is not explicitly mentioned in the definition but is a required Variable in the context.
So, to define a FOkmodel we need to explicitly provide a domain. With this domain
in hand, we require an interpretation function for function symbols k_interp on this
domain, pertaining to Ifun of Definition 5.2.1. We finally get an interpretation function
for predicate symbols with k_P, as it takes a node and sends a predicate symbol P together
with a vector of the correct arity (i.e. Vector.t domain (ar_preds P)) to Prop. Then,
it appears that a model is of the shape (W,R,D, Ifun, Ipred), as expected.

We can turn to the definition of forcing (Ï).

Fixpoint wforces w (α : assign D) (ϕ : kform) : Prop :=

match ϕ with

| atom P v => k_P w P (Vector.map (@eval _ D k_interp α) v)

| Bot => False

| bin Imp ψ χ => wforces w α ψ -> wforces w α χ
| un Box ψ => forall v, reachable w v -> wforces v α ψ
| quant All ψ => forall j, wforces w (j .: α) ψ
| quant Ex ψ => exists j, wforces w (j .: α) ψ

end.

For this definition, we require a FOkmodel on a domain D which are both implicit here,
a node w in this model, an assignment α on D, and a formula ϕ. Then, we define wforces

by recursion on the structure of ϕ, following Definition 5.2.5. The cases for the connectives
⊥, and→ are similar to the propositional encoding, so we focus on the forcing of atoms
and quantified formulas.

For a predicate symbol P and a vector of terms v of the adequate arity, we have that
atom P v is forced in w under the assignment α if we have k_P w (Vector.map (@eval

_ D k_interp α) v). The latter expression is obtained if we have that the result of
the interpretation function for predicate symbols k_P holds, when given the node w, the
predicate symbol P and the vector of interpretations of terms in v given α (i.e. Vector
.map (@eval _ D k_interp alpha) v). Indeed, the function (@eval _ D k_interp

alpha) is the interpretation function of terms α̂ defined in Definition 5.2.2. Thus, we can
clearly see that our formalisation of Definition 5.2.5: M, w, α  P (t1, . . . , tn) if and only
if (α(t1), . . . , α(tn)) ∈ Ipred(w,P ).

We now explain the quantifiers. As their forcing only differs in the use of the meta-level

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Kripke_semantics/First_order/K_FO_Kripke_sem.v#L60
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quantifiers forall and exists, we can restrict our attention to one: All. The encoding
clearly follows the clause for ∀ in Definition 5.2.5 as it requires that for any element of
the domain j we have wforces w (j .: α) ψ, i.e. ψ is forced in w with the modified
assignment (j .: α).

For convenience, we can define a notion of forcing for all points in a model rather
straightforwardly (Ï).

Definition mforces α ϕ : Prop := forall w, wforces w α ϕ.

The definition above is helpful to give a compact definition of the global semantic
consequence relation. We formalise the latter and its local version in the definition below
(Ï).

Definition loc_conseq Γ ϕ :=

forall D (M : FOkmodel D) w α,
(forall ψ, In _ Γ ψ -> wforces D M w α ψ) ->

(wforces D M w α ϕ).

Definition glob_conseq Γ ϕ :=

forall D (M : FOkmodel D) α,
(forall ψ, In _ Γ ψ -> mforces D M α ψ) ->

(mforces D M α ϕ).

We easily recognize both relations from Definition 5.2.4.

https://github.com/ianshil/PhD_thesis/blob/61112db34864f7246853751a9c4b0dae6461a2d1/Toolbox_ModLog/Kripke_semantics/First_order/K_FO_Kripke_sem.v#L80
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Chapter 6

Soundness and Completeness

In the two previous chapters, we exhibited ways of capturing a logic. Each way allows to
obtain results about logics with more or less ease. Consequently, we would quite naturally
want to be able to capture a logic through a proof system and through a semantics to
get the best of both worlds. The results traditionally called soundness and completeness
allow us to do exactly this, by putting in correspondence a proof system and a semantics.

Definition 6.0.1. Let L be a language, P a proof system, S a semantics for L and R a
semantic consequence relation built from S. We name LP the set of provable consecutions,
i.e. {(Γ, ϕ) | (Γ, ϕ) is provable in P}, and LS the set {(Γ, ϕ) | (Γ, ϕ) ∈ R}. We say that:

- P is sound with respect to S if LP ⊆ LS;

- P is complete with respect to S if LS ⊆ LP.

6.1 The classical modal logic example: on paper

Here we connect the generalized Hilbert calculi defined in Definition 4.1.4 with the se-
mantic consequence relations defined in Definition 5.1.3 using the forcing relation given
in Definition 5.1.4 on the class of all Kripke frames. More precisely, we aim to prove the
following theorem.

Theorem 6.1.1. The following holds:

(1) Γ `w ϕ iff Γ |=l ϕ
(2) Γ `s ϕ iff Γ |=g ϕ

We break it down into two parts: soundness (from left to right) and completeness
(from right to right).

6.1.1 Soundness

First, we prove soundness of each generalized Hilbert calculus with respect to its cor-
responding semantic consequence relation. In essence, the proof of this statement boils
down to a proof of validity for each of the axioms, combined with a proof of preservation
of consecutions in rules. So, we separately prove that all axiom instances are valid.

Lemma 6.1.1. For all ϕ, if ϕ ∈ Ai
K then |= ϕ.

Proof. (Ï) Let ϕ ∈ Ai
K . We show the statement for each axiom ϕ can be an instance of.

In what follows let M = (W,R, I) be a model and w ∈W .

(MA1) We show that M, w  (γ → ψ) → ((ψ → χ) → (γ → χ)). Assume that M, w 
γ → ψ. We need to show that M, w  (ψ → χ)→ (γ → χ). Consequently, assume
M, w  ψ → χ. We then need to show that M, w  γ → χ. Assume M, w  γ.
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We need to show that M, w  χ. As M, w  γ → ψ and M, w  γ, we get that
M, w  ψ. Moreover we have M, w  ψ → χ, so M, w  χ. As M and w are
arbitrary, we get that |= (γ → ψ)→ ((ψ → χ)→ (γ → χ)).

(MA2) We show that M, w  ψ → (χ → ψ). Assume M, w  ψ. We need to show that
M, w  χ → ψ. So, assume M, w  χ. Then, we need to show that M, w  ψ,
which is one of our assumptions. So, we are done. As M and w are arbitrary, we
get that |= ψ → (χ→ ψ).

(MA3) We show that M, w  ((ψ → χ) → ψ) → ψ. Assume M, w  (ψ → χ) → ψ.
We need to show that M, w  ψ. We reason classically using the law of excluded
middle: we have that M, w  ψ or M, w 6 ψ. In the first case, we are done. In
the second case, we have M, w 6 ψ. Consequently, we get that M, w  ψ → χ by
semantic definition of →. However, as we have M, w  (ψ → χ) → ψ, we need to
have M, w  ψ, hence a contradiction. So, in both cases, we obtained M, w  ψ.
As M and w are arbitrary, we get that |= ((ψ → χ)→ ψ)→ ψ.

(MA4) We show that M, w  ⊥ → ψ. Assume that M, w  ⊥. We need to show that
M, w  ψ. Note that M, w  ⊥ cannot happen by definition, so we have a con-
tradiction. As a consequence, we trivially get that M, w  ψ. As M and w are
arbitrary, we get that |= ⊥ → ψ.

(MA5) We show that M, w  (ψ → χ) → ( ψ → χ). Assume M, w  (ψ → χ). We
need to show M, w  ψ → χ. Assume M, w  ψ. Thus, we need to show
M, w  χ. So, let v ∈ W such that wRv. Our goal is to show M, v  χ. As
we have M, w  (ψ → χ) and wRv, we get that M, v  ψ → χ. Furthermore,
as M, w  ψ and wRv, we get M, w  ψ. Thus, as we have M, v  ψ → χ and
M, v  ψ, we reach our goal: M, v  χ. So, we are done. AsM and w are arbitrary,
we get that |= (ψ → χ)→ ( ψ → χ).

�

With this lemma in hand, we can turn to soundness results.

Theorem 6.1.2. The following holds:

(1) Γ `w ϕ implies Γ |=l ϕ
(2) Γ `s ϕ implies Γ |=g ϕ

Proof. We prove each statement independently.

(1) (Ï) Assume Γ `w ϕ. We prove that Γ |=l ϕ by induction on the structure of the
proof of Γ `w ∆.

(El) Then, we have that ϕ ∈ Γ. Consequently, if M, w  Γ then we automatically
get M, w  ϕ for all M and w. So, Γ |=l ϕ.

(Ax) Then, we have that ϕ ∈ Ai
K . By Lemma 6.1.1 we get |= ϕ. Thus, we easily get

that Γ |=l ϕ.

(MP) By induction hypothesis applied on the premises Γ ` ϕ and Γ ` ϕ→ ψ, we get
that Γ |=l ϕ and Γ |=l ϕ → ψ hold. We need to show Γ |=l ψ. Let M be a
model and w ∈ W . Assume that M, w  Γ. We need to show that M, w  ψ.
As M, w  Γ and Γ |=l ϕ and Γ |=l ϕ → ψ, we directly obtain M, w  ϕ
and M, w  ϕ → ψ. Consequently, we obtain M, w  ψ. As M and w are
arbitrary, we get Γ |=l ψ.

(wNec) By induction hypothesis applied on the premise ∅ ` ϕ we get that ∅ |=l ϕ
holds. We show that Γ |=l ϕ. Let M be a model and w ∈ W . Assume that
M, w  Γ. We need to show that M, w  ϕ. Thus we need to show that for
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every v such that wRv we have M, v  ϕ. As |=l ϕ we get that M, v  ϕ. As
v is arbitrary, we have that M, w  ϕ. As M and w are arbitrary, we get
Γ |=l ϕ.

(2) (Ï) Assume `w [Γ | ∆]. We prove that Γ |=l ∆ by induction on the structure of the
proof of `w [Γ | ∆].

(El) Then, we have that ϕ ∈ Γ. Consequently, if M  Γ then we automatically get
M  ϕ for all M. So, Γ |=g ϕ.

(Ax) Then, we have that ϕ ∈ Ai
K . By Lemma 6.1.1 we get |= ϕ. Thus, we easily get

that Γ |=g ϕ.

(MP) By induction hypothesis applied on the premises Γ ` ϕ and Γ ` ϕ→ ψ, we get
that Γ |=g ϕ and Γ |=g ϕ → ψ hold. We need to show Γ |=g ψ. Let M be a
model. Assume that M  Γ. We need to show that M  ψ. Let w ∈ W . We
need to show thatM  ψ. AsM  Γ and Γ |=g ϕ and Γ |=g ϕ→ ψ, we directly
obtain M, w  ϕ and M, w  ϕ→ ψ. Consequently, we obtain M, w  ψ. As
w is arbitrary, we get M  ψ. As M is arbitrary, we get Γ |=g ψ.

(sNec) By induction hypothesis applied on the premise Γ ` ϕ we get that Γ |=g ϕ
holds. We show that Γ |=g ϕ. Let M be a model. Assume that M  Γ. We
need to show that M  ϕ. Let w ∈ W . We need to show M, w  ϕ. Thus
we need to show that for every v such that wRv we haveM, v  ϕ. As Γ |=g ϕ
andM  Γ, we get thatM, v  ϕ. As v is arbitrary, we have thatM, w  ϕ.
As w is arbitrary, we get M  ϕ. As M is arbitrary, we get Γ |=g ϕ.

�

These soundness results allow us to show two differences between the logics wKL and
sKL pointed out in Subsection 4.1.1.

Lemma 6.1.2. The following holds.

1. sKL 6⊆ wKL;

2. The detachment-deduction theorem fails for sKL.

Proof. For both statements, we rely on the holding of p `s p, as proven below.

p ` p
(El)

p ` p
(sNec)

With this result in hand, we can prove each statement independently.

1. (Ï) While we have (p, p) ∈ sKL, as shown above, we show that (p, p) 6∈ wKL
using soundness. It thus suffices to show that p 6|=l p. Consider the following model
M.

pw v

We clearly have that M, w  p, but also M, w 6 p as M, w 6 p and wRv.
Consequently, we have that p 6|=l p, hence (p, p) 6∈ wKL using soundness.

2. (Ï) We show that while we have p `s p, we do not have ∅ `s p→ p. To show
this, we use soundness and prove ∅ 6|=g p→ p. In fact, the modelM above suffices:
we have that M, w 6 p→ p as M, w  p and M, w 6 p, hence ∅ 6|=g p→ p.

�

In the next subsection, we turn to the other half of Theorem 6.1.1: completeness
results.
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6.1.2 Completeness

Our goal is to prove the following theorem.

Theorem 6.1.3. The following holds:

(1) Γ |=l ϕ implies Γ `w ϕ
(2) Γ |=g ϕ implies Γ `s ϕ

The strategy we adopt here consists of first proving (1) and second (2) using (1) through
a transformation of models establishing bisimulations. We consequently divide our work
into two parts.

Completeness of wKH

Here we focus on the logic wKL and show that it is complete with respect to the local
semantic consequence relation. We first establish a Lindenbaum lemma, ensuring the
existence for any set Γ such that Γ 6`w ϕ of a Lindenbaum extension Γ′ such that it is
a maximal consistent set and Γ′ 6`w ϕ. Second, we use this type of set, i.e. maximal
consistent, to construct a canonical model which allows us to prove completeness.

To obtain a Lindenbaum lemma, showing the existence of a maximal consistent set, we
need to proceed as follows. First, we need an encoding of formulas by natural numbers.
Second, we define a decoding function, which is some type of inverse of the encoding. These
two functions are then used in a third moment, where we define a selection function, picking
formulas, which is involved in the step-by-step construction of the Lindenbaum extension
of a set Γ. Fourth, the Lindenbaum extension, i.e. a maximal consistent set Γ′ such that
Γ ⊆ Γ′, is defined using the selection function. Finally, we prove the Lindenbaum lemma:
the Lindenbaum extension is a maximal consistent set such that Γ′ 6`w ϕ.

First, we assume given an encoding as defined below.

Definition 6.1.1. A function f : FormLCM
→ N is an encoding of FormLCM

if f is
injective, i.e. if f(ϕ) = f(ψ) then ϕ = ψ for ϕ,ψ ∈ FormLCM

.

Hypothesis 6.1.1. There is an encoding of FormLCM
.

We fix this encoding and call it encode0. We then define the encoding we use in our
Lindenbaum extension.

Definition 6.1.2. We define encode : ϕ 7→ S (encode0(ϕ)), where S is the successor
operator on natural numbers.

Note that encode is also injective. Its specificity in comparison to encode0 is that it
has the additional property of making 0 the encoding of no formula, which is useful in our
Lindenbaum construction as the stage 0 of the latter then corresponds to no formula.

Second, we need some type of inverse of encode: a decoding function. To define such
a function, we define the option type Opt(X) parametric in the type X, which represents
the encapsulation of an optional value from X.

Definition 6.1.3. Let X be a type. We inductively define Opt(X) the option type of X
as follows.

- None ∈ Opt(X);

- If x ∈ X then Some(x) ∈ Opt(X).

With this type defined, we can define what a decoding function is.

Definition 6.1.4. Given an encoding function f , a function g : N→ Opt(FormLCM
) is a

decoding function for f if g satisfies the following:
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1. for all ϕ ∈ FormLCM
we have g(f(ϕ)) = Some(ϕ);

2. for all n ∈ N, if there is no ϕ ∈ FormLCM
such that f(ϕ) = n, then g(n) = None.

Lemma 6.1.3. There is a decoding function for encode.

Proof. (Ï) We define the relation encode−1 ⊆ N×Opt(FormLCM
) such that:

(n, o) ∈ encode−1 iff

{
o = None and there is no ϕ such that encode(n) = ϕ

o = Some(ϕ) for some ϕ and encode(ϕ) = n

First, let us prove that this is a function, i.e. that for every n ∈ N there is a unique
o ∈ Opt(FormLCM

) such that (n, o) ∈ encode−1. Let n ∈ N. If there is no ϕ such
that encode(ϕ) = n, then by the above definition we have that (n,None) ∈ encode−1.
Note that it is unique, as if another o ∈ Opt(FormLCM

) we have (n, o) ∈ encode−1, we
need o to be of the shape Some(ϕ). The latter can only happen if there is a ϕ such that
encode(n) = ϕ, a contradiction. If there is a ϕ such that encode(ϕ) = n, then by definition
we get that (n, Some(ϕ)) ∈ encode−1. Assume for a contradiction that there is another
o ∈ Opt(FormLCM

) such that (n, o) ∈ encode−1. Then, o is either of the form None or of
the form Some(ψ) for ψ 6= ϕ. If the former, then we can argue as above for a contradiction.
If the latter, we would then have by definition that encode(ϕ) = encode(ψ) = n. However,
as encode is injective, we have that ϕ = ψ, a contradiction. So, we obtain uniqueness.

Second, we proceed to prove the above properties.

- We have that encode−1(encode(ϕ)) = encode−1(n) for some n. Now, by definition
of encode−1, we get that encode−1(n) = ϕ as encode(ϕ) = n.

- Let n ∈ N and assume that there is no ϕ such that encode(ϕ) = n. Then, by
definition of encode−1, we get that encode−1(n) = None.

�

Using the previous lemma, we fix a decoding function of encode and call it decode.
Third, with these functions in hand, we can define a selection function crucial to our

Lindenbaum extension.

Definition 6.1.5. We define the selection function sel which takes as inputs a set of
formulas, a formula, and a natural number, and outputs a set of formulas (note that there
is a priority order from bottom to top).

sel(Γ, ϕ, n) =


Γ if decode(n) = None

Γ ∪ {ψ} if decode(n) = Some(ψ) and Γ, ψ 6`w ϕ
Γ ∪ {ψ → ⊥} if decode(n) = Some(ψ) and Γ, ψ `w ϕ

The above definition is simple. If n is the encoding of no formula, then sel outputs
the set Γ it was given (case 1). If n is the encoding of some formula ψ, and the addition
of ψ to Γ does not entail ϕ, i.e. Γ, ψ 6`w ϕ, then sel outputs Γ ∪ {ψ} (case 2). If n is the
encoding of some formula ψ, and the addition of ψ to Γ does entail ϕ, i.e. Γ, ψ `w ϕ, then
sel outputs Γ ∪ {ψ → ⊥} (case 3).

The function sel is built with the intention of not entailing ϕ while adding to Γ either
a formula ψ or its negation ψ → ψ.

To obtain this selection property for all formulas, we need to go through all natural
numbers. Our fourth point deals with this through the next function.

Definition 6.1.6. We define the function Lindf, which takes as inputs a set of formulas,
a formula, and a natural number, and outputs a set of formulas, inductively on natural
numbers.
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- Lindf(Γ, ϕ, 0) = Γ

- Lindf(Γ, ϕ, (S m)) = sel( Lindf(Γ, ϕ,m), ϕ , (S m) )

We define the Lindenbaum extension of set Γ for a formula ϕ as follows:

Lind(Γ, ϕ) =

∞⋃
n=0

(Lindf(Γ, ϕ, n))

The function Lindf takes a set Γ, a formula ϕ and a natural number n, and proceeds
to extend step-by-step from 0 to n the set Γ using at each step the function sel. With this
function in hand, it is rather straightforward to obtain the Lindenbaum extension of a set

Γ for a formula ϕ: we use the union of Lindf(Γ, ϕ, n) for all n ∈ N, i.e.
∞⋃
n:=0

(Lindf(Γ, ϕ, n)).

Then, we proceed to establish that the Lindenbaum extension of a set Γ for a formula
ϕ is such that Γ 6`w ϕ is a maximal consistent set, as defined below.

Definition 6.1.7. Let Γ ⊆ FormLCM
We say that Γ is

- consistent if Γ 6`w ⊥;

- maximal if for every ϕ,ψ ∈ FormLCM
, ϕ ∈ Γ or (ϕ→ ⊥) ∈ Γ;

- closed under deducibility if for every ϕ ∈ FormLCM
, if Γ `w ϕ then ϕ ∈ Γ.

Next, we turn to the Lindenbaum lemma.

Lemma 6.1.4 (Lindenbaum Lemma). If Γ 6`w ϕ then there exist Γ′ such that:

1. Γ ⊆ Γ′;

2. Γ′ 6`w ϕ;

3. Γ′ is maximal;

4. is consistent.

Proof. We claim that Lind(Γ, ϕ) is such a set. For convenience, let Γ′ = Lind(Γ, ϕ).

First, we prove an intermediary result showing that each step of the construction
Lindf(Γ, ϕ, n) preserves the unprovability of the judgement Lindf(Γ, ϕ, n) ` ϕ (Ï). So,
we show that Lindf(Γ, ϕ, n) 6`w ϕ by induction on n. If n := 0, then we have that
Lindf(Γ, ϕ, 0) 6`w ∆ by assumption as Lindf(Γ, ϕ, 0) = Γ. If n := S m, then we need to
show that Lindf(Γ, ϕ, (S m)) 6`w ∆. We make a first case distinction on decode(S m).

1. If decode(S m) = None, then we have the following.

Lindf(Γ, ϕ, (S m)) = sel( Lindf(Γ, ϕ,m) , ϕ , (S m) ) = Lindf(Γ, ϕ,m)

However, we get by induction hypothesis that Lindf(Γ, ϕ,m) 6`w ϕ so we are done.

2. If decode(S m) = Some(ϕ), then we need to make a case distinction on the structure
of ψ. There, depending on whether Lindf(Γ, ϕ,m) `w ψ, we have two cases.

(a) If Lindf(Γ, ϕ,m), ψ 6`w ϕ, then we have the following.

sel( Lindf(Γ, ϕ,m) , ϕ , (S m) ) = Lindf(Γ, ϕ,m) ∪ {ψ}

But note that by assumption we get Lindf(Γ, ϕ,m), ψ 6`w ϕ, that is we have
Lindf(Γ, (S m)) 6`w ϕ. So, we are done.
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(b) If Lindf(Γ, ϕ,m), ψ `w ϕ, then we have the following.

sel( Lindf(Γ, ϕ,m) , ϕ , (S m) ) = Lindf(Γ, ϕ,m) ∪ {ψ → ⊥}

Assume for a contradiction that Lindf([Γ | ∆], (S m)) `w ϕ, which is equal to
the following.

Lindf(Γ, ϕ,m), ψ → ⊥ `w ϕ

Using Theorem 4.1.1 on Lindf(Γ, ϕ,m), ψ `w ϕ, we get Lindf(Γ, ϕ,m) `w ψ → ϕ.
Furthermore, we use Theorem 4.1.1 on Lindf(Γ, ϕ,m), ψ → ⊥ `w ϕ, we get the
following.

Lindf(Γ, ϕ,m) `w (ψ → ⊥)→ ϕ

Now, we have a theorem pertaining to a reasoning by cases using the law of the
excluded-middle (Ï). This theorem has the following shape.

((ψ → ⊥)→ ϕ)→ (ψ → ϕ)→ ϕ

So, we can use the rule (MP) twice with the two previously established judge-
ments to obtain a proof of Lindf(Γ, ϕ,m) `w ϕ. But this contradicts our induc-
tion hypothesis, so we completed the proof of this case.

In all possible cases we concluded that Lindf(Γ, ϕ,m) 6`w ϕ, so we are done.

With this result in hand, we proceed to prove each of the items.

1. (Ï) We prove that Γ ⊆ Γ′. This is easily obtained as Lind(Γ, ϕ) successively extends
Γ with ψ or ψ → ⊥ for all ψ.

2. (Ï) We need to show Γ′ 6`w ϕ. Assume for a contradiction that Γ′ `w ϕ. However,
from this assumption we can that that there is a m such that Lindf(Γ, ϕ,m) `w ϕ,
as ultimately we can finitarize Γ′. But this is in contradiction with our preliminary
result above. So, Γ′ 6`w ϕ.

3. (Ï) We need to show that Γ′ is maximal. Let ψ ∈ FormLCM
. It is straightforward

to see that at stage m = encode(ψ), the function Lindf(Γ, ϕ,m) either adds ψ or
adds ψ → ⊥ to the set we are building. Consequently, it must be the case that in
the resulting set Γ′ we have ψ ∈ Γ′ or (ψ → ⊥) ∈ Γ′.

4. (Ï) We need to show Γ′ 6`w ⊥. Assume for a contradiction that Γ′ `w ⊥. Then,
using MA4 and (MP) we can straightforwardly show that Γ′ `w ϕ. But this is in
contradiction with item 2.

So, Γ′ satisfies all of the above items. �

We just showed that for every Γ such that Γ 6`w ϕ there is a maximal consistent set Γ′

which an extension of Γ for ϕ such that Γ′ 6`w ϕ. Next, we use these maximal consistent
sets in a canonical model.

Definition 6.1.8. The canonical model Mc = (W c, Rc, Ic) is defined in the following
way:

1. W c = {Γ | Γ is a maximal consistent set};

2. Γ1R
cΓ2 iff for all ϕ ∈ Γ1 we have ϕ ∈ Γ2;

3. Ic(p) = {Γ ∈W c | p ∈ Γ}.

We use this canonical model as a witness: we intend to show that if Γ 6`w ϕ, then we
have that there is a point in Mc which is a Γ-point but does not force ϕ, hence Γ 6|=l ϕ.
As usual a canonical model proof technique, we prove the crucial Truth Lemma. To do
so, we first require the next lemma on maximal consistent sets.
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Lemma 6.1.5. Let Γ ⊆ FormLCM
. If Γ is a maximal consistent set, then Γ is closed

under deducibility.

Proof. (Ï) Assume Γ is a maximal consistent set. Let ϕ ∈ FormLCM
. Assume that

Γ `w ϕ. As Γ is maximal, we have that ϕ ∈ Γ or (ϕ→ ⊥) ∈ Γ. If the former, we are done.
If the latter, we obtain a contradiction as (ϕ → ⊥) ∈ Γ and Γ `w ϕ leads to Γ `w ⊥. In
both cases, we get ϕ ∈ Γ. �

Then, we need the following lemma, ensuring that the canonical model is properly
built: if a point Γ is such that all its successors contain ϕ, then ϕ must be in Γ.

Lemma 6.1.6 (Existence Lemma). For every Γ ∈W c and ϕ:

[ ϕ ∈ Γ′ for all Γ′ ∈W c such that ΓRcΓ′ ] implies ϕ ∈ Γ.

Proof. (Ï) Let Γ ∈ W c and ϕ, and assume that ϕ ∈ Γ′ for all Γ′ ∈ W c such that ΓRcΓ′.
We proceed to show that ϕ ∈ Γ. As Γ ∈W c, we have that Γ is maximal. Consequently,
we have that ϕ ∈ Γ or ( ϕ → ⊥) ∈ Γ. In the former case, we are done. We proceed
to show that the latter leads to a contradiction. Let us divide Γ into two sets Γ0, of
non-boxed formulas, and Γ1 of boxed formulas.

First, we show that Γ1, ϕ→ ⊥ 6`w ⊥. Assume for a contradiction that Γ1, ϕ→ ⊥ `w ⊥.
Then, we can use Theorem 4.1.1 to obtain Γ1 `w (ϕ→ ⊥)→ ⊥. However, we can show
that ((ϕ→ ⊥)→ ⊥)→ ϕ is a theorem of wKH (Ï), so we easily get Γ1 `w ϕ. Thus, we
can apply the following admissible (Ï) rule to obtain Γ1 `w ϕ.

Γ′ ` ψ
Γ′ ` ψ

Thus, using Theorem 4.1.1 we obtain Γ `w ϕ. However, as ( ϕ→ ⊥) ∈ Γ, we also have
that Γ `w ϕ→ ⊥. Thus, we straightforwardly obtain Γ `w ⊥, using MA4 and (MP).
But this is a contradiction, as Γ is consistent. So, we have that Γ1, ϕ→ ⊥ 6`w ⊥.

Second, we use Lemma 6.1.4 with Γ1, ϕ→ ⊥ 6`w ⊥ to obtain a maximal consistent set
Γ′ such that Γ1 ∪ {ϕ → ⊥} ⊆ Γ′. Moreover, we can show that ΓRcΓ′. Indeed, we have
that ϕ ∈ Γ′ for any ϕ such that ϕ ∈ Γ: this holds because Γ′ is an extension of Γ1, while

Γ1 is the set of all boxed formulas of Γ.
Finally, as ΓRcΓ′ and our initial assumption that ϕ ∈ Γ′′ for all Γ′′ ∈ W c such that

ΓRcΓ′′, we obtain ϕ ∈ Γ′. Now, we can easily obtain Γ′ `w ⊥: ϕ→ ⊥ ∈ Γ′ as Γ1 ∪ {ϕ→
⊥} ⊆ Γ′, and ϕ ∈ Γ′ as we just argued. But this is a contradiction, as Γ′ is consistent. So,
we trivially get that ϕ ∈ Γ.

In both cases, we obtained that ϕ ∈ Γ, so we are done. �

We then turn to the Truth Lemma, which relates forcing and elementhood in the
canonical model: Mc,Γ  ϕ if and only if ϕ ∈ Γ. Note that our use of maximal consistent
set entails that we have equivalently that Mc,Γ 6 ϕ if and only if ϕ 6∈ Γ. In essence, the
Truth Lemma shows that a maximal consistent set Γ ∈ W c is a full description of which
formula ψ is forced in the point Γ, if ψ ∈ Γ, and which formula is not, if ψ 6∈ Γ.

Lemma 6.1.7 (Truth Lemma). For every Γ ∈W c:

ψ ∈ Γ iff Mc,Γ  ψ.

Proof. (Ï) By induction on ψ.

- ψ := p: by definition p ∈ Γ iff Γ ∈ Ic(p) iff Mc, [Γ | ∆]  p.

- ψ := ⊥: we have that ⊥ 6∈ Γ as otherwise we get Γ 6`w ⊥ which is a contradiction. In
addition to that, we haveMc,Γ 6 ⊥ by definition. So, we have ⊥ ∈ Γ iffMc,Γ  ⊥
trivially.
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- ψ := ψ1 → ψ2: (⇒) Assume ψ1 → ψ2 ∈ Γ. We need to show that Mc,Γ  ψ1 →
ψ2. Assume Mc,Γ  ψ1. We need to show that Mc,Γ  ψ2. By the induction
hypothesis, it is sufficient to show that ψ2 ∈ Γ. From Mc,Γ  ψ1 we obtain ψ1 ∈ Γ
by induction hypothesis. Also, we have ψ1 → ψ2 ∈ Γ. Thus, it is straightforward to
prove that Γ `w ψ2 using (MP). Using Lemma 6.1.5 we get ψ2 ∈ Γ. The induction
hypothesis gives us Mc,Γ  ψ2.

(⇐) Assume Mc,Γ  ψ1 → ψ2. As Γ is maximal, we have that ψ1 ∈ Γ or (ψ1 →
⊥) ∈ Γ. In the first case, we can obtain Mc,Γ  ψ1 using the induction hypothesis.
Consequently, as Mc,Γ  ψ1 → ψ2 we get Mc,Γ  ψ2. Using the induction
hypothesis again, we obtain ψ2 ∈ Γ. Then, it is straightforward to use ψ2 → (ψ1 →
ψ2), an instance of MA2, to prove that Γ `w ψ1 → ψ2. We get ψ1 → ψ2 ∈ Γ using
Lemma 6.1.5. In the second case, where we have (ψ1 → ⊥) ∈ Γ, we can easily obtain
that Γ, ψ1 `w ⊥ using (MP) and (El). Consequently, we can prove Γ, ψ1 `w ψ2 using
MA4 and (MP). Thus, it suffices to apply Theorem 4.1.1 to get Γ `w ψ1 → ψ2. By
Lemma 6.1.5, we obtain ψ1 → ψ2 ∈ Γ. In both cases we reach ψ1 → ψ2 ∈ Γ.

- ψ := ψ1: (⇒) Assume ψ1 ∈ Γ. We need to show Mc,Γ  ψ1. Let Γ′ ∈ W c

such that ΓRcΓ′. We need to show Mc,Γ′  ψ1. By the induction hypothesis, it
is sufficient to show ψ1 ∈ Γ′. Now, as ΓRcΓ′ and by definition of Rc, we get that
ψ1 ∈ Γ′ as ψ1 ∈ Γ. So, we are done.

(⇐) AssumeMc,Γ  ψ1. Then, for all Γ′ ∈W c such that ΓRcΓ′ we haveMc,Γ′ 
ψ1. Consequently, using the induction hypothesis we get that all such Γ′ are such
that ψ1Γ′. Then, we can use Lemma 6.1.6 to obtain ψ1 ∈ Γ. So, we are done.

�

We are now ready to prove that wBIL is complete with respect to the local semantic
consequence relation.

Theorem 6.1.4. The following holds:

Γ |=l ϕ implies Γ `w ϕ

Proof. (Ï) We reason contrapositively by showing that Γ 6`w ϕ implies Γ 6|=l ϕ, which
is classically equivalent to our goal. Assume Γ 6`w ∆. Lemma 6.1.4 gives us a maximal
consistent set Γ′ such that Γ ⊆ Γ′ and Γ′ 6`w ϕ. So, by Lemma 6.1.7 we obtain that in the
canonical model of Definition 6.1.8 the following holds: Mc,Γ′ 6 ϕ, while Mc, [Γ | ′]  Γ.
Consequently, we have that Γ 6|=l ϕ. �

Completeness of sKH

Now, we show that sKL is complete with respect to the global semantic consequence
relation. As mentioned earlier, we rely on the completeness of wBIL with respect to the
local semantic consequence shown just above. More precisely, we show that if a pair Γ ` ϕ
is unprovable in sBIH, then through Theorem 6.1.4 we extract the existence of a model
M having a point w forcing ωΓ (which we define below) and not forcing ϕ. But this is
not enough becauseM is not necessarily a Γ-model. Therefore, we make use of this model
M by restricting it to another model containing w which is a Γ-model and where w still
does not force ϕ, making use of a bisimulation between the two models. Thus, the latter
model witnesses Γ 6|=g ϕ.

First, we define what the set of formula ωΓ is.

Definition 6.1.9. We define:

1. for n ∈ N, let 0ϕ := ϕ and let (n+1)ϕ := nϕ;

2. nΓ = { nγ | γ ∈ Γ};
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3. ωΓ =
⋃
n∈N

nΓ.

Second, we show how to restrict a model M from a point w. Often in the literature,
this restricted model is called the point generated submodel [11, p.56].

Definition 6.1.10. Let M = (W,R, I) be a model and w ∈W . The restriction of M in
w is the model Mw = (Ww, Rw, Iw), where:

- Ww = {v ∈W | there is a chain wR . . . Rv};

- Rw = R ∩ (Ww ×Ww);

- Iw(p) = I(p) ∩Ww.

As suggested above, we show that the point w in the initial model is bisimilar with
itself in the restriction of the model.

Lemma 6.1.8. For all model M = (W,R, I) and w ∈W , we have that M, w �Mw, w.

Proof. (Ï) We need to exhibit a bisimulation B ⊆ (W × Ww). Consider the relation
B = {(v, v) | v ∈ Ww}. Note that B ⊆ (W ×Ww), as required. We are left to show that
B satisfies the conditions of the Definition 5.1.5. Let v ∈Ww.

(B1) Let p ∈ V. We have v ∈ I(p) iff v ∈ Iw(p) by definition of the restriction.

(B2) Let u ∈Ww such that vRwu. As u ∈Ww, we get that u ∈W . Finally, as vRwu we
get that vRu by the definition of the restriction, so we are done.

(B3) Let u ∈ W such that vRu. As v ∈ Ww, we get that there is a chain wR . . . Rv. So,
there is a chain wR . . . RvRu as vRu. Consequently, we get that u ∈ Ww. Finally,
as vRu we get that vRwu, so we are done.

�

However, Lemma 5.1.1 informs us that bisimulations entail logical equivalence. So, we
easily obtain the following corollary showing that the two models force the same formulas
in w.

Corollary 6.1.1. For all model M = (W,R, I), w ∈W and ϕ ∈ LCM:

M, w  ϕ iff Mw, w  ϕ

Proof. (Ï) As we have that M, w � Mw, w by Lemma 6.1.8, we know by Proposition
5.1.1 that M, w  ϕ iff Mw, w  ϕ. �

Let us recall that our intention is to obtain a model forcing Γ everywhere out of a
model forcing ωΓ in one point. Given a modelM and a point w such thatM, w  ωΓ,
we can obtain the promised model: it is the restriction of M in w. We can sustain our
claim by showing that if M, w  ωΓ, then for all v ∈ Ww we have Mw, v  Γ. This is
the essence of the next lemma.

Lemma 6.1.9. Let n ∈ N be a natural number,M = (W,R, I) a model, w, v ∈W points,
ϕ ∈ FormLCM

a formula and wR . . . Rv a chain in M. If M, w  nϕ, then M, v  ϕ.

Proof. (Ï) We prove the statement by induction on n.

- n = 0: then v = w as the chain wR . . . Rv is of length 0. ConsequentlyM, w  ϕ as
M, w  0ϕ by assumption.
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- n = S m: then there is u such that wR . . . RuRv where the length of the chain
wR . . . Ru is of length m. Given that M, w  Smϕ by assumption, we easily
obtain that M, w  m( ϕ) as Smϕ = m( ϕ). Thus, we can use the induction
hypothesis to obtain that M, u  ϕ. Consequently, as we have uRv we get by the
definition of the semantics that M, v  ϕ.

�

More formally, we now exploit these ideas to show the completeness of sKL with respect
to the global semantic consequence.

Theorem 6.1.5. The following holds:

Γ |=g ϕ implies Γ `s ϕ

Proof. (Ï) We reason contrapositively by showing that Γ 6`s ϕ implies Γ 6|=g ϕ, which is
classically equivalent to our goal. Assume Γ 6`s ϕ. We show that Γ 6|=g ϕ. Note that for all
γ ∈ ωΓ we have Γ 6`s γ, as the rule (sNec) is applicable at will with any context in sKH.
Consequently, we have that ωΓ 6`s ϕ, else we would get Γ `s ϕ using Lemma 4.1.1. Thus,
we get ωΓ 6`w ϕ by item 1 of Lemma 4.1.3. By Theorem 6.1.4 we know that ωΓ 6|=l ∆.
So, there is a model M = (W,R, I) and w ∈ W such that M, w  ωΓ and M, w 6 ϕ.
Now we consider the restriction ofM in w, i.e. the modelMw = (Ww, Rw, Iw). As shown
in Corollary 6.1.1 we have thatMw, w  ωΓ andMw, w 6 ϕ. If we prove thatMw  Γ,
then we are done as we would then have exhibited a Γ-model Mw which has one point w
that not a ϕ-point, hence Γ 6|=g ϕ. We thus proceed to show that Mw  Γ. Let v ∈ Ww

and γ ∈ Γ. We need to show Mw, v  γ. As v ∈ Ww we know that there is a chain
wR . . . Rv. We straightforwardly obtain that Mw, w  nγ as Mw, w  ωΓ. We finally
obtain that Mw, v  γ using Lemma 6.1.9 using Mw, w  nγ and the existence of the
chain wR . . . Rv. As v and γ are arbitrary we get Mw  Γ. �

6.2 The classical modal logic example: in Coq

In this section, we provide the formalisation of the soundness and completeness results
given above.

6.2.1 Soundness

All the elements presented in this subsection can be found here: Ï.

We start with soundness. To obtain soundness of both generalized Hilbert calculi with
respect to their semantic consequence relations, we first proved that any instance of an
axiom in AK is valid. This result is straightforwardly formalised as follows (Ï).

Lemma Ax_valid : forall ϕ,
KAxioms ϕ -> (forall M w, wforces M w ϕ).

Using this result, we could obtain soundness results linking wKH and sKH with re-
spectively the local and the global semantic consequence relations. These two results are
formalised below (Ï) (Ï).

Theorem wSoundness : forall Γ ϕ,
wKH_prv (Γ, ϕ) -> (loc_conseq Γ ϕ).

Theorem sSoundness : forall Γ ϕ,
wKH_prv (Γ, ϕ) -> (loc_conseq Γ ϕ).

The two consequences we could draw from the soundness results above, presented in
Lemma 6.1.2, are formalised as follows (Ï) (Ï).
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Lemma Consequences_Soundness1 :

exists s, (sKH_prv s) /\ (( wKH_prv s) -> False).

Lemma Consequences_Soundness2 :

(sKH_prv (Singleton _ # p , Box # p)) /\

(( sKH_prv (Empty_set _, (# p) --> (Box # p))) -> False).

6.2.2 Completeness

All the elements presented in this subsection can be found here: Ï.
Below, we first show the formalisation of the results leading to the completeness of

wKH and then turn to sKH.

Completeness of wKH

Let us recall that the structure of the argument for the completeness of wKH goes through
the following elements: (1) a Lindenbaum lemma, (2) a canonical model construction, (3)
an existence lemma, (4) a truth lemma, (5) a final proof of completeness. We show how
we formalise each of these steps below.

First, we need to attain the Lindenbaum lemma, i.e. Lemma 6.1.4. The proof of this
lemma relies on encoding and decoding functions for the set of propositional formulas. We
assume given an encoding function encode0, with its injectivity as hypothesis (Ï).

Parameter encode0 : MPropF -> nat.

Hypothesis encode0_inj : forall ϕ ψ n,

(encode0 ϕ = encode0 ψ) -> ϕ = ψ.

With this encoding function in hand, we can proceed as in Definition 6.1.2 and define
the encoding function we effectively use (Ï).

Definition encode : MPropF -> nat := fun x => S (encode0 x).

Thus, encode is a function making sure that no formula is encoded as 0, as it takes the
initial encoding of encode0 and adds one using the successor function on natural numbers
S.

We formalises Lemma 6.1.3, showing the existence of a decoding function for encode,
as follows (Ï).

Lemma decoding_inh :

{g : nat -> option (MPropF) |

(forall A, g (encode A) = Some A) /\

(forall n,

((( exists A, encode A = n) -> False) -> g n = None)) }.

This lemma claims that the type described on lines 2 to 4 is inhabited : there is an
element of that type. This element is a function g of type nat -> option (MPropF),
which we intend to be a decoding function for encode. To do so, the function is required
to satisfy the conjunction of line 3 with the property expressed on lines 4 and 5. The first
conjunct requires that the composition of g and encode on A gives back the option Some A.
Thus, we can retrieve the encoded formula using the function g, as required by item 1 of
Definition 6.1.4. The second conjunct corresponds to the clause expressed by item 2 of the
same definition. Clearly, this second property requires that if a natural number n is the
encoding of no formula, i.e. (exists A, encode A = n) -> False, then on the output
corresponding to n via the function g is None. Put together, these two properties give us
a decoding function for encode.

Then, we can obtain a decoding function for encode by extracting the witness of the
above lemma using proj1_sig, which is a decoding function (Ï).
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Definition decoding : nat -> option (MPropF) :=

proj1_sig decoding_inh.

Next, we proceed to the definition in two steps of our selection function sel given in
Definition 6.1.5. First, we define how to choose a formula (Ï).

Definition choice_form Γ ϕ ψ : Ensemble MPropF :=

fun x => (In _ Γ x) \/

((( wKH_prv (Union _ Γ (Singleton _ ψ), ϕ) -> False) -> x = ψ)
/\

(wKH_prv (Union _ Γ (Singleton _ ψ), ϕ) -> x = (ψ --> Bot))).

The function choice_form, when given a formula Γ and two formulas ϕ and ψ outputs
a set of formulas. As explained above, in Coq an element of type Ensemble MPropF is a
function from MPropF to Prop which can be thought of as the characteristic function of the
set. Thus, the set above has as elements the formulas which satisfy the property described
after fun x =>. We can thus see that x can be an element if it is an element of Γ, i.e. In
_ Γ x, or (\/) if it satisfies the conjunction given in the last three lines. This conjunction
is a case distinction on the holding of wKH_prv (Union _ Γ (Singleton _ ψ), ϕ). If
it does not, then we add x to the set we are constructing if it is equal to ψ, as expressed
by the first conjunct. If it does, then we add x to the set if it is equal to ψ −− > Bot,
as expressed by the second conjunct. As we are using classical logic as meta-logic, we can
see that it is either the case that (wKH_prv (Union _ Γ (Singleton _ ψ), ϕ)) or (

wKH_prv (Union _ Γ (Singleton _ ψ), ϕ) --> False) holds. Consequently, we can
infer that choice_form adds either ψ or ψ --> Bot to the set we are building. This looks
already very similar to the two last cases of Definition 6.1.5.

Second, we formalise the selection function sel which takes as input a natural number
(Ï).

Definition choice_code Γ ϕ n : Ensemble MPropF :=

match decoding n with

| None => Γ
| Some ψ => choice_form Γ ϕ ψ

end.

This function is such that if it is given a natural number not corresponding to an
encoding, then it outputs the set of formulas Γ it was given. This corresponds to the first
case of Definition 6.1.5. If the natural number n does correspond to an encoding, then the
outputted set of formulas is nothing but choice_form Γ ϕ ψ, which extends Γ with ψ
or ψ --> Bot. We see that we thus formalised the two last cases of Definition 6.1.5.

The selection function above allows us to formalise the function Lindf from Defini-
tion 6.1.6, which helps us build step-by-step our Lindenbaum extension (Ï). It strikingly
resembles the pen-and-paper version.

Fixpoint Lindf Γ ϕ n : Ensemble MPropF :=

match n with

| 0 => Γ
| S m => choice_code (Lindf Γ ϕ m) ϕ (S m)

end.

We can thus formalise the Lindenbaum extension of a set Γ for a formula ϕ from
Definition 6.1.6 (Ï).

Definition Lind Γ ϕ : Ensemble MPropF :=

fun x => (exists n, In _ (Lindf Γ ϕ n) x).

Given its two arguments, it creates the set of all formulas which is an element of

Lindf Γ ϕ n, for some n. This set corresponds to
∞⋃
n=0

(Lindf(Γ, ϕ, n)).
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While we embedded the proof of various properties in the Lindenbaum lemma (Lemma
6.1.4), we decided in the formalisation to separate them into different statements. So, we
started by showing that the Lindenbaum extension of a set Γ for a formula ϕ is an extension
of Γ (Ï).

Lemma Lind_extens : forall Γ ϕ x,

In _ Γ x -> In _ (Lind Γ ϕ) x.

Then, we formalised the fact that if the pair(Γ, ϕ) is unprovable, then so is the pair
(Lindf Γ ϕ n, ϕ) for any n (Ï).

Lemma Unprv_Lindf : forall n Γ ϕ,
(wKH_prv (Γ, ϕ) -> False) ->

(wKH_prv (Lindf Γ ϕ n, ϕ) -> False).

The latter results leads to the unprovability of the pair (Lind Γ ϕ, ϕ) with the
Lindenbaum extension (Ï).

Lemma Unprv_Lind : forall Γ ϕ,
(wKH_prv (Γ, ϕ) -> False) ->

(wKH_prv (Lind Γ ϕ , ϕ) -> False).

In addition to that, we could formalise the maximality of the Lindenbaum extension,
expressed in the two last lines (Ï).

Lemma maximality_Lind_extens : forall Γ ϕ,
(wKH_prv (Γ, ϕ) -> False) ->

(forall ψ,
(In _ (Lind Γ ϕ) ψ) \/ (In _ (Lind Γ ϕ) (ψ --> Bot))).

And the last result before our Lindenbaum lemma is the consistency of the Lindenbaum
extension (Ï).

Lemma Consist_Lind : forall Γ ϕ,
(wKH_prv (Γ, ϕ) -> False) ->

(wKH_prv (Lind Γ ϕ, Bot) -> False).

Our formalisation of the Lindenbaum lemma is as follows. In essence, it shows that if
the pair (Γ, ϕ) is unprovable, then there is a Γm which extends Γ (third line), is maximal
(fourth line), and makes the pair (Γm, ϕ) unprovable (Ï).

Lemma Lindenbaum_lemma : forall Γ ϕ,
(wKH_prv (Γ, ϕ) -> False) ->

(exists Γm, Included _ Γ Γm /\

(forall ψ, (Γm ψ) \/ (Γm (ψ --> Bot))) /\

(wKH_prv (Γm, ϕ) -> False)).

Second, we formalise our canonical model construction as in Definition 6.1.8. To do
so, we define the property of being a maximal consistent set (Ï).

Definition is_mcs Γ : Prop :=

(( forall ϕ, (Γ ϕ) \/ (Γ (ϕ --> Bot))) /\

(wKH_prv (Γ, Bot) -> False)).

As we can see from the definition, we have that is_mcs Γ if Γ is maximal, as shown
in the second line, and consistent, as per the third line. With this property in hand, we
can create the type of all elements satisfying this property (Ï).

Definition Canon_worlds : Type :=

{x : Ensemble MPropF | is_mcs x}.

An element of Canon_worlds is a pair: a first element x which is of type Ensemble

MPropF, and a second element which is a proof of is_mcs x, i.e. that x is a maximal consis-
tent set. We use this type of elements as nodes in the canonical model we build. To obtain

https://github.com/ianshil/PhD_thesis/blob/792111e02a8c098955f220c2eb22137ae4c16ddd/Toolbox_ModLog/Completeness/wKL/wKH_Lindenbaum_lem.v#L163
https://github.com/ianshil/PhD_thesis/blob/792111e02a8c098955f220c2eb22137ae4c16ddd/Toolbox_ModLog/Completeness/wKL/wKH_Lindenbaum_lem.v#L171
https://github.com/ianshil/PhD_thesis/blob/792111e02a8c098955f220c2eb22137ae4c16ddd/Toolbox_ModLog/Completeness/wKL/wKH_Lindenbaum_lem.v#L259
https://github.com/ianshil/PhD_thesis/blob/792111e02a8c098955f220c2eb22137ae4c16ddd/Toolbox_ModLog/Completeness/wKL/wKH_Lindenbaum_lem.v#L271
https://github.com/ianshil/PhD_thesis/blob/792111e02a8c098955f220c2eb22137ae4c16ddd/Toolbox_ModLog/Completeness/wKL/wKH_Lindenbaum_lem.v#L317
https://github.com/ianshil/PhD_thesis/blob/792111e02a8c098955f220c2eb22137ae4c16ddd/Toolbox_ModLog/Completeness/wKL/wKH_Lindenbaum_lem.v#L335
https://github.com/ianshil/PhD_thesis/blob/e3b3d7f3c8b3dcbb02f14f053940d9648d73150e/Toolbox_ModLog/Completeness/wKL/wKH_completeness.v#L18
https://github.com/ianshil/PhD_thesis/blob/e3b3d7f3c8b3dcbb02f14f053940d9648d73150e/Toolbox_ModLog/Completeness/wKL/wKH_completeness.v#L32


6.2. THE CLASSICAL MODAL LOGIC EXAMPLE: IN COQ 87

the canonical relation, we use the following relation between elements of Canon_worlds
(Ï).

Definition Canon_rel (cw0 cw1 : Canon_worlds) : Prop :=

forall ϕ, (In _ (proj1_sig cw0) (Box ϕ)) ->

(In _ (proj1_sig cw1) ϕ).

As cw0 and cw1 are canonical worlds, we have that they are pairs. Consequently,
proj1_sig cw0 and proj1_sig cw1 refer to the sets of formulas which are their respec-
tive first elements. Thus, (In _ (proj1_sig cw0) (Box ϕ)) expresses the fact that the
formula ϕ is an element of the set of formulas underlying cw0. With this reading in mind,
we can see that the above formalises the canonical relation Rc given in Definition 6.1.8.

The canonical valuation can be understood in a similar way (Ï).

Definition Canon_val (cw : Canon_worlds) (q : V) : Prop :=

In _ (proj1_sig cw) (# q).

Thus, we have all the components to define our canonical model CM. It is nothing but
an Instance of a kmodel as defined in Subsection 5.1.2 (Ï).

Instance CM : kmodel :=

{|

nodes := Canon_worlds ;

reachable := Canon_rel ;

val := Canon_val

|}.

Third, we turn to the formalisation of the existence lemma, i.e. Lemma 6.1.6 (Ï).

Lemma existence_lemma : forall ϕ (cw : Canon_worlds),

(forall cw0 , Canon_rel cw cw0 -> In _ (proj1_sig cw0) ϕ) ->

(In _ (proj1_sig cw) (Box ϕ)).

The assumption of Lemma 6.1.6, given below is expressed by the second line.

[ ϕ ∈ Γ′ for all Γ′ ∈W c such that ΓRcΓ′ ]

Its conclusion ϕ ∈ Γ appears on the second line.
Fourth, the Truth lemma (Lemma 6.1.7) is straightforwardly formalised as follows (Ï).

Lemma truth_lemma : forall ϕ (cw : Canon_worlds),

(wforces CM cw ϕ) <-> (In _ (proj1_sig cw) ϕ).

Fifth, and finally, we can turn to the formalisation of our completeness result for
wKH. Without using an explicit classical step in our meta-logic, we could prove a result
of “counter” completeness: the contrapositive of the completeness result (Ï).

Theorem wCounterCompleteness : forall Γ ϕ,
(wKH_prv (Γ, ϕ) -> False) -> (( loc_conseq Γ ϕ) -> False).

However, by relying on the former result and the use of classical logic, we can finally
obtain in a non-constructive way our completeness result for wKH (Ï).

Theorem wCompleteness : forall Γ ϕ,
(loc_conseq Γ ϕ) -> wKH_prv (Γ, ϕ).

Completeness of sKH

Below, we give the formalisation of the definitions and results leading to the completeness
of sKH with respect to the global semantic consequence relation. To do so, we show how
to restrict models, and then provide the formalisation of the completeness results.

To start, we formalise elements of Definition 6.1.9. First, we define nϕ (Ï).
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Fixpoint Box_power n (ϕ : MPropF) : MPropF :=

match n with

| 0 => ϕ
| S m => Box (Box_power m ϕ)

end.

While in Definition 6.1.9 we defined ωΓ to be the union of all nΓ for all n, in the
formalisation we preferred to use an equivalent alternative. More precisely, we defined
ωΓ as the closure of Γ under (Ï).

Inductive Box_clos_set Γ : Ensemble MPropF :=

| InitClo : forall ϕ, In _ Γ ϕ -> Box_clos_set Γ ϕ
| IndClo : forall ϕ, Box_clos_set Γ ϕ ->

Box_clos_set Γ (Box ϕ).

The clause InitClo forces all elements of Γ to be in Box_clos_set Γ, while the clause
IndClo requires that any element ϕ in Box_clos_set Γ must be such that Box ϕ is also in
Box_clos_set Γ. So, we obviously get that Box_clos_set Γ is Γ closed under , which
is nothing but ωΓ.

While the latter comes in handy in the proof f completeness, we now focus on the
definition of restricted models. To define these models in a general way, we need the
notion of chain for a given relation R (Ï).

Fixpoint n_reachable {W : Type} (R : W -> W -> Prop) (n: nat)

(w v : W) : Prop :=

match n with

| 0 => w = v

| S m => exists u, (n_reachable R m w u) /\ (R u v)

end.

Clearly, we have that n_reachable R n w v if there is a chain of n R-steps from w to
v. The case where n is 0 ensures us that w is reachable from itself through no R-step, while
the inductive case allows us to build effective R-steps.

With this notion, we can define the property of being reachable for some n, which will
help us define the restriction on models we impose (Ï).

Definition is_reachable {W : Type} R w v : Prop :=

exists n, @n_reachable W R n w v.

Now, we can define the type of elements which are reachable from w through R, given
a relation R and an element w. Note that all of the definitions below are parametrized in
an element w, the point from where we generate the restricted model (Ï).

Definition restr_worlds {W : Type} R w : Type :=

{ x : W | is_reachable R w x}.

The above type will constitute the type of nodes for our restricted models. We proceed
to define the restricted relation and valuation (Ï).

Definition restr_rel {W : Type} R w

(rw0 rw1 : @restr_worlds W R w) : Prop :=

R (proj1_sig rw0) (proj1_sig rw1).

Similarly to the canonical model construction, when we create a type of restricted
nodes, we are enforcing elements of this type to be pairs of an element v and a proof
that v satisfies the property we used, here being reachable. So, R (proj1_sig rw0) (

proj1_sig rw1) expresses the fact that the elements underlying rw0 and rw1, i.e. their
first element, are in the relation R. This implies that the restricted relation is simply the
relation R restricted to the new set of nodes.

A restricted valuation can be obtained from a valuation val in a similar way (Ï).
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Definition restr_val {W : Type} R (val : W -> V -> Prop) w

(rw : @restr_worlds W R w) (p : V) : Prop :=

val (proj1_sig rw) p.

We now have enough material to define the restriction of a model M in w, as in Defini-
tion 6.1.10 (Ï).

Definition restr_model (M : kmodel) (w : nodes) : kmodel :=

{| nodes := (restr_worlds (@reachable M) w) ;

reachable := (restr_rel (@reachable M) w) ;

val := (restr_val (@reachable M) (@val M) w) |}.

As M is a kmodel, it has implicitly a collection of nodes, a relation reachable and
a valuation val. However, to define the restricted model we need to make these notions
explicitly appear, as they need to be arguments in the functions we defined above. To
do so, we make use of @, which forces the implicit arguments to be made explicit. So,
by writing @reachable M and @val M, we specify that the relation and valuation we are
mentioning are indeed those of M. Having this in mind, we can see that the above formalises
Definition 6.1.10.

Finally, we can turn to the formalisation of our completeness result for sKH, which we
obtained via a proof involving restricted models. As in the case for wKH, we needed to
use a non-constructive step to obtain completeness from counter-completeness (Ï) (Ï).

Theorem sCounterCompleteness : forall Γ ϕ,
(sKH_prv (Γ, ϕ) -> False) ->

(( glob_conseq Γ ϕ) -> False).

Theorem sCompleteness : forall Γ ϕ,
(glob_conseq Γ ϕ) ->

sKH_prv (Γ, ϕ).
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Part II

Bi-Intuitionistic Logics
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Chapter 7

Forewords on Bi-Intuitionistic
Logics

Bi-intuitionistic logics are extensions of intuitionistic logics, both in propositional and first-
order cases. More precisely, an extra binary connective is added to the intuitionistic
language. Throughout this dissertation we call this connective the exclusion, while it can
be called subtraction or co-implication elsewhere. The interest in studying this connective
lies in its major peculiarity: it is the dual of the intuitionistic arrow →, similarly that the
conjunction ∧ and disjunction ∨ are duals of each other. This duality is given an account
of in the intended meaning of the exclusion: while the intended meaning of→ is the notion
of implication, it is the refutation or exclusion which is aimed at with the connective .
Consequently, the formula ϕ ψ is read “ϕ excludes ψ” or “ϕ refutes ψ”.

The invention of bi-intuitionistic logic is commonly attributed to Cecylia Rauszer.
She published a series of interdependent articles [115, 116, 117, 118, 119, 120, 121], from
1974 to 1977 culminating in her Ph.D. thesis in 1980 [122], characterizing this logic under
various aspects. She first introduced propositional bi-intuitionistic logic in 1974 via an
axiomatic calculus [116], which she showed to have a corresponding algebraic semantics
on what she then called “semi-Boolean algebras” but are now also commonly known as
“bi-Heyting algebras” [125]. Then, she provided a sequent calculus for propositional bi-
intuitionistic logic and claimed a cut-admissibility result [115]. In 1976 Rauszer turned to a
Kripke semantics for first-order bi-intuitionistic logic: she published a strong completeness
result for the Hilbert system for first-order bi-intuitionistic logic with respect to a Kripke
semantics [117]. She pursued the study of the first-order variant by defining an algebraic
semantics for it [118], and returned to completeness results with respect to the Kripke
semantics [119]. She then obtained a version of interpolation for first-order bi-intuitionistic
logic [120], but also noted that many mistakes were present in a former article of hers [117].
Finally, she published a last article [121] where classic model-theoretic results are obtained.
All of the results mentioned here were gathered in her Ph.D. thesis [122], published in 1980.

For historical purposes, it has to be noted that Klemke, without naming it, introduced
in 1971 a sequent calculus for first-order bi-intuitionistic logic [81] similar to Rauszer’s
[115]. This fact was pointed out to us by Grigory Olkhovikhov in May 2022 in private com-
munication, right after he discovered it. However, we believe that Rauszer deserves credit
for the invention of this logic for three reasons. First, Rauszer’s work on bi-intuitionistic
logic is independent of Klemke’s as far as we can tell. Second, the breadth of Klemke’s
contribution to bi-intuitionistic logic is in no way comparable to Rauszer’s, as shown
above. Third, Klemke’s introduction of a sequent calculus is simply intended as a mere
tool to obtain a completeness proof for constant domain first-order intuitionistic logic [66].
Rauszer’s work on the contrary is primarily focused on the development of bi-intuitionistic
logic per se.

After Rauszer’s work, bi-intuitionistic logic received a great deal of attention as wit-
nesses an abundant literature with multiple flourishing lines of research [6, 7, 21, 24, 36,
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52, 58, 59, 60, 83, 94, 101, 106, 107, 127, 142, 152]. Alas, reviewing this literature on bi-
intuitionistic logics can be quite confusing, because, in many places, the status of theorems
is unclear if not puzzling. An account of this confusion can be given by three elements.

First, as is well-known, the usual deduction theorem is: Γ, ϕ ` ψ iff Γ ` ϕ → ψ.
However the “deduction theorem” is claimed by Rauszer under the following various forms
in chronological order: (1) Γ, ϕ ` ψ iff Γ ` ¬∼ . . .¬∼ϕ → ψ [116]; (2) the usual version
above [117]; an explicit retraction of (2) and replacement by (3) Γ, ϕ ` ψ iff Γ ` ¬∼ϕ →
ψ [120]; (4) a return to (1) without retracting (3) [122]. Crolard [25] claims that yet
another form of the deduction theorem fails to hold.

Second, the Pinto-Uustalu counterexample [106] not only breaks the admissibility of
cut in Rauszer’s sequent calculus [115] for bi-intuitionistic logic but also casts doubts on
Crolard’s work on a formulas-as-types interpretation for this logic. More precisely, Crolard
made the following claim: “as a by-product of the previous properties [proved by Crolard],
we obtain a new proof of this result [Rauszer’s cut admissibility]” [26, p.3].

Third, Rauszer’s [119] strong completeness of bi-intuitionistic logic with respect to
rooted canonical models contradicts Crolard’s [25] result that it is not complete for this
class.

In this part of the dissertation, we trace these confusions back to a fundamental prob-
lem in the axiomatic proof theory of propositional and first-order bi-intuitionistic logic:
traditional Hilbert calculi are not designed to treat logics as consequence relations. They
lead to an ambiguous notion of deduction from assumptions that can cause us to conflate
distinct logics. For example, modal logic as a consequence relation splits into a strong
and a weak version, as shown in Subsection 4.1.1, depending on how the necessitation
rule is interpreted. Conflating these logics leads to great confusion, notably regarding the
deduction theorem [68]. A similar phenomenon, as yet undetected, occurs in propositional
and first-order bi-intuitionistic logic where traditional Hilbert calculi cannot adequately
separate two interpretations of a bi-intuitionistic rule called (DN) (an analog of the neces-
sitation rule from modal logic).

We intend to provide reliable foundations for propositional and first-order bi-intuitionistic
logics. So, to avoid the presence of any mistake in our foundations, which could go un-
detected for another fifty years, we decided to formalise our results in Coq. We notably
formalised technical and detailed completeness proofs via canonical model constructions,
leading to two positive outcomes. First, we contributed to the acceptance of these tech-
niques as formally sound. Second, our use of classical logic as meta-logic in Coq for the
completion of these completeness proofs shows the potential non-constructivity of such
proof techniques and paves the way to their “constructivization” in an approach à la
reverse mathematics.

We naturally divide this part of the dissertation on bi-intuitionistic logics into two
chapters. In Chapter 8 we focus on propositional bi-intuitionistic logic, and tackle the
first-order variant in Chapter 9.



Chapter 8

Propositional Bi-Intuitionistic
Logics

For this chapter the following sections of the Toolbox I are required: Section 2.1, Chapter 3,
the introduction of Chapter 4, Section 4.1, Section 5.1 and Chapter 6.

The results of this chapter are all adaptations or extensions of the article “Bi-Intuitionistic
Logics: A New Instance of an Old Problem” [64], written jointly with Rajeev Goré.

Their formalisation can be found here: https://github.com/ianshil/PhD thesis/tree/
main/Prop Bi Int.

8.1 Propositional confusions

In this chapter we treat propositional bi-intuitionistic logic using generalized Hilbert cal-
culi, to view it from a perspective of consequence relation rather than just theoremhood.
By our use of such calculi we explain and fix the fundamental problem of Rauszer’s ax-
iomatic proof theory of propositional bi-intuitionistic logic.

More precisely, we show that the bi-intuitionistic rule (DN), similarly to the modal
necessitation rule (Nec), is ambiguous in a traditional context but splits into two distinct
rules. As a consequence, we obtain two generalized Hilbert calculi, wBIH and sBIH, for
bi-intuitionistic logic that differ only in the disambiguated version of the (DN) rule they
incorporate. Unsurprisingly, these systems capture two distinct logics wBIL and sBIL,
which have been conflated in parts of the literature.

Finally, the logics wBIL and sBIL are shown, respectively, to be sound and com-
plete with respect to the Kripkean local and global semantic consequence relations for
bi-intuitionistic logic, mimicking similar results in modal logic via a canonical model con-
struction while using techniques of Sano and Stell [127].

Section 8.2 contains the problems caused by traditional Hilbert calculi in modal logics,
and how generalized Hilbert calculi solve them. Rauszer’s traditional Hilbert calculus, as
well as the syntax for propositional bi-intuitionistic logic, is in Section 8.3. Section 8.4
contains the two generalized Hilbert calculi obtained from Rauszer’s axiomatization. In
Section 8.5, we show they define two extensionally distinct logics. Section 8.6 contains
significant theorems distinguishing these logics. Section 8.7 defines a Kripke semantics
for the bi-intuitionistic language. We prove that wBIL corresponds to the local semantic
consequence relation in Section 8.8, and that sBIL corresponds to the global semantic
consequence relation in Section 8.9. In Section 8.10, we use these results to prove pending
claims from Sections 8.4 and 8.6. In Section 8.11, we use the distinctions between our two
bi-intuitionistic logics to expose the flaws in Rauszer’s results.
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8.2 Theorems and consequences in classical modal logic

To explain how a rule can be ambiguous in a traditional Hilbert calculus, we use the
case of the modal necessitation rule (Nec). As shown in Subsection 4.1.1, generalized
Hilbert calculi clearly demarcate the existence of two modal logics based on the usual
axiomatization AKL of the basic modal logic KL. More precisely, these calculi differ in the
disambiguated version of the necessitation rule used. This rule, often written as in the
middle where logics are defined as sets of theorems, can be interpreted either as a weak
or strong rule as shown at left and right, once we take logics to be consequence relations.

∅ ` ϕ
Γ ` ϕ

(wNec)
ϕ

ϕ
(Nec)

Γ ` ϕ
Γ ` ϕ

(sNec)

As presented in Section 4.1, these rules respectively define the calculi wKH and sKH. The
distinct logics wKL and sKL they define correspond to the extensionally different local
and global Kripkean semantic consequence relations [84], as covered in Chapter 6.

The most obvious example of their difference, as consequence relations, is that we have
p `sKH p but p 6`wKH p. Then, the long-standing debate [68] about the modal deduction
theorem is resolved immediately via two simple facts: (1) p `sKH p but 6`sKH p → p;
(2) p `wKH p iff `wKH p→ p.

Not only does this example show that the two rules added to the same axiomatization
do not capture the same logics, as consequence relations, but it also gives sufficient tools
to show that these logics differ in their meta-properties. In fact, this partially explains
the failure of the deduction theorem in sKL, while it is proven to hold for wKL.

That is, traditional Hilbert calculi allow us to easily confuse the logics wKL and sKL.
To capture both of them in a traditional Hilbert setting, one has to provide debatable
modifications to the notion of deduction. In fact, to capture sKL one defines the notion
of deduction from assumptions as follows [22]:

Definition 8.2.1. A deduction of ϕ from assumptions Γ is a list l of formulas ending with
ϕ such that each formula in l is an instance of an axiom of AKL, a member of Γ, or follows
via (MP) or (Nec) from formulas appearing earlier in l.

While this definition is natural and unproblematic, the notion of deduction from as-
sumptions has to be bent to capture wKL:

Definition 8.2.2. A deduction of ϕ from assumptions Γ is a list l of formulas ending with
ϕ, and such that every formula in l is an instance of an axiom, a member of Γ, follows
from formulas appearing before it l by (MP) or follows from a deducible formula by (Nec).

First, this definition relies on the notion of deducibility which really should just be a
special case of deduction from assumptions. Second, as it involves the deducibility of a
formula in the application of (Nec), to determine if a list of formulas is a deduction from
assumptions or not it is not sufficient to check the list of formulas itself. In other words,
the notion defined here is not local because the application of (Nec) is conditioned on the
existence of another deduction . These features bring a lot of confusion on the nature of
deductions from assumptions.

A common way to avoid these contortions is to define the notion of deduction from
assumptions from the notion of deduction [11, 110]:

Definition 8.2.3. A deduction of ϕ from assumptions Γ is a deduction of the formula
(γ0 ∧ ... ∧ γn)→ ϕ for some n ∈ N and γi ∈ Γ for 0 ≤ i ≤ n.

Here, some other criticisms can be given. Mainly, it is the striking lack of generality
of this definition that we address. More precisely, this definition is not general as there
are four types of logics that it cannot capture. First, logics without conjunction, such
as implicational ticket entailment [32], cannot be captured. Indeed, the definition above



8.3. RAUSZER’S HILBERT CALCULUS FOR BI-INTUITIONISTIC LOGIC 97

requires the presence of the conjunction, thereby excluding any logic without conjunction.
Second, the same remark can be made of logics devoid of implication, such as positive
modal logics [40, 35, 37] and geometric logics [1, 9]. Third, logics that are not compact
are ruled out: it is in their nature to be unable, in some circumstances, to reduce an
infinite set of assumptions to a finite one, while this is forced here by the presence of
γ0, ..., γn. Finally, no logic for which the deduction theorem fails can be characterized via
this definition, as this theorem is built in here.

Generalized Hilbert calculi avoid these issues while easily capturing the logic wKL by
interpreting the necessitation rule as (wNec). Of course, all of this is well-known for modal
logic. We next use generalized Hilbert calculi to show that bi-intuitionistic logic is the
victim of a similar confusion.

8.3 Rauszer’s Hilbert calculus for bi-intuitionistic logic

Before showing how bi-intuitionistic logic is captured via generalized Hilbert calculi, we
recall Rauszer’s traditional Hilbert calculus RBIH from 1974 [119].

As mentioned above, RBIH is expressed in the language of intuitionistic logic extended
with a binary operator . More formally, as in Section 2.1 we first define a set of connec-
tives.

Definition 8.3.1. We define the Bi-Intuitionistic set of connectives CBI to be the pair
(ConBI, ArConBI

) where:

- ConBI = {>,⊥,∧,∨,→, } ;

- ArConBI
is such that:

ArConBI
(⊥) = ArConBI

(>) = 0
ArConBI

(∧) = ArConBI
(∨) = ArConBI

(→) = ArConBI
( ) = 2

Then, we define the bi-intuitionistic propositional language we work with.

Definition 8.3.2. We define the propositional language LBI = (V, CBI) and obtain its
set of bi-intuitionistic formulas FormLBI

through its grammar:

ϕ ::= p ∈ V | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ ϕ

We also define two unary operators called negation and weak negation:

¬ϕ := (ϕ→ ⊥) ∼ϕ := (> ϕ)

As explained in the introduction of this part of the dissertation, the added binary
operator is meant to be the dual of→. Also, the formula ∼ϕ := > ϕ, defined dually
to ¬ϕ := ϕ→ ⊥, is usually called “weak negation”.

We can then define Rauszer’s traditional Hilbert calculus RBIH [116].

Definition 8.3.3. RBIH consists of the axioms ARBI and rules RRBI below:

RA1 (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) RA10 ϕ→ (ψ ∨ (ϕ ψ))
RA2 ϕ→ (ϕ ∨ ψ) RA11 (ϕ→ ψ)→ (¬ψ → ¬ϕ)
RA3 ψ → (ϕ ∨ ψ) RA12 (ϕ ψ)→ ∼(ϕ→ ψ)
RA4 (ϕ→ χ)→ ((ψ → χ)→ ((ϕ ∨ ψ)→ χ)) RA13 ((ϕ ψ) χ)→ (ϕ (ψ ∨ χ))
RA5 (ϕ ∧ ψ)→ ϕ RA14 ¬(ϕ ψ)→ (ϕ→ ψ)
RA6 (ϕ ∧ ψ)→ ψ RA15 (ϕ→ (ψ ψ))→ ¬ϕ
RA7 (ϕ→ ψ)→ ((ϕ→ χ)→ (ϕ→ (ψ ∧ χ))) RA16 ¬ϕ→ (ϕ→ (ψ ψ))
RA8 (ϕ→ (ψ → χ))→ ((ϕ ∧ ψ)→ χ) RA17 ((ψ → ψ) ϕ)→ ∼ϕ
RA9 ((ϕ ∧ ψ)→ χ)→ (ϕ→ (ψ → χ)) RA18 ∼ϕ→ ((ψ → ψ) ϕ)



98 CHAPTER 8. PROPOSITIONAL BI-INTUITIONISTIC LOGICS

ϕ ϕ→ ψ

ψ
(MP)

ϕ
¬∼ϕ (DN)

For technical reasons, we work with the following axiomatization. Instead of working
with primitive negations and defined > and ⊥, as Rauszer did, we decided to do the
opposite: take the latter as primitive and make ¬ and ∼ defined connectives. The resulting
axiomatization is more traditional and more economic.

Definition 8.3.4. We define the set of axioms ABI below:

A1 (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) A9 ((ϕ ∧ ψ)→ χ)→ (ϕ→ (ψ → χ))
A2 ϕ→ (ϕ ∨ ψ) A10 (ϕ→ ψ)→ (¬ψ → ¬ϕ)
A3 ψ → (ϕ ∨ ψ) A11 ϕ→ (ψ ∨ (ϕ ψ))
A4 (ϕ→ χ)→ ((ψ → χ)→ ((ϕ ∨ ψ)→ χ)) A12 (ϕ ψ)→ ∼(ϕ→ ψ)
A5 (ϕ ∧ ψ)→ ϕ A13 ((ϕ ψ) χ)→ (ϕ (ψ ∨ χ))
A6 (ϕ ∧ ψ)→ ψ A14 ¬(ϕ ψ)→ (ϕ→ ψ)
A7 (ϕ→ ψ)→ ((ϕ→ χ)→ (ϕ→ (ψ ∧ χ))) A15 ϕ→ >
A8 (ϕ→ (ψ → χ))→ ((ϕ ∧ ψ)→ χ) A16 ⊥ → ϕ

Note that the set AI = {An | 1 ≤ n ≤ 10 or 15 ≤ n ≤ 16}, constituted by the axioms
A1 to A10 plus A15 and A16, is a set of axioms for intuitionistic logic.

Next, we show that the Double Negation rule (DN) above can be interpreted in the
context of generalized Hilbert calculi in two main ways, giving different logics.

8.4 Bi-intuitionistic logic as a consequence relation

As in the modal case, the traditional Hilbert calculus hides a distinction in the shape of
rules. To be more precise, it overlooks the multiple interpretations of (DN) that are clearly
expressed in a generalized Hilbert calculus:

∅ ` ϕ
Γ ` ¬∼ϕ

(wDN)
Γ ` ϕ

Γ ` ¬∼ϕ
(sDN)

As we shall see, not only are these rules formally different, but they also have a significantly
different strength, implying a difference in the consequence relations they define and hence
a difference in their logics. To see the difference between the two logics, erroneously
identified in Rauszer’s work, that emerge from the set of axioms ABI , we define the
following generalized Hilbert calculi.

Definition 8.4.1. We define the generalized Hilbert calculi below, alongside their set of
rules.

wBIH = (ABI ,Rw) Rw = {(MP), (wDN)}
sBIH = (ABI ,Rs) Rs = {(MP), (sDN)}

We abbreviate Γ `wBIH ϕ by Γ `w ϕ and let wBIL = {(Γ, ϕ) | Γ `w ϕ} be the consequence
relation characterized by wBIH. Similarly we abbreviate Γ `sBIH ϕ by Γ `s ϕ, and define
sBIL = {(Γ, ϕ) | Γ `s ϕ}.

As there is no guarantee that generalized Hilbert calculi define logics, to assert that
sBIL and wBIL are logics we must show they satisfy Definition 3.0.2. The single rule proof
of Γ ` ϕ via (El) shows that Identity is satisfied both in sBIL and wBIL. The other
properties need to be proved.

Lemma 8.4.1. The following holds for i ∈ {w, s}.

Monotonicity: If Γ ⊆ Γ′ and Γ `i ϕ then Γ′ `i ϕ.

Compositionality: If Γ1 `i ϕ and Γ2 `i ψ for all ψ ∈ Γ1, then Γ2 `i ϕ.
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Structurality: If Γ `i ϕ and σ is a propositional variable substitution then Γσ `i ϕσ.

Proof. Monotonicity: (Ï) Assume Γ `i ϕ. Then there is a proof p of Γ ` ϕ. We prove
by induction on the structure of p that Γ′ `i ϕ if Γ ⊆ Γ′.

If (El) is the last rule applied in p, then ϕ ∈ Γ. In this case we have ϕ ∈ Γ′ as Γ ⊆ Γ′,
hence Γ′ `i ϕ.

If (Ax) is the last rule applied in p, then ϕ ∈ AIBI and thus Γ′ `i ϕ.

If (MP) is the last rule applied in p, then we simply apply the induction hypothesis on the
premises and apply the rule to obtain our result.

In the case of (iDN) we have to distinguish between the case where i = s and i = w. If
i = s then we can simply use the induction hypothesis on the premises and then apply
the rule. If i = w then we simply use the given premise to obtain Γ′ `w ϕ as desired.

Compositionality: (Ï) Assume Γ1 `i ϕ and that Γ2 `i ψ for every ψ ∈ Γ1. Then we
have a proof p of Γ1 ` ϕ. We show by induction on the structure of p that Γ2 `i ϕ.

If (El) is the last rule applied in p, then ϕ ∈ Γ1 and so we have Γ2 `i ϕ by assumption.

If (Ax) is the last rule applied in p, then ϕ ∈ AIBI and thus Γ2 `i ϕ.

If (MP) is the last rule applied in p, then we simply apply the induction hypothesis on the
premises and apply the rule to obtain our result.

In the case of (iDN) we have to distinguish between the case where i = s and i = w. If
i = s then we can simply use the induction hypothesis on the premises and then apply
the rule. If i = w, we apply appropriately the rule, i.e. from ∅ `w ϕ to Γ2 `w ϕ, to obtain
the desired result.

Structurality: (Ï) Assume Γ `i ϕ. Then we have a proof p of Γ ` ϕ. We show by
induction on the structure of p that Γσ `i ϕσ.

If (El) is the last rule applied in p, then ϕσ ∈ Γσ, hence Γσ ` ϕσ.

If (Ax) is the last rule applied in p, then ϕσ ∈ AIBI (Ï), hence Γσ `i ϕσ.

If (MP) is the last rule applied in p, then we simply apply the induction hypothesis on the
premises and apply the rule to obtain our result.

If it is (iDN) then for both values of i we apply the induction hypothesis on the premise
and then the rule. �

We are now in position to claim that sBIL and wBIL are both logics. Furthermore, we
can add that they are compact logics:

Lemma 8.4.2. For i ∈ {s, w}, if Γ `i ϕ, then Γ′ `i ϕ for some finite Γ′ ⊆ Γ.

Proof. (Ï) Assume Γ `i ϕ, giving a proof p with root Γ ` ϕ. We prove by induction on
the structure of p that there is a finite Γ′ ⊆ Γ such that Γ′ `i ϕ.

If (El) is the last rule applied in p, then {ϕ} ⊆ Γ and ϕ `i ϕ.

If (Ax) is the last rule applied in p, ∅ ⊆ Γ and ∅ `i ϕ.

If (MP) is the last rule applied in p, then apply the induction hypothesis on the premises
to obtain finite Γ′,Γ′′ ⊆ Γ such that Γ′ `i ψ and Γ′′ `i ψ → ϕ. Lemma 8.4.1 delivers
Γ′ ∪ Γ′′ `i ψ and Γ′ ∪ Γ′′ `i ψ → ϕ. Thus (MP) can be applied to get Γ′ ∪ Γ′′ `i ϕ, where
Γ′ ∪ Γ′′ ⊆ Γ is finite.

In the case of (iDN) we have to distinguish between the case where i = s and i = w. If
i = s, we apply the induction hypothesis on the premise and then the rule. If i = w, we
apply appropriately the rule to obtain the desired result. �

That sBIL and wBIL are (compact) logics is all well and good, but we require further
work to show that they are different logics, as explained next.

https://github.com/ianshil/PhD_thesis/blob/c2fe7533d8f86dcca1a71b084aa2cb0ab3915466/Prop_Bi_Int/BiInt_logics.v#L46
https://github.com/ianshil/PhD_thesis/blob/c2fe7533d8f86dcca1a71b084aa2cb0ab3915466/Prop_Bi_Int/BiInt_logics.v#L91
https://github.com/ianshil/PhD_thesis/blob/c2fe7533d8f86dcca1a71b084aa2cb0ab3915466/Prop_Bi_Int/BiInt_logics.v#L134
https://github.com/ianshil/PhD_thesis/blob/c2fe7533d8f86dcca1a71b084aa2cb0ab3915466/Prop_Bi_Int/BiInt_logics.v#L9
https://github.com/ianshil/PhD_thesis/blob/c2fe7533d8f86dcca1a71b084aa2cb0ab3915466/Prop_Bi_Int/BiInt_logics.v#L192
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8.5 Extensional interactions

To prove our claim that sBIL and wBIL are two different logics that were erroneously
conflated in the literature we first show they differ on an extensional level, i.e. they differ
as sets.

Claim 8.5.1. For p ∈ V, p `s ¬∼p and p 6`w ¬∼p.

While it is clear that p `s ¬∼p holds because (sDN) can be applied on p ` p (Ï), we
need a semantic argument, that we provide later, to prove that p 6`w ¬∼p. By accepting
this result for now, we can see that the two consequence relations sBIL and wBIL are
extensionally different. However, the two consequence relations are closely related. In
fact, sBIL is an extension of wBIL: this justifies our use of the terms “weak” and “strong”
to qualify our calculi.

Theorem 8.5.1. If Γ `w ϕ then Γ `s ϕ.

Proof. (Ï) Assume Γ `w ϕ, giving a proof p with root Γ ` ϕ. We prove Γ `s ϕ by
induction on the structure of p.
If (El) is the last rule applied in p, then ϕ ∈ Γ hence Γ `s ϕ.
If (Ax) is the last rule applied in p, then Γ `s ϕ.
If (MP) is the last rule applied in p, then apply the induction hypothesis on the premises
to obtain Γ `s ψ and Γ `s ψ → ϕ. Thus (MP) can be applied to get Γ `s ϕ.
If (wDN) is the last rule applied in p, then apply the induction hypothesis on the premise
to obtain ∅ `s ψ. Then, we use Lemma 8.4.1 to obtain Γ `s ψ. By an application of (sDN)
we obtain Γ `s ¬∼ψ. �

Moreover, they coincide on their sets of theorems (derivable from ∅):

Theorem 8.5.2. ∅ `s ϕ if and only if ∅ `w ϕ.

Proof. (Ï) From right to left, we simply use Theorem 8.5.1. We are thus left with the
direction from left to right. (Ï) Assume ∅ `s ϕ, giving a proof p with root ∅ ` ϕ. We
prove ∅ `w ϕ by induction on the structure of p.
If (El) is the last rule applied in p, then ϕ ∈ ∅ which is a contradiction.
If (Ax) is the last rule applied in p, then ∅ `w ϕ.
If (MP) is the last rule applied in p, then apply the induction hypothesis on the premises
to obtain ∅ `w ψ and ∅ `w ψ → ϕ. Thus (MP) can be applied to get ∅ `w ϕ.
If (sDN) is the last rule applied in p, then apply the induction hypothesis on the premise
to obtain ∅ `w ψ. By an application of (wDN) we obtain ∅ `w ¬∼ψ. �

Traditionally, Theorem 8.5.2 is an argument against our distinction between sBIL and
wBIL as it identifies the two logics on their sets of theorems. However, as mentioned
previously, they are different consequence relations. Given Claim 8.5.1, sBIL and wBIL
are thus different logics.

8.6 Deduction and dual-deduction theorems

In this section, we proceed to show that sBIL and wBIL are distinct on a meta-level by
proving that both the deduction-detachment theorem and its dual hold for wBIL, while
none hold for sBIL. In addition to that, the rule (DMP), dual to the rule (MP), can safely
be added to the former logic but not to the latter.

To get to these results, we first need to prove preliminary results about our generalized
Hilbert calculi.

Lemma 8.6.1. For i ∈ {w, s}:

https://github.com/ianshil/PhD_thesis/blob/e3e96fb47c8acd95181b9e10685669983d320f27/Prop_Bi_Int/BiInt_extens_interactions.v#L10
https://github.com/ianshil/PhD_thesis/blob/e3e96fb47c8acd95181b9e10685669983d320f27/Prop_Bi_Int/BiInt_extens_interactions.v#L18
https://github.com/ianshil/PhD_thesis/blob/e3e96fb47c8acd95181b9e10685669983d320f27/Prop_Bi_Int/BiInt_extens_interactions.v#L76
https://github.com/ianshil/PhD_thesis/blob/e3e96fb47c8acd95181b9e10685669983d320f27/Prop_Bi_Int/BiInt_extens_interactions.v#L48
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1. Γ `i ϕ→ (ψ → ϕ)

2. Γ `i ϕ→ ϕ

3. Γ `i (ϕ ∧ ψ)→ (ψ ∧ ϕ)

4. Γ `i (ϕ ∧ ¬ϕ)→ ⊥

5. If Γ `i ϕ→ ψ then
Γ `i (ϕ ∨ χ)→ (ψ ∨ χ)

6. Γ `i ϕ→ ψ then
Γ `i (χ ∨ ϕ)→ (χ ∨ ψ)

7. Γ `i (ϕ ∨ ψ)→ (ψ ∨ ϕ)

8. Γ `i >

9. Γ `i ¬∼ϕ→ ϕ

10. Γ `i ⊥ → ϕ

11. If Γ `i ϕ ∨ ⊥ then Γ `i ϕ

Proof. Apart from the item 9, all other items are commonly accepted but rarely explicitly
proven in the literature. As their proofs are tedious and uninteresting we do not display
them here. Instead, for most of them we refer to their formalisation. For three items we
need separate proofs for each case: (5) Ï and Ï, (6) Ï and Ï, (11) Ï and Ï. For the
remaining items, we can restrict our attention to w thanks to Theorem 8.5.1: (1) Ï, (2)
Ï, (3) Ï, (4) Ï, (7) Ï, (8) Ï, (10) Ï. To give the reader an idea of the tediousness of
these proofs, we display a semi-proof of item 9 (Ï):

Item 8
Γ ` >

(Ax)
Γ ` ¬(> ϕ)→ (> → ϕ)

Thm.
Γ ` ¬∼ϕ→ (> → ϕ)

Thm.
Γ ` (¬∼ϕ ∧ >)→ ϕ

Thm.
Γ ` (> ∧ ¬∼ϕ)→ ϕ

Thm.
Γ ` > → (¬∼ϕ→ ϕ)

(MP)
Γ ` ¬∼ϕ→ ϕ

The rule (Ax) on top of the proof involves the axiom A14 : ¬(ϕ′ ψ′)→ (ϕ′ → ψ′), where
ϕ′ is instantiated by > and ψ′ by ϕ. All the instances of Thm. refer to instantiations of
theorems which are themselves tedious to prove. Without these theorems, the size of the
proof would be significantly bigger. �

Second, to express the deduction-detachment theorem and its dual we use notions from
Sano and Stell [127]. These can be interpreted as an extension of the notion of logic as a
consequence relation of the form (Γ, ϕ) to the more general form (Γ,∆).

Definition 8.6.1. Let i ∈ {w, s} and
∨

∆ be the disjunction of all the members of ∆. We
define the following:

1.
∨

∆ := ⊥ if ∆ = ∅;

2. `i [Γ | ∆] if Γ `i
∨

∆′ for some finite ∆′ ⊆ ∆;

3. 6`i [Γ | ∆] if it is not the case that `i [Γ | ∆];

4. [Γ | ∆] is complete if Γ ∪∆ = FormLBI
.

Pairs of the form [Γ | ∆] bring a symmetry, witnessed by the presence of potentially
infinite sets of formulas on both sides of the vertical bar, which is not present in expres-
sions such as Γ ` ϕ. Conceptually, this symmetry and the presence of a non-orientated
separation symbol | suggests a bidirectional reading of a pair [Γ | ∆]. From left to right
such a pair should be read as a deduction, while from right to left it should be read as a
refutation. This interpretation helps us understand the duality between → and .

We require a preliminary result using pairs. This result is central to the two logics.

Proposition 8.6.1. For i ∈ {w, s}:

`i [∅ | (ϕ ψ)→ χ] iff `i [∅ | ϕ→ (ψ ∨ χ)]
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Proof. (Ï) (Ï) We treat each direction separately.

(⇒) Assume `i [∅ | (ϕ ψ)→ χ], i.e. ∅ `i (ϕ ψ)→ χ. From it we can easily obtain
∅ `i ((ϕ ψ) ∨ ψ)→ (χ ∨ ψ). But as we have ∅ `i ϕ→ ((ϕ ψ) ∨ ψ) we get
∅ `i ϕ→ (χ ∨ ψ), hence `i [∅ | ϕ→ (χ ∨ ψ)].

(⇐) Assume `i [∅ | ϕ→ (ψ ∨ χ)], i.e. ∅ `i ϕ→ (ψ ∨ χ). First we have,
as an instance of the axiom A11, ∅ `i (ϕ ψ)→ (χ ∨ ((ϕ ψ) χ)).
But we have that ∅ `i ((ϕ ψ) χ)↔ (ϕ (ψ ∨ χ)), so we ob-
tain that ∅ `i (χ ∨ ((ϕ ψ) χ))→ (χ ∨ (ϕ (ψ ∨ χ))). Thus
∅ `i (ϕ ψ)→ (χ ∨ (ϕ (ψ ∨ χ))). However we have that ∅ `i
(ϕ (ψ ∨ χ))→ ∼(ϕ→ (ψ ∨ χ)) by axiom A12. And as we have ∅ `i ϕ→ (ψ ∨ χ)
by (iDN) we obtain ∅ `i ¬∼(ϕ→ (ψ ∨ χ)). Consequently we can obtain that
∅ `i (ϕ (ψ ∨ χ))→ ⊥, hence ∅ `i (χ ∨ (ϕ (ψ ∨ χ)))→ χ. This finally implies
∅ `i (ϕ ψ)→ χ, hence `i [∅ | (ϕ ψ)→ χ].

�

We have not given Rauszer’s [116] algebraic semantics for RBIL, but Proposition 8.6.1
is an object language analog of the dual residuation property below:

a ≤ b ∨ c
a b ≤ c

Note that as sBIL allows contexts to be manipulated more liberally thanks to the rule
(sDN), we can prove for this logic the above statement in a stronger form:

Proposition 8.6.2. `s [Γ | (ϕ ψ)→ χ] iff `s [Γ | ϕ→ (ψ ∨ χ)]

Proof. (Ï) We treat each direction separately.

(⇒) Assume `s [Γ | (ϕ ψ)→ χ], i.e. Γ `s (ϕ ψ)→ χ. From it we can easily obtain
Γ `s ((ϕ ψ) ∨ ψ)→ (χ ∨ ψ). But as we have Γ `s ϕ→ ((ϕ ψ) ∨ ψ) we get
Γ `s ϕ→ (χ ∨ ψ), hence `s [Γ | ϕ→ (χ ∨ ψ)].

(⇐) Assume `s [Γ | ϕ→ (ψ ∨ χ)], i.e. Γ `s ϕ→ (ψ ∨ χ). First we have,
as an instance of the axiom A11, Γ `s (ϕ ψ)→ (χ ∨ ((ϕ ψ) χ)).
But we have that Γ `s ((ϕ ψ) χ)↔ (ϕ (ψ ∨ χ)), so we ob-
tain that Γ `s (χ ∨ ((ϕ ψ) χ))→ (χ ∨ (ϕ (ψ ∨ χ))). Thus
Γ `s (ϕ ψ)→ (χ ∨ (ϕ (ψ ∨ χ))). However we have that Γ `s
(ϕ (ψ ∨ χ))→ ∼(ϕ→ (ψ ∨ χ)) by axiom A12. And as we have Γ `s ϕ→ (ψ ∨ χ)
by (sDN) we obtain Γ `s ¬∼(ϕ→ (ψ ∨ χ)). Consequently we can obtain that
Γ `s (ϕ (ψ ∨ χ))→ ⊥, hence Γ `s (χ ∨ (ϕ (ψ ∨ χ)))→ χ. This finally implies
Γ `s (ϕ ψ)→ χ, hence `s [Γ | (ϕ ψ)→ χ].

�

With Proposition 8.6.1 in hand we can prove interesting results:

Lemma 8.6.2. For i ∈ {w, s}:

1. Γ `i (ϕ ψ)→ ϕ;

2. Γ `i ϕ ∨ ∼ϕ;

3. if ∅ `i ϕ→ ψ, then ∅ `i (ϕ χ)→ (ψ χ);

4. if ∅ `i ϕ→ ψ, then ∅ `i (χ ψ)→ (χ ϕ);

5. Γ `i ¬(ϕ ψ)→ (∼ψ → ∼ϕ);
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6. Γ `i ¬∼(ϕ→ ψ)→ (¬∼ϕ→ ¬∼ψ).

Proof. We treat each statement individually, and restrict ourselves to w using Theo-
rem 8.5.1 when possible:

1. (Ï) Consider the following semi-proof:

(Ax)
Γ ` ϕ→ (ψ ∨ ϕ)

Prop.8.6.1
Γ ` (ϕ ψ)→ ϕ

2. (Ï) Consider the following semi-proof:

Lem.8.6.1
Γ ` >

Lem.8.6.1
Γ ` (> ϕ)→ (> ϕ)

Prop.8.6.1
Γ ` > → (ϕ ∨ (> ϕ))

(MP)
Γ ` ϕ ∨ (> ϕ)

3. (Ï) (Ï) Given that ∅ `i ψ → (χ ∨ (ψ χ)) and ∅ `i ϕ→ ψ, we get the following:
∅ `i ϕ→ (χ ∨ (ψ χ)). By Proposition 8.6.1 (or Proposition 8.6.2), we conse-
quently get ∅ `i (ϕ χ)→ (ψ χ).

4. (Ï) (Ï) Assume ∅ `i ϕ→ ψ. Note that we have ∅ `i χ→ (ϕ ∨ (χ ϕ)) as the for-
mula is an instance of A11. Given that ∅ `i ϕ→ ψ, we can straightforwardly obtain
∅ `i (ϕ ∨ (χ ϕ))→ (ψ ∨ (χ ϕ)). It then suffices to use ∅ `i χ→ (ϕ ∨ (χ ϕ))
and ∅ `i (ϕ ∨ (χ ϕ))→ (ψ ∨ (χ ϕ)) to obtain ∅ `i χ→ (ψ ∨ (χ ϕ)). By
Proposition 8.6.1 we finally get ∅ `i (χ ψ)→ (χ ϕ).

5. (Ï) We have ∅ `i ϕ→ (ψ ∨ (ϕ ψ)). We can use item 4 to obtain the following.

∅ `i (> (ψ ∨ (ϕ ψ)))→ ∼ϕ

Next we prove that ∅ `i (∼ψ ∧ ¬(ϕ ψ))→ ∼(ψ ∨ (ϕ ψ)) to obtain that ∅ `i
(∼ψ ∧ ¬(ϕ ψ))→ ∼ϕ, and hence ∅ `i ¬(ϕ ψ)→ (∼ψ → ∼ϕ). First, ∅ `i
> → ((ψ ∨ (ϕ ψ)) ∨ (> (ψ ∨ (ϕ ψ)))) is an instance of the axiom A11. Then
by associativity of disjunction, we obtain the following.

∅ `i > → (ψ ∨ ((ϕ ψ) ∨ (> (ψ ∨ (ϕ ψ)))))

By Proposition 8.6.1 we get ∅ `i ∼ψ → ((ϕ ψ) ∨ (> (ψ ∨ (ϕ ψ)))). Conse-
quently we easily obtain ∅ `i (∼ψ ∧ ¬(ϕ ψ))→ (> (ψ ∨ (ϕ ψ))), i.e. ∅ `i
(∼ψ ∧ ¬(ϕ ψ))→ ∼(ψ ∨ (ϕ ψ)). Monotonicity finally gives us the following.

Γ `i (∼ψ ∧ ¬(ϕ ψ))→ ∼(ψ ∨ (ϕ ψ))

6. (Ï) First note that ∅ `i (ϕ ψ)→ ∼(ϕ→ ψ) as it is an instance of the axiom A12.
By using A10 and (MP) we obtain ∅ `i ¬∼(ϕ→ ψ)→ ¬(ϕ ψ). Thus, using item
5 just above, we can obtain ∅ `i ¬∼(ϕ→ ψ)→ (∼ψ → ∼ϕ). We can instantiate
A10 again to obtain ∅ `i (∼ψ → ∼ϕ)→ (¬∼ϕ→ ¬∼ψ), and use this fact with the
previous result to get ∅ `i ¬∼(ϕ→ ψ)→ (¬∼ϕ→ ¬∼ψ). Monotonicity finally gives
us Γ `i ¬∼(ϕ→ ψ)→ (¬∼ϕ→ ¬∼ψ).

�

The above theorems are of importance as they show interesting behaviors of the ex-
clusion arrow. Notably, with the second item of Lemma 8.6.2 we exhibit a form of the law
of excluded middle with the weak negation ∼. As a consequence, neither wBIL nor sBIL
can satisfy the disjunction property, important to many constructivists.
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Also, item 6 above and item 9 of Lemma 8.6.1 inform us that ¬∼ is at least behaving
like a T modality, i.e. validating the axiom T: ϕ → ϕ. This fact can certainly be
explained in the light of the tense interpretation of bi-intuitionistic logic, where ϕ ψ is
interpreted as (ϕ ∧ ¬ψ) and the intuitionistic → as (ϕ → ψ). Thus, we obtain that
¬∼ϕ is interpreted as ϕ. As it is known that the interpretation of bi-intuitionistic in
tense logic is S4t [107, 93, 137, 165] , we naturally get that is a T modality, explaining
the properties of ¬∼.

The deduction theorem (from left to right) is the first theorem to separate the two
logics. Note that the direction from right to left is called the detachment theorem.

Theorem 8.6.1 (Deduction-Detachment Theorem). wBIL enjoys the deduction-detachment
theorem:

`w [Γ, ϕ | ψ] iff `w [Γ | ϕ→ ψ]

Proof. (⇐) (Ï) Assume `w [Γ | ϕ→ ψ], i.e. Γ `w ϕ→ ψ. Then by monotonicity (Lemma
8.4.1) we obtain Γ, ϕ `w ϕ→ ψ. Moreover we have that Γ, ϕ `w ϕ as ϕ ∈ Γ ∪ {ϕ}.
So by (MP) we obtain Γ, ϕ `w ψ, hence `w [Γ, ϕ | ψ].

(⇒) (Ï) Assume `w [Γ, ϕ | ψ], i.e. Γ, ϕ `w ψ. We show by induction on the structure of
p that Γ `w ϕ→ ψ.

If (El) is the last rule applied in p, then ψ ∈ Γ∪ {ϕ}. If ψ = ϕ then we clearly have
Γ `w ϕ→ ψ by Lemma 8.6.1. If ψ ∈ Γ then we can deduce Γ `w ϕ→ ψ from the
fact that we have ∅ `w ψ → (ϕ→ ψ), proven in Lemma 8.6.1.

If (Ax) is the last rule applied in p, then ψ ∈ AIBI and with a similar reasoning we
get Γ `w ϕ→ ψ.

If (MP) is the last rule applied in p, then we proceed as follows. We use the induction
hypothesis on the premises of the rule to obtain proofs of Γ ` ϕ→ χ and Γ `
ϕ→ (χ→ ψ). We also note that ∅ `w (ϕ→ χ)→ ((ϕ→ (χ→ ψ))→ (ϕ→ ψ)).
Then, we use (MP) several times to arrive at the establishment of Γ `w ϕ→ ψ.

If the last rule is (wDN), we have a proof of ∅ ` χ, so we can apply (wDN) to obtain
∅ `w ¬∼χ. Then we can use the fact that ∅ `w ¬∼χ→ (ϕ→ ¬∼χ) via Lemma 8.6.1
to obtain ∅ `w ϕ→ ¬∼χ. By monotonicity we obtain Γ `w ϕ→ ¬∼χ.

�

Next, we give a counter-example for the deduction theorem for sBIL.

Fact 8.6.1. We have that `s [p | ¬∼p] but 6`s [∅ | p→ ¬∼p].

Proof. Obviously we have p `s p. So we can apply the rule (sDN) to obtain p `s ¬∼p,
hence `s [p | ¬∼p]. We leave the following claim pending until Section 8.10:

Claim 8.6.1. We have that 6`s [∅ | p→ ¬∼p].

�

This situation is very similar to the modal case: it is well-known that wKL satisfies
the deduction theorem while sKL does not [84, Sect.3.1], as shown in Subsection 4.1.1,
Subsection 5.1.1 and Section 6.1. However, a variant of this theorem does hold for sKL:
Γ, ϕ `sKH ψ iff there exists a n ∈ N such that Γ `sKH (ϕ∧ ϕ∧ ...∧ nϕ)→ ψ [22, p.85].
A similar variant of the deduction theorem holds for sBIL, but we first need some notation
to express it.

Definition 8.6.2. We define:

1. for n ∈ N, let (¬∼)0ϕ := ϕ and let (¬∼)(n+1)ϕ := ¬∼(¬∼)nϕ;

2. (¬∼)nΓ = {(¬∼)nγ | γ ∈ Γ};
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3. (¬∼)ωΓ =
⋃
n∈N

(¬∼)nΓ.

The variant of the deduction theorem below uses the pattern ¬∼ as the modal variant
uses . But it suffices to replace ϕ by just (¬∼)nϕ, without the conjunction of all (¬∼)iϕ
for i ≤ n, as ¬∼ is a T modality satisfying ¬∼ϕ→ ϕ (Lemma 8.6.1).

Theorem 8.6.2 (Double-Negated Deduction-Detachment Theorem).

`s [Γ, ϕ | ψ] iff ∃n ∈ N s.t. `s [Γ | (¬∼)nϕ→ ψ]

Proof. (⇒) (Ï) Assume that `s [Γ, ϕ | ψ], i.e. that we have a proof p of Γ, ϕ ` ψ. We
reason by induction on the structure of p.

If the last rule applied is (Ax), then we get ∅ `s ψ, and as we have that ∅ `s
ψ → ((¬∼)nϕ→ ψ) for any n ∈ N we obtain by (MP): ∅ `s (¬∼)nϕ→ ψ. By
Lemma 8.4.1 we get Γ `s (¬∼)nϕ→ ψ. So, it suffices to take n = 0.

If the last rule applied is (El) then Γ `s ϕ→ ψ as Γ `s ψ → (ϕ→ ψ) and Γ `s ψ.

If the last rule applied is (MP) then we have by induction hypothesis Γ `s (¬∼)kϕ→ χ
and Γ `s (¬∼)mϕ→ (χ→ ψ) for some χ ∈ FormLBI

and m, k ∈ N. As we
have that ∅ `s (λ1 → λ2)→ ((λ1 → (λ2 → λ3))→ (λ1 → λ3)) and ∅ `s ¬∼λ→ λ
(Lemma 8.6.1) we obtain that Γ `s ¬∼nϕ→ χ for n = max(m, k).

If the last rule applied is (sDN) then we get by induction hypothesis that Γ `s
(¬∼)nϕ→ χ. We apply (sDN) on Γ `s (¬∼)nϕ→ χ to obtain Γ `s ¬∼((¬∼)nϕ→ χ).
Then, we get Γ `s (¬∼)n+1ϕ→ ¬∼χ by using item 6 of Lemma 8.6.2 and (MP).
So, we have `s [Γ | (¬∼)n+1ϕ→ ¬∼χ].

(⇐) (Ï) Straightforward use of the rules (sDN) and (MP) with Lemma 8.4.1.
�

Another theorem distinguishing the two logics is the dual of the deduction-detachment
theorem.

Theorem 8.6.3 (Dual Deduction-Detachment Theorem). The following holds:

`w [ϕ | ψ,∆] iff `w [ϕ ψ | ∆].

Proof. (Ï) (Ï) Assume that `w [ϕ | ψ,∆]. By definition we get ϕ `w ψ ∨
∨

∆′ where
∆′ ⊆ ∆ is finite. Using Theorem 8.6.1 we get ∅ `w ϕ→ (ψ ∨

∨
∆′). We obtain ∅ `w

(ϕ ψ)→
∨

∆′ by Proposition 8.6.1. By Theorem 8.6.1 again, we obtain ϕ ψ `w
∨

∆′.
By definition we get `w [ϕ ψ | ∆]. Note that all the steps used here are based on
equivalences. �

Before demonstrating that sBIL fails the dual deduction theorem, we remark on the
previous theorem. Pairs [Γ | ∆] express the duality between → and on the syntactic
level in wBIL by showing that plays the same role as → on the left-hand side of |:
it internalizes in the object language the relation expressed by our pairs. Just as →
internalizes the deduction relation of expressions such as Γ ` ϕ, dually internalizes the
refutation relation of expressions such as ∆ a ϕ, read “∆ refutes ϕ” and formalized here
as [ϕ | ∆]. This interpretation, already explored by Goré and Postniece [59], relies on the
aforementioned reading of our pairs, from right to left, to express refutations.

The following witnesses the failure of the dual detachment theorem for sBIL.

Fact 8.6.2. `s [p q | ¬∼∼q] while 6`s [p | q,¬∼∼q].

Proof. First, let us prove that `s [p q | ¬∼∼q]. By definition, we need to show that
p q `s ¬∼∼q. We have that ∅ `w q ∨ ∼q, hence ∅ `w p→ (q ∨ ∼q). By Proposition
8.6.1 we obtain ∅ `w (p q)→ ∼q. In turn, by Theorem 8.6.2 we get p q `w ∼q.
Then, by Theorem 8.5.1 we get that p q `s ∼q. Finally, we can apply the rule (sDN)
to obtain p q `s ¬∼∼q, hence `s [p q | ¬∼∼q]. We leave the following claim pending
until Section 8.10:
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Claim 8.6.2. 6`s [p | q,¬∼∼q].

�

While a variant of the deduction-detachment theorem exists for sBIL, the form or the
existence of a variant of the dual deduction-detachment theorem is still a mystery to us.
For the interested reader: while the deduction-detachment theorem fails for sBIL because
of the rule (sDN), the dual deduction-detachment theorem fails for this logic because of
the rule (MP). Thus, it appears that if a variant of the dual deduction theorem exists
for sBIL, then it must use a “patch” inspired by the structure of (MP), as done in the
double-negated deduction theorem with (sDN).

Another interesting feature pertaining to the duality between → and distinguishes
the two logics. Given this duality, one would expect that a dual version of the modus
ponens rule (MP) holds for . In fact, the Dual of Modus Ponens rule, presented below,
can be added to the calculus wBIH without changing the set of judgements it derives.

[ψ | ∆] [ϕ ψ | ∆]

[ϕ | ∆]
(DMP)

Lemma 8.6.3. If `w [ϕ ψ | ∆] and `w [ψ | ∆] then `w [ϕ | ∆].

Proof. (Ï) Assume `w [ϕ ψ | ∆] and `w [ψ | ∆]. Then, we have proofs of ϕ ψ `
∨

∆′

and ψ `
∨

∆′′. We can easily obtain that ϕ ψ `
∨

∆′′′ and ψ `
∨

∆′′′, where
∨

∆′′′ =∨
∆′ ∨

∨
∆′′. Thus, we can use Theorem 8.6.1 to obtain proofs of ∅ ` (ϕ ψ)→

∨
∆′′′

and ∅ ` ψ →
∨

∆′′′. By applying Proposition 8.6.1 on ∅ ` (ϕ ψ)→
∨

∆′′′ we get a
proof of ∅ ` ϕ→ (ψ ∨

∨
∆′′′). Given the latter and ∅ ` ψ →

∨
∆′′′ we can conclude that

there is a proof of ∅ ` ϕ→
∨

∆′′′. So, we have that `w [ϕ | ∆]. �

However, as already suggested by the failure of the dual deduction-detachment theorem
for sBIL, in the latter the duality between → and seems to be broken. This assessment
is further backed by the fact that (DMP) does not hold in sBIL.

Fact 8.6.3. `s [p q | q,¬∼∼q] and `s [q | q,¬∼∼q], while 6`s [p | q,¬∼∼q].

Proof. The proof of `s [p q | q,¬∼∼q] can be found in the proof of Fact 8.6.2. We
obtain `s [q | q,¬∼∼q] straightforwardly via the use of (El). We show 6`s [p | q,¬∼∼q]
using Claim 8.6.2. �

On top of the extensional difference between wBIL and sBIL, the deduction- and dual
deduction theorems with the rule (DMP) expose their meta-difference. But both differ-
ences rely on claims that are still pending. The next section builds on Rauszer’s Kripke
semantics to resolve these claims.

8.7 Kripke semantics

The logics wBIL and sBIL, proof-theoretically characterized via the generalized Hilbert
calculi wBIH and sBIH, can be captured model-theoretically in a Kripke semantics using
the local and global notions of semantic consequence defined in Section 5.1. In this section,
we define such a semantics and provide useful results about its use.

First, we need to define a Kripke semantics for the propositional bi-intuitionistic lan-
guage LBI [122]. In this context, we use the symbol ≤ for the generic accessibility relation
R on models.

Definition 8.7.1. A Kripke modelM is a tuple (W,≤, I), where (W,≤) is a poset, i.e. ≤
is reflexive and transitive, and I : V → Pow(W ) is an interpretation function obeying
persistence: for every v, w ∈W with w ≤ v and p ∈ V, if w ∈ I(p) then v ∈ I(p).

https://github.com/ianshil/PhD_thesis/blob/c1a4a28a02df81ba7a74c3a39f34b8693a15e15b/Prop_Bi_Int/wBIH_DMP.v#L494
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The forcing relation of bi-intuitionistic logic extends the forcing relation of intuitionistic
to . We define it in its entirety below.

Definition 8.7.2. Given a Kripke model M = (W,≤, I), we define the forcing relation
between a point w ∈W and a formula as follows:

M, w  p iff w ∈ I(p)
M, w  > always
M, w  ⊥ never
M, w  ϕ ∧ ψ iff M, w  ϕ and M, w  ψ
M, w  ϕ ∨ ψ iff M, w  ϕ or M, w  ψ
M, w  ϕ→ ψ iff for all v s.t. w ≤ v, if M, v  ϕ then M, v  ψ
M, w  ϕ ψ iff there exists a v s.t. v ≤ w, M, v  ϕ and M, v 6 ψ

Note that the semantic interpretation of the exclusion arrow is peculiar, as it goes
backwards on the relation ≤.

The main feature of the Kripke semantics for intuitionistic logic is arguably persistence.
This property, which we use in various places, is preserved here:

Lemma 8.7.1 (Persistence). Let M = (W,≤, I) be a Kripke model and w ∈ W . For all
v ∈W such that w ≤ v, we have that if M, w  ϕ then M, v  ϕ.

Proof. (Ï) Let w ∈W . We reason by induction on ϕ:

- ϕ := p: Let v ∈ W and assume that w ≤ v. We have M, w  p implies w ∈ I(p),
which implies v ∈ I(p) by the persistence condition on models, which in turn implies
M, v  p. We thus get the desired result for all v.

- ϕ := >: Let v ∈ W and assume that w ≤ v. We have M, w  > and M, v  > by
definition. So we trivially get the desired result for all v.

- ϕ := ⊥: Let v ∈ W and assume that w ≤ v. We have M, w 6 ⊥ and M, v 6 ⊥ by
definition. So we trivially get the desired result for all v.

- ϕ := χ ∧ ψ: Let v ∈ W and assume that w ≤ v. M, w  χ ∧ ψ then M, w  χ and
M, w  ψ. By induction hypothesis M, v  χ and M, v  ψ. Then M, v  χ ∧ ψ.
We thus get the desired result for all v.

- ϕ := χ ∨ ψ: Let v ∈ W and assume that w ≤ v. M, w  χ ∨ ψ then M, w  χ or
M, w  ψ. By induction hypothesis M, v  χ or M, v  ψ. Then M, v  χ ∨ ψ.
We thus get the desired result for all v.

- ϕ := χ → ψ: Let v ∈ W and assume that w ≤ v. M, w  χ → ψ then for every
u ∈ W s.t. w ≤ u, if M, u  χ then M, u  ψ. Note that for every u ∈ W , if v ≤ u
then w ≤ u by transitivity. Consequently we have that for every u ∈ W s.t. v ≤ u,
if M, u  χ then M, u  ψ. We get M, v  χ→ ψ. We thus get the desired result
for all v.

- ϕ := χ ψ: Let v ∈ W and assume that w ≤ v. M, w  χ ψ then there is a
u ≤ w s.t. M, u  χ and M, u 6 ψ. By transitivity we have u ≤ v, so there is a
u ≤ v s.t. M, u  χ and M, u 6 ψ. Thus M, v  χ ψ. We thus get the desired
result for all v.

�

As explained in Subsection 5.1.1, a central notion in the model theory of Kripke seman-
tics is the notion of bisimulation [11, Sect.2.2]. It relates models with similar structures,
using a specific notion of “similarity”. Here, we present the notion of bisimulation de-
veloped by de Groot and Pattinson [36, Def.4.1]. Note that an alternative notion of
bisimulation was presented by Badia [6].

https://github.com/ianshil/PhD_thesis/blob/c1a4a28a02df81ba7a74c3a39f34b8693a15e15b/Prop_Bi_Int/BiInt_Kripke_sem.v#L50
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Definition 8.7.3. Let M1 = (W1,≤1, I1) and M2 = (W2,≤2, I2) be models. A bisim-
ulation between M1 and M2 is a relation B ⊆ W1 ×W2 such that for all w1 ∈ W1 and
w2 ∈W2, if w1Bw2 we have:

(B1) for all p ∈ V, w1 ∈ I1(p) iff w2 ∈ I2(p);

(B2) for all v2 ∈W2, if w2 ≤ v2 then there exists v1 ∈W1 such that w1 ≤ v1 and v1Bv2;

(B3) for all v1 ∈W1, if w1 ≤ v1 then there exists v2 ∈W2 such that w2 ≤ v2 and v1Bv2;

(B4) for all v2 ∈W2, if v2 ≤ w2 then there exists v1 ∈W1 such that v1 ≤ w1 and v1Bv2;

(B5) for all v1 ∈W1, if v1 ≤ w1 then there exists v2 ∈W2 such that v2 ≤ w2 and v1Bv2.

If there is a bisimulation B such that w1Bw2, we say that w1 and w2 are bisimilar and
note M1, w1 �M2, w2.

This notion is usually a sought-after one, as it often entails logical equivalence for
points in models: two bisimilar points force the same formulas. This property, which will
be of crucial use later on, is obtained with the above definition [36, Prop.4.4]

Proposition 8.7.1. Let M1 = (W1,≤1, I1) and M2 = (W2,≤2, I2) be models, w1 ∈ W1

and w2 ∈ W2. If M1, w1 � M2, w2, then for all ϕ ∈ FormLBI
we have M1, w1  ϕ iff

M2, w2  ϕ.

Proof. (Ï) We reason by induction on the structure of ϕ.

- ϕ := p: As M1, w1 � M2, w2 we notably have w1 ∈ I1(p) iff w2 ∈ I2(p) by item
(B1) of Definition 8.7.3. So, we get that M1, w1  p iff M2, w2  p.

- ϕ := >: We have M1, w1  > and M2, w2  > by definition. So we trivially get
the desired result.

- ϕ := ⊥: We have M1, w1 6 ⊥ and M2, w2 6 ⊥ by definition. So we trivially get
the desired result.

- ϕ := χ ∧ ψ: We have that M1, w1  χ ∧ ψ iff [M1, w1  χ and M1, w1  ψ]. By
induction hypothesis the latter holds iff [M2, w2  χ and M2, w2  ψ]. We finally
reach M2, w2  χ ∧ ψ through a chain of equivalences. We thus get the desired
result.

- ϕ := χ ∨ ψ: We have that M1, w1  χ ∨ ψ iff [M1, w1  χ or M1, w1  ψ]. By
induction hypothesis the latter holds iff [M2, w2  χ or M2, w2  ψ]. We finally
reach M2, w2  χ ∨ ψ through a chain of equivalences. We thus get the desired
result.

- ϕ := χ→ ψ: (⇒) AssumeM1, w1  χ→ ψ. We need to showM2, w2  χ→ ψ. Let
v2 ∈ W2 such that w2 ≤ v2, and assume M2, v2  χ. We need to show M2, v2  ψ.
Given that M1, w1 � M2, w2 and w2 ≤ v2, we get that there is v1 ∈ W1 such
that w1 ≤ v1 and v1Bv2 by item (B2) of Definition 8.7.3. As M1, w1  χ → ψ
we get that if M1, v1  χ then M1, v1  ψ. But we know that M2, v2  χ,
so by M1, v1 � M2, v2 and induction hypothesis we get M1, v1  χ. Thus, we
get M1, v1  ψ. It then suffices to use the induction hypothesis again to obtain
M2, v2  ψ. Consequently, we proved that M2, w2  χ→ ψ.

(⇐) We proceed similarly to (⇒), using the item (B3) of Definition 8.7.3 instead.

- ϕ := χ ψ: (⇒) Assume M1, w1  χ ψ. We need to show M2, w2  χ ψ.
As M1, w1  χ ψ there is a v1 ∈ W1 such that v1 ≤ w1 and M1, v1  χ and
M1, v1 6 ψ. Given that M1, w1 � M2, w2 and v1 ≤ w1, we get that there is

https://github.com/ianshil/PhD_thesis/blob/c1a4a28a02df81ba7a74c3a39f34b8693a15e15b/Prop_Bi_Int/BiInt_bisimulation.v#L24
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v2 ∈W2 such that v2 ≤ w2 and v1Bv2 by item (B5) of Definition 8.7.3. But we know
that M1, v1  χ and M1, v1 6 ψ, so by M1, v1 �M2, v2 and induction hypothesis
we get M2, v2  χ and M2, v2 6 ψ. Thus, we get M2, w2  χ ψ.

(⇐) We proceed similarly to (⇒), using the item (B4) of Definition 8.7.3 instead.

�

Finally, let us recall the definition of the local and global semantic consequence relations
given in Section 5.1.

Definition 8.7.4. The local and global consequence relations are as below:

Γ |=l ∆ iff ∀M.∀w. (M, w  Γ ⇒ ∃δ ∈ ∆.M, w  δ)
Γ |=g ∆ iff ∀M. (M  Γ ⇒ ∀w ∈W. ∃δ ∈ ∆.M, w  δ)

While the two notions are not generally equivalent in modal logic, as shown in Sec-
tion 5.1, they are equivalent on the intuitionistic language as opposed to the bi-intuitionistic
language.

Lemma 8.7.2. For Γ ∪∆ ⊆ FormLI
:

Γ |=l ∆ iff Γ |=g ∆

Proof -. We prove each direction separately.

(⇒) Assume Γ |=l ∆. LetM be a model. Assume thatM  Γ. We need to show that for
all w ∈W , there is a δ ∈ ∆ such thatM, w  δ. Let w ∈W . Given thatM  Γ, we
have in particularM, w  Γ. Consequently, as we have Γ |=l ∆, we obtain that there
is a δ ∈ ∆ such thatM, w  δ. As w is arbitrary, we get ∀w ∈W. ∃δ ∈ ∆.M, w  δ.
So, Γ |=g ∆.

(⇐) Assume Γ |=g ∆. Let M be a model and w ∈ W . Assume that M, w  Γ. We
need to show that there is a δ ∈ ∆ such that M, w  δ. Consider the model
M′ = (W ′,≤′, I ′) such that W ′ = {v ∈ W | w ≤ v}, and ≤′ and I ′ are respective
restrictions of ≤ and I to W ′. We have that w and w′ are bisimilar if we restrict our
notion of bisimulation in Definition 8.7.3 to the clauses (B1) to (B3), which is the
usual notion of bisimulation in the intuitionistic context [22, p.54][103, p.8]. So, we
haveM, w �M′, w. In addition to that, in the intuitionistic context, the notion of
bisimulation also implies logical equivalence between bisimilar points as expressed in
Proposition 8.7.1 [22, p.54]. So, we obtain thatM, w  Γ impliesM′, w  Γ. Then,
the intuitionistic version of Lemma 8.7.1 implies that for all v ∈W ′ such that w ≤ v,
we have M′, w  Γ. However, for all v ∈ W ′ we have w ≤ v, by definition of W ′.
Consequently, we have M′, v  Γ for all v ∈ W ′, hence M′  Γ. We use Γ |=g ∆
on the latter to obtain ∀v ∈ W.∃δ ∈ ∆.M′, v  δ. In particular, we get that for w
there is δ ∈ ∆ such thatM′, w  δ. It then suffices to use the fact that bisimulation
implies logical equivalence [22, p.54] once again to obtain M, w  δ. So, Γ |=l ∆.

�

Let us comment on this proof. It is easy to see that the local implies the global in full
generality. The converse holds for intuitionistic logic for two reasons. First, persistence
plays an important role: if a formula is true at a point then it is true at all the successors
(the upcone) of that point. Second and more crucially, in an intuitionistic Kripke model,
a point in a model is bisimilar with itself in its upcone.

Nonetheless, in the semantics for bi-intuitionistic logics just defined it is not the case
that Γ |=g ∆ implies Γ |=l ∆, similarly to modal logic. This can easily be shown by the fact
that p |=g ¬∼p while p 6|=l ¬∼p. We suspect that the equivalence between the two notions
in the intuitionistic setting may have led experts in the field to overlook the difference



110 CHAPTER 8. PROPOSITIONAL BI-INTUITIONISTIC LOGICS

between them in the bi-intuitionistic case, notably causing the confusions presented in
this chapter.

We still need to prove the claims we left pending, to substantiate our claims that wBIL
and sBIL are different logics, both extensionally and on a meta-level. These differences
are shown by proving that the local semantic consequence corresponds to wBIL and the
global semantic consequence corresponds to sBIL.

8.8 Weak is local

In this section, we focus on the logic wBIL and show that it corresponds to the local
semantic consequence relation. We first establish a Lindenbaum lemma, ensuring the
existence for any unprovable pair of a Lindenbaum extension that is both complete and
unprovable. Second, we use this type of pair, i.e. complete and unprovable, to construct
a canonical model which allows us to prove completeness.

8.8.1 A Lindenbaum lemma

To obtain a Lindenbaum lemma, showing the existence of a complete and unprovable
extension for any unprovable pair, we need to proceed as follows. First, we need an
encoding of formulas by natural numbers. Second, we define a decoding function, which
is some type of inverse of the encoding. These two functions are then used in a third
moment, where we define a selection function, picking formulas, which is involved in the
step-by-step construction of the Lindenbaum extension of a pair [Γ | ∆]. Fourth, the
Lindenbaum extension, i.e. a pair [Γ′ | ∆′] such that Γ ⊆ Γ′ and ∆ ⊆ ∆′, is defined
using the selection function. Finally, we prove the Lindenbaum lemma: the Lindenbaum
extension is complete and unprovable.

First, we assume given an encoding (Definition 6.1.1) as defined below.

Hypothesis 8.8.1. There is an encoding of FormLBI
.

We fix this encoding and call it encode0. We then define the encoding we use in our
Lindenbaum extension.

Definition 8.8.1. We define encode : ϕ 7→ S (encode0(ϕ)), where S is the successor
operator on natural numbers.

As in the modal case, encode is injective and makes 0 the encoding of no formula.
Second, we need a decoding function, as defined in Definition 6.1.4.

Lemma 8.8.1. There is a decoding function for encode.

Proof. (Ï) Identical to the proof of Lemma 6.1.3. �

Using the previous lemma, we fix a decoding function of encode and call it decode.
Third, with these functions in hand, we can define a selection function crucial to our

Lindenbaum extension.

Definition 8.8.2. We define the selection function sel which takes as inputs a pair of sets
of formulas and a natural number, and outputs a set of formulas (note that there is a
priority order from bottom to top).

sel([Γ | ∆], n) =



Γ if decode(n) = None

Γ if decode(n) = Some(ϕ ∨ ψ) and Γ 6`w ϕ ∨ ψ
Γ ∪ {ϕ} if decode(n) = Some(ϕ ∨ ψ) and Γ `w ϕ ∨ ψ and

6`w [Γ, ϕ | ∆]

Γ ∪ {ψ} if decode(n) = Some(ϕ ∨ ψ) and Γ `w ϕ ∨ ψ and
`w [Γ, ϕ | ∆]

Γ if decode(n) = Some(ϕ)

https://github.com/ianshil/PhD_thesis/blob/dc57878b29ae93bec687ef6c993db3cb27372f15/Prop_Bi_Int/BiInt_Lindenbaum_lem.v#L49
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While the above definition may look complicated, it is in essence rather simple. If n is
the encoding of no formula, then sel outputs the left-hand side Γ of the pair it was given
(case 1). If n is the encoding of some formula χ, then we need to look at the structure of
χ (cases 2-5).

If χ := ϕ ∨ ψ, then we need to verify whether ϕ ∨ ψ is derived from Γ (cases 2-4). If
Γ 6`w ϕ ∨ ψ, sel outputs the left-hand side of the pair it was given (case 2). If Γ `w ϕ ∨ ψ,
we check whether adding ϕ to the left of the pair makes the pair unprovable (cases 3-4).
If we have 6`w [Γ, ϕ | ∆], then sel outputs Γ ∪ {ϕ} (case 3). If we have `w [Γ, ϕ | ∆], then
sel outputs Γ ∪ {ψ} (case 4).

Finally, if χ is any other formula, then sel outputs the left-hand side of the pair it was
given (case 5).

The function sel is built to make sure that if a disjunction ϕ ∨ ψ is deduced by the
left-hand side of a pair [Γ | ∆] and its encoding is the natural number under consideration,
then one of the disjuncts is selected and added to the left-hand side of the pair without
making the resulting pair provable.

To obtain this selection property for all disjunctions, we need to go through all natural
numbers. Our fourth point deals with this through the next function.

Definition 8.8.3. We define the function Lindf, which takes as inputs a pair of sets of
formulas and a natural number, and outputs a set of formulas, inductively on natural
numbers.

- Lindf([Γ | ∆], 0) = Γ

- Lindf([Γ | ∆], (S m)) = sel( [ Lindf([Γ | ∆],m) | ∆] , (S m) )

We define the Lindenbaum extension of a pair [Γ | ∆] as follows: Lind([Γ | ∆]) = (X,Y )
where:

X =

∞⋃
n=0

(Lindf([Γ | ∆], n))

Y = {ϕ ∈ FormLBI
|
∞⋃
n=0

(Lindf([Γ | ∆], n)) 6`w ϕ}

Here again, behind heavy notations lie simple ideas. The function Lindf takes a pair
[Γ | ∆] and a natural number n, and proceeds to extend step-by-step from 0 to n the set Γ
using at each step the function sel. With this function in hand, it is rather straightforward
to obtain the Lindenbaum extension of a pair [Γ | ∆]. First, we use the union of Lindf([Γ |
∆], n) for all n ∈ N, i.e.

∞⋃
n:=0

(Lindf([Γ | ∆], n)), to define X, i.e. the left-hand side of

the extension. Second, we define Y the right-hand side of the extension, to be the set of
formulas not deduced by the left-hand side, i.e. the following set.

{ϕ ∈ FormLBI
|
∞⋃
n:=0

(Lindf([Γ | ∆], n)) 6`w ϕ}

In what is remaining of this subsection, we proceed to establish our fifth point: we
show that the Lindenbaum extension of an unprovable pair [Γ | ∆] is complete, as in
Definition 8.6.1, and unprovable.

Definition 8.8.4. Let Γ ∪∆ ⊆ FormLBI
We say that [Γ | ∆] is

- prime if for every ϕ,ψ ∈ FormLBI
, if Γ `w ϕ ∨ ψ then ϕ ∈ Γ or ψ ∈ Γ;

- closed under deducibility if for every ϕ ∈ FormLBI
, if Γ `w ϕ then ϕ ∈ Γ.
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Before turning to the Lindenbaum lemma, note that our notion of primeness is non-
standard in two ways. To witness this, let us recall that traditionally a set of formulas Γ
is prime if and only if ϕ∨ψ ∈ Γ implies ϕ ∈ Γ or ψ ∈ Γ. First, we bend this definition by
saying that a pair is prime, and not a set. In fact, our notion of primeness on a pair entails
the traditional notion of primeness on the set of formulas on the left of the pair. Second,
we require that in our definition the disjunction is deducible from the left component of
the pair, and not just an element of it.

Lemma 8.8.2 (Lindenbaum Lemma). If 6`w [Γ | ∆] then there exist Γ′ ⊇ Γ and ∆′ ⊇ ∆
such that:

1. [Γ′ | ∆′] is prime;

2. [Γ′ | ∆′] is closed under deducibility;

3. [Γ′ | ∆′] is complete;

4. 6`w [Γ′ | ⊥];

5. 6`w [Γ′ | ∆′].

Proof. We claim that Lind([Γ | ∆]) is such a pair. For convenience, let Γ′ and ∆′ be
such that Lind([Γ | ∆]) = [Γ′ | ∆′]. Note that ∆′ = {ϕ ∈ FormLBI

| Γ′ 6`w ϕ} by
definition. First, we prove that each step of the construction Lindf([Γ | ∆], n) preserves the
unprovability of the pair [Lindf([Γ | ∆], n) | ∆] (Ï). So, we show that 6`w [Lindf([Γ | ∆], n) |
∆] by induction on n. If n := 0, then we have that 6`w [Lindf([Γ | ∆], 0) | ∆] by assumption
as Lindf([Γ | ∆], 0) = Γ. If n := S m, then we need to show that 6`w [Lindf([Γ | ∆], (S m)) |
∆]. We make a first case distinction on decode(S m).

1. If decode(S m) = None, then we have the following chain of equalities.

Lindf([Γ | ∆], (S m)) = sel( [ Lindf([Γ | ∆],m) | ∆] , (S m) ) = Lindf([Γ | ∆],m)

However, we get by induction hypothesis that 6`w [Lindf([Γ | ∆],m) | ∆] so we are
done.

2. If decode(S m) = Some(ϕ), then we need to make a case distinction on the structure
of ϕ.

(a) If ϕ := ψ ∨ χ, then note that we have the following equality.

Lindf([Γ | ∆], (S m)) = sel( [ Lindf([Γ | ∆],m) | ∆] , (S m) )

There, depending on whether the disjunction is deduced from Lindf([Γ | ∆],m),
we have two cases.

i. If Lindf([Γ | ∆],m) 6`w ψ ∨ χ, then an application of the induction hypoth-
esis suffices to reach our goal, as we have the following equality.

sel( [ Lindf([Γ | ∆],m) | ∆] , (S m) ) = Lindf([Γ | ∆],m)

ii. If Lindf([Γ | ∆],m) `w ψ ∨ χ, then we need to verify whether the following
holds or not.

6`w [Lindf([Γ | ∆],m), ψ | ∆]

A. If 6`w [Lindf([Γ | ∆],m), ψ | ∆], then we have the following equality.

sel( [ Lindf([Γ | ∆],m) | ∆] , (S m) ) = Lindf([Γ | ∆],m) ∪ ψ

But note that by assumption we get 6`w [Lindf([Γ | ∆],m), ψ | ∆], that
is 6`w [Lindf([Γ | ∆], (S m)) | ∆]. So, we are done.

https://github.com/ianshil/PhD_thesis/blob/dc57878b29ae93bec687ef6c993db3cb27372f15/Prop_Bi_Int/BiInt_Lindenbaum_lem.v#L762
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B. If `w [Lindf([Γ | ∆],m), ψ | ∆], then we have the following equality.

sel( [ Lindf([Γ | ∆],m) | ∆] , (S m) ) = Lindf([Γ | ∆],m) ∪ χ

Assume for a contradiction that `w [Lindf([Γ | ∆], (S m)) | ∆], that
is `w [Lindf([Γ | ∆],m), χ | ∆]. Consequently, by definition there is
a finite ∆′ ⊆ ∆ such that Lindf([Γ | ∆],m), χ `w

∨
∆′. As we have

`w [Lindf([Γ | ∆],m), ψ | ∆] we also obtain a finite ∆′′ ⊆ ∆ such that
Lindf([Γ | ∆],m), ψ `w

∨
∆′′. From Lindf([Γ | ∆],m) ∪ χ `w

∨
∆′ and

Lindf([Γ | ∆],m), ψ `w
∨

∆′′, we straightforwardly obtain the two fol-
lowing statements.

Lindf([Γ | ∆],m) ∪ χ `w
∨

∆′ ∨
∨

∆′′

Lindf([Γ | ∆],m) ∪ ψ `w
∨

∆′ ∨
∨

∆′′

Using Theorem 8.6.1 we get Lindf([Γ | ∆],m) `w χ→ (
∨

∆′ ∨
∨

∆′′)
and Lindf([Γ | ∆],m) `w ψ → (

∨
∆′ ∨

∨
∆′′). Note that the following

formula is an instance of the axiom A4:

(ψ → (
∨

∆′∨
∨

∆′′))→ (χ→ (
∨

∆′∨
∨

∆′′))→ (ψ∨χ→ (
∨

∆′∨
∨

∆′′))

So, we easily obtain that Lindf([Γ | ∆],m) `w
∨

∆′ ∨
∨

∆′′ by using
Lindf([Γ | ∆],m) `w ψ ∨ χ and the above. But this is in contradiction
with our induction hypothesis `w [Lindf([Γ | ∆],m) | ∆]: we found a
finite subset ∆′ ∪∆′′ ⊆ ∆ such that Lindf([Γ | ∆],m) `w

∨
(∆′ ∪∆′′).

So, we get that 6`w [Lindf([Γ | ∆],m), χ | ∆].

(b) If ϕ is not a disjunction, then an application of the induction hypothesis suffices
to reach our goal, as we have the following chain of equalities.

Lindf([Γ | ∆], (S m)) = sel( [ Lindf([Γ | ∆],m) | ∆] , (S m) ) = Lindf([Γ | ∆],m)

In all possible cases we concluded that 6`w [Lindf([Γ | ∆], (S m)) | ∆], so we are done.

With this result in hand, we proceed to prove each of the items.

1. (Ï) Assume `w [Γ′ | ϕ ∨ ψ]. So, we can prove that there must be a number n
such that `w [Lindf([Γ | ∆], n) | ϕ ∨ ψ]. The reason being that Γ′ is the collection
of all such Lindf([Γ | ∆],m), and so in the proof `w [Γ′ | ϕ ∨ ψ] we can replace Γ′

for a big enough Lindf([Γ | ∆],m) in all the instances of the application of the rule
(El). Now, given that `w [Lindf([Γ | ∆], n) | ϕ ∨ ψ], we have `w [Lindf([Γ | ∆], n) |
ϕ ∨ ψ(∨⊥)k] for any k ∈ N and where (∨⊥)k designate the pattern ∨⊥ repeated
k times. The latter implies that even if at stage n we have already treated the
case of m = encodeϕ ∨ ψ (where we may not have picked any of ϕ or ψ because
Lindf([Γ | ∆],m) 6`w ϕ ∨ ψ), there will always be a disjunction ϕ ∨ ψ(∨⊥)k which
will be encountered at a later stage j. When this does happen, the disjunction
ϕ ∨ ψ(∨⊥)k will be deduced from the corresponding Lindf([Γ | ∆], j) as the latter is
a superset of Lindf([Γ | ∆], n). So, given that ⊥ cannot be selected by sel at stage j,
either ϕ or ψ will be added to the set. As a consequence, we obtain that ϕ ∈ Γ′ or
ψ ∈ Γ′.

2. (Ï) Assume `w [Γ′ | ϕ]. We need to show ϕ ∈ Γ′. We easily obtain `w [Γ′ | ϕ ∨ ϕ]
using our assumption and A2. Item 1 proved above gives us that ϕ ∈ Γ′ or ϕ ∈ Γ′,
hence ϕ ∈ Γ′.

3. (Ï) We need to show that [Γ′ | ∆′] is complete. Let ϕ ∈ FormLBI
. We use the law

of excluded middle on the derivability of ϕ from Γ′. If Γ′ `w ϕ, then by item 2 we
obtain ϕ ∈ Γ′. If Γ′ 6`w ϕ, then by definition of ∆′ we get that ϕ ∈ ∆′. So, [Γ′ | ∆′]
is complete.
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4. (Ï) We need to show 6`w [Γ′ | ⊥]. Assume for a contradiction that `w [Γ′ | ⊥]. Item

2 allows us to infer that ⊥ ∈ Γ′. However, we have that Γ′ =
∞⋃
n:=0

(Lindf([Γ | ∆], n)).

So, we must have that ⊥ ∈ Lindf([Γ | ∆], n) for some n. The latter contradicts the
established fact that the pair [Lindf([Γ | ∆], n) | δ] is unprovable.

5. (Ï) We need to show 6`w [Γ′ | ∆′]. Assume for a contradiction that `w [Γ′ | ∆′].
Then, by definition there must be a finite ∆′′ ⊆ ∆′ such that Γ′ `w

∨
∆′′. Using item

1, we get that there must be a δ ∈ ∆′′ such that δ ∈ Γ′. However, as δ ∈ ∆′′ ⊆ ∆′, we
obtain by definition of ∆′ = {ϕ ∈ FormLBI

| Γ′ 6`w ϕ} that Γ′ 6`w δ, a contradiction.
So, 6`w [Γ′ | ∆′].

(Ï) We prove ∆ ⊆ ∆′. Take δ ∈ ∆ and assume δ 6∈ ∆′. Then, we get δ ∈ Γ′ by item

3. As we have that Γ′ =
∞⋃
n:=0

(Lindf([Γ | ∆], n)), we get that δ ∈ Lindf([Γ | ∆], n) for some

n. However, this implies that the pair [Lindf([Γ | ∆], n) | δ] is provable, which contradicts
our point above.

So, [Γ′ | ∆′] is such Γ ⊆ Γ′ and ∆ ⊆ ∆′, and satisfies all of the above items. �

8.8.2 A canonical model construction

We just showed that for every unprovable pair [Γ | ∆] there is an extension [Γ′ | ∆′] of
this pair which is complete and unprovable. We use this type of pair to define the points
of a canonical model, taking inspiration from Sano and Stell [127].

Definition 8.8.5. The canonical model Mc = (W c,≤c, Ic) is defined in the following
way:

1. W c = {[Γ | ∆] | [Γ | ∆] is complete and 6`w [Γ | ∆]};

2. [Γ1 | ∆1] ≤c [Γ2 | ∆2] iff Γ1 ⊆ Γ2;

3. Ic(p) = {[Γ | ∆] ∈W c | p ∈ Γ}.

We use this canonical model as a witness: we intend to show that if 6`w [Γ | ∆], then
we have that there is a point in Mc which is a Γ-point but forces no formula in ∆, hence
Γ 6|=l ∆. As usual a canonical model proof technique, we prove the crucial Truth Lemma.
To do so, we require the next lemma.

Lemma 8.8.3. Let Γ ∪∆ ⊆ FormLBI
. If [Γ | ∆] is complete and 6`w [Γ | ∆], then [Γ | ∆]

is prime and closed under deducibility.

Proof. Assume [Γ | ∆] is complete and 6`w [Γ | ∆].
(Ï) We first prove that it is closed under deducibility. Let ϕ ∈ FormLBI

. Assume
that Γ `w ϕ. As [Γ | ∆] is complete, we have that ϕ ∈ Γ or ϕ ∈ ∆. If the former, we are
done. If the latter, we obtain a contradiction as ϕ ∈ ∆ and Γ `w ϕ leads to `w [Γ | ∆]. In
both cases, we get ϕ ∈ Γ.

(Ï) Second, we prove that [Γ | ∆] is prime. Let ϕ,ψ ∈ FormLBI
. Assume that

Γ `w ϕ ∨ ψ. As [Γ | ∆] is complete, we have that ϕ ∈ Γ or ϕ ∈ ∆, and ψ ∈ Γ or ψ ∈ ∆.
If one of the formulas is in Γ, then we are done. Consequently, it suffices to consider the
case where ϕ ∈ ∆ and ψ ∈ ∆. If this is the case, note that there is a finite set {ϕ,ψ} ⊆ ∆
such that Γ `w

∨
{ϕ,ψ}, i.e. Γ `w ϕ ∨ ψ. So, we have `w [Γ | ∆], in contradiction with

our initial assumption. �

We then turn to the Truth Lemma, which relates forcing and elementhood in the
canonical model: Mc, [Γ | ∆]  ϕ if and only if ϕ ∈ Γ. Note that our use of complete pairs
entails that we have equivalently that Mc, [Γ | ∆] 6 ϕ if and only if ϕ ∈ ∆. In essence,
the Truth Lemma shows that a pair [Γ | ∆] ∈W c is a full description of which formula ψ
is forced in [Γ | ∆], if ψ ∈ Γ, and which formula is not, if ψ ∈ ∆.
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Lemma 8.8.4 (Truth Lemma). For every [Γ | ∆] ∈W c:

ψ ∈ Γ iff Mc, [Γ | ∆]  ψ.

Proof. (Ï) By induction on ψ.

- ψ := p: by definition p ∈ Γ iff Γ ∈ Ic(p) iff Mc, [Γ | ∆]  p.

- ψ := >: we have that > ∈ Γ by Lemma 8.8.3 and Γ `w >. In addition to that, we
have Mc, [Γ | ∆]  > by definition. So, we have > ∈ Γ iff Mc, [Γ | ∆]  > trivially.

- ψ := ⊥: we have that ⊥ 6∈ Γ as otherwise we get `w [Γ | ∆] which is a contradiction.
In addition to that, we have Mc, [Γ | ∆] 6 ⊥ by definition. So, we have ⊥ ∈ Γ iff
Mc, [Γ | ∆]  ⊥ trivially.

- ψ := ψ1 ∧ ψ2: ψ1 ∧ ψ2 ∈ Γ iff ψ1 ∈ Γ and ψ2 ∈ Γ by Lemma 8.8.3 and Γ `w ψi
for i ∈ {1, 2}. By induction hypothesis this holds if and only if Mc,Γ ` ∆ψ1 and
Mc,Γ ` ∆ψ2. Then ψ1 ∧ ψ2 ∈ Γ iff Mc, [Γ | ∆]  ψ1 ∧ ψ2.

- ψ := ψ1 ∨ ψ2: ψ1 ∨ ψ2 ∈ Γ iff [ψ1 ∈ Γ or ψ2 ∈ Γ] by Lemma 8.8.3. By induction
hypothesis this holds if and only if Mc, [Γ | ∆]  ψ1 or Mc, [Γ | ∆]  ψ2. Then
ψ1 ∨ ψ2 ∈ Γ iff Mc, [Γ | ∆]  ψ1 ∨ ψ2.

- ψ := ψ1 → ψ2: (⇒) Assume ψ1 → ψ2 ∈ Γ. We need to show that Mc, [Γ |
∆]  ψ1 → ψ2. Let [Γ′ | ∆′] ∈ W c such that [Γ | ∆] ≤c [Γ′ | ∆′], and assume
Mc, [Γ′ | ∆′]  ψ1. We need to show that Mc, [Γ′ | ∆′]  ψ2. By the induction
hypothesis, it is sufficient to show that ψ2 ∈ Γ′. From Mc, [Γ′ | ∆′]  ψ1 we
obtain ψ1 ∈ Γ′ by induction hypothesis. Also, as [Γ | ∆] ≤c [Γ′ | ∆′], we have
ψ1 → ψ2 ∈ Γ ⊆ Γ′. It is straightforward to prove that Γ′ `w ψ2 using (MP). Using
Lemma 8.8.3 we get ψ2 ∈ Γ′. The induction hypothesis gives us Mc, [Γ′ | ∆′]  ψ2.

(⇐) Assume Mc, [Γ | ∆]  ψ1 → ψ2. Assume for reductio that ψ1 → ψ2 6∈ Γ. Then
by Theorem 8.6.1 we obtain 6`w [Γ, ψ1 | ψ2]. By Lemma 8.8.2 there is a Γ′ ⊇ Γ∪{ψ1}
and ∆′ ⊇ {ψ2} such that [Γ′ | ∆′] is complete and 6`w [Γ′ | ∆′]. Note that we have
`w [Γ′ | ψ1], hence ψ1 ∈ Γ′ by Lemma 8.8.3. By induction hypothesis we get
Mc, [Γ′ | ∆′]  ψ1 andMc, [Γ′ | ∆′] 6 ψ2. But as Γ′ ⊇ Γ andMc, [Γ | ∆]  ψ1 → ψ2

we reached a contradiction.

- ψ := ψ1 ψ2: (⇒) Assume ψ1 ψ2 ∈ Γ. We claim that 6`w [ψ1 | ψ2,∆].
Suppose it is not the case. Then by definition there is a finite ∆f ⊆ ∆ such that
ψ1 `w ψ2 ∨

∨
∆f , hence `w [ψ1 | ψ2 ∨

∨
∆f ]. By Theorem 8.6.1 we thus obtain

`w [∅ | ψ1 → (ψ2 ∨
∨

∆f )]. And then by Proposition 8.6.1 we obtain that `w [∅ |
(ψ1 ψ2)→

∨
∆f ]. But as ψ1 ψ2 ∈ Γ and we get that

∨
∆f ∈ Γ using Lemma

8.8.3, which leads to an obvious contradiction. So 6`w [ψ1 | ψ2,∆]. Thus by Lemma
8.8.2 there are Γ′ ⊇ {ψ1} and ∆′ ⊇ ∆ ∪ {ψ2} such that [Γ′ | ∆′] is complete and
6`w [Γ′ | ∆′]. Note that ψ1 ∈ Γ′ and ψ2 6∈ Γ′, hence Mc, [Γ′ | ∆′]  ψ1 and
Mc, [Γ′ | ∆′] 6 ψ2 by induction hypothesis. But we have that ∆ ⊆ ∆′, which
implies by completeness that Γ′ ⊆ Γ. So [Γ′ | ∆′] ≤c [Γ | ∆]. Consequently
Mc, [Γ | ∆]  ψ1 ψ2.

(⇐) Assume Mc, [Γ | ∆]  ψ1 ψ2. Then, there is [Γ′ | ∆′] ∈ W c such that [Γ |
∆] ≤c [Γ′ | ∆′], Mc, [Γ′ | ∆′]  ψ1 and Mc, [Γ′ | ∆′] 6 ψ2. By induction hypothesis,
we obtain ψ1 ∈ Γ′ and ψ2 6∈ Γ′. Now, note that Γ′ `w ψ1 → (ψ2 ∨ (ψ1 ψ2))
as the formula on the right is an instance of A11. Consequently, we get Γ′ `w
ψ2 ∨ (ψ1 ψ2) as ψ1 ∈ Γ′. Using Lemma 8.8.3 we obtain that ψ2 ∈ Γ′ or ψ1

ψ2 ∈ Γ′. As the former is impossible, we have ψ1 ψ2 ∈ Γ′. Finally, note that
Γ′ ⊆ Γ as [Γ | ∆] ≤c [Γ′ | ∆′]. So, we obtain ψ1 ψ2 ∈ Γ.

�
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We are now ready to prove that wBIL corresponds to the local semantic consequence
relation.

Theorem 8.8.1. The following holds:

`w [Γ | ∆] iff Γ |=l ∆

Proof. We prove each direction separately.

(⇒) (Ï) Here we prove soundness. Assume `w [Γ | ∆]. We prove that Γ |=l ∆ by
induction on the structure of the proof of `w [Γ | ∆]. The case where the last
rule applied is (El) is trivial. So, we need to prove the case where the last rule
applied is (Ax), (MP) or (wDN). First, we proceed to prove that all axioms are
valid, which suffices to deal with the (Ax). Second, we treat the cases (MP) and
(wDN) by showing that these rules preserve semantic consecutions. In what follows
let M = (W,≤, I) be a model and w ∈W .

(A1) We show that M, w  (ϕ → ψ) → ((ψ → χ) → (ϕ → χ)). Let w1 ≥ w and
assume M, w1  ϕ→ ψ. We need to show that M, w1  (ψ → χ)→ (ϕ→ χ).
Let w2 ≥ w1 and assumeM, w2  ψ → χ. We need to show thatM, w2  ϕ→
χ. Let w3 ≥ w2 and assume M, w3  ϕ. We need to show that M, w3  χ.
As w1 ≤ w3 by transitivity of ≤ and M, w1  ϕ→ ψ, we get that M, w3  ψ.
Moreover w2 ≤ w3 and M, w2  ψ → χ, so M, w3  χ.

(A2) We show thatM, w  ϕ→ (ϕ∨ψ). Let w1 ≥ w and assumeM, w1  ϕ. Then
by definition M, w1  ϕ ∨ ψ.

(A3) We show that M, w  ψ → (ϕ ∨ ψ) as in (A2).

(A4) We show that M, w  (ϕ → ψ) → ((χ → ψ) → ((ϕ ∨ χ) → ψ)). Let w1 ≥ w
and assume that M, w1  ϕ → ψ. We need to show that M, w1  (χ →
ψ) → ((ϕ ∨ χ) → ψ). Let w2 ≥ w1 s.t. M, w2  χ → ψ. We need to show
that M, w2  (ϕ ∨ χ) → ψ. Let w3 ≤ w2 s.t. M, w3  ϕ ∨ χ. By definition
M, w3  ϕ orM, w3  χ. AssumeM, w3  ϕ. As w1 ≤ w3 by transitivity and
M, w1  ϕ→ ψ, we get M, w3  ψ. The case where M, w3  χ is similar. So
M, w3  ψ.

(A5) We show that M, w  (ϕ ∧ ψ) → ϕ. Let w1 ≥ w s.t. M, w1  ϕ ∧ ψ. By
definition we get that M, w1  ϕ.

(A6) We show that M, w  (ϕ ∧ ψ)→ ψ as in (A5).

(A7) We show that M, w  (χ → ϕ) → ((χ → ψ) → (χ → (ϕ ∧ ψ))). Let w1 ≥ w
s.t.M, w1  χ→ ϕ. We need to show thatM, w1  (χ→ ψ)→ (χ→ (ϕ∧ψ)).
Let w2 ≥ w1 s.t.M, w2  χ→ ψ. We need to showM, w2  χ→ (ϕ∧ψ). Let
w3 ≥ w2 s.t. M, w3  χ. We need to show that M, w3  ϕ∧ψ, i.e. M, w3  ϕ
andM, w3  ψ. First, as w2 ≥ w3 andM, w2  χ→ ψ we get thatM, w3  ψ.
Second, as w1 ≤ w3 and M, w1  χ→ ϕ we get that M, w3  ϕ.

(A8) We show that M, w  (ϕ → (ψ → χ)) → ((ϕ ∧ ψ) → χ). Let w1 ≥ w
s.t. M, w1  ϕ → (ψ → χ). We need to show that M, w1  (ϕ ∧ ψ) → χ.
Let w2 ≥ w1 s.t. M, w2  ϕ ∧ ψ i.e. M, w2  ϕ and M, w2  ψ. We need to
show that M, w2  χ. As w1 ≤ w2 and M, w1  ϕ → (ψ → χ) we get that
M, w2  ψ → χ. By reflexivity and the fact thatM, w2  ψ we getM, w2  χ.

(A9) We show M, w  ((ϕ ∧ ψ) → χ) → (ϕ → (ψ → χ)). Let w1 ≥ w s.t. M, w1 
(ϕ ∧ ψ) → χ. We need to show that M, w1  ϕ → (ψ → χ). Let w2 ≥ w1

s.t. M, w2  ϕ. We need to show that M, w2  ψ → χ. Let w3 ≥ w2

s.t.M, w3  ψ. We need to show thatM, w3  χ. As w2 ≤ w3 andM, w2  ϕ
we get by Lemma 9.7.1 thatM, w3  ϕ, thusM, w3  ϕ∧ψ. As w1 ≤ w3 and
M, w1  (ϕ ∧ ψ)→ χ we get M, w3  χ.
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(A10) We show that M, w  (ϕ→ ψ)→ (¬ψ → ¬ϕ). Let w1 ≥ w s.t. M, w1  ϕ→
ψ. We need to show M, w1  ¬ψ → ¬ϕ. Let w2 ≥ w1 s.t. M, w2  ¬ψ. We
need to show that M, w2  ¬ϕ. Let w3 ≥ w2. Let us assume for contradiction
that M, w3  ϕ. Then as w1 ≤ w3 and M, w1  ϕ → ψ we get M, w3  ψ.
But this is a contradiction as M, w2  ¬ψ. So M, w3 6 ϕ.

(A11) We show M, w  ϕ → (ψ ∨ (ϕ ψ)). Let w1 ≥ w s.t. M, w1  ϕ. We
need to show that M, w1  ψ ∨ (ϕ ψ), i.e. M, w1  ψ or M, w1  ϕ ψ.
If M, w1  ψ then we’re done. If M, w1 6 ψ then by reflexivity of ≤ we get
M, w1  ϕ ψ. In every case we getM, w1  ψ∨(ϕ ψ). Note that we used
the law of excluded middle in this situation, making our proof non-constructive.

(A12) We show M, w  (ϕ ψ)→∼(ϕ→ ψ). Let w1 ≥ w s.t. M, w1  ϕ ψ. We
need to show that M, w1 ∼ (ϕ → ψ). In other words we need to show that
there is a w2 ≤ w1 s.t. M, w2 6 ϕ → ψ. But as M, w1  ϕ ψ there is a
w3 ≤ w1 s.t. M, w3  ϕ and M, w1 6 ψ. Thus M, w3 6 ϕ → ψ by reflexivity
of ≤.

(A13) We show that M, w  ((ϕ ψ) χ) → (ϕ (ψ ∨ χ)). Let w1 ≥ w
s.t. M, w1  (ϕ ψ) χ. We need to show that M, w1  ϕ (ψ ∨ χ). As
M, w1  (ϕ ψ) χ there is a w2 ≤ w1 s.t.M, w2  ϕ ψ andM, w2 6 χ.
As M, w2  ϕ ψ there is a w3 ≤ w2 s.t. M, w3  ϕ and M, w3 6 ψ. And
as M, w2 6 χ and w3 ≤ w2 we get by Lemma 8.7.1 that M, w3 6 χ. So we get
that M, w3 6 ψ ∨ χ. And as w3 ≤ w1, M, w3  ϕ and M, w3 6 ψ ∨ χ we get
that M, w1  ϕ (ψ ∨ χ).

(A14) We show thatM, w  ¬(ϕ ψ)→ (ϕ→ ψ). Let w1 ≥ w s.t.M, w1  ¬(ϕ
ψ). We need to show M, w1  ϕ → ψ. Let w2 ≥ w1 s.t. M, w2  ϕ. We
need to show that M, w2  ψ. Assume for reductio that M, w2 6 ψ. Then
M, w2  ϕ ψ, but this is a contradiction as w1 ≤ w2 andM, w1  ¬(ϕ ψ).
So M, w2  ψ.

(A15) We show thatM, w  ϕ→ >. Let v ≥ w s.t.M, v  ϕ. We need to show that
M, v  >, but this holds by definition.

(A16) We show M, w  ⊥ → ϕ. Let v ≥ w s.t. M, v  ⊥. We need to show that
M, v  ϕ. Given that M, v  ⊥ is a contradiction by definition, we infer
M, v  ϕ.

(MP) Assume that Γ |=l ϕ and Γ |=l ϕ→ ψ hold. We show that Γ |=l ψ. LetM be a
model and w ∈ W . Assume that M, w  Γ. We need to show that M, w  ψ.
As M, w  Γ and Γ |=l ϕ and Γ |=l ϕ → ψ, we directly obtain M, w  ϕ and
M, w  ϕ→ ψ. By reflexivity of ≤ we consequently obtain M, w  ψ.

(wDN) Assume that |=l ϕ. We show that Γ |=l ¬∼ϕ. Let M be a model and w ∈ W .
Assume thatM, w  Γ. We need to show thatM, w  ¬∼ϕ. Thus we need to
show that for every w1 ≥ w we haveM, w1 6 ∼ϕ. Let w1 ≥ w and w2 ≤ w1. As
|=l ϕ we get that M, w2  ϕ. As w2 is arbitrary, we have that for all w2 ≤ w1,
we have M, w2  ϕ. Thus M, w1 6 ∼ϕ. As w1 is arbitrary we reached our
goal.

(⇐) (Ï) Here we prove completeness. Assume 6`w [Γ | ∆]. Lemma 8.8.2 gives us a
complete pair [Γ′ | ∆′] such that 6`w [Γ′ | ∆′], where Γ ⊆ Γ′ and ∆ ⊆ ∆′. Moreover
there is no δ ∈ ∆ such that δ ∈ Γ′, so by Lemma 8.8.4 we obtain that in the canonical
model of Definition 8.8.5 the following holds: Mc, [Γ′ | ∆′] 6 δ for every δ ∈ ∆, while
Mc, [Γ′ | ∆′]  Γ. Consequently, we have that Γ 6|=l ∆.

�
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8.9 Strong is global

In this section we show that sBIL corresponds to the global semantic consequence re-
lation, by notably following the argument exhibited in Subsection 6.1.2. We rely on the
correspondence between wBIL and the local semantic consequence shown just above. More
precisely, we show that if a pair [Γ | ∆] is unprovable in sBIH, then through Theorem 8.8.1
we extract the existence of a model M having a point w forcing (¬∼)ωΓ and forcing no
formula in ∆. But this is not enough becauseM is not necessarily a Γ-model. Therefore,
we make use of this model M by restricting it to another model containing w which is a
Γ-model and where w still forces no formula in ∆, making use of a bisimulation between
the two models. Thus, the latter model witnesses Γ 6|=g ∆.

First, we show how to restrict a model M from a point w.

Definition 8.9.1. Let M = (W,≤, I) be a model and w ∈ W . The restriction of M in
w is the model Mw = (Ww,≤w, Iw), where:

- Ww = {v ∈W | there is a chain wR1...Rnv, where Rj ∈ {≤,≥} for j ∈ N};

- ≤w = ≤ ∩ (Ww ×Ww);

- Iw(p) = I(p) ∩Ww.

Note that on the contrary to Definition 6.1.10, here we consider chains constituted
by steps not only going forward on the relation of accessibility ≤, but also backward. As
suggested at the beginning of this section, we show that the point w in the initial model
is bisimilar with itself in the restriction of the model.

Lemma 8.9.1. For all model M = (W,≤, I) and w ∈W , we have that M, w �Mw, w.

Proof. (Ï) We need to exhibit a bisimulation B ⊆ (W × Ww). Consider the relation
B = {(v, v) | v ∈ Ww}. Note that B ⊆ (W ×Ww) as required. We are left to show that
B satisfies the conditions of the Definition 8.7.3. Let v ∈Ww.

(B1) Let p ∈ V. We have v ∈ I(p) iff v ∈ Iw(p) by definition of the restriction.

(B2) Let u ∈ Ww such that v ≤w u. As u ∈ Ww, we get that u ∈ W . Finally, as v ≤w u
we get that v ≤ u by the definition of the restriction, so we are done.

(B3) Let u ∈ W such that v ≤ u. As v ∈ Ww, we get that there is a chain wR1...Rnv.
So, there is a chain wR1...Rnv ≤ u as v ≤ u. Consequently, we get that u ∈ Ww.
Finally, as v ≤ u we get that v ≤w u, so we are done.

(B4) Let u ∈ Ww such that u ≤w v. As u ∈ Ww, we get that u ∈ W . Finally, as u ≤w v
we get that u ≤ v by the definition of the restriction, so we are done.

(B5) Let u ∈ W such that u ≤ v. As v ∈ Ww, we get that there is a chain wR1...Rnv.
So, there is a chain wR1...Rnv ≥ u as v ≥ u. Consequently, we get that u ∈ Ww.
Finally, as v ≥ u we get that v ≥w u, so we are done.

�

However, Lemma 8.7.1 informs us that bisimulations entail logical equivalence. So, we
easily obtain the following corollary showing that the two models force the same formulas
in w.

Corollary 8.9.1. For all model M = (W,≤, I), w ∈W and ϕ ∈ LBI:

M, w  ϕ iff Mw, w  ϕ

Proof. (Ï) As we have that M, w � Mw, w by Lemma 8.9.1, we know by Proposition
8.7.1 that M, w  ϕ iff Mw, w  ϕ. �
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Let us recall that our intention is to obtain a model forcing Γ everywhere out of a model
forcing (¬∼)ωΓ in one point. Given a modelM and a point w such thatM, w  (¬∼)ωΓ,
we can obtain the promised model: it is the restriction of M in w. We can sustain our
claim by showing that if M, w  (¬∼)ωΓ, then for all v ∈ Ww we have Mw, v  Γ. This
is the essence of the next lemma.

Lemma 8.9.2. Let n ∈ N be a natural number,M = (W,≤, I) a model, w, v ∈W points,
ϕ ∈ FormLBI

a formula and wR1...Rnv a chain in M such that Rj ∈ {≤,≥} for every
j ∈ {1, ..., n}. If M, w  (¬∼)nϕ, then M, v  ϕ.

Proof. (Ï) We prove the statement by induction on n.

- n = 0: then v = w as the chain wR1...Rnv is of length 0. Consequently M, w  ϕ
as M, w  (¬∼)0ϕ by assumption.

- n = S m: then there is u such that uRSmv. Given that M, w  (¬∼)Smϕ by as-
sumption, we easily obtain thatM, w  (¬∼)m(¬∼ϕ) as (¬∼)Smϕ = (¬∼)m(¬∼ϕ).
Thus, we can use the induction hypothesis to obtain thatM, u  ¬∼ϕ. If RSm =≤,
then we have that u ≤ v. Consequently, we get by the definition of the semantics
that M, v 6 ∼ϕ. As v ≤ v, we get that M, v  ϕ. If RSm =≥, then we have u ≥ v.
As u ≤ u, we have that M, u 6 ∼ϕ. So, we get M, v  ϕ as v ≤ u. In both cases,
we obtained M, v  ϕ.

�

It appears clearly in this proof that we use the fact that ¬∼ semantically corresponds
to a zig-zag : if M, w  ¬∼ϕ then M, v  ϕ for any point v such that w ≤ u ≥ v for
some u. So, if a point v is accessible from w by n zig-zags ≤≥, it is sufficient to have
M, w  (¬∼)nϕ to getM, v  ϕ. Thus, by closing Γ under ¬∼ and obtaining (¬∼)ωΓ, we
make sure that a point accessible by any number of zig-zag is forcing Γ. But the restriction
of a model is exactly based on these points. So, using the bisimulation between M and
Mw, we can conclude that Mw is a Γ-model if the initial point w is a (¬∼)ωΓ-point.

More formally, we now exploit these ideas to show that sBIL corresponds to the global
semantic consequence.

Theorem 8.9.1. The following holds:

`s [Γ | ∆] iff Γ |=g ∆.

Proof. We prove each direction separately.

(⇒) (Ï) Here we prove soundness. The proofs for the axioms are identical to the ones
above in Theorem 8.9.1 (⇒). We are left to prove that the rules are sound:

(MP) Assume that Γ |=g ϕ and Γ |=g ϕ→ ψ hold. We show that Γ |=g ψ. Let M be
a model. Assume that for all w ∈W , we haveM, w  Γ. We need to show that
for all w ∈ W , we have M, w  ψ. Given that Γ |=g ϕ and Γ |=g ϕ → ψ, we
directly obtain that for all w ∈W , we haveM, w  ϕ andM, w  ϕ→ ψ. Let
w ∈W . We can use our previous results to get M, w  ϕ and M, w  ϕ→ ψ.
By reflexivity of ≤ we consequently obtainM, w  ψ. As w is arbitrary we get
that for all w ∈W , we have M  ψ.

(sDN) Assume that Γ |=g ϕ. We show that Γ |=g ¬∼ϕ. Let M be a model. Assume
that M  Γ. We need to show that M  ¬∼ϕ. As M  Γ and Γ |=g ϕ, we
get M  ϕ. Let w ∈ W . We need to show that M, w  ¬∼ϕ. Let v ∈ W
such that w ≤ v. We need to show that M, v 6 ∼ϕ, i.e. there is no u ≤ v such
that M, u 6 ϕ. Let u ≤ v. As M  ϕ we get M, u  ϕ. As u is arbitrary we
get M, v 6 ∼ϕ. As v is also arbitrary we get M, w  ¬∼ϕ. Finally, as w is
arbitrary we get M  ¬∼ϕ.
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(⇐) (Ï) Here we prove completeness. Assume 6`s [Γ | ∆]. We show that Γ 6|=g ∆. Note
that `s [Γ | (¬∼)ωΓ] as the rule (sDN) is applicable at will with any context in
sBIH. Consequently, we have that 6`s [(¬∼)ωΓ | ∆], else we would get `s [Γ | ∆]
by transitivity of deducibility which contradicts our assumption. Thus, we get 6`w
[(¬∼)ωΓ | ∆] by Theorem 8.5.1. By Theorem 8.8.1 we know that (¬∼)ωΓ 6|=l ∆. So,
there is a model M = (W,≤, I) and w ∈ W such that M, w  (¬∼)ωΓ and for all
δ ∈ ∆ we haveM, w 6 δ. Now we consider the restriction ofM in w, i.e. the model
Mw = (Ww,≤w, Iw). As shown in Corollary 8.9.1 we have that Mw, w  (¬∼)ωΓ
and for all δ ∈ ∆ we have Mw, w 6 δ. If we prove that Mw  Γ, then we are
done as we would then have exhibited a Γ-model Mw which has one point w that
is a δ-point for no δ ∈ ∆, hence Γ 6|=g ∆. We thus proceed to show that Mw  Γ.
Let v ∈ Ww and γ ∈ Γ. We need to show Mw, v  γ. As v ∈ Ww we know that
there is a chain wR1 . . . Rnv. We straightforwardly obtain that Mw, w  (¬∼)nγ
as Mw, w  (¬∼)ωΓ. We finally obtain that Mw, v  γ using Lemma 8.9.2 using
Mw, w  (¬∼)nγ and the existence of the chain wR1 . . . Rnv. As v and γ are
arbitrary we get Mw  Γ.

�

8.10 A semantic look back

We use Theorem 8.8.1 and Theorem 8.9.1, respectively stating that the logics sBIL and
wBIL are respectively sound and complete with respect to the global and local consequence
relations, to fill in the gaps of Sections 8.5 and 8.6 by proving the claims left pending there.

First, we can show the extensional difference of the two logics by proving Claim 8.5.1,
which claims that sBIL 6⊆ wBIL:

Proof of Claim 8.5.1. (Ï) On the one hand we obviously have that `s [p | p] hence `s [p |
¬∼p] by (sDN). On the other hand, we have that p 6|=l ¬∼p as shown by the following
model M0 where reflexive arrows are not depicted:

w p v

We have M0, v  p. We also have M0, v 6 ¬∼p as M0, v  ∼p because M0, w 6 p and
w ≤ v. By Theorem 8.8.1 we obtain 6`w [p | ¬∼p]. �

Second, we resolve Claim 8.6.1 that sBIL fails the deduction theorem.

Proof of Claim 8.6.1. (Ï) We need to prove that 6`s [∅ | p→ ¬∼p]. Consider the model
M0 above. We have that M0, v 6 p → ¬∼p, hence 6|=g p → ¬∼p. By Theorem 8.9.1 we
obtain 6`s [∅ | p→ ¬∼p]. Since applying (sDN) to p `s p gives `s [p | ¬∼p], the deduction
theorem does not hold for sBIL. �

Lastly, we prove Claim 8.6.2, showing that the rule (DMP) is unsound for sBIL, and
that the latter fails the dual deduction theorem.

Proof of Claim 8.6.2. (Ï) We need to prove that 6`s [p | q ∨ ¬∼∼q]. Consider the following
model M1:

p, qw

p, q vpu
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First, we have that M1  p. We also have M1, u 6 q by definition of the valuation. But
we also have M1, u 6 ¬∼∼q. In fact M1, w  ∼∼q as v ≤ w and M1, v 6 ∼q: its only
predecessor is itself, and it forces q. Consequently we have p 6|=g q ∨ ¬∼∼q, which by
Theorem 8.9.1 gives 6`s [p | q ∨ ¬∼∼q]. �

Finally, with the soundness and completeness results in hand, we can show that both
wBIL and sBIL are conservative extensions of intuitionistic logic.

Theorem 8.10.1. For Γ ∪∆ ⊆ FormLI
and i ∈ {w, s}: `IH [Γ | ∆] iff `i [Γ | ∆]

Proof -. (⇒) Assume `IH [Γ | ∆]. As all axioms and rules of IH are axioms and rules of
wBIH and sBIH, we get that the proof of [Γ | ∆] in IH is also a proof in both wBIH and
sBIH. So, we get `i [Γ | ∆] for i ∈ {w, s}.
(⇐) Assume `i [Γ | ∆] for i ∈ {w, s}. By Theorem 8.5.1 in both cases we get `s [Γ | ∆].
By Theorem 8.9.1, we get that Γ |=g ∆. Given that Γ∪∆ ⊆ FormLI

, we have that Γ |=g ∆
holds in the Kripke semantics for intuitionistic logic IL. However, by Lemma 8.7.2 we get
that Γ |=l ∆ in the Kripke semantics for IL. By completeness of the IL with respect to
this semantics [86] we finally get `IH [Γ | ∆]. �

8.11 Why Rauszer’s proofs are erroneous

The existence of sBIL and wBIL justifies our use of the plural bi-intuitionistic logics. We
now trace the effect of this bifurcation on Rauszer’s works.

As far as we know, neither the existence of wBIL and sBIL, nor the distinction between
them has been highlighted in the literature. While it was certainly not noted in Rauszer’s
works, it has to be acknowledged that Hiroakira Ono may have suspected something [122,
p.7]. Our bifurcation is not important if we only focus on one of the logics and use
properties only belonging to it. However if one confuses them by using properties of these
logics that are not shared by both of them, then troubles arrive. Unfortunately, such
a confusion is made in some of Rauszer’s works. As a consequence, various important
theorems are asserted with erroneous proofs. The most important of them is the theorem
of strong completeness with respect to the Kripke semantics [119]. More precisely there
are two flawed proofs for this theorem.

The first one [119, Lemma 2.3] is flawed because it ignores restrictions on the use of a
lemma proved by Gabbay [49, p.135]:

Lemma 8.11.1. For any ψ without ∨ and ∃ we have:

[ψ](0,...,ϕ) = T iff ` ϕ→ ψ

This lemma puts in correspondence truth in a model ([ψ](0,...,ϕ) = T ) with provability
(` ϕ→ ψ). As a consequence, it expresses a completeness result, notably when restricted
to the propositional case. However, one has to note the restriction on ψ: it must be
expressed in the intuitionistic language without the disjunction. Consequently, ψ cannot
contain a disjunction ∨, an exclusion or ∼. This restriction is ignored in Rauszer’s
proof when she combines the above lemma with a dual one of her own:

Lemma 8.11.2. For any ψ without ∧, ∀, →, ¬ we have:

[ψ](0,...,ϕ) = F iff a ψ ϕ

These lemmas cannot be used together as they both impose language restrictions that are
incompatible with each other. This was not detected by Rauszer, who used them both
in her proof of Lemma 2.3 [119]. Note however that this mistake is extraneous to the
confusion between the logics sBIL and wBIL.

The second one [119, Theorem 3.5], is a standard completeness proof, involving the
construction of a canonical model. However, in this proof, some intermediate lemmas
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are proved using features that are distinct for these logics. For example, the fact that
`s [ϕ | ¬∼ϕ] holds is used in the proof of Lemma 3.1 [119], where it is erroneously claimed
that a prime filter A is such that if a ∈ A then ¬∼a ∈ A and hence ∼a 6∈ A. In addition,
in the proof of point (3) of Lemma 3.3 [119] the deduction theorem is used implicitly as
it relies on a proof provided by Thomason [150] which uses it. Thus, while the proof of
Lemma 3.1 [119] suggests the logic used is sBIL, the proof of Lemma 3.3 indicates that
it must be wBIL. Thus the proof of completeness given there, which relies on these two
lemmas, is a proof for none of the logics discussed here.

Another strong completeness proof [117, Theorem 3.6] suffers from the same confusion
because it ultimately relies on the aforementioned completeness proofs [119]. Interestingly,
some elements of this paper [117] were corrected [120], but the corrections do not suffice to
fix the issue. More precisely, one side of the deduction theorem is changed from Γ ` ϕ→ ψ
to Γ ` ¬∼ϕ→ ψ [120], but this version also fails for sBIL and, in any case, the proofs [119]
are not modified to handle the change.

In a nutshell, as the proofs of strong completeness for bi-intuitionistic logic given in
Rauszer’s Ph.D. thesis [122] are taken from the articles mentioned above, we are left
with no actual trace in Rauszer’s papers of a correct proof of strong completeness of
bi-intuitionistic logic with respect to the Kripke semantics defined. To the best of our
knowledge such a proof has only been provided by Sano and Stell [127], but for a different
axiomatization. So, our proofs are the first to ensure that Rauszer’s axiomatization is
strongly complete for the appropriate Kripke semantics in a non-ambiguous way: sBIL
(wBIL) is strongly complete for global (local) semantic consequence in Kripke semantics.

Providing such a proof is necessary to set the record straight for Rauszer’s axioma-
tization. Furthermore, when compared with the initial proofs, our proofs are useful for
avoiding false conclusions hinted at by the former. Most importantly, two proofs of strong
completeness [119] involve the construction of a rooted canonical model where by “rooted”
we understand the following.

Definition 8.11.1. Let F = (W,≤) be a Kripke frame. We say that F is rooted if there
is a w ∈ W such that for every v ∈ W we have w ≤∗ v (but since ≤ is reflexive and
transitive we can replace ≤∗ with ≤).

The use of rooted models immediately implies that bi-intuitionistic logic is sound and
complete with respect to the class of rooted Kripke frames. However, we show that this
result fails for both sBIL and wBIL! Specifically, ∼p ∨ ¬∼p is valid on rooted frames but
not valid on the full class of frames.

Lemma 8.11.3. Let F = (W,≤) be a rooted Kripke frame. For any interpretation
function I, we have that (W,≤, I)  ∼p ∨ ¬∼p.

Proof. (Ï) Let r be the root of F and I an interpretation function, M = (W,≤, I) and
w ∈ W . As F is rooted we have that r ≤ w. If r ∈ I(p) then persistence and rootedness
giveM, v  p for every v ∈W . Thus, for all points v ∈W such that w ≤ v, we have that
M, v 6 ∼p as this requires the existence of a predecessor not forcing p. Consequently, we
obtain that M, w  ¬∼p. If r 6∈ I(p) then we get M, w  ∼p. In each case we obtain
M, w  ∼p ∨ ¬∼p. �

Thus the formula ∼p ∨ ¬∼p is valid on the class of rooted Kripke frames. Now we
show that there is a Kripke model N such that N 6 ∼p∨¬∼p (Ï). Consider the following
model where reflexive arrows are omitted:

w

p

v p u

We have that N , u 6 ∼p as the only predecessor of u is itself and N , u  p. Moreover we
have that N , w 6 p, hence N , v  ∼p which in turn implies N , u 6 ¬∼p. Consequently
N , u 6 ∼p ∨ ¬∼p.
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It can be argued that Crolard [25, p.168] proved that wBIL is not complete for the class
of rooted frames. But he does not make the distinction between the two logics presented
here, nor pinpoint the flaws in Rauszer’s proof.

Theorem 8.8.1 and Theorem 8.9.1 allow us to claim that 6`i [∅ | ∼p ∨ ¬∼p] for i ∈ {s, w}
as 6|=j ∼p ∨ ¬∼p for j ∈ {g, l}. From this, we conclude that neither sBIL nor wBIL is
complete, with their corresponding semantic consequence relations, for the class of rooted
frames: the formula ∼p ∨ ¬∼p is a counterexample to such a claim.

However, we suspect that wBIL and sBIL are respectively sound and complete with
respect to the local and global semantic consequence relations on another class of frame:
the class of finite frames containing a point w from which all other points are accessible
via combinations of ≤ and ≥ steps. This should follow in part quite straightforwardly
from the work of Postniece [111, Corollary 3.4.19], which would then give us the finite
model property for both logics.

8.12 Conclusion

As already mentioned in Section 4.1, generalized Hilbert calculi effectively provide the
tools to clarify the status of rules in axiomatic systems. The distinction between the two
logics sBIL and wBIL can easily be tracked to the obvious difference between the rules
(wDN) and (sDN) in the calculi defining them. Effectively, as in the modal case exhibited
in Section 8.2, different syntactic consequence relations stem from the traditional Hilbert
calculus for bi-intuitionistic logic, formalized as generalized Hilbert calculi. The logics
wBIL and sBIL are distinguishable on an extensional level in a similar way to wKL and
sKL. The similarity with modal logic goes even further as the famous deduction theorem
is not a property common to both sBIL and wBIL. As we have shown, the deduction
theorem can be modified to hold in sBIL, and the dual deduction theorem holds in wBIL,
but we have not yet found a modification of the dual deduction theorem for sBIL. So, on
top of allowing one to clearly detect which logic satisfies the deduction theorem or its dual,
generalized Hilbert calculi also prevent the confusions that existed in both the modal [68]
and bi-intuitionistic case.

As we have shown, the logics wBIL and sBIL, respectively, have a local and global
semantic counterpart on the class of Kripke frames. Although quite common, this phe-
nomenon finally clarifies the relation between the two logics. It also helps rectify the status
of some properties of sBIL and wBIL, such as the fact that they are not strongly complete
with respect to the class of rooted frames.

Finally, the difference between the two logics allows us to look at the proof theory
of bi-intuitionistic logic from a different angle. We conjecture that the various calculi
which have been designed to capture bi-intuitionistic logic [52, 59, 60, 106, 152] are in fact
sound and strongly complete for wBIL. One exception is Sano and Stell’s axiomatization
[127]: when considered in a generalized Hilbert calculus context, it also suffers from the
same phenomenon as Rauszer’s axiomatization. More precisely, their rule (Mon ) can be
interpreted in the same ways as (DN) giving two rules (sMon ) and (wMon ), as shown
below.

∅ ` ϕ→ ψ

Γ ` (ϕ χ)→ (ψ χ)
(wMon )

ϕ→ ψ

(ϕ χ)→ (ψ χ)
(Mon )

Γ ` ϕ→ ψ

Γ ` (ϕ χ)→ (ψ χ)
(sMon )

We strongly believe that the generalized Hilbert calculus involving the rule (wMon )
corresponds to wBIL, while generalized Hilbert calculus involving the rule (sMon ) cor-
responds to sBIL. Thus, Sano and Stell’s axiomatization could be targeted to either logic
once ported to the framework of generalized Hilbert calculi.

There are several directions for further work on propositional bi-intuitionistic logics.
First, the diversity of interpretations of the (MP) rule should be investigated. While we
made a case of the multiplicity of interpretations (which we have not exhausted) of the



124 CHAPTER 8. PROPOSITIONAL BI-INTUITIONISTIC LOGICS

rules (DN) and (Nec), we did not question the shape of the rule (MP). We could modify
one of the generalized Hilbert calculi defined above to use a modified version of (MP)
where the premisses would be ∅ ` ϕ and ∅ ` ϕ→ ψ. This system would define a logic,
but a weird one where p, p→ q ` q would not be guaranteed to hold. A second direction
leads to the algebraic treatment of wBIL and sBIL as consequence relations [45]. Third,
the use of pairs [Γ | ∆] suggests a general treatment of logics that would capture both
deducibility and refutability calculi in one shot, in a similar spirit to Gore and Postniece’s
calculus which combines both notions as first-class citizens [59]. Finding if such a general
framework exists would require further investigations.



Chapter 9

First-Order Bi-Intuitionistic
Logics

For this chapter the following sections of the Toolbox I are required: Section 2.2, Section
3, the introduction of Section 4, Section 4.1, Section 5.2 and Section 6.

The results of this chapter are unpublished but were mentioned in an extended abstract
[136] and presented at the AAL 2022 Conference (https://sites.google.com/view/aalogic/
aal-conference-2022).

Their formalisation can be found here: https://github.com/ianshil/PhD thesis/tree/
main/FO Bi Int.

9.1 First-order confusions

The previous chapter established that there is a worryingly weak point in the foundations
of propositional bi-intuitionistic logic: two versions of the rule (DN) are conflated, leading
to the identification of two significantly different logics, i.e. wBIL and sBIL. We fixed this
issue using generalized Hilbert calculi, with which both logics can be faithfully captured
unambiguously. To make sure that the foundations we offer are flawless we formalised all
our results in Coq.

This is it for the propositional case. Quite naturally, one may wonder whether the same
weak point is present in the foundations of first-order bi-intuitionistic logic, where the
universal and existential quantifiers are added to the language. Unfortunately, Rauszer’s
work on first-order bi-intuitionistic is simply founded on the propositional case: the same
type of traditional Hilbert calculus is used. Consequently, the conflation of (wDN) and
(sDN) into (DN) must also occur here.

This casts an important shadow on Rauszer’s work on first-order bi-intuitionistic logic,
leading to the querying of the results developed on the later [7, 25, 92]. So, we need
to reconsider the foundations she laid in a formalised context to determine if the same
splitting phenomenon happens in the first-order case, leading to similar mistakes in proofs
as the ones exhibited in the previous chapter. Notably, we need to reconsider the axiomatic
system developed for first-order bi-intuitionistic logic [117], as well as the first-order Kripke
semantics shown to correspond to it [119].

On top of allowing us to provide solid foundations to first-order bi-intuitionistic logic,
this formal investigation allows us to confirm in a trustworthy way some peculiarity of
this logic. In fact, it is claimed that first-order bi-intuitionistic logic is not a conservative
extension of first-order intuitionistic logic [122, p.56][92], on the contrary to the proposi-
tional case. More precisely, the constant domain axiom CD, displayed below, is a theorem
of first-order bi-intuitionistic logic while it is not in the intuitionistic counterpart [50].
Note that in this axiom x is crucially not appearing free in ϕ.

∀x(ϕ ∨ ψ(x))→ (ϕ ∨ ∀xψ(x))

125
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On the semantic side, this axiom characterizes the constant domain property on the tra-
ditional Kripke semantics for the intuitionistic language [66, 50, 102]. While the holding
of this axiom was only proven in 1980 by Rauszer [122], she already noticed in 1976 that
constant domains were required to semantically capture this logic [117]. The first-order
Kripke semantics she developed used the same frames as the ones of intuitionistic logic, but
had the specificity of having the same domain across all points, similarly to the semantics
for CDL, i.e. first-order intuitionistic logic extended with the axiom CD. So, in this light,
it should not come as a surprise that first-order bi-intuitionistic logic is a conservative
extension of CDL [122, p.57][25].

However, all of the above heavily relies on the traditional axiomatic system and its
soundness and completeness proofs with respect to the class of first-order Kripke models
with constant domains given by Rauszer [119]. If Rauszer’s first-order bi-intuitionistic
logic was to split into two logics in a similar way to the propositional case, then these
proofs, which notably involve canonical model constructions, suffer from similar problems.

So, in this chapter, we proceed to provide solid foundations to first-order bi-intuitionistic
logic by formalising in Coq generalized Hilbert calculi and a first-order Kripke semantics
for them and attempt at connecting them. As such, our work is part of an extremely
active line of research consisting in formalising traditional results for first-order logics
[33, 47, 67, 75, 79].

Section 9.2 contains the two generalized Hilbert calculi obtained from Rauszer’s ax-
iomatization of first-order bi-intuitionistic logic. In Section 9.3, we show they define two
logics FOwBIL and FOsBIL. In Section 9.4, we show that these logics are extensionally
distinct. Section 9.5 contains significant theorems distinguishing these logics. Using the
results obtained at that point, we formally prove in Section 9.6 that the axiom CD is a
theorem of both logics. Section 9.7 defines a Kripke semantics using constant domains
for the first-order bi-intuitionistic language. We prove that FOwBIL is sound with respect
to the local semantic consequence relation, and that FOsBIL is sound with respect to
the global semantic consequence relation in Section 9.8. We use these results to prove
claims we left pending in Section 9.4 and Section 9.5, establishing for good the differences
between FOwBIL and FOsBIL. In Section 9.9, we investigate the various possibilities of
completeness for our logics. In fact, we show that if FOwBIL is complete with respect
to the local semantics consequence relation, then FOsBIL is complete with respect to the
global semantics consequence relation. Section 9.10 gives the reasons for our failure to find
a proof of completeness for FOwBIL, boiling down to frictions between the Lindenbaum
lemma and existence lemmas. In Section 9.11, we use the distinctions between our two
bi-intuitionistic logics, as well as the various scenarios we explored, to expose the flaws in
Rauszer’s results.

9.2 Generalized Hilbert calculi for FOwBIL and FOsBIL

In this section, we define two generalized Hilbert calculi for first-order bi-intuitionistic
logic. So, we need to define languages à la de Bruijn for the latter. Here, we reuse CBI the
set of connectives from Definition 8.3.1, as well as Q = {∀, ∃} the set of quantifiers fixed
in Section 2.2.

Definition 9.2.1. Given a signature S, we define the first-order language LBI = (S, CBI,Q)
and obtain its set of bi-intuitionistic formulas FormLBI

through its grammar:

ϕ ::= P (t1, . . . , tn) | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ ϕ | ∀ϕ | ∃ϕ

where t1, . . . , tn ∈ TermS , P ∈ Pred and ArPred(P ) = n. As in the propositional case,
we also define two unary operators:

¬ϕ := (ϕ→ ⊥) ∼ϕ := (> ϕ)
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To define generalized Hilbert Calculi for FOwBIL and FOsBIL we can reuse the calculi
defined in the propositional case (see Definition 8.3.4 and Definition 8.4.1) and extend
them with axioms and rules dealing with quantifiers. Note, however, that the nature
of the axioms and rules which we extract here from the propositional calculi becomes
different, as they are now instantiated using first-order formulas.

Definition 9.2.2. We define the set of axioms AFOBI as the set of axioms ABI extended
with the axioms A17, A18 and A19 below. We also define the rules (Gen) and (EC).

A17 ∀(ψ[↑]→ ϕ)→ (ψ → ∀ϕ) A18 ∀ϕ→ ϕ[t .: id] A19 ϕ[t .: id]→ ∃ϕ

Γ[↑] ` ϕ
Γ ` ∀ϕ

(Gen)
Γ[↑] ` ϕ→ ψ[↑]

Γ ` ∃ϕ→ ψ
(EC)

The name of the rule (Gen) stands for Generalization, while the name of the rule (EC)
stands for for Existential C onditionalization. Below, you can find these rules presented
more familiarly, using a more common syntax. Note that in this presentation, it is required
that x appears free neither in Γ in (Gen) nor in Γ or ψ in the rule (EC).

Γ ` ϕ
Γ ` ∀xϕ

(Gen)
Γ ` ϕ→ ψ

Γ ` (∃xϕ)→ ψ
(EC)

We need to answer a rather natural question here: how do our rules in the de Bruijn
syntax capture the meaning of these common rules? In essence, our rules capture the
condition about x’s non-freeness using the variable substitution ↑. Indeed, in (Gen) à la
de Bruijn, by shifting from Γ in the conclusion to Γ[↑] in the premise, we change any free
variable n in Γ into its successor S n. As a consequence, any variable made free by the
change from ∀ϕ to ϕ is mechanically not present in Γ[↑], thus creating a “fresh” variable.
For example, consider judgement P (0) ` ∀P (0). If we apply upwards the rule (Gen), we
obtain the judgement P (0)[↑] ` P (0), which is nothing but the judgement P (1) ` P (0).
Thus, we made sure that the variable 0 we made free in the change from ∀P (0) to P (0) is
not present in the context in the premise (while it was in the conclusion!). This explains
the use of the substitution ↑ in our rules and axioms.

With these axioms and rules in hand, we can define our generalized Hilbert calculi.

Definition 9.2.3. We define the generalized Hilbert calculi below, alongside their set of
rules.

FOwBIH = (AFOBI ,RwFO) RwFO = {(MP), (wDN), (Gen), (EC)}
FOsBIH = (AFOBI ,RsFO) RsFO = {(MP), (sDN), (Gen), (EC)}

We abbreviate Γ `FOwBIH ϕ by Γ `w ϕ and let FOwBIL = {(Γ, ϕ) | Γ `w ϕ} be the
consequence relation characterized by FOwBIH. Similarly we abbreviate Γ `FOsBIH ϕ by
Γ `s ϕ, and define FOsBIL = {(Γ, ϕ) | Γ `s ϕ}.

Some may argue that our use of the same abbreviations `w and `s for the propositional
and first-order case is confusing. However, not only do we believe that the separation
between the two chapters is clear enough, but we also want to give an account of the fact
that the same phenomenon occurs in both cases: a split between a weak and a strong
logic.

We note that, similarly to the propositional case, the set AFOI = {An | 1 ≤ n ≤
10 or 15 ≤ n ≤ 19} together with the set of rules RFOI = {(MP), (Gen), (EC)} constitute
a generalized Hilbert calculus for first-order intuitionistic logic. Also, if we add CDto
AFOI , then we get a calculus for CDL, the constant domains first-order intuitionistic
logic.
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Before turning to the next section, let us comment on the absence of a variable sub-
stitution rule, as shown below, in our calculi.

Γ ` ϕ
Γ[τ ] ` ϕ[τ ]

It can come as a surprise that such a rule is not present in our calculi, while widely used
in the literature. In fact, we can show that it can be safely added to our calculi without
changing the set of provable consecutions. We need a preliminary lemma to show that
axiomhood is preserved under variable substitution.

Lemma 9.2.1. For all ϕ ∈ FormLBI
and variable substitution τ , if ϕ ∈ Ai

FOBI then
ϕ[τ ] ∈ Ai

FOBI .

Proof. (Ï) For instances of axioms A1 to A16, it suffices to realize that the variable
substitution via τ is pushed on the subformulas of ϕ in ϕ[τ ]. So, ϕ[τ ] is an instance of the
same axiom. We are thus left with the axioms A17, A18 and A19.

For axiom A17, we consider a formula of the shape ∀(χ[↑] → ψ) → (χ → ∀ψ). By
definition, we obtain that (∀(χ[↑] → ϕ) → (χ → ∀ϕ))[τ ] = ∀(χ[↑][up(τ)] → ϕ[up(τ)]) →
(χ[τ ] → ∀ϕ[up(τ)]). By Lemma 2.2.4 we get that χ[↑][up(τ)] = χ[τ ][↑]. So, we clearly
obtain that ∀(χ[τ ][↑]→ ϕ[up(τ)])→ (χ[τ ]→ ∀ϕ[up(τ)]) is an instance of A17.

For axiom A18, we consider a formula of the shape ∀ψ → ψ[t . : id]. By definition,
we obtain that (∀ψ → ψ[t . : id])[τ ] = ∀ψ[up(τ)] → ψ[t . : id][τ ]. We claim that ψ[t . :
id][τ ] = ψ[up(τ)][t[τ ] .: id], which allows us to show that ∀ψ[up(τ)] → ψ[up(τ)][t[τ ] .: id]
is an instance of A18. Our claim ψ[t .: id][τ ] = ψ[up(τ)][t[τ ] .: id] holds as any term in r
appearing in ψ is such that r[t .: id][τ ] = r[up(τ)][t[τ ] .: id]. Why? The substitution [t .: id]
replaces 0 by t, and replaces S m by m. So, the combination of substitutions [t .: id] and
[τ ] replaces 0 by t[τ ], and replaces S m by m[τ ] = τ(m). But this is exactly what the
combination of substitutions [up(τ)] and [t[τ ] .: id] on r does: it replaces 0 by itself and
then t[τ ], and replaces S m by τ(m)[↑] and then by τ(m)[↑][t[τ ] .: id] which is nothing but
τ(m) by Lemma 2.2.1.

For axiom A19, we consider a formula of the shape ψ[t .: id] → ∃ψ. By definition, we
obtain that (ψ[t .: id] → ∃ψ)[τ ] = ψ[t .: id][τ ] → ∃ψ[up(τ)]. As in the previous case, we
use the fact that ψ[t .: id][τ ] = ψ[up(τ)][t[τ ] .: id] and obtain that ψ[t .: id][τ ]→ ∃ψ[up(τ)]
is an instance of A19. �

Then, we can show that the substitution is implicitly already contained in our calculi.

Lemma 9.2.2. For i ∈ {w, s}, if Γ `i ϕ, then for any variable substitution τ we have
Γ[τ ] `i ϕ[τ ].

Proof. (Ï) Assume Γ `i ϕ. Then there is a proof p of Γ ` ϕ. We prove by induction on
the structure of p that Γ[τ ] `i ϕ[τ ].
If (El) is the last rule applied in p, then ϕ ∈ Γ. In this case we have ϕ[τ ] ∈ Γ[τ ], hence
Γ[τ ] `i ϕ[τ ].
If (Ax) is the last rule applied in p, then ϕ ∈ Ai

FOBI . In this case we have ϕ ∈ Ai
FOBI

and then ϕ[τ ] ∈ Ai
FOBI by Lemma 9.2.1. Thus, we obtain Γ[τ ] `i ϕ[τ ].

If (MP) is the last rule applied in p, then we simply apply the induction hypothesis on the
premises and apply the rule to obtain our result.
If (Gen) is the last rule applied in p, then we have a proof of Γ[↑] ` ψ where ϕ = ∀ψ. Note
that (∀ψ)[τ ] = ∀ψ[0 .: τ ]. We can thus apply the induction hypothesis on the proof of
Γ[↑] ` ψ with the variable substitution (0; τ) to obtain a proof of Γ[↑][0 .: τ ] ` ψ[0 .: τ ].
Thus, using Lemma 2.2.4 we obtain that the latter is a proof of Γ[τ ][↑] ` ψ[0 .: τ ]. We can
apply (Gen) to obtain a proof of Γ[τ ] ` ∀(ψ[0 .: τ ]) i.e. of Γ[τ ] ` ∀ψ[τ ] by definition.
If (EC) is the last rule applied in p, then we have a proof of Γ[↑] ` ψ → χ[↑] where
ϕ = (∃ψ) → χ[↑]. Note that ((∃ψ) → χ)[τ ] = (∃ψ[0 .: τ ]) → χ[τ ]. We can thus apply the

https://github.com/ianshil/PhD_thesis/blob/b981b96ea5cf62684828b8eccf95900e79a93ce5/FO_Bi_Int/FO_BiInt_logics.v#L18
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induction hypothesis on the proof of Γ[↑] ` ψ → χ[↑] with the variable substitution (0; τ)
to obtain a proof of Γ[↑][0 .: τ ] ` ψ[0 .: τ ]→ χ[↑][0 .: τ ]. Thus, using Lemma 2.2.4 we obtain
that the latter is a proof of Γ[τ ][↑] ` ψ[0 .: τ ]→ χ[τ ][↑]. Thus, we can apply (EC) to obtain
a proof of Γ[τ ] ` (∃(ψ[0 .: τ ]))→ χ[τ ] i.e. of Γ[τ ] ` ((∃ψ)→ χ)[τ ] by definition.
In the case of (iDN) we have to distinguish between the case where i = s and i = w. If
i = s then we can simply use the induction hypothesis on the premises and then apply the
rule. If i = w then we simply use the given premise to obtain Γ[τ ] `i ϕ[τ ] as desired. �

In the next section, we show that the calculi FOwBIH and FOsBIH capture logics.

9.3 Consequence relations

As in the propositional case, we show that our calculi capture logics, i.e. consequence
relations satisfying the properties defined in Chapter 3.

Lemma 9.3.1. The following holds for i ∈ {w, s}, where σ is an atom substitution as in
Definition 2.2.12 and Definition 2.2.13.

Monotonicity: if Γ ⊆ Γ′ and Γ `i ϕ then Γ′ `i ϕ.

Compositionality: if Γ1 `i ϕ and Γ2 `i ψ for all ψ ∈ Γ1, then Γ2 `i ϕ

Structurality: if Γ `i ϕ then Γσ `i ϕσ.

Proof. Monotonicity: (Ï) Assume Γ `i ϕ. Then there is a proof p of Γ ` ϕ. We prove
by induction on the structure of p that Γ′ `i ϕ with Γ ⊆ Γ′.
If (El) is the last rule applied in p, then ϕ ∈ Γ. In this case we have ϕ ∈ Γ′ as Γ ⊆ Γ′,
hence Γ′ `i ϕ.
If (Ax) is the last rule applied in p, then ϕ ∈ Ai

FOBI and thus Γ′ `i ϕ.
If (MP) is the last rule applied in p, then we simply apply the induction hypothesis on the
premises and apply the rule to obtain our result.
If (Gen) is the last rule applied in p, then we have a proof of Γ[↑] ` ψ where ϕ = ∀ψ. We
straightforwardly obtain that Γ[↑] ⊆ Γ′[↑]. Thus, we can apply the induction hypothesis
to obtain a proof of Γ′[↑] ` ψ. It then suffices to apply (Gen) to obtain Γ′ ` ∀ψ.
If (EC) is the last rule applied in p, then we have a proof of Γ[↑] ` ψ → χ[↑] where
ϕ = (∃ψ) → χ[↑]. Here again we have that Γ[↑] ⊆ Γ′[↑], so we can apply the induction
hypothesis to obtain a proof of Γ′[↑] ` ψ → χ[↑]. An application of (EC) leads us to a
proof of Γ′ ` (∃ψ)→ χ.
In the case of (iDN) we have to distinguish between the case where i = s and i = w. If
i = s then we can simply use the induction hypothesis on the premises and then apply
the rule. If i = w then we simply use the given premise to obtain Γ′ `w ϕ as desired.

Compositionality: (Ï) Assume Γ1 `i ϕ and that Γ2 `i ψ for every ψ ∈ Γ1. Then we
have a proof p of Γ1 ` ϕ. We show by induction on the structure of p that Γ2 `i ϕ.
If (El) is the last rule applied in p, then ϕ ∈ Γ1 and so we have Γ2 `i ϕ by assumption.
If (Ax) is the last rule applied in p, then ϕ ∈ Ai

FOBI and thus Γ2 `i ϕ.
If (MP) is the last rule applied in p, then we simply apply the induction hypothesis on the
premises and apply the rule to obtain our result.
If (Gen) is the last rule applied in p, then we have a proof of Γ1[↑] ` χ where ϕ = ∀χ.
Using Lemma 9.2.2 and the assumptions, we get that Γ2[↑] `i ψ[↑] for every ψ[↑] ∈ Γ1[↑].
Thus, we can apply the induction hypothesis to obtain that Γ2[↑] `i χ. It then suffices to
apply (Gen) to obtain Γ2 ` ∀ψ.
If (EC) is the last rule applied in p, then we have a proof of Γ1[↑] ` χ→ δ[↑] where
ϕ = (∃χ) → δ[↑]. Using Lemma 9.2.2 and the assumptions, we get that Γ2[↑] `i ψ[↑]
for every ψ[↑] ∈ Γ1[↑]. Thus, we can apply the induction hypothesis to obtain that
Γ2[↑] ` χ→ δ[↑]. It then suffices to apply (EC) to obtain Γ2 ` (∃χ)→ δ.

https://github.com/ianshil/PhD_thesis/blob/b981b96ea5cf62684828b8eccf95900e79a93ce5/FO_Bi_Int/FO_BiInt_logics.v#L169
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In the case of (iDN) we have to distinguish between the case where i = s and i = w. If
i = s then we can simply use the induction hypothesis on the premises and then apply
the rule. If i = w, we apply appropriately the rule, i.e. from ∅ `w ϕ to Γ2 `w ϕ, to obtain
the desired result.

Structurality: (Ï) Assume Γ `i ϕ. Then we have a proof p of Γ ` ϕ. We show by
induction on the structure of p that Γσ `i ϕσ.
If (El) is the last rule applied in p, then ϕσ ∈ Γσ, hence Γσ ` ϕσ.
If (Ax) is the last rule applied in p, then ϕσ ∈ Ai

FOBI (Ï) , hence Γσ `i ϕσ.
If (MP) is the last rule applied in p, then we simply apply the induction hypothesis on the
premises and apply the rule to obtain our result.
If (Gen) is the last rule applied in p, then we have a proof of Γ[↑] ` ψ where ϕ = ∀ψ.
Thus, we can apply the induction hypothesis to obtain a proof of (Γ[↑])σ ` ψσ. However,
as σ is restricted as in Definition 2.2.13, we have that (Γ[↑])σ = Γσ[↑] by Lemma 2.2.5.
So, we can apply (Gen) on Γσ[↑] ` ψσ to obtain a proof of Γσ ` ∀ψσ.
If (EC) is the last rule applied in p, then we have a proof of Γ[↑] ` ψ → χ[↑] where
ϕ = (∃ψ) → χ[↑]. Thus, we can apply the induction hypothesis to obtain a proof of
(Γ[↑])σ ` ψσ → (χ[↑])σ. However, as σ is restricted as in Definition 2.2.13, we both have
that (Γ[↑])σ = Γσ[↑] and (χ[↑])σ = χσ[↑] by Lemma 2.2.5. So, we can apply (EC) on
Γσ[↑] ` ψσ → χσ[↑] to obtain a proof of Γσ ` ∃ψσ → χσ.
If it is (iDN) then for both values of i we apply the induction hypothesis on the premise
and then the rule. �

In the first-order case as well, we can prove that these logics are finitary.

Lemma 9.3.2. For i ∈ {w, s}, if Γ `i ϕ, then Γ′ `i ϕ for some finite Γ′ ⊆ Γ.

Proof. (Ï) Assume Γ `i ϕ, giving a proof p with root Γ ` ϕ. We prove by induction on
the structure of p that there is a finite Γ′ ⊆ Γ such that Γ′ `i ϕ.
If (El) is the last rule applied in p, then {ϕ} ⊆ Γ and ϕ `i ϕ.
If (Ax) is the last rule applied in p, ∅ ⊆ Γ and ∅ `i ϕ.
If (MP) is the last rule applied in p, then apply the induction hypothesis on the premises
to obtain finite Γ′,Γ′′ ⊆ Γ such that Γ′ `i ψ and Γ′′ `i ψ → ϕ. Lemma 9.3.1 delivers
Γ′ ∪ Γ′′ `i ψ and Γ′ ∪ Γ′′ `i ψ → ϕ. Thus (MP) can be applied to get Γ′ ∪ Γ′′ `i ϕ, where
Γ′ ∪ Γ′′ ⊆ Γ is finite.
If the last rule is (Gen) or (EC) then apply the induction hypothesis on the premise and
then the rule.
In the case of (iDN) we have to distinguish between the case where i = s and i = w. If
i = s, we apply the induction hypothesis on the premise and then the rule. If i = w, we
apply appropriately the rule to obtain the desired result. �

Now that we have formally established that our calculi define finitary logics, we proceed
to show that these logics are different. We do so in an identical way to the propositional
case.

9.4 Extensional interactions

In this section, we show that despite their tight connections, FOwBIL and FOsBIL are
extensionally different.

First, here again we justify our use of the terms “weak” and “strong” to qualify our
calculi by showing that FOwBIL is a subset of FOsBIL.

Theorem 9.4.1. If Γ `w ϕ then Γ `s ϕ.

Proof. (Ï) Assume Γ `w ϕ, giving a proof p with root Γ ` ϕ. We prove Γ `s ϕ by
induction on the structure of p.

https://github.com/ianshil/PhD_thesis/blob/b981b96ea5cf62684828b8eccf95900e79a93ce5/FO_Bi_Int/FO_BiInt_logics.v#L351
https://github.com/ianshil/PhD_thesis/blob/b981b96ea5cf62684828b8eccf95900e79a93ce5/FO_Bi_Int/FO_BiInt_logics.v#L307
https://github.com/ianshil/PhD_thesis/blob/b981b96ea5cf62684828b8eccf95900e79a93ce5/FO_Bi_Int/FO_BiInt_logics.v#L481
https://github.com/ianshil/PhD_thesis/blob/b981b96ea5cf62684828b8eccf95900e79a93ce5/FO_Bi_Int/FO_BiInt_extens_interactions.v#L25


9.5. DEDUCTION AND DUAL-DEDUCTION THEOREMS 131

If (El) is the last rule applied in p, then ϕ ∈ Γ hence Γ `s ϕ.
If (Ax) is the last rule applied in p, then Γ `s ϕ.
If (MP) is the last rule applied in p, then apply the induction hypothesis on the premises
to obtain Γ `s ψ and Γ `s ψ → ϕ. Thus (MP) can be applied to get Γ `s ϕ.
If (wDN) is the last rule applied in p, then apply the induction hypothesis on the premise
to obtain ∅ `s ψ. Then, we use Lemma 8.4.1 to obtain Γ `s ψ. By an application of (sDN)
we obtain Γ `s ¬∼ψ.
If (Gen) is the last rule applied in p, then apply the induction hypothesis on the premise
to obtain Γ[↑] `s ψ. Thus (Gen) can be applied to get Γ `s ∀ψ.
If (EC) is the last rule applied in p, then apply the induction hypothesis on the premise
to obtain Γ[↑] `s ψ → χ[↑]. Thus (EC) can be applied to get Γ[↑] `s ∃ψ → χ. �

Second, we prove that they are indistinguishable on their set

Theorem 9.4.2. ∅ `s ϕ if and only if ∅ `w ϕ.

Proof. (Ï) From right to left we can use Theorem 9.4.1. We are thus left with the direction
from left to right (Ï). Assume ∅ `s ϕ, giving a proof p with root ∅ ` ϕ. We prove ∅ `w ϕ
by induction on the structure of p.
If (El) is the last rule applied in p, then ϕ ∈ ∅ which is a contradiction.
If (Ax) is the last rule applied in p, then ∅ `w ϕ.
If (MP) is the last rule applied in p, then apply the induction hypothesis on the premises
to obtain ∅ `w ψ and ∅ `w ψ → ϕ. Thus (MP) can be applied to get ∅ `w ϕ.
If (sDN) is the last rule applied in p, then apply the induction hypothesis on the premise
to obtain ∅ `w ψ. By an application of (wDN) we obtain ∅ `w ¬∼ψ.
If (Gen) is the last rule applied in p, then apply the induction hypothesis on the premise
to obtain ∅ `w ψ. Thus (Gen) can be applied to get ∅ `w ∀ψ.
If (EC) is the last rule applied in p, then apply the induction hypothesis on the premise
to obtain ∅ `w ψ → χ[↑]. Thus (EC) can be applied to get ∅ `w ∃ψ → χ. �

Finally, as in the propositional case, we have that FOwBIL and FOsBIL are two different
logics. The following claim extensionally distinguishes them. However, as the second item
relies on a soundness result proved later on, we leave this claim pending.

Claim 9.4.1. For P (0) ∈ FormLBI
, P (0) `s ¬∼P (0) and P (0) 6`w ¬∼P (0).

Proof. The proof of the first statement is straightforward (Ï):

P (0) ` P (0)
(El)

P (0) ` ¬∼P (0)
(sDN)

The second statement follows from Theorem 9.8.1 (1). �

9.5 Deduction and dual-deduction theorems

In this section, we proceed to show that FOsBIL and FOwBIL are distinct on a meta-level
by proving that both the deduction-detachment theorem and its dual hold for FOwBIL,
while none hold for FOsBIL. In addition to that, the rule (DMP), dual to the rule (MP),
can safely be added to the former logic but not to the latter.

Note that the structure of this section is identical to the propositional Section 8.6. Most
proofs are identical to their propositional counterparts, but some require some adaptations.

To get to the results mentioned above, we first need to prove preliminary results about
our generalized Hilbert calculi.

Lemma 9.5.1. For i ∈ {w, s}:
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1. Γ `i ϕ→ (ψ → ϕ)

2. Γ `i ϕ→ ϕ

3. Γ `i (ϕ ∧ ψ)→ (ψ ∧ ϕ)

4. Γ `i (ϕ ∧ ¬ϕ)→ ⊥

5. if Γ `i ϕ→ ψ then
Γ `i (ϕ ∨ χ)→ (ψ ∨ χ)

6. Γ `i ϕ→ ψ then
Γ `i (χ ∨ ϕ)→ (χ ∨ ψ)

7. Γ `i (ϕ ∨ ψ)→ (ψ ∨ ϕ)

8. Γ `i >

9. Γ `i ¬∼ϕ→ ϕ

10. Γ `i ⊥ → ϕ

11. if Γ `i ϕ ∨ ⊥ then Γ `i ϕ

Proof. The proofs are identical to those in Lemma 8.6.1: (1) Ï, (2) Ï, (3) Ï, (4) Ï, (5)
Ï and Ï, (6) Ï and Ï, (7) Ï, (8) Ï, (9) Ï, (10) Ï, (11) Ï and Ï. �

Here again, we define pairs [Γ | ∆] to express the deduction-detachment theorem and
its dual in a way that makes obvious their duality. To define these pairs, we simply port
the propositional Definition 8.6.1 to the first-order case.

Before turning to the meta-level duality between the implication and the exclusion
arrows, we show part of their object-level duality.

Proposition 9.5.1. For i ∈ {w, s}:

`i [∅ | (ϕ ψ)→ χ] iff `i [∅ | ϕ→ (ψ ∨ χ)]

Proof. Identical to the proof of the propositional Proposition 8.6.1 (Ï). �

Note that as FOsBIL allows contexts to be manipulated more liberally thanks to the
rule (sDN), we can prove for this logic the same statement in a stronger form.

Proposition 9.5.2.

`s [Γ | (ϕ ψ)→ χ] iff `s [Γ | ϕ→ (ψ ∨ χ)]

Proof. Identical to the proof of the propositional Proposition 8.6.2 (Ï). �

However, the strength of Proposition 9.5.1 already suffices to prove interesting results,
notably showing that neither logic satisfies the disjunction property, and that ¬∼ behaves
like a T modality here too.

Lemma 9.5.2. For i ∈ {w, s}:

1. Γ `i (ϕ ψ)→ ϕ;

2. Γ `i ϕ ∨ ∼ϕ;

3. if ∅ `i ϕ→ ψ, then ∅ `i (ϕ χ)→ (ψ χ);

4. if ∅ `i ϕ→ ψ, then ∅ `i (χ ψ)→ (χ ϕ);

5. Γ `i ¬(ϕ ψ)→ (∼ψ → ∼ϕ);

6. Γ `i ¬∼(ϕ→ ψ)→ (¬∼ϕ→ ¬∼ψ).

Proof. The proofs here are identical to the proofs of Lemma 8.6.2: (1) Ï, (2) Ï, (3) Ï,
(4) Ï, (5) Ï, (6) Ï. �

In addition to these results, Proposition 9.5.1 allows us to prove the deduction-detachment
theorem for FOwBIL.
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Theorem 9.5.1 (Deduction-Detachment Theorem). FOwBIL enjoys the deduction-detachment
theorem:

`w [Γ, ϕ | ψ] iff `w [Γ | ϕ→ ψ]

Proof. (⇐) (Ï) Assume `w [Γ | ϕ→ ψ], i.e. Γ `w ϕ→ ψ. Then by monotonicity (Lemma
9.3.1) we obtain Γ, ϕ `w ϕ→ ψ. Moreover we have that Γ, ϕ `w ϕ as ϕ ∈ Γ ∪ {ϕ}.
So by (MP) we obtain Γ, ϕ `w ψ, hence `w [Γ, ϕ | ψ].

(⇒) (Ï) Assume `w [Γ, ϕ | ψ], i.e. Γ, ϕ `w ψ giving a proof p of Γ, ϕ ` ψ. We show by
induction on the structure of p that Γ `w ϕ→ ψ.

If (El) is the last rule applied in p, then ψ ∈ Γ∪ {ϕ}. If ψ = ϕ then we clearly have
Γ `w ϕ→ ψ by Lemma 9.5.1. If ψ ∈ Γ then we can deduce Γ `w ϕ→ ψ from the
fact that we have ∅ `w ψ → (ϕ→ ψ), proven in Lemma 9.5.1.

If (Ax) is the last rule applied in p, then ψ ∈ Ai
FOBI and with a similar reasoning

we get Γ `w ϕ→ ψ.

If (MP) is the last rule applied in p, then we proceed as follows. We use the induction
hypothesis on the premises of the rule to obtain proofs of Γ ` ϕ→ χ and Γ `
ϕ→ (χ→ ψ). We also note that ∅ `w (ϕ→ χ)→ ((ϕ→ (χ→ ψ))→ (ϕ→ ψ)).
Then, we use (MP) several times to arrive at the establishment of Γ `w ϕ→ ψ.

If the last rule is (Gen), then we apply the induction hypothesis on the premise to ob-
tain Γ[↑] `w ϕ[↑]→ ψ. We can apply (Gen) on the previous proof to obtain a proof of
Γ ` ∀(ϕ[↑]→ χ). Moreover, we have from A17 that Γ `w ∀(ϕ[↑]→ χ)→ (ϕ→ ∀χ).
So, we can use (MP) to obtain a proof of Γ `w ϕ→ ∀χ.

If the last rule is (EC), then we apply the induction hypothesis on the premise to
obtain Γ[↑] `w ϕ[↑]→ (χ→ γ[↑]). We get Γ[↑] `w (ϕ[↑] ∧ χ)→ γ[↑] as we have that
Γ[↑] `w (ϕ[↑]→ (χ→ γ[↑]))→ ((ϕ[↑] ∧ χ)→ γ[↑]) from axiom A8. Then, we can
obtain Γ[↑] `w (χ ∧ ϕ[↑])→ γ[↑], and using A9 we get Γ[↑] `w χ→ (ϕ[↑]→ γ[↑]).
Thus we can apply (EC) and get Γ `w (∃χ)→ (ϕ→ γ). We straightforwardly obtain
Γ `w ϕ→ ((∃χ)→ γ).

If the last rule is (wDN), we have a proof of ∅ ` χ, so we can apply (wDN) to obtain
∅ `w ¬∼ψ. Then we can use the fact that ∅ `w ¬∼χ→ (ϕ→ ¬∼χ) via Lemma
9.5.1 to obtain ∅ `w ϕ→ ¬∼χ. By monotonicity we obtain Γ `w ϕ→ ¬∼χ.

�

However, as in the propositional case, the deduction theorem (from left to right) in
the above form does not hold for FOsBIL. This failure is witnessed through the following
claim. As this claim is proved using a soundness result, we leave it as pending.

Claim 9.5.1. We have that `s [P (0) | ¬∼ P (0)] but 6`s [∅ | P (0)→ ¬∼ P (0)].

Proof. A proof of `s [P (0) | ¬∼ P (0)] is given in Claim 9.4.1. The second statement
6`s [∅ | P (0)→ ¬∼ P (0)] follows from Theorem 9.8.1 (2). �

Still, as in the propositional case, the same variant of the deduction theorem holds for
FOsBIL. This variant is expressed using expressions like (¬∼)nϕ and (¬∼)ωΓ, define in
an identical way to the propositional Definition 8.6.2.

Theorem 9.5.2 (Double-Negated Deduction Theorem).

`s [Γ, ϕ | ψ] iff ∃n ∈ N s.t. `s [Γ | (¬∼)nϕ→ ψ]

Proof. We prove each direction separately.
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(⇒) (Ï) Assume that `s [Γ, ϕ | ψ], i.e. that we have a proof p of Γ, ϕ ` ψ. We reason by
induction on the structure of p.

If the last rule applied is (Ax), then we get ∅ `s ψ, and as we have that ∅ `s
ψ → ((¬∼)nϕ→ ψ) for any n ∈ N we obtain by (MP): ∅ `s (¬∼)nϕ→ ψ. By
Lemma 9.3.1 we get Γ `s (¬∼)nϕ→ ψ. So, it suffices to take n = 0.

If the last rule applied is (El) then Γ `s ϕ→ ψ as Γ `s ψ → (ϕ→ ψ) and Γ `s ψ.

If the last rule applied is (MP) then we have by induction hypothesis Γ `s (¬∼)kϕ→ χ
and Γ `s (¬∼)mϕ→ (χ→ ψ) for some χ ∈ FormLBI

and m, k ∈ N. As we have
that ∅ `s (λ1 → λ2)→ ((λ1 → (λ2 → λ3))→ (λ1 → λ3)) and ∅ `s ¬∼λ→ λ we ob-
tain that Γ `s ¬∼nϕ→ χ for n = max(m, k).

If the last rule applied is (Gen) then we apply the induction hypothesis on the
premise to obtain `s [Γ[↑] | ¬∼nϕ[↑]→ χ]. Thus, we can apply (Gen) and get
`s [Γ | ∀(¬∼nϕ[↑]→ χ)]. Moreover, we know from A17 that the following holds.

`s [Γ | ∀(¬∼nϕ[↑]→ χ)→ (¬∼nϕ→ ∀χ)]

So, an instance of (MP) leads to `s [Γ | ¬∼nϕ→ ∀χ].

If the last rule applied is (EC) then apply the induction hypothesis on the premise
to obtain `s [Γ[↑] | ϕ[↑]→ (χ→ γ[↑])]. Then, we get `s [Γ[↑] | (ϕ[↑] ∧ χ)→ γ[↑]] as
we have that `s [Γ[↑] | (ϕ[↑]→ (χ→ γ[↑]))→ ((ϕ[↑] ∧ χ)→ γ[↑])] from A8. In turn,
we get `s [Γ[↑] | (χ ∧ ϕ[↑])→ γ[↑]] and then `s [Γ[↑] | χ→ (ϕ[↑]→ γ[↑])]. Thus
we can apply (EC) and get `s [Γ | (∃χ)→ (ϕ→ γ)]. We can then easily obtain
`s [Γ | ϕ→ ((∃χ)→ γ)].

If the last rule applied is (sDN) then we get by induction hypothesis that Γ `s
(¬∼)nϕ→ χ. We apply (sDN) on Γ `s (¬∼)nϕ→ χ to obtain Γ `s ¬∼((¬∼)nϕ→ χ).
Then, we get Γ `s (¬∼)n+1ϕ→ ¬∼χ by using item 6 of Lemma 9.5.2 and (MP).
So, we have `s [Γ | (¬∼)n+1ϕ→ ¬∼χ].

(⇐) (Ï) Straightforward use of the rules (sDN) and (MP) with Lemma 9.3.1.

�

In addition to that, the dual of the deduction-detachment theorem distinguishes the
two logics in the first-order case too.

Theorem 9.5.3 (Dual Deduction-Detachment Theorem). The following holds:

`w [ϕ | ψ,∆] iff `w [ϕ ψ | ∆].

Proof. (Ï) (Ï) Assume that `w [ϕ | ψ,∆]. By definition we get ϕ `w ψ ∨
∨

∆′ where
∆′ ⊆ ∆ is finite. Using Theorem 9.5.1 we get ∅ `w ϕ→ (ψ ∨

∨
∆′). We obtain ∅ `w

(ϕ ψ)→
∨

∆′ by Proposition 9.5.1. By Theorem 9.5.1 again, we obtain ϕ ψ `w
∨

∆′.
By definition we get `w [ϕ ψ | ∆]. Note that all the steps used here are based on
equivalences. �

This theorem does not port to FOsBIL, showing that the duality between → and
breaks in it. We formulate the following claim, relying on soundness, proved later on.

Claim 9.5.2. `s [P (0) Q(0) | ¬∼∼Q(0)] while 6`s [P (0) | Q(0),¬∼∼Q(0)].

Proof. To show 6`s [P (0) | Q(0),¬∼∼Q(0)] we rely on Theorem 9.8.1. In addition to that,
we provide a semi-proof for `s [P (0) Q(0) | ¬∼∼Q(0)] (Ï).

(Ax)
∅ `w P (0)→ >

Lem.9.5.2
∅ `w (P (0) Q(0))→ (> Q(0))

Thm.9.5.1
P (0) Q(0) `w ∼Q(0)

Thm.9.4.1
P (0) Q(0) `s ∼Q(0)

(DN)
P (0) Q(0) `s ¬∼∼Q(0)
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�

A final property of importance that distinguishes the two logics pertains to the Dual
of Modus Ponens rule. The latter can here too be added to the weak calculus FOwBIH in
the first-order case, without changing the set of expressions it derives.

[ψ | ∆] [ϕ ψ | ∆]

[ϕ | ∆]
(DMP)

Lemma 9.5.3. If `w [ϕ ψ | ∆] and `w [ψ | ∆] then `w [ϕ | ∆].

Proof. (Ï) Assume `w [ϕ ψ | ∆] and `w [ψ | ∆]. Then, we have proofs of ϕ ψ `
∨

∆′

and ψ `
∨

∆′′. We can easily obtain that ϕ ψ `
∨

∆′′′ and ψ `
∨

∆′′′, where
∨

∆′′′ =∨
∆′ ∨

∨
∆′′. Thus, we can use Theorem 9.5.1 to obtain proofs of ∅ ` (ϕ ψ)→

∨
∆′′′

and ∅ ` ψ →
∨

∆′′′. By applying Proposition 9.5.1 on ∅ ` (ϕ ψ)→
∨

∆′′′ we get a
proof of ∅ ` ϕ→ (ψ ∨

∨
∆′′′). Given the latter and ∅ ` ψ →

∨
∆′′′ we can conclude that

there is a proof of ∅ ` ϕ→
∨

∆′′′. So, we have that `w [ϕ | ∆]. �

But this does not hold for FOsBIL. This fact is another evidence of the lack of duality
between and → in this logic.

Claim 9.5.3. `s [P (0) Q(0) | Q(0),¬∼∼Q(0)] and `s [Q(0) | Q(0),¬∼∼Q(0)], while
6`s [P (0) | Q(0),¬∼∼Q(0)].

Proof. The proof of `s [P (0) Q(0) | Q(0),¬∼∼Q(0)] can be found in the proof of Claim
9.5.2. We obtain `s [P (0) Q(0) | Q(0),¬∼∼Q(0)] straightforwardly via the use of (El).
As in Claim 9.5.2, we show 6`s [P (0) | Q(0),¬∼∼Q(0)] using Theorem 9.8.1. �

As we announced at the beginning of the section, the same differences are present
in the first-order case: all of the deduction-detachment, its dual, and the safety of the
addition of the rule (DMP) hold in FOwBIL; none does in FOsBIL. In the next section, we
make use of the proof-theoretical results we obtained so far to provide a formally verified
proof of an important theorem: the constant domain axiom.

9.6 A theorem: constant domains axiom

The results we obtained this far are sufficient to attain a milestone in first-order bi-
intuitionistic logic: a formally verified proof of the constant domain axiom.

Lemma 9.6.1. For i ∈ {w, s}:

`i [Γ | ∀(ϕ[↑] ∨ ψ)→ (ϕ ∨ ∀ψ)]

Proof. (Ï) Given Theorem 9.4.1, we can restrict our attention to FOwBIH and prove that
`w [Γ | ∀(ϕ[↑] ∨ ψ)→ (ϕ ∨ ∀ψ)]. By Lemma 9.3.1 and the fact that ∅ ⊂ Γ, it suffices
to prove `w [∅ | ∀(ϕ[↑] ∨ ψ)→ (ϕ ∨ ∀ψ)]. By Theorem 9.5.1 the latter is equivalent to
`w [∀(ϕ[↑] ∨ ψ) | ϕ ∨ ∀ψ]. In turn, this is equivalent to `w [∀(ϕ[↑] ∨ ψ) ϕ | ∀ψ] using
Theorem 9.5.3. We provide the following semi-proof for the latter:

(Ax)
∅ ` ∀(ϕ[↑][up(↑)] ∨ ψ[up(↑)])→ (ϕ[↑] ∨ ψ)

Thm.9.5.1
∀(ϕ[↑][up(↑)] ∨ ψ[up(↑)]) ` ϕ[↑] ∨ ψ

Thm.9.5.3
∀(ϕ[↑][up(↑)] ∨ ψ[up(↑)]) ϕ[↑] ` ψ

(Gen)
∀(ϕ[↑] ∨ ψ) ϕ ` ∀ψ

To show that ∀(ϕ[↑][up(↑)] ∨ ψ[up(↑)]) → (ϕ[↑] ∨ ψ) is an instance of A18, consider the
following chain of equalities.
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∀(ϕ[↑][up(↑)] ∨ ψ[up(↑)]) → (ϕ[↑] ∨ ψ) = ∀(ϕ[↑][up(↑)] ∨ ψ[up(↑)]) → (ϕ[↑][↑][0 .: id] ∨ ψ[↑][0 .: id])
= ∀(ϕ[↑][up(↑)] ∨ ψ[up(↑)]) → (ϕ[↑][up(↑)][0 .: id] ∨ ψ[up(↑)][0 .: id])
= ∀(ϕ[↑][up(↑)] ∨ ψ[up(↑)]) → (ϕ[↑][up(↑)] ∨ ψ[up(↑)])[0 .: id]

The first line is justified by Lemma 2.2.3, essentially saying that the combination of sub-
stitutions [↑][0 .: id] does not modify the formula. The second line involves Lemma 2.2.4
showing notably that ϕ[↑][↑] = ϕ[↑][up(↑)]. Finally, the third line follows by definition
of substitution. The formula thus obtained is obviously an instance of A18 where we
instantiated the bound variables by the term 0. �

First, let us note that the above formula, in a syntax à la de Bruijn, does capture the
meaning of the constant domain axiom in the syntax with names. Indeed, we make sure
that no variable in ϕ is bound by the leftmost universal quantifier by lifting all its free
variables through [↑].

Second, we comment on the proof of this theorem. This proof is extremely insightful as
it shows that we obtain the constant domain axiom straightforwardly through properties
of propositional connectives: the deduction-detachment theorem and its dual. In essence,
the idea of the proof is to use these theorems to isolate ∀ψ to apply (Gen). Note that
this isolation is possible only thanks to the dual detachment-deduction theorem: it allows
to extract ϕ from the disjunction ϕ ∨ ∀ψ, and adds it on the left-hand side of `. This
mechanism is not available in first-order intuitionistic logic. So, while this formula is
not a theorem in first-order intuitionistic logic, the addition of the exclusion arrow as
characterized here adds this mechanism to our toolbox and thus entails this axiom.

With this last theorem, we close our proof-theoretic study of FOwBIL and FOsBIL.
Next, we introduce a semantics for first-order bi-intuitionistic languages based on constant
domains models. With it, we will resolve the claims we left pending this far, which
distinguish the two logics.

9.7 Constant domains Kripke semantics

The Kripke semantics for first-order bi-intuitionistic languages we present here is a modi-
fied extension of the usual one for first-order intuitionistic languages. First, it is modified
as instead of allowing increasing domains we require constant domains. Second, it is an
extension as it caters for the exclusion as in the propositional case.

Throughout this section we consider given a signature S and the bi-intuitionistic lan-
guage LBI in S. Here again, the accessibility relation on first-order frames is represented
by the symbol ≤. For conciseness, and as it is clear given the context, we say “model”
instead of “first-order model”.

As we use the same frames and models as defined in Section 5.2 of our Toolbox, we
are only required to provide the interpretation of connectives and quantifiers.

Definition 9.7.1. Given a modelM = (W,≤, D, Ifun, Ipred) and an assignment α forM,
we define a forcing relation between a point w ∈W and a formula in FormLBI

as follows:

M, w, α  P (t1, . . . , tn) iff (α(t1), . . . , α(tn)) ∈ Ipred(w,P )
M, w, α 6 ⊥
M, w, α  >
M, w, α  ϕ ∧ ψ iff M, w, α  ϕ and M, w, α  ψ
M, w, α  ϕ ∨ ψ iff M, w, α  ϕ or M, w, α  ψ
M, w, α  ϕ→ ψ iff for all v s.t. w ≤ v, M, v, α  ϕ implies M, v, α  ψ
M, w, α  ϕ ψ iff there exists a v s.t. v ≤ w, M, v, α  ϕ and M, v, α 6 ψ
M, w, α  ∀ϕ iff for all d ∈ D, M, w, (d .: α)  ϕ
M, w, α  ∃ϕ iff there is d ∈ D s.t. M, w, (d .: α)  ϕ
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The reader familiar with the usual first-order Kripke semantics for first-order intu-
itionistic languages will certainly notice that the clause for the universal quantifier is local.
Indeed, given that we work with a semantics based on constant domains models, we do
not need to check in successors of the point w to determine whether ∀ϕ is forced in w.
This is simply because, on the contrary to the intuitionistic case, at a point in the model
no element of the domain cannot yet be witnessed “here”, but will be in further points up
the relation accessibility. As the domain is constant, any individual that is ever to exist
is present anywhere in the model. More formally, the above clause and the following are
equivalent on constant domains models.

M, w, α  ∀ϕ iff for all v ∈W s.t. w ≤ v and d ∈ D, M, v, (d .: α)  ϕ

This equivalence can be shown using persistence, the main feature of the Kripke se-
mantics for intuitionistic logic.

Lemma 9.7.1 (Persistence). Let M = (W,≤, D, Ifun, Ipred) be a model, w ∈ W and
ϕ ∈ FormLBI

. For all v ∈W such that w ≤ v we have that for all assignment α forM, if
M, w, α  ϕ then M, v, α  ϕ.

Proof. (Ï) Let w ∈W . We reason by induction on ϕ:

- ϕ := P (t1, . . . , tn): Let α be an assignment, v ∈ W and assume that w ≤ v. We
have M, w, α  P (t1, . . . , tn) implies (α(t1), . . . , α(tn)) ∈ Ipred(w,P ), which implies
(α(t1), . . . , α(tn)) ∈ Ipred(v, P ) by the persistence condition on models, which in turn
implies M, v, α  P (t1, . . . , tn). As α and v are arbitrary we get that for all α, if
M, w, α  P (t1, . . . , tn) then M, v, α  P (t1, . . . , tn);

- ϕ := χ∧ψ: Let α be an assignment, v ∈W and assume that w ≤ v. M, w, α  χ∧ψ
then M, w, α  χ and M, w, α  ψ. By induction hypothesis M, v, α  χ and
M, v, α  ψ. Then M, v, α  χ ∧ ψ. We thus get the desired result for all α and v.

- ϕ := χ ∨ ψ: Let α be an assignment, v ∈ W and assume that w ≤ v. M, w, α 
χ ∨ ψ then M, w, α  χ or M, w, α  ψ. By induction hypothesis M, v, α  χ or
M, v, α  ψ. Then M, v, α  χ ∨ ψ. We thus get the desired result for all α and v.

- ϕ := χ → ψ: Let α be an assignment, v ∈ W and assume that w ≤ v. M, w, α 
χ→ ψ then for every u ∈W s.t. w ≤ u, ifM, u, α  χ thenM, u, α  ψ. Note that
for every u ∈W , if v ≤ u then w ≤ u by transitivity. Consequently we have that for
every u ∈ W s.t. v ≤ u, if M, u, α  χ then M, u, α  ψ. We get M, v, α  χ→ ψ.
We thus get the desired result for all α and v.

- ϕ := χ ψ: Let α be an assignment, v ∈ W and assume that w ≤ v. M, w, α 
χ ψ then there is a u ≤ w s.t. M, u, α  χ and M, u, α 6 ψ. By transitivity
we have u ≤ v, so there is a u ≤ v s.t. M, u, α  χ and M, u, α 6 ψ. Thus
M, v, α  χ ψ. We thus get the desired result for all α and v.

- ϕ := ∃ψ: Let α be an assignment, v ∈ W and assume that w ≤ v. M, w, α  ∃ψ
then there is a d ∈ D s.t. M, w, (d .: α)  ψ. By induction hypothesis we get that
for all α′, if M, w, α′  ψ then M, v, α′  ψ. In particular, this holds for (d .: α)
hence M, v, (d .: α)  ψ. Thus M, v, α  ∃ψ. We thus get the desired result for all
α and v.

- ϕ := ∀ψ: Let α be an assignment, v ∈W and assume that w ≤ v. M, w, α  ∀ψ then
for all d ∈ D, M, w, (d .: α)  ψ. By induction hypothesis we get M, v, (d .: α)  ψ.
As d was arbitrary, we get that M, v, α  ∀ψ. We thus get the desired result for all
α and v.

�
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We turn to the proof of the equivalence of the two clauses.

Lemma 9.7.2. Let M = (W,≤, D, Ifun, Ipred) be a model, w ∈ W and ϕ ∈ FormLBI
.

The following statements are equivalent.

1. For all d ∈ D, we have M, w, (d .: α)  ϕ.

2. For all v ∈W such that w ≤ v and d ∈ D, we have M, v, (d .: α).  ϕ

Proof -. The direction from 2 to 1 holds trivially by instantiation of v by w. The direction
from 1 to 2 relies on persistence as shown below. Assume that for all d ∈ D, M, w, (d .:
α)  ϕ. We need to show that for all v ∈W s.t. w ≤ v and d ∈ D, M, v, (d .: α)  ϕ. Let
v ∈ W and d ∈ D and assume that w ≤ v. We have M, w, (d .: α)  ϕ by assumption,
and consequently we get M, v, (d .: α)  ϕ �

It can already be noticed that the notations required so far easily become heavy.
Indeed, the bureaucracy inherent to the treatment of first-order logics shows itself in
the manipulation of the first-order Kripke semantics, and adds up to the complexity of
syntactic notations. In particular, the interactions between substitutions and assignments
can give birth to extremely thorny situations. To help us in dealing with the latter, we
prove some useful lemmas.

The first one relates to a property in Coq: in it, we do not have functional extensionality
as an axiom [105, Chap. Logic]. While the latter can safely be added [147], in general we
cannot consider identical two functions which are identical on all inputs. For example,
having that two assignments α1 and α2 agree on all inputs is not sufficient to substitute
one for the other in a given context. This is the reason why we need to provide a proof
for the next lemma.

Lemma 9.7.3. Let M = (W,≤, D, Ifun, Ipred) be a model, ϕ ∈ FormLBI
, α1 and α2

assignments and ϕ ∈ FormLBI
. If for all n ∈ N we have α1(n) = α2(n), then:

M, w, α1  ϕ iff M, w, α2  ϕ

Proof. (Ï) We reason by induction on ϕ.

- ϕ := P (t1, . . . , tn): We have the following equivalence.

M, w, α1  P (t1, . . . , tn) iff (α1(t1), . . . , α1(tn)) ∈ Ipred(w,P )

However, we can prove for all t ∈ TermS we have α1(t) = α2(t) if the assignments
agree on all inputs (Ï). So, we have the following equivalence.

(α1(t1), . . . , α1(tn)) ∈ Ipred(w,P ) iff (α2(t1), . . . , α2(tn)) ∈ Ipred(w,P )

Consequently, we get M, w, α2  P (t1, . . . , tn).

- ϕ := >: We have that > is always forced, so we are done.

- ϕ := ⊥: We have that ⊥ is never forced, so we are done.

- ϕ := χ∧ψ: M, w, α1  χ∧ψ iff [M, w, α1  χ andM, w, α1  ψ]. By the induction
hypothesis, we get that the latter holds iff [M, w, α2  χ and M, w, α2  ψ]. Thus
M, w, α1  χ ∧ ψ iff M, w, α2  χ ∧ ψ.

- ϕ := χ ∨ ψ: M, w, α1  χ ∨ ψ iff [M, w, α1  χ or M, w, α1  ψ]. By the induction
hypothesis, we get that the latter holds iff [M, w, α2  χ or M, w, α2  ψ]. Thus
M, w, α1  χ ∨ ψ iff M, w, α2  χ ∨ ψ.

https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Kripke_sem.v#L128
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- ϕ := χ → ψ: M, w, α1  χ → ψ iff for every v ∈ W s.t. w ≤ v, if M, v, α1  χ
then M, v, α1  ψ. By induction hypothesis this holds if and only if for every
v ∈ W s.t. w ≤ v, if M, v, α2  χ then M, v, α2  ψ. We consequently get
M, w, α2  χ→ ψ iff M, w, α2  χ→ ψ.

- ϕ := χ ψ: M, w, α1  χ ψ iff there is a v ≤ w s.t. M, v, α1  χ and
M, v, α1 6 ψ. By induction hypothesis this holds if and only if there is a v ≤ w
s.t. M, v, α2  χ and M, v, α2 6 ψ. Thus M, w, α2  χ ψ iff M, w, α2  χ ψ.

- ϕ := ∀ψ: M, w, α1  ∀ψ iff for all d ∈ D we have M, w, (d .: α1)  ψ. We use the
induction hypothesis to obtain that this holds if and only if for all d ∈ D we have
M, w, (d .: α2)  ψ. To do so, we need to prove that the assignment (d .: α1) and
(d .: α2) agree on all inputs. This is rather straightforward, as they both output d
on 0 and output α1(m) = α2(m) on S m. So, we finally get that M, w, α1  ∀ψ iff
M, w, α2  ∀ψ.

- ϕ := ∃ψ: M, w, α1  ∃ψ iff there is a d ∈ D s.t. M, w, (d . : α1)  ψ. We use
the induction hypothesis to obtain that this holds if and only if there is a d ∈ D
s.t.M, w, (d .: α2)  ψ. Here again, we have that the assignment (d .: α1) and (d .: α2)
agree on all inputs. So, we finally get that M, w, α1  ∃ψ iff M, w, α2  ∃ψ.

�

The second bureaucratic lemma we prove shows that if we apply an assignment to a
term obtained through a substitution, we can equivalently modify the assignment to take
into account the substitution, and then apply it to the initial term.

Lemma 9.7.4. Let M = (W,≤, D, Ifun, Ipred) be a model, w ∈ W and τ a variable
substitution. For all term t, α(t[τ ]) = α ◦ τ(t).

Proof. (Ï) We reason by induction on the structure of t:

- t := x: Then x[τ ] = τ(x), hence α(x[τ ]) = α(τ(x)) = (α ◦ τ)(x) = α ◦ τ(x).

- t := f(t1, . . . , tn): as f(t1, . . . , tn)[τ ] = f(t1[τ ], . . . , tn[τ ]), by definition we get that
α(f(t1, . . . , tn)[τ ]) = α(f(t1[τ ], . . . , tn[τ ])) = Ifun(f)(α(t1[τ ]), . . . , α(tn[τ ])). By in-
duction hypothesis we have that for all 1 ≤ i ≤ n, α(ti[τ ]) = α ◦ τ(ti). So we obtain
that α(f(t1, . . . , tn)[τ ]) = α ◦ τ(f(t1, . . . , tn)) as the following chain of equalities
holds.

Ifun(f)(α(t1[τ ]), . . . , α(tn[τ ])) = Ifun(f)(α ◦ τ(t1), . . . , α ◦ τ(tn)) = α ◦ τ(f(t1, . . . , tn))

�

The third technical lemma essentially ports to formulas the idea expressed in the
previous one, leading to an equivalence in the forcing relation.

Lemma 9.7.5. Let M = (W,≤, D, Ifun, Ipred) be a model and ϕ ∈ FormLBI
. For all

variable substitution τ , w ∈W and all assignment α, we have that:

M, w, α  ϕ[τ ] iff M, w, (α ◦ τ)  ϕ

Proof. (Ï) We prove our claim by induction on ϕ:

- ϕ := P (t1, . . . , tn): We have thatM, w, α  P (t1, . . . , tn)[τ ] if and only ifM, w, α 
P (t1[τ ], . . . , tn[τ ]) by definition. Equivalently, we have (α(t1[τ ]), . . . , α(tn[τ ])) ∈
Ipred(w,P ). By Lemma 9.7.4 we get that α(t1[τ ]) = α ◦ τ(t1), . . . , α(tn[τ ]) = α ◦ τ(tn).
Consequently, we have equivalently that (α ◦ τ(t1), . . . , α ◦ τ(tn)) ∈ Ipred(w,P ). We
easily get the last statement is equivalent to M, w, (α ◦ τ)  P (t1, . . . , tn).

https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Kripke_sem.v#L42
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- ϕ := >: We have that >[τ ] = >, and the latter is always forced, so we are done.

- ϕ := ⊥: We have that ⊥[τ ] = ⊥, and the latter is never forced, so we are done.

- ϕ := χ ∧ ψ: M, w, α  (χ ∧ ψ)[τ ] iff M, w, α  χ[τ ] and M, w, α  ψ[τ ]. By
induction hypothesis M, w, α  χ[τ ] and M, w, α  ψ[τ ] iff M, w, (α ◦ τ)  χ and
M, w, (α ◦ τ)  ψ. Thus M, w, α  (χ ∧ ψ)[τ ] iff M, w, (α ◦ τ)  χ ∧ ψ.

- ϕ := χ ∨ ψ: M, w, α  (χ ∨ ψ)[τ ] iff M, w, α  χ[τ ] or M, w, α  ψ[τ ]. By
induction hypothesis [M, w, α  χ[τ ] or M, w, α  ψ[τ ]] iff [M, w, (α ◦ τ)  χ or
M, w, (α ◦ τ)  ψ]. Thus M, w, α  (χ ∨ ψ)[τ ] iff M, w, (α ◦ τ)  χ ∨ ψ.

- ϕ := χ→ ψ: M, w, α  (χ→ ψ)[τ ] iff for every v ∈ W s.t. w ≤ v, if M, v, α  χ[τ ]
then M, v, α  ψ[τ ]. By induction hypothesis this holds if and only if for every
v ∈ W s.t. w ≤ v, if M, v, (α ◦ τ)  χ then M, v, (α ◦ τ)  ψ. We consequently get
M, w, α  (χ→ ψ)[τ ] iff M, w, (α ◦ τ)  χ→ ψ.

- ϕ := χ ψ: M, w, α  (χ ψ)[τ ] iff there is a v ≤ w s.t. M, v, α  χ[τ ] and
M, v, α 6 ψ[τ ]. By induction hypothesis this holds if and only if there is a v ≤ w
s.t. M, v, (α ◦ τ)  χ and M, v, (α ◦ τ) 6 ψ. Thus M, w, α  (χ ψ)[τ ] iff
M, w, (α ◦ τ)  χ ψ.

- ϕ := ∃ψ: M, w, α  ∃ψ[τ ] iff there is a d ∈ D s.t. M, w, (d .: α)  ψ[up(τ)]. By
induction hypothesis this holds if and only if there is a d ∈ D s.t. M, w, ((d .: α) ◦
up(τ))  ψ.

We claim that for all n ∈ N, ((d .: α) ◦ up(τ))(n) = (d .: (α ◦ τ))(n). We prove this
by analyzing n. If n := 0, then we have the following chain of equalities.

((d .: α) ◦ up(τ))(0) = (d .: α)(up(τ)(0)) = (d .: α)(0) = d = (d .: (α ◦ τ))(0)

If n := Sm, then we have the following chain of equalities.

((d .: α) ◦ up(τ))(Sm) = (d .: α)(up(τ)(Sm)) = (d .: α)((λt.t[↑] ◦ τ)(m)) = (d .: α)(τ(m)[↑])

The last element of this chain is equal to ((d .: α)◦ ↑)(τ(m)) by Lemma 9.7.4. We
can see that (d .: α)◦ ↑= α, as the left function takes n, applies ↑ to give S n, and

then applies (d .: α) which gives α(n) by definition. So, we get ((d .: α)◦ ↑)(τ(m)) =
α(τ(m)). We finally obtain α(τ(m)) = (α ◦ τ)(m) = (d .: (α ◦ τ))(Sm).

So, using Lemma 9.7.3, we get that there is a d ∈ D s.t.M, w, ((d .: α) ◦ up(τ))  ψ,
if and only if there is a d ∈ D s.t. M, w, (d .: (α ◦ τ))  ψ, hence M, w, α ◦ τ  ∃ψ.
Thus M, w, α  ∃ψ[τ ] iff M, w, α ◦ τ  ∃ψ.

- ϕ := ∀ψ: M, w, α  ∀ψ[τ ] iff for all d ∈ D s.t. M, w, (d . : α)  ψ[up(τ)]. By
induction hypothesis this holds if and only if for all d ∈ D s.t.M, w, ((d .: α)◦up(τ)) 
ψ. As above, we can prove that for all n ∈ N, ((d .: α) ◦ up(τ))(n) = (d .: (α ◦ τ))(n).
So, using Lemma 9.7.3, we have that for all d ∈ D s.t. M, w, ((d .: α) ◦ up(τ))  ψ,
if and only for all d ∈ D s.t. M, w, (d .: (α ◦ τ))  ψ, hence M, w, α ◦ τ  ∀ψ. Thus
M, w, α  ∀ψ[τ ] iff M, w, α ◦ τ  ∀ψ.

�

We are done with bureaucratic lemmas. Before turning to a more model-theoretic part
of our study of the semantics, let us comment on the de Bruijn approach to first-order
syntax. This approach implies a significant amount of manipulation of functions: to show
their equality on all inputs, to compose them, and to modify them. So, many lemmas
need to be proven about these manipulations in Coq. But this is where the existence of
such a well-developed library as the one we use makes our life easier.
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Now, let us turn to notions relating models. While there are notions of bisimulation
which imply logical equivalence in first-order Kripke semantics [109], we show instead that
a much weaker relation, but sufficient for our purpose, entails logical equivalence: between
a model M and its restriction in w, i.e. Mw as in Definition 8.9.1. We precisely define
this notion in the first-order case.

Definition 9.7.2. Let M = (W,≤, Ifun, Ipred) be a model and w ∈ W . We define the
restriction of M in w as the model Mw = (Ww,≤w, D, Ifun, Iwpred), where:

- Ww = {v ∈W | there is a chain wR1...Rnv, where Rj ∈ {≤,≥} for j ∈ N};

- ≤w = ≤ ∩ (Ww ×Ww);

- Iwpred(v, P ) = Ipred(v, P ).

As promised, we prove that a model and its restriction are logically equivalent in all
points of Mw.

Proposition 9.7.1. Let M = (W,≤, D, Ifun, Ipred), w ∈ W and Mw = (Ww,≤w
, D, Iwfun, I

w
pred) the restriction of M in w. For all assignment on D α, v ∈ Ww and

ϕ ∈ FormLBI
we have M, v, α  ϕ iff Mw, v, α  ϕ.

Proof. (Ï) We reason by induction on the structure of ϕ.

- ϕ := P (t1, . . . , tn): We haveM, v, α  P (t1, . . . , tn) iff (α(t1), . . . , α(tn)) ∈ Ipred(v, P ).
However, we have that Ipred(v, P ) = Iwpred(v, P ) by definition, so the latter holds iff
(α(t1), . . . , α(tn)) ∈ Iwpred(v, P ), i.e. Mw, v, α  P (t1, . . . , tn).

- ϕ := >: We have M, v, α  > and Mw, v, α  > by definition. So we trivially get
the desired result.

- ϕ := ⊥: We have M, v, α 6 ⊥ and Mw, v, α 6 ⊥ by definition. So we trivially get
the desired result.

- ϕ := χ ∧ ψ: We have that M, v, α  χ ∧ ψ iff [M, v, α  χ and M, v, α  ψ]. By
the induction hypothesis, the latter holds iff [Mw, v, α  χ and Mw, v, α  ψ]. We
finally reach Mw, v, α  χ ∧ ψ through a chain of equivalences. We thus get the
desired result.

- ϕ := χ ∨ ψ: We have that M, v, α  χ ∨ ψ iff [M, v, α  χ or M, v, α  ψ]. By
induction hypothesis the latter holds iff [Mw, v, α  χ or Mw, v, α  ψ]. We finally
reach Mw, v, α  χ ∨ ψ through a chain of equivalences. We thus get the desired
result.

- ϕ := χ → ψ: (⇒) Assume M, v, α  χ → ψ. We need to show Mw, v, α 
χ → ψ. Let u ∈ Ww such that v ≤ u, and assume Mw, u, α  χ. We need
to show Mw, u, α  ψ. As M, v, α  χ → ψ we get that if M, u, α  χ then
M, uα  ψ, as u ∈ W by definition. But we know that Mw, u, α  χ, so by
induction hypothesis we getM, u, α  χ. Thus, we getM, u, α  ψ. It then suffices
to use the induction hypothesis again to obtain Mw, u, α  ψ. Consequently, we
proved that Mw, v, α  χ→ ψ.

(⇐) Assume Mw, v, α  χ → ψ. We need to show M, v, α  χ → ψ. Let u ∈ W
such that v ≤ u, and assume M, u, α  χ. We need to show M, u, α  ψ. Note
that u ∈ Ww as there is a chain from w to u going through v, as the latter is in
Ww. So, as Mw, v, α  χ → ψ we get that if Mw, u, α  χ then Mw, uα  ψ, as
v ≤w u by definition. But we know that M, u, α  χ, so by induction hypothesis
we get Mw, u, α  χ. Thus, we get Mw, u, α  ψ. It then suffices to use the
induction hypothesis again to obtain M, u, α  ψ. Consequently, we proved that
M, v, α  χ→ ψ.
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- ϕ := χ ψ: (⇒) Assume M, v, α  χ ψ. We need to show Mw, v, α  χ ψ.
As M, v, α  χ ψ there is a u ∈ W such that u ≤ v and M, u, α  χ and
M, u, α 6 ψ. Note that u ∈ Ww, as there is a chain from w to u going through
v, as v ∈ Ww. But we know that M, u, α  χ and M, u, α 6 ψ, so by induction
hypothesis we getMw, u, α  χ andMw, u, α 6 ψ. Thus, we getMw, v, α  χ ψ.

(⇐) AssumeMw, v, α  χ ψ. We need to showM, v, α  χ ψ. AsMw, v, α 
χ ψ there is a u ∈ Ww such that u ≤w v and Mw, u, α  χ and Mw, u, α 6 ψ.
Note that u ∈W by definition. But we know that Mw, u, α  χ and Mw, u, α 6 ψ,
so by induction hypothesis we get M, u, α  χ and M, u, α 6 ψ. Thus, we get
M, v, α  χ ψ as u ≤ v by definition.

- ϕ := ∀ψ: We have that M, v, α  ∀ψ iff [for all d ∈ D, M, v, (d . : α)  ϕ].
By induction hypothesis the latter holds iff [for all d ∈ D, Mw, v, (d .: α)  ϕ]. We
finally reachMw, v, α  ∀ψ through a chain of equivalences. We thus get the desired
result.

- ϕ := ∃ψ: We have that M, v, α  ∃ψ iff [there exists a d ∈ D such that M, v, (d .:
α)  ϕ]. By induction hypothesis the latter holds iff [fthere exists a d ∈ D such that
Mw, v, (d .: α)  ϕ]. We finally reachMw, v, α  ∃ψ through a chain of equivalences.
We thus get the desired result.

�

While this is a quite weak relation between models, it suffices for our purpose thanks
to the previous lemma and the next one, relating ≤≥ zig-zags and double negations ¬∼.

Lemma 9.7.6. Let n ∈ N be a natural number, M = (W,≤, D, Ifun, Ipred) a model,
w, v ∈ W points, α an assignment, ϕ ∈ FormLBI

a formula and wR1...Rnv a chain in M
such that Rj ∈ {≤,≥} for every j ∈ {1, ..., n}. If M, w, α  (¬∼)nϕ, then M, v, α  ϕ.

Proof. (Ï) Identical to the propositional proof of Lemma 8.9.2. �

We conclude this section on the semantics by recalling the definition of the local and
global semantic consequence relations given in Section 5.2.

Definition 9.7.3. The local and global consequence relations are as below.

Γ |=l ∆ iff ∀M.∀α.∀w. (M, w, α  Γ ⇒ ∃δ ∈ ∆.M, w, α  δ)
Γ |=g ∆ iff ∀M.∀α. ((∀w.M, α, w  Γ) ⇒ (∀w.∃δ ∈ ∆.M, w, α  δ))

As in the propositional case, we can prove that these notions are equivalent in the usual
interpretation of the intuitionistic language (restricted to the class of constant domains
models), on the contrary to the modal ones shown in Section 5.2.

Lemma 9.7.7. For Γ ∪∆ ⊆ FormLI
:

Γ |=l ∆ iff Γ |=g ∆

Proof -. We prove each direction separately.

(⇒) Assume Γ |=l ∆. Let M be a model and α an assignment. Assume that M, α  Γ.
We need to show that for all w ∈ W , there is a δ ∈ ∆ such that M, w, α  δ. Let
w ∈W . Given that M, α  Γ, we have in particular M, w, α  Γ. Consequently, as
we have Γ |=l ∆, we obtain that there is a δ ∈ ∆ such that M, w, α  δ. As w is
arbitrary, we get ∀w ∈W.∃δ ∈ ∆.M, w, α  δ. So, Γ |=g ∆.
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(⇐) Assume Γ |=g ∆. Let M = (W,≤, D, Ifun, Ipred) be a model, α an assignment
and w ∈ W . Assume that M, w, α  Γ. We need to show that there is a δ ∈ ∆
such that M, w, α  δ. Consider the model M′ = (W ′,≤′, D, Ifun, I ′pred) such that
W ′ = {v ∈ W | w ≤ v}, and ≤′, I ′fun and I ′pred are respective restrictions of ≤,
Ifun and Ipred to W ′. In essence, this model is a restriction of M in w where we
keep points which are successors of w, i.e. the upcone of w in the initial model.
We can show that for such a restriction an equivalent of Proposition 9.7.1 holds,
on the intuitionistic language this time. So, we obtain that M, w, α  Γ implies
M′, w, α  Γ. Then, the intuitionistic version of Lemma 9.7.1 implies that for all
v ∈ W ′ such that w ≤ v, we have M′, w, α  Γ. However, for all v ∈ W ′ we have
w ≤ v, by definition of W ′. Consequently, we haveM′, v, α  Γ for all v ∈W ′, hence
M′, α  Γ. We use Γ |=g ∆ on the latter to obtain ∀v ∈ W.∃δ ∈ ∆.M′, v, α  δ. In
particular, we get that for w there is δ ∈ ∆ such thatM′, w, α  δ. It then suffices to
use the intuitionistic version of Proposition 9.7.1 once again to obtain M, w, α  δ.
So, Γ |=l ∆.

�

9.8 Soundness

In this section, we show a similar configuration as in the propositional case: FOwBIL is
sound for the local semantic consequence relation just defined, while FOwBIL is sound for
the global one. With these results in hand, we can resolve all the claims we left pending
this far.

Theorem 9.8.1 (Soundness). The following holds:

(1) `w [Γ | ∆] entails Γ |=l ∆
(2) `s [Γ | ∆] entails Γ |=g ∆.

Proof. We refer to the propositional case (Theorem 8.8.1 and Theorem 8.9.1) for A1 to A16,
(MP), (wDN) and (sDN). Indeed, as these axioms and rules do not involve quantifiers,
their proofs can be adapted from the propositional case by simply adding a mention of an
inert assignment α in the forcing relation.

(1) (Ï) Let M = (W,≤, D, Ifun, Ipred) be a model, w ∈W and α an assignment for D.

(A17) We show that M, w, α  ∀(ψ[↑] → ϕ) → (ψ → ∀ϕ). Let v ≥ w s.t. M, v, α 
∀(ψ[↑]→ ϕ). We need to show thatM, v, α  ψ → ∀ϕ. Let u ≥ v s.t.M, u, α 
ψ. We need to show that M, u, α  ∀ϕ. Let d ∈ D. We need to show that
M, u, (d .: α)  ϕ. As M, v, α  ∀(ψ[↑] → ϕ) and v ≤ u, we get by Lemma
9.7.1 thatM, u, α  ∀(ψ[↑]→ ϕ). We notably obtainM, u, (d .: α)  ψ[↑]→ ϕ.
Now, we claim thatM, u, (d .: α)  ψ[↑], which helps us showM, u, (d .: α)  ϕ
for an arbitrary d ∈ D, giving us M, u, α  ∀ϕ. To show our claim, we notice
that by Lemma 9.7.5 it is equivalent to M, u, ((d .: α)◦ ↑)  ψ. However,
by noticing that ((d .: α)◦ ↑) and α are the same functions, the latter is then
identical to M, u, α  ψ which is an assumption.

(A18) We show that M, w, α  ∀ϕ → ϕ[t .: id]. Let v ≥ w s.t. M, v, α  ∀ϕ. We
need to show that M, v, α  ϕ[t .: id]. To show this, we first use Lemma 9.7.5
to focus on the equivalent statement M, v, (α ◦ (t .: id))  ϕ. Second, we note
that as M, v, α  ∀ϕ we get M, v, (α(t) .: α)  ϕ. Third, we give a proof of
M, v, (α ◦ (t .: id))  ϕ using Lemma 9.7.3 and M, v, (α(t) .: α)  ϕ. We are
thus left to prove that for all n ∈ N we have (α ◦ (t .: id))(n) = (α(t) .: α)(n).
We prove this by case distinction on n. First, we have that (α ◦ (t .: id))(0) =
α((t .: id)(0)) = α(t) = (α(t) .: α)(0). Second, we have that (α ◦ (t .: id))(Sm) =
α((t .: id)(Sm)) = α(id(m)) = α(m) = α(m) = (α(t) .: α)(Sm). So, we are
done.
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(A19) We show thatM, w, α  ϕ[t .: id]→ ∃ϕ. Let v ≥ w s.t.M, v, α  ϕ[t .: id]. We
need to show that M, v, α  ∃ϕ. As M, v, α  ϕ[t .: id] we get M, v, (α ◦ (t .:
id))  ϕ by Lemma 9.7.5. We claim that M, v, (α(t) .: α)  ϕ, which gives us
M, v, α  ∃ϕ. To show this, we use Lemma 9.7.3 and M, v, (α ◦ (t .: id))  ϕ.
We are thus left to prove that (α◦(t .: id)) and (α(t) .: α) are the same function,
which is done as above.

(Gen) Assume that Γ[↑] |=l ϕ. We show that Γ |=l ∀ϕ. Let M be a model, w ∈ W
and α be an assignment. Assume that M, w, α  Γ. We need to show that
M, w, α  ∀ϕ. Let d ∈ D. We need to show that M, v, (d . : α)  ϕ. As
w ≤ v and M, w, α  Γ we get M, v, α  Γ by Lemma 9.7.1. We claim that
M, v, (d .: α)  Γ[↑], which in combination with Γ[↑] |=l ϕ gives us our goal:
M, v, (d .: α)  ϕ. To show M, v, (d .: α)  Γ[↑] we use Lemma 9.7.5 and prove
the equivalent statement M, v, ((d .: α)◦ ↑)  Γ. Now, note that for all n ∈ N
we have ((d .: α)◦ ↑)(n) = (d .: α)(↑ (n)) = (d .: α)(Sn) = (d .: α)(Sn) = α(n).
In other words, ((d .: α)◦ ↑) and α are the same functions. So, our assumption
M, v, α  Γ gives us our claim M, v, (d .: α)  Γ[↑].

(EC) Assume that Γ[↑] |=l ϕ → ψ[↑]. We show that Γ |=l ∃ϕ → ψ. Let M be a
model, w ∈ W and α be an assignment. Assume that M, w, α  Γ. We need
to show that M, w, α  ∃ϕ → ψ. Let v ≥ w s.t. M, v, α  ∃ϕ. We need
to show that M, v, α  ψ. As M, v, α  ∃ϕ, we get that there is a d ∈ D
s.t.M, v, (d .: α)  ϕ. Moreover, as w ≤ v andM, w, α  Γ we getM, v, α  Γ
by Lemma 9.7.1. As in the previous case, we can prove thatM, v, (d .: α)  Γ[↑].
So, with our assumption Γ[↑] |=l ϕ→ ψ[↑] we obtain M, v, (d .: α)  ϕ→ ψ[↑].
It now suffices to use the reflexivity of ≤ and the fact that M, v, (d .: α)  ϕ
to obtain M, v, (d .: α)  ψ[↑]. As we did for Γ, we can prove that the latter is
equivalent to M, v, α  ψ and we are done.

(2) (Ï) The proofs for the axioms are identical to the ones above, and the ones for
the propositional rules (MP) and (sDN) are identical to the propositional Theorem
8.9.1. We are consequently left to prove that (Gen) and (EC) are sound:

(Gen) Assume that Γ[↑] |=g ϕ. We show that Γ |=g ∀ϕ. Let M be a model and α be
an assignment. Assume thatM, α  Γ. We need to show thatM, α  ∀ϕ. Let
w ∈ W and d ∈ D. We need to show that M, w, (d .: α)  ϕ. As M, α  Γ
we get M, (d .: α)  Γ[↑] as explained in the case for (Gen) in (1) just above.
Consequently, as Γ[↑] |=g ϕ and M, (d .: α)  Γ[↑], we get that M, (d .: α)  ϕ.
In particular, we obtain M, w, (d .: α)  ϕ. This gives us M, w, α  ∀ϕ as d is
arbitrary.

(EC) Assume that Γ[↑] |=g ϕ → ψ[↑]. We show that Γ |=g ∃ϕ → ψ. Let M be a
model and α be an assignment. Assume that M, α  Γ. Let w ∈ W . We
need to show that M, w, α  ∃ϕ → ψ. Let v ≥ w such that M, v, α  ∃ϕ.
We need to show that M, v, α  ψ. As M, v, α  ∃ϕ, we get that there is a
d ∈ D s.t. M, v, (d .: α)  ϕ. Moreover, as M, α  Γ we get M, (d .: α)  Γ[↑],
as explained above. So, with our assumption Γ[↑] |=g ϕ → ψ[↑] we obtain
M, (d .: α)  ϕ→ ψ[↑]. In particular we haveM, v, (d .: α)  ϕ→ ψ[↑]. It now
suffices to use the reflexivity of ≤ and the fact thatM, v, (d .: α)  ϕ to obtain
M, v, (d .: α)  ψ[↑]. As we did for Γ, we can prove that the latter is equivalent
to M, v, α  ψ.We picked an arbitrary v, giving us M, w, α  ∃ϕ→ ψ, and an
arbitrary w, giving us our goal: M, α  ∃ϕ→ ψ.

�

Now that we have a proof of Theorem 9.8.1, we turn to the proof of all the claims we
left pending in Section 9.4 and Section 9.5.
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First, we treat Claim 9.4.1, which shows the extensional difference between FOwBIL
and FOsBIL.

Proof. (Ï) We prove that P (0) 6`w ¬∼P (0). To do so, we use the contrapositive of
soundness and are left with proving that P (0) 6|=l ¬∼P (0). Consider the modelM0 where
D = {0} and reflexive arrows are not depicted:

w P (0) v

We clearly have M0, v, α  P (0) for α(0) = 0, as Ipred(v, P ) = {0}. We also have
M0, v, α 6 ¬∼P (0) as M0, v, α  ∼P (0) because M0, w, α 6 P (0) and w ≤ v. Indeed,
we have M0, w, α 6 P (0) as Ipred(w,P ) = ∅. So, we obtain P (0) 6|=l ¬∼P (0). �

Second, we prove Claim 9.5.1 exhibiting a counterexample to the deduction theorem
for FOsBIL.

Proof. (Ï) To prove 6`s [∅ | P (0)→ ¬∼ P (0)] we use soundness and prove 6|=g P (0) →
¬∼P (0). Here again, Consider the model M0. We have M0, v, α  P (0) for α(0) = 0,
but we also obtain M0, v, α 6 ¬∼P (0). Consequently, we have that there is a successor
of v, i.e. v itself as v ≤ v, such that M0, v, α  P (0) and M0, v, α 6 ¬∼P (0). Thus, we
obtain M0, v, α 6 P (0)¬∼P (0). So, we have 6|=g P (0)→ ¬∼P (0). �

Third, we give a proof for Claim 9.5.2, which shows both the failure of the dual
deduction theorem for FOsBIL and the fact that the rule (DMP) cannot be safely added
to FOsBIH.

Proof. (Ï) To prove 6`s [P (0) | Q(0),¬∼∼Q(0)] we use soundness and prove that P (0) 6|=g

Q(0),¬∼∼Q(0). Consider the model M1 where D = {0}:

P (0), Q(0)w

P (0), Q(0) vP (0)u

First we have thatM1, α  p for α(0) = 0. We also haveM1, u, α 6 Q(0) as Ipred(u,Q) =
{0}. But we also have M1, u, α 6 ¬∼∼Q(0). In fact M1, w, α  ∼∼Q(0) as v ≤ w
and M1, v, α 6 ∼Q(0): its only predecessor is itself, and is such that Ipred(v,Q) = {0}.
Consequently we have P (0) 6|=g Q(0) ∨ ¬∼∼Q(0). �

To summarize, soundness for FOwBIL and FOsBIL as given above is sufficient to show
with absolute certainty that we are in presence of two different logics, both on an exten-
sional and meta-level.

Still, soundness is only half of the work done to find a corresponding semantics for each
logic. To obtain a corresponding semantics, we also need to prove strong completeness.

Unfortunately, we could not find a formalised proof of strong completeness for FOwBIL
with respect to the local semantic consequence relation. In fact, we could neither adapt
similar proofs found in the literature for neighboring logics nor find an original one.

Despite this state of things, we can explore various situations by assuming some results
to hold. In Coq, this translates into using the tactic admit, which declares the statement
we are currently trying to prove as holding. In the next section, we make use of this tactic
and give an overview of the various possible situations and their consequences.
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9.9 If weak is local, then strong is global

In this section, we consider three types of scenarios. First, we rule out some scenarios,
as they lead to contradictions with results we solidly established. Second, we explore the
expected scenario, where FOwBIL is strongly complete with respect to the local seman-
tic consequence relation. Assuming this using admit, we show that FOsBIL is strongly
complete with respect to the global semantic consequence relation. Third, and finally, we
consider a last type of unorthodox alternative.

9.9.1 The impossibles

We show that three scenarios contradict the results we formally established this far.
First, FOwBIL cannot be strongly complete with respect to the global consequence

relation.

(A) Γ |=g ∆ entails `w [Γ | ∆]

Why? The logic FOwBIL satisfies the deduction theorem, while the global consequence
relation does clearly not: P (0) |=g ¬∼P (0) but 6|=g P (0) → ¬∼P (0). So, the global
consequence relation is not a semantics for FOwBIL.

Second, FOsBIL cannot be sound with respect to the local consequence relation.

(B) `s [Γ | ∆] entails Γ |=l ∆

Why? We can prove P (0) `s ¬∼P (0) (Claim 9.5.1), but clearly P (0) 6|=l ¬∼P (0) as shown
in the proof of Claim 9.4.1 in the previous section. So, the local consequence relation is
not a semantics for FOsBIL.

Third, FOwBIL cannot be sound with respect to the local consequence relation on the
class of rooted frames.

(C) Γ |=r
l ∆ entails `w [Γ | ∆]

Why? As we show below, we can prove |=r
l ∼P (0) ∨ ¬∼P (0), while we have 6|=l ∼P (0) ∨

¬∼P (0) which entails 6`w [∅ | ∼P (0) ∨ ¬∼P (0)] via soundness (Theorem 9.8.1 (1)). So, the
local consequence relation on the class of rooted frames is not a semantics for FOwBIL.
To show the correctness of our claim that (C) does not hold, we first prove that |=r

l

∼P (0) ∨ ¬∼P (0).

Lemma 9.9.1. Let F = (W,≤) be a rooted Kripke frame. For any domain D, interpre-
tation functions Ifun and Ipred, and assignment α, we have that (W,≤, D, Ifun, Ipred), α 
∼P (0) ∨ ¬∼P (0).

Proof. (Ï) Let r be the root of F , Ifun and Ipred interpretation functions, α an assignment,
M = (W,≤, D, Ifun, Ipred) and w ∈ W . As F is rooted we have that r ≤ w. If α(0) ∈
Ipred(r, P ) then persistence and rootedness give M, v, α  P (0) for every v ∈ W , hence
M, w, α  ¬∼P (0). If α(0) 6∈ Ipred(r, P ) then we get M, w, α  ∼P (0) by rootedness. In
each case we obtain M, w, α  ∼P (0) ∨ ¬∼P (0). �

Thus the formula ∼P (0) ∨ ¬∼P (0) is valid on the class of rooted Kripke frames.
Second, we show that there is a Kripke modelM2 and an assignment α such thatM2, α 6
∼P (0) ∨ ¬∼P (0) (Ï). Consider the following model where reflexive arrows are omitted:

w

P (0)

v
P (0) u

We have that M2, u, α 6 ∼P (0) for α(0) = 0 as the only predecessor of u is itself and
M2, u, α  P (0). Moreover we have thatM2, w, α 6 P (0), henceM2, v, α  ∼P (0) which
in turn implies M2, u, α 6 ¬∼P (0). Consequently M2, u, α 6 ∼P (0) ∨ ¬∼P (0).

With these scenarios ruled out, we can turn to the expected one, which follows the
propositional case.
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9.9.2 The expected one

We proved in Coq that in the propositional case wBIL and sBIL correspond respectively
to the local and global consequence relations. We expect the same correspondence to hold
in the first-order case. However, as mentioned above, we could not find a way to correct
Rauszer’s completeness proof to obtain a formally verified proof.

While we expand on this failure in the next section, here we exhibit a formalised
relative result pertaining to the expected correspondence: if weak is local, then strong is
global.

Theorem 9.9.1. The statements (1) and (2) below are such that if (1) holds then (2)
holds.

(1) Γ |=l ∆ implies `w [Γ | ∆]
(2) Γ |=g ∆ implies `s [Γ | ∆]

Proof. (Ï) Assume (1). (Ï) We prove (2). To do so, we prove the contrapositive of (2)
by assuming 6`s [Γ | ∆] and proving Γ 6|=g ∆. Note that 6`s [Γ | (¬∼)ωΓ], as the rule
(sDN) can be applied at will in FOsBIH. So, as we have 6`s [Γ | (¬∼)ωΓ] and 6`s [Γ | ∆],
we must have 6`s [(¬∼)ωΓ | ∆] by the transitivity expressed in Theorem 9.3.1. Thus, we
get 6`w [(¬∼)ωΓ | ∆] by the contrapositive of Theorem 9.4.1. Using the contrapositive
of (1) on the last statement we get (¬∼)ωΓ 6|=l ∆. Thus, there is model M = (W,≤
, D, Ifun, Ipred), a world w ∈ W and an assignment α such that M, w, α  (¬∼)ωΓ and
M, w, α 6 δ for all δ ∈ ∆. Now, consider the restriction of M in w, i.e. the model
Mw = (Ww,≤w, D, Ifun, Iwpred) as defined in Definition 9.7.2. By Lemma 9.7.1, we have
that Mw, w, α  (¬∼)ωΓ and for all δ ∈ ∆ we have Mw, w, α  δ. If we prove that
Mw, α  Γ, then we are done as we would then have exhibited a Γ-model Mw which has
one point w that is a δ-point for no δ ∈ ∆, hence Γ 6|=g ∆. We thus proceed to show that
Mw, α  Γ. Let v ∈Ww and γ ∈ Γ. We need to showMw, v, α  γ. As v ∈Ww we know
that there is a chain wR1 . . . Rnv. We straightforwardly obtain that Mw, w, α  (¬∼)nγ
as Mw, w, α  (¬∼)ωΓ. We finally obtain that Mw, v, α  γ using Lemma 9.7.6 with
Mw, w, α  (¬∼)nγ and the existence of the chain wR1 . . . Rnv. As v and γ are arbitrary
we get Mw, α  Γ. �

This proof is similar in spirit to the proof of Theorem 8.9.1, where we use the com-
pleteness of wBIL to obtain a modified model showing that the global consequence relation
does not hold here.

In this scenario, where we admit (1) above, we have that FOwBIL and FOsBIL are
conservative extensions of constant domains first-order intuitionistic logic, as expected
given Rauszer [122] and Crolard’s results [25]. As a consequence, we can confirm that
first-order bi-intuitionistic logics are not conservative extensions of first-order intuitionistic
logic [122, 92].

Theorem 9.9.2. Let Γ ∪∆ ⊆ FormLI
. For i ∈ {w, s} the following holds:

`i [Γ | ∆] iff `CDH [Γ | ∆]

Proof -. (⇒) Assume `CDH [Γ | ∆]. As CDH, FOwBIH and FOsBIH all share the same
rules, and all the axioms of CDLH are either axioms of FOwBIH and FOsBIH or are
provable, like CD, we get that for any proof of [Γ | ∆] in CDLH there is a proof in both
FOwBIH and FOsBIH. So, we get `i [Γ | ∆] for i ∈ {w, s}.
(⇐) Assume `i [Γ | ∆] for i ∈ {w, s}. By Theorem 9.4.1 in both cases we get `s [Γ | ∆].
By Theorem 9.9.1 (2) and our assumption (1), we get that Γ |=g ∆. Given that Γ ∪∆ ⊆
FormLI

, we have that Γ |=g ∆ holds in the Kripke semantics for constant domains first-
order intuitionistic logic CDL. However, by Lemma 9.7.7 we get that Γ |=l ∆ in the
first-order Kripke semantics for CDL. By completeness of the CDL with respect to this
semantics [81] we finally get `CDH [Γ | ∆]. �
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9.9.3 The surprising one

Another type of scenario, encompassing an infinity of concrete scenarios, is possible:
FOwBIL is not complete with respect to the local semantic consequence relation, and
FOsBIL is not complete with respect to the global semantic consequence relation. In this
situation, three main possibilities can be conceived.

First, we may need to change the class of models or frames to obtain a corresponding
semantics for these logics. We already know that the class of rooted frames is not a possible
candidate, but there could be other classes we have not thought about so far.

Second, it may be that these logics are complete for different, more exotic, semantic
consequence relations on the given Kripke semantics. Then, we would need to investigate
the known possibilities.

Third, these logics could simply be Kripke incomplete: no change on the class of
models, on the class of frames, or on semantic consequence relations will give birth to
a corresponding semantics for these logics. Then, we would need to investigate different
semantics.

However, this would be a very surprising situation given the propositional case. But
given that we do not have a formal proof settling this issue, we cannot rule this situation
out.

Our overview of impossible, expected, and surprising scenarios is completed. Now,
we proceed to provide explanations about our failure to obtain a proof for the strong
completeness result of FOwBIL. There, we exhibit frictions between a Lindenbaum lemma
and existence lemmas, which are all at the heart of a well-known proof technique we
present.

9.10 Frictions: Lindenbaum extensions and existence lem-
mas

A common proof technique for completeness results for propositional modal logics involves
four components: a Lindenbaum lemma, a canonical model, a truth lemma, and an exis-
tence lemma. With the Lindenbaum lemma, we show how to obtain from sets of formulas
a Lindenbaum extension, i.e. a saturated set of formulas given a certain notion of satura-
tion. These saturated sets are then used as the points of a canonical model. Then the truth
lemma aims at relating elementhood and forcing in the canonical model: if a formula is
in a saturated set, then it is forced in the point corresponding to this set in the canonical
model. This lemma is usually proven by induction on the structure of formulas, and when
the connective under consideration is not locally defined in the semantics, i.e. involves the
accessibility relation, existence lemmas are used to guarantee the existence of the required
points for these cases. For example, in the modal case we show that if ϕ 6∈ w for a
saturated set w, then there is a successor v of w in the canonical model such that ϕ 6∈ v.

We tried to follow this proof technique for our completeness proof for FOwBIL. Con-
sequently, we first prove a Lindenbaum lemma on closed pairs, leading to a Linden-
baum extension which is ∃∀-complete. Second, we define a canonical model based on
∃∀-complete pairs. Third, we attempt to prove the truth lemma but need to admit two
existence lemmas as we could not find a proof for them.

9.10.1 A Lindenbaum lemma on closed pairs

Here, we prove a Lindenbaum lemma on potentially infinite closed pairs leading to ∃∀-
complete pairs, as defined below.

To build these Lindenbaum extensions, we first need an encoding (Definition 6.1.1)
which we assume is given.

Hypothesis 9.10.1. There is an encoding of FormLBI
.
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We fix this encoding and call it encode0. We then define the encoding we use in our
Lindenbaum lemma.

Definition 9.10.1. We define encode : ϕ 7→ S (encode0(ϕ)).

As in the propositional case, encode is injective and makes 0 the encoding of no formula.
Second, we need a decoding function, as defined in Definition 6.1.4.

Lemma 9.10.1. There is a decoding function for encode.

Proof. (Ï) Identical to the proof of Lemma 6.1.3. �

This lemma allows us to fix decode, a decoding function of encode. With these functions
in hand, we can define a selection function crucial to our Lindenbaum extension.

Definition 9.10.2. We define the selection function sel which takes as inputs a pair of
sets of formulas and a natural number, and outputs a pair of sets of formulas.

sel([Γ | ∆], n) =



[Γ | ∆] if decode(n) = None

[Γ,∀ϕ | ∆] if decode(n) = Some ∀ϕ and 6`w [Γ, ∀ϕ | ∆]

[Γ | ∆,∀ϕ,ϕ[k .: id]] if decode(n) = Some ∀ϕ and `w [Γ,∀ϕ | ∆]
and k 6∈ FV (Γ ∪∆ ∪ {∀ϕ})

[Γ,∃ϕ,ϕ[k .: id] | ∆] if decode(n) = Some ∃ϕ and 6`w [Γ,∃ϕ | ∆]
and k 6∈ FV (Γ ∪∆ ∪ {∃ϕ})

[Γ | ∆,∃ϕ] if decode(n) = Some ∃ϕ and `w [Γ, ∃ϕ | ∆]

[Γ, ϕ | ∆] if decode(n) = Some ϕ and 6`w [Γ, ϕ | ∆]

[Γ | ∆, ϕ] if decode(n) = Some ϕ and `w [Γ, ϕ | ∆]

While the above definition may look complicated, it is in essence rather simple. If n
is the encoding of no formula, then sel outputs the pair it was given (case 1). If n is the
encoding of some formula ψ, then we need to look at the structure of ψ (cases 2-7).

If ψ := ∀ϕ, then we need to verify whether adding ∀ϕ on the left of the pair makes the
pair unprovable (cases 2-3). If so, simply add ∀ϕ to the left of the pair (case 2). If not,
add it to the right and make sure that ∀ϕ is witnessed through an instantiation ϕ[k .: id]
for k a “fresh” variable in the context (case 3).

If ψ := ∃ϕ, then we need to verify whether adding ∃ϕ on the left of the pair makes the
pair unprovable (cases 4-5). If so, add ∃ϕ to the left and make sure that ∃ϕ is witnessed
through an instantiation ϕ[k .: id] for k a “fresh” variable in the context (case 4). If not,
simply add ∃ϕ to the left of the pair (case 5).

Finally, if ψ is any other formula, check for the unprovability of the pair after the
addition of ψ on the left, and accordingly add ψ on the left or right (cases 6-7).

The function sel, which is inspired from Gabbay et al. [51, p.142], serves three purposes.
First, if the addition of formula ϕ on the left of the pair [Γ | ∆] preserves the unprovability
of the pair, then extend the left of the pair with ϕ. If not, extend the right of the pair
with ϕ. Second, if ϕ is of the form ∀ψ and its addition on the left does not preserve the
unprovability of the pair, then extend the right-hand side of the pair not only with ∀ψ but
also with ψ[k .: id] for some k ∈ N which is unused in the context. This way, we make sure
that if a universally quantified formula on the right, then it is instantiated safely, using
a natural number that has not been used so far. Third, if ϕ is of the form ∃ψ and its
addition on the left preserves the unprovability of the pair, then extend the left-hand side
of the pair not only with ∃ψ but also with ψ[k .: id] for some k ∈ N which is unused in the
context. This way, we instantiate existential formulas on the left-hand side of the pair in
a safe way.

Then, we can define the function outputting the Lindenbaum extension of a pair.

https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Lindenbaum_lem.v#L266
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Definition 9.10.3. We define the function Lindf, which takes as inputs a pair of sets of
formulas and a natural number, and outputs a pair of sets of formulas, inductively on
natural numbers.

- Lindf([Γ | ∆], 0) = [Γ | ∆]

- Lindf([Γ | ∆], (S m)) = sel( Lindf([Γ | ∆],m) , (S m) )

We define the Lindenbaum extension of a pair [Γ | ∆] as follows.

Lind([Γ | ∆]) = (
∞⋃
n:=0

proj1(Lindf([Γ | ∆], n)) ,
∞⋃
n:=0

proj2(Lindf([Γ | ∆], n)) )

Here again, behind heavy notations lie simple ideas. Before detailing the above, let
us recall that the projection functions proj1 and proj2 are defined in Chapter 3. Now,
the function Lindf takes a pair [Γ | ∆] and a natural number n, and proceeds to extend
step-by-step from 0 to n the pair [Γ | ∆] using at each step the function sel. With this
function in hand, it is rather straightforward to obtain the Lindenbaum extension of a
pair [Γ | ∆] by making the union of the left components of Lindf([Γ | ∆], n) for all n ∈ N,
as well as the union of all the right components of Lindf([Γ | ∆], n) for all n ∈ N.

In the propositional case, we took a pair [Γ | ∆], extended Γ into a prime theory Γ′,
and then defined the extension ∆′ of ∆ as the set of formulas not deduced Γ′. So, this
construction first focused on a step-by-step extension of the left-hand side of the pair, and
then brutally extended the right-hand side of the pair in one go. Here instead, we build
both sides of the pair step-by-step. The main reason for that is our need to instantiate
universally quantified formulas on the right. If we did a brutal last step extending at once
the right-hand side of the pair, the instantiation of universal formulas would be hard to
track down. This hardness notably comes from the fact that while in classical logic we
would use the drinker paradox, i.e. the formula ∃x(ϕ → ∀xϕ), to ensure us of a witness,
this formula is not a theorem of bi-intuitionistic logic.

In the remaining of this subsection, we proceed to show that the Lindenbaum extension
of a closed pair [Γ | ∆], i.e. such that FV (Γ ∪∆) = ∅, satisfies all of the properties defined
below.

Definition 9.10.4. Let Γ ∪∆ ⊆ FormLBI
We say that [Γ | ∆] is:

1. rich if for every ϕ ∈ FormLBI
, if ∃ϕ ∈ Γ then ϕ[t .: id] ∈ Γ for some t ∈ TermS ;

2. co-rich if for every ϕ ∈ FormLBI
, if ∀ϕ ∈ ∆ then ϕ[t .: id] ∈ ∆ for some t ∈ TermS ;

3. complete as in Definition 8.6.1;

4. ∃∀-complete if it is complete, rich and co-rich.

Lemma 9.10.2 (Lindenbaum Lemma). If 6`w [Γ | ∆] and FV (Γ ∪∆) = ∅, then there
exist Γ′ ⊇ Γ and ∆′ ⊇ ∆ such that:

1. 6`w [Γ′ | ∆′];

2. 6`w [Γ′ | ⊥];

3. [Γ′ | ∆′] is complete;

4. if `w [Γ′ | ϕ] then ϕ ∈ Γ′;

5. if `w [Γ′ | ϕ ∨ ψ] then ϕ ∈ Γ′ or ψ ∈ Γ′;

6. [Γ′ | ∆′] is rich;

7. [Γ′ | ∆′] is co-rich;
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8. [Γ′ | ∆′] is ∃∀-complete.

Proof. We claim that Lind([Γ | ∆]) is such a pair. For convenience, let Γ′ and ∆′ be such
that Lind([Γ | ∆]) = [Γ′ | ∆′]. We proceed to prove each of the items.

1. We need to show 6`w [Γ′ | ∆′]. To do so, we first prove that at each step of the
construction Lindf([Γ | ∆], n) we have an unprovable pair (Ï).

So, we show that 6`w Lindf([Γ | ∆], n) by induction on n. If n := 0, then we have
that 6`w Lindf([Γ | ∆], 0) by assumption as Lindf([Γ | ∆], 0) = [Γ | ∆]. If n := S m,
then we need to show that 6`w Lindf([Γ | ∆], S m). We make a first case distinction
on decode(S m).

(1) If decode(S m) = None, then we have the following chain of equalities.

Lindf([Γ | ∆], (S m)) = sel( Lindf([Γ | ∆],m) , (S m) ) = Lindf([Γ | ∆],m)

However, we get by induction hypothesis that 6`w Lindf([Γ | ∆],m) so we are done.

(2) If decode(S m) = Some(ϕ), then we need to make a case distinction on the
structure of ϕ.

(2-1) If ϕ := ∀ψ, then note that Lindf([Γ | ∆], (S m)) = sel( Lindf([Γ | ∆],m) , (S m) ).
There, depending on whether adding ∀ψ on the left of Lindf([Γ | ∆],m), we have two
cases.

(2-1-1) If 6`w [ proj1(Lindf([Γ | ∆],m)) , ∀ψ | proj2(Lindf([Γ | ∆],m)) ], then we have
the following equality.

sel( Lindf([Γ | ∆],m) , (S m) ) = [ proj1(Lindf([Γ | ∆],m)) , ∀ψ | proj2(Lindf([Γ | ∆],m)) ]

Then, our assumption 6`w [ proj1(Lindf([Γ | ∆],m)) , ∀ψ | proj2(Lindf([Γ | ∆],m)) ]
gives us our goal.

(2-1-2) If `w [ proj1(Lindf([Γ | ∆],m)) , ∀ψ | proj2(Lindf([Γ | ∆],m)) ], then we have
that sel( Lindf([Γ | ∆],m) , (S m) ) is equal to the following, for some k ∈ N such
that k is unused in both side of the pair Lindf([Γ | ∆],m) and in ∀ψ.

[ proj1(Lindf([Γ | ∆],m)) | proj2(Lindf([Γ | ∆],m)) , ψ[k .: id] , ∀ψ ]

Note that such a k exists, as we started from a closed pair [Γ | ∆] and have so
far used up to m variables in instantiating quantifiers, which leaves us with an
infinity of unused variables. In fact, in our formalisation we pick the smallest nat-
ural number such that it is unused in the context. We still need to prove that
6`w [ proj1(Lindf([Γ | ∆],m)) | proj2(Lindf([Γ | ∆],m)) , ψ[k .: id] , ∀ψ ]. For a contra-
diction assume the following.

`w [ proj1(Lindf([Γ | ∆],m)) | proj2(Lindf([Γ | ∆],m)) , ψ[k .: id] , ∀ψ ]

Given that k is a fresh variable in this context, the formula ψ[k .: id] is equivalent
here to ∀ψ (see our formalised result Gen_unused) . So, our assuming the above
ultimately amounts to assuming the following.

`w [ proj1(Lindf([Γ | ∆],m)) | proj2(Lindf([Γ | ∆],m)) , ∀ψ ]

To obtain `w Lindf([Γ | ∆],m), it suffices to cut the formula ∀ψ (see our formalised
result Cut) using the two following statements.

`w [ proj1(Lindf([Γ | ∆],m)) | proj2(Lindf([Γ | ∆],m)) , ∀ψ ]

`w [ proj1(Lindf([Γ | ∆],m)) , ∀ψ | proj2(Lindf([Γ | ∆],m)) ]

But this is a contradiction by our induction hypothesis.

https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Lindenbaum_lem.v#L796
https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Lindenbaum_lem.v#L234
https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Lindenbaum_lem.v#L743
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(2-2) If ϕ := ∃ψ, then note that Lindf([Γ | ∆], (S m)) = sel( Lindf([Γ | ∆],m) , (S m) ).
There, depending on whether adding ∃ψ on the left of Lindf([Γ | ∆],m), we have two
cases.

(2-2-1) Assume that we have the following.

6`w [ proj1(Lindf([Γ | ∆],m)) , ∃ψ | proj2(Lindf([Γ | ∆],m)) ]

Then, we obtain that sel( Lindf([Γ | ∆],m) , (S m) ) is equal to the following.

[ proj1(Lindf([Γ | ∆],m)) , ψ[k .: id] , ∃ψ | proj2(Lindf([Γ | ∆],m)) ]

For a contradiction, we assume the following statement.

6`w [ proj1(Lindf([Γ | ∆],m)) , ψ[k .: id] , ∃ψ | proj2(Lindf([Γ | ∆],m)) ]

Then, by definition we have that there is a finite ∆′′ ⊆ proj2(Lindf([Γ | ∆],m))
such that proj1(Lindf([Γ | ∆],m)) , ψ[k .: id] , ∃ψ `w

∨
∆′′. Thus, we can apply The-

orem 9.5.1 to obtain proj1(Lindf([Γ | ∆],m)) , ∃ψ `w ψ[k .: id]→
∨

∆′′. Now, given
that k is unused in this context, it allows us to use an alternative to the rule (EC)
(see our formalised result EC_unused) which gives us proj1(Lindf([Γ | ∆],m)) , ∃ψ `w
∃ψ →

∨
∆′′. So, we can reuse Theorem 9.5.1 to obtain proj1(Lindf([Γ | ∆],m)) , ∃ψ , ∃ψ `w∨

∆′′. However, this contradicts our assumption displayed below.

6`w [ proj1(Lindf([Γ | ∆],m)) , ∃ψ | proj2(Lindf([Γ | ∆],m)) ]

Indeed, the left-hand sides of these pairs are identical given that repetitions do
distinguish sets.

(2-2-2) If `w [ proj1(Lindf([Γ | ∆],m)) , ∃ψ | proj2(Lindf([Γ | ∆],m)) ], then we have
the following equality.

sel( Lindf([Γ | ∆],m) , (S m) ) = [ proj1(Lindf([Γ | ∆],m)) | proj2(Lindf([Γ | ∆],m)) , ∃ψ ]

For a contradiction assume the following.

`w [ proj1(Lindf([Γ | ∆],m)) | proj2(Lindf([Γ | ∆],m)) , ∃ψ ]

Given that `w [ proj1(Lindf([Γ | ∆],m)) , ∃ψ | proj2(Lindf([Γ | ∆],m)) ], we can cut
the formula ∃ψ to obtain `w Lindf([Γ | ∆],m), which contradicts our induction
hypothesis. So, we have 6`w [ proj1(Lindf([Γ | ∆],m)) | proj2(Lindf([Γ | ∆],m)) , ∃ψ ].

(2-3) If ϕ is not universally or existentially quantified, then note that we have the
following equality.

Lindf([Γ | ∆], (S m)) = sel( Lindf([Γ | ∆],m) , (S m) )

There, depending on whether adding ϕ on the left of Lindf([Γ | ∆],m), we have two
cases.

(2-3-1) If 6`w [ proj1(Lindf([Γ | ∆],m)) , ϕ | proj2(Lindf([Γ | ∆],m)) ], then we obtain
the following equality.

sel( Lindf([Γ | ∆],m) , (S m) ) = [ proj1(Lindf([Γ | ∆],m)) , ϕ | proj2(Lindf([Γ | ∆],m)) ]

By our assumption we have that 6`w Lindf([Γ | ∆], (S m)).

(2-3-2) If `w [ proj1(Lindf([Γ | ∆],m)) , ϕ | proj2(Lindf([Γ | ∆],m)) ], then the fol-
lowing equality holds.

sel( Lindf([Γ | ∆],m) , (S m) ) = [ proj1(Lindf([Γ | ∆],m)) | proj2(Lindf([Γ | ∆],m)) , ϕ ]

https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Lindenbaum_lem.v#L203
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For a contradiction assume the following.

`w [ proj1(Lindf([Γ | ∆],m)) | proj2(Lindf([Γ | ∆],m)) , ϕ ]

We can then obtain `w Lindf([Γ | ∆],m) by cutting the formula ϕ using the above
and `w [ proj1(Lindf([Γ | ∆],m)) , ϕ | proj2(Lindf([Γ | ∆],m)) ]. However, this con-
tradicts our induction hypothesis.

In all possible cases we concluded that 6`w Lindf([Γ | ∆], (S m)), so we are done. With
this result in hand we can show that 6`w [Γ′ | ∆′] (Ï). Assume for a contradiction
that `w [Γ′ | ∆′]. By the definition of Γ′ and ∆′, and the fact that we can reduce
the statement `w [Γ′ | ∆′] to `w [Γ′′ | ∆′′] where Γ′′ and ∆′′ are finite, notably using
Lemma 9.3.2. The finiteness of Γ′′ and ∆′′ entails that there must be a n ∈ N such
that Lindf([Γ | ∆], n) extends [Γ′′ | ∆′′]. Consequently, we obtain `w Lindf([Γ | ∆], n)
which contradicts our result above. So, we obtain 6`w [Γ′ | ∆′].

2. (Ï) We need to show 6`w [Γ′ | ⊥]. Assume for a contradiction that `w [Γ′ | ⊥]. As a
consequence, we easily get `w [Γ′ | ∆′] which contradicts item 1 above.

3. (Ï) We need to show that [Γ′ | ∆′] is complete. Let ϕ ∈ FormLBI
. We know there

is a n ∈ N such that decode(n) = ϕ. By case analysis on the structure of ϕ, we can
show that the latter either appears on the left or the right of Lindf([Γ | ∆], n). As
a consequence, it must appear on the right or left of Lind([Γ | ∆]) = [Γ′ | ∆′] by
definition. So, we have that ϕ ∈ Γ′ or ϕ ∈ ∆′.

4. (Ï) Assume `w [Γ′ | ϕ]. We need to show ϕ ∈ Γ′. Given that [Γ′ | ∆′] is complete
by item 2, we have that ϕ ∈ Γ′ or ϕ ∈ ∆′. In the former case we are directly done,
so let us consider the latter. If ϕ ∈ ∆′, we get that `w [Γ′ | ∆′] as `w [Γ′ | ϕ]. So,
the pair [Γ′ | ∆′] is provable, which is in contradiction with item 1.

5. (Ï) Assume `w [Γ′ | ϕ ∨ ψ]. We need to show ϕ ∈ Γ′ or ψ ∈ Γ′. Assume for
reductio that ϕ 6∈ Γ′ or ψ 6∈ Γ′. As [Γ′ | ∆′] is complete by item 2, we get that
ϕ ∈ ∆′ and ψ ∈ ∆′. However, we directly obtain `w [Γ′ | ∆′] as {ϕ,ψ} ⊆ ∆′ and
`w [Γ′ |

∨
{ϕ,ψ}] i.e. `w [Γ′ | ϕ ∨ ψ]. This is in contradiction with item 1. So, we

have that ϕ ∈ Γ′ or ψ ∈ Γ′.

6. (Ï) We need to show that [Γ′ | ∆′] is rich. Let ∃ϕ such that ∃ϕ ∈ Γ′. Let n =
decode(∃ϕ) and consider Lindf([Γ | ∆], n). Note that n = S m for some m, as 0 is
the encoding of no formula by definition. Thus, we have the following equality.

Lindf([Γ | ∆], (S m)) = sel(Lindf([Γ | ∆],m), (S m))

Now, we need to check whether adding ∃ϕ to the left of the pair Lindf([Γ | ∆],m)
makes the pair provable. If it does, i.e. we have that `w [proj1(Lindf([Γ | ∆],m)),∃ϕ |
proj2(Lindf([Γ | ∆],m))], we get the following.

sel(Lindf([Γ | ∆],m), (S m)) = [proj1(Lindf([Γ | ∆],m)) | proj2(Lindf([Γ | ∆],m)), ∃ϕ]

So, as a consequence we would have that ∃ϕ is in ∆′ by definition of Lind([Γ | ∆]).
But that implies that `w [Γ′ | ∆′] as ∃ϕ ∈ Γ by assumption, which is a contradiction
as shown in item 1. Now, assume the following.

6`w [proj1(Lindf([Γ | ∆],m)), ∃ϕ | proj2(Lindf([Γ | ∆],m))]

Then we obtain the following equality for some k satisfying the condition below.

sel(Lindf([Γ | ∆],m), (S m)) = [proj1(Lindf([Γ | ∆],m)),∃ϕ,ϕ[k .: id] | proj2(Lindf([Γ | ∆],m))]

k 6∈ FV (proj1(Lindf([Γ | ∆],m)) ∪ proj2(Lindf([Γ | ∆],m)) ∪ {∃ϕ})

As a consequence, we have that ϕ[k .: id] ∈ Γ′ by definition of Lind([Γ | ∆]).

https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Lindenbaum_lem.v#L1230
https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Lindenbaum_lem.v#L1279
https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Lindenbaum_lem.v#L1301
https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Lindenbaum_lem.v#L1344
https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Lindenbaum_lem.v#L1427
https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Lindenbaum_lem.v#L1505
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7. (Ï) We need to show that [Γ′ | ∆′] is co-rich. Let ∀ϕ such that ∀ϕ ∈ ∆′. Let
n = decode(∀ϕ) and consider Lindf([Γ | ∆], n). Note that n = S m for some m,
as 0 is the encoding of no formula by definition. Thus, we have that the following
equality holds.

Lindf([Γ | ∆], (S m)) = sel(Lindf([Γ | ∆],m), (S m))

Now, we need to check whether adding ∀ϕ to the left of the pair Lindf([Γ | ∆],m)
makes the pair provable. If it does, i.e. we have that `w [proj1(Lindf([Γ | ∆],m)),∀ϕ |
proj2(Lindf([Γ | ∆],m))], we get the following equality for some k satisfying the con-
dition below.

sel(Lindf([Γ | ∆],m), (S m)) = [proj1(Lindf([Γ | ∆],m)) | proj2(Lindf([Γ | ∆],m)),∀ϕ,ϕ[k .: id]]

k 6∈ FV (proj1(Lindf([Γ | ∆],m)) ∪ proj2(Lindf([Γ | ∆],m)) ∪ {∃ϕ})
As a consequence, we have that ϕ[k . : id] ∈ ∆′ by definition of Lind([Γ | ∆]).

If we have that 6`w [proj1(Lindf([Γ | ∆],m)), ∀ϕ | proj2(Lindf([Γ | ∆],m))], then the
following holds.

sel(Lindf([Γ | ∆],m), (S m)) = [proj1(Lindf([Γ | ∆],m)),∀ϕ | proj2(Lindf([Γ | ∆],m))]

So, as a consequence we would have that ∀ϕ is in Γ′ by definition of Lind([Γ | ∆]).
But that implies that `w [Γ′ | ∆′] as ∀ϕ ∈ ∆ by assumption, which is a contradiction
as shown in item 1.

8. (Ï) We need to show that [Γ′ | ∆′] is ∃∀-complete. We get the latter as the above
items show that [Γ′ | ∆′] is complete, rich and co-rich.

�

So, with the above lemma we have that the Lindenbaum extension of a closed and
unprovable pair [Γ | ∆] is ∃∀-complete.

Note that our requirement that the initial pair is closed is a way to make sure that we
have enough “safe” variables to use in the process of witnessing universal formulas on the
right and existential formulas on the left, while staying in the same signature.

9.10.2 Towards a truth lemma through existence lemmas

At this point, we know that unprovable closed pairs can be extended in an unprovable
∃∀-complete pairs. So, we can follow the proof technique outlined at the beginning of this
section and define a canonical model with unprovable ∃∀-complete pairs as points.

Definition 9.10.5. The canonical model Mc = (W c,≤c, Dc, Icfun, I
c
pred) is defined in the

following way:

1. W c = {[Γ | ∆] : [Γ | ∆] is ∃∀-complete and 6`w [Γ | ∆]};

2. [Γ1 | ∆1] ≤c [Γ2 | ∆2] iff Γ1 ⊆ Γ2;

3. Dc = TermS ;

4. Icfun(f) = {(t1, . . . , tn) 7→ f(t1, . . . , tn) | t1, . . . , tn ∈ Dc}, for every n-ary function
symbol f ;

5. Icpred([Γ | ∆], P ) = {(t1, . . . , tn) ∈ Dc | P (t1, . . . , tn) ∈ Γ}, for every [Γ | ∆] and n-ary
relation symbol P .

The canonical assignment αc is defined in the following way: αc = id.

Before turning to the topic of the truth lemma and its proof, we obtain a handy
result about the canonical assignment. In essence, it shows that terms are interpreted as
themselves in the domain Dc.

https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Lindenbaum_lem.v#L1562
https://github.com/ianshil/PhD_thesis/blob/3b01f21143fd3ec9a8a0d1441f7a7abe54668560/FO_Bi_Int/FO_BiInt_Lindenbaum_lem.v#L1579
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Lemma 9.10.3. For every t ∈ TermS , we have αc(t) = t.

Proof. (Ï) We reason by induction on the structure of t:

- t := x: then αc(x) = αc(x) = x by definition of αc.

- t := f(t1, . . . , tn): we have that αc(f(t1, . . . , tn)) = Icfun(f)(αc(t1), . . . , αc(tn)).

By induction hypothesis we have that αc(ti) = ti for 1 ≤ i ≤ n. Consequently
αc(f(t1, . . . , tn)) = Icfun(f)(t1, . . . , tn) = f(t1, . . . , tn) by definition of Icfun.

�

In addition to this lemma, we can prove that in the first-order case the pairs consti-
tuting the canonical model are also prime and closed under deducibility.

Lemma 9.10.4. Let Γ ∪ ∆ ⊆ FormLBI
. If [Γ | ∆] is ∃∀-complete and 6`w [Γ | ∆], then

[Γ | ∆] is prime and closed under deducibility.

Proof. Identical to the proof of Lemma 8.8.3 (Ï) (Ï). �

As explained at the beginning of Section 9.10, to prove the truth lemma we require
existence lemmas for connectives that are not locally defined in the semantics. In the
bi-intuitionistic case, there are two such connectives: → and . So, we need an existence
lemma for each to let the truth lemma go through. Unfortunately, while so far, all the
results and constructions of this section are formalised, we could not find a proof for the
existence lemmas below.

Hypothesis 9.10.2 (Implication Existence Lemma). For all [Γ | ∆] ∈ W c and ϕ,ψ ∈
FormLBI

, if ϕ → ψ ∈ ∆ then there is a [Γ′ | ∆′] ∈ W c such that [Γ | ∆] ≤c [Γ′ | ∆′] and
ϕ ∈ Γ′ and ψ ∈ ∆.

Hypothesis 9.10.3 (Exclusion Existence Lemma). For all [Γ | ∆] ∈ W c and ϕ,ψ ∈
FormLBI

, if ϕ ψ ∈ Γ then there is a [Γ′ | ∆′] ∈ W c such that [Γ′ | ∆′] ≤c [Γ | ∆] and
ϕ ∈ Γ′ and ψ ∈ ∆.

Still, in Coq we can declare these statements as Hypothesis (see Ï and Ï). So, in this
context we can proceed to hypothetical reasoning using these lemmas. In fact, through
their use we can prove the truth lemma.

Lemma 9.10.5 (Truth Lemma). For every [Γ | ∆] ∈W c:

ϕ ∈ Γ iff Mc, [Γ | ∆], αc  ϕ.

Proof. (Ï) By induction on ϕ:

- ϕ := P (t1, . . . , tn): we have P (t1, . . . , tn) ∈ Γ iff (t1, . . . , tn) ∈ Icpred([Γ | ∆], P ) by
definition of the canonical model. The last element is equivalent toMc, [Γ | ∆], αc 
P (t1, . . . , tn) by definition and Lemma 9.10.3.

- ψ := >: we have that > ∈ Γ as otherwise > ∈ ∆ by completeness, which leads to the
contradiction `w [Γ′ | ∆′] as Γ `w >. In addition to that, we haveMc, [Γ | ∆], αc  >
by definition. So, we have > ∈ Γ iff Mc, [Γ | ∆], αc  > trivially.

- ψ := ⊥: we have that ⊥ 6∈ Γ as otherwise ⊥ ∈ Γ by completeness, which leads to
the contradiction `w [Γ′ | ∆′]. In addition to that, we have Mc, [Γ | ∆], αc 6 ⊥ by
definition. So, we have ⊥ ∈ Γ iff Mc, [Γ | ∆], αc  ⊥ trivially.

- ϕ := ϕ1 ∧ ϕ2: we have that ϕ1 ∧ ϕ2 ∈ Γ iff ϕ1 ∈ Γ and ϕ2 ∈ Γ, as [Γ | ∆] is ∃∀-
complete hence Γ is deductively closed by Lemma 9.10.4. By induction hypothesis
this holds if and only if Mc, [Γ | ∆], αc  ϕ1 and Mc, [Γ | ∆], αc  ϕ2. Then
ϕ1 ∧ ϕ2 ∈ Γ iff Mc, [Γ | ∆], αc  ϕ1 ∧ ϕ2.

https://github.com/ianshil/PhD_thesis/blob/9058e65ad4042b94d01143a94f231f186c2b4ddc/FO_Bi_Int/FO_BiInt_wcompleteness.v#L166
https://github.com/ianshil/PhD_thesis/blob/9058e65ad4042b94d01143a94f231f186c2b4ddc/FO_Bi_Int/FO_BiInt_wcompleteness.v#L42
https://github.com/ianshil/PhD_thesis/blob/9058e65ad4042b94d01143a94f231f186c2b4ddc/FO_Bi_Int/FO_BiInt_wcompleteness.v#L60
https://github.com/ianshil/PhD_thesis/blob/9058e65ad4042b94d01143a94f231f186c2b4ddc/FO_Bi_Int/FO_BiInt_wcompleteness.v#L181
https://github.com/ianshil/PhD_thesis/blob/9058e65ad4042b94d01143a94f231f186c2b4ddc/FO_Bi_Int/FO_BiInt_wcompleteness.v#L185
https://github.com/ianshil/PhD_thesis/blob/9058e65ad4042b94d01143a94f231f186c2b4ddc/FO_Bi_Int/FO_BiInt_wcompleteness.v#L189
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- ϕ := ϕ1 ∨ ϕ2: we have that ϕ1 ∨ ϕ2 ∈ Γ iff [ϕ1 ∈ Γ or ϕ2 ∈ Γ] by Lemma 9.10.4.
By induction hypothesis this holds if and only if Mc, [Γ | ∆], αc  ϕ1 or Mc, [Γ |
∆], αc  ϕ2. Then ϕ1 ∨ ϕ2 ∈ Γ iff Mc, [Γ | ∆], αc  ϕ1 ∨ ϕ2.

- ϕ := ϕ1 → ϕ2: (⇒) Assume ϕ1 → ϕ2 ∈ Γ. We need to show that Mc, [Γ |
∆], αc  ϕ1 → ϕ2. Let [Γ′ | ∆′] ∈ W c such that [Γ | ∆] ≤c [Γ′ | ∆′], and assume
Mc, [Γ′ | ∆′], αc  ϕ1. We need to show thatMc, [Γ′ | ∆′], αc  ϕ2. By the induction
hypothesis, it is sufficient to show that ϕ2 ∈ Γ′. From Mc, [Γ′ | ∆′], αc  ϕ1 we
obtain ϕ1 ∈ Γ′ by induction hypothesis. Also, as [Γ | ∆] ≤c, αc[Γ′ | ∆′], we have
ϕ1 → ϕ2 ∈ Γ ⊆ Γ′. It is straightforward to prove that Γ′ `w ϕ2 using (MP). As
[Γ′ | ∆′] is complete and unprovable we get ϕ2 ∈ Γ′. The induction hypothesis gives
us Mc, [Γ′ | ∆′], αc  ϕ2.

(⇐) Assume Mc, [Γ | ∆], αc  ϕ1 → ϕ2. Assume for reductio that ϕ1 → ϕ2 6∈ Γ.
Then by Hypothesis 9.10.2 we get that there is [Γ′ | ∆′] ∈ W c such that [Γ | ∆] ≤c
[Γ′ | ∆′] and ϕ1 ∈ Γ′ and ϕ2 ∈ ∆2. By induction hypothesis we get Mc, [Γ′ |
∆′], αc  ϕ1 and Mc, [Γ′ | ∆′], αc 6 ϕ2. But as [Γ | ∆] ≤c [Γ′ | ∆′] and Mc, [Γ |
∆], αc  ϕ1 → ϕ2 we reached a contradiction. So ϕ1 → ϕ2 ∈ Γ.

- ϕ := ϕ1 ϕ2: (⇒) Assume ϕ1 ϕ2 ∈ Γ. By Hypothesis 9.10.3 we get that there is
[Γ′ | ∆′] ∈W c such that [Γ′ | ∆′] ≤c [Γ | ∆] and ϕ1 ∈ Γ′ and ϕ2 ∈ ∆2. Consequently
we get Mc, [Γ′ | ∆′], αc  ϕ1 and Mc, [Γ′ | ∆′], αc 6 ϕ2 by induction hypothesis.
But we have that [Γ′ | ∆′] ≤c [Γ | ∆], so Mc, [Γ | ∆], αc  ϕ1 ϕ2.

(⇐) Assume Mc, [Γ | ∆], αc  ϕ1 ϕ2. Then, there is [Γ′ | ∆′] ∈ W c such
that [Γ′ | ∆′] ≤ [Γ | ∆] and Mc, [Γ′ | ∆′], αc  ϕ1 and Mc, [Γ′ | ∆′], αc 6 ϕ2.
By induction hypothesis we obtain that ϕ1 ∈ Γ′ and ϕ2 6∈ Γ′. Note that `w [Γ′ |
ϕ1 → (ϕ2 ∨ (ϕ1 ϕ2))] as the formula on the right is an instance of A11. Conse-
quently, given that `w [Γ′ | ϕ1] as ϕ1 ∈ Γ′, and `w [Γ′ | ϕ1 → (ϕ2 ∨ (ϕ1 ϕ2))],
we obtain via (MP) that `w [Γ′ | ϕ2 ∨ (ϕ1 ϕ2)]. Then we use the closure under
deducibility and the primeness of Γ′, obtained via Lemma 9.10.4, to get that ϕ2 ∈ Γ′

or ϕ1 ϕ2 ∈ Γ′. As the case where ϕ2 ∈ Γ′ leads to a contradiction, we have that
ϕ1 ϕ2 ∈ Γ′. But Γ′ ⊆ Γ as [Γ′ | ∆′] ≤ [Γ | ∆], so ϕ1 ϕ2 ∈ Γ.

- ϕ := ∀ϕ: (⇒) Assume ∀ϕ ∈ Γ. We need to show that Mc, [Γ | ∆], αc  ∀ϕ. Let
d ∈ Dc. We need to show Mc, [Γ | ∆], (d .: αc)  ϕ. Note that d ∈ TermS = Dc.
Using ∀ϕ ∈ Γ and the fact that [Γ | ∆] is ∃∀-complete we get that ϕ[d .: id] ∈ Γ.
Thus, we apply the induction hypothesis to obtain Mc, [Γ | ∆], αc  ϕ[d .: id]. In
turn, we apply Lemma 9.7.5 to get Mc, [Γ | ∆], (αc ◦ (d .: id))  ϕ. We use Lemma
9.7.3 to obtain Mc, [Γ | ∆], (d .: αc)  ϕ. So, we need to prove that for all n ∈ N
we have (αc ◦ (d .: id))(n) = (d .: αc)(n). We prove this by case distinction on n. If
n := 0 we have the following chain of equalities.

(αc ◦ (d .: id))(0) = αc((d .: id)(0)) = αc(d) = d = (d .: αc)(0)

If n := S m, then we have the following chain of equalities.

(αc ◦ (d .: id))(S m) = αc((d .: id)(S m)) = αc(id(m)) = αc(m) = (d .: αc)(S m)

(⇐) Assume Mc, [Γ | ∆], αc  ∀ϕ. Assume for reductio that ∀ϕ 6∈ Γ. Then we
get that ∀ϕ ∈ ∆. As the pair [Γ | ∆] is co-rich we get that there is a n ∈ N such
that ϕ[n .: id] ∈ ∆. By unprovability of the pair [Γ | ∆] we thus get ϕ[n .: id] 6∈
Γ. By induction hypothesis we obtain Mc, [Γ | ∆], αc 6 ϕ[n . : id]. But this is a
contradiction as it implies that Mc, [Γ | ∆], (n .: αc) 6 ϕ as explained above, while
we have Mc, [Γ | ∆], (n .: αc)  ϕ from Mc, [Γ | ∆], αc  ∀ϕ.
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- ϕ := ∃ϕ: (⇒) Assume ∃ϕ ∈ Γ. Thus, as [Γ | ∆] is rich there is n ∈ N such that
ϕ[n .: id] ∈ Γ. By induction hypothesis we get Mc, [Γ | ∆], αc  ϕ[n .: id]. This
implies Mc, [Γ | ∆], (n .: αc)  ϕ as argued above. Hence Mc, [Γ | ∆], αc  ∃ϕ.

(⇐) Assume Mc, [Γ | ∆], αc  ∃ϕ. Thus we get that there is a d ∈ Dc such that
Mc, [Γ | ∆], (d .: αc)  ϕ. Note that d ∈ TermS = Dc. We reason as above to get
that Mc, [Γ | ∆], αc  ϕ[n .: id]. By induction hypothesis we obtain ϕ[n .: id] ∈ Γ.
Consequently, we get ∃ϕ ∈ Γ as the latter is closed under deduction.

�

While we are still reasoning in an hypothetical way, under the assumption that Hy-
pothesis 9.10.2 and Hypothesis 9.10.3 hold, we obtain a completeness result for FOwBIL
on closed pairs. This result makes crucial use of the Lemma 9.10.5.

Theorem 9.10.1. Let [Γ | ∆] be such that 6`w [Γ | ∆] and FV (Γ ∪∆) = ∅. The following
holds:

Γ |=l ∆ implies `w [Γ | ∆]

Proof. (Ï) Assume 6`w [Γ | ∆]. Lemma 9.10.2 gives us a ∃∀-complete pair [Γ′ | ∆′] such
that 6`w [Γ′ | ∆′], where Γ ⊆ Γ′ and ∆ ⊆ ∆′. Moreover there is no δ ∈ ∆ such that
δ ∈ Γ′, so by Lemma 9.10.5 we obtain that in the canonical model of Definition 9.10.5
the following holds: Mc, [Γ′ | ∆′], αc 6 δ for every δ ∈ ∆, while Mc, [Γ′ | ∆′], αc  Γ.
Consequently, we have that Γ 6|=l ∆. �

To summarize, by admitting Hypothesis 9.10.2 and Hypothesis 9.10.3 we can prove
the truth lemma, which in turn gives us completeness on closed pairs for FOwBIL. In this
hypothetical setting, we can use the well-established Theorem 9.9.1, which also holds for
closed pairs, to get the full picture: weak is local, strong is global. So, by assuming that
Hypothesis 9.10.2 and Hypothesis 9.10.3 hold, we retrieve a configuration identical to the
propositional one.

9.10.3 Frictions

There is a burning question we have not answered: why couldn’t we prove these hypothe-
ses? In this subsection, we provide some insights into the issues we encountered.

First, we recall how the propositional version of Hypothesis 9.10.2 is proved. Note that
this result is embedded in the truth lemma in Section 8.8, but is not explicitly proved as
a separate lemma.

Lemma 9.10.6. For all [Γ | ∆] ∈W c and ϕ,ψ ∈ FormLBI
, if ϕ→ ψ ∈ ∆ then there is a

[Γ′ | ∆′] ∈W c such that [Γ | ∆] ≤c [Γ′ | ∆′] and ϕ ∈ Γ′ and ψ ∈ ∆.

Proof. Assume ϕ→ ψ ∈ ∆. Then, we notably have that Γ 6`w ϕ→ ψ as [Γ | ∆] is unprov-
able. Consequently, we get by Γ, ϕ 6`w ψ Theorem 8.6.1. Then, using the Lindenbaum
Lemma 8.8.2 we obtain a complete and unprovable pair [Γ′ | ∆′] such that Γ ∪ {ϕ} ⊆ Γ′

and {ψ} ⊆ ∆′. We easily obtain that [Γ | ∆] ≤c [Γ′ | ∆′] as Γ ⊆ Γ′. So, we found
[Γ′ | ∆′] ∈W c such that [Γ | ∆] ≤c [Γ′ | ∆′] and ϕ ∈ Γ′ and ψ ∈ ∆. �

The argument is rather straightforward and involves elements for which we have first-
order equivalents. So, what goes wrong when we try to port this proof to the first-
order case? In essence, the Lindenbaum Lemma 9.10.2 is not applicable in this context.
Indeed, the initial pair [Γ | ∆] is an element of the canonical model, i.e. an unprovable
∃∀-complete pair. So, the Lindenbaum lemma is inapplicable on the unprovable pair
[Γ, ϕ | ψ] as it is not closed. Indeed, for all formula ϕ, including the ones with “free”
variables, either ϕ ∈ Γ or ∼ϕ ∈ Γ by Lemma 9.10.4 and the fact that ϕ∨∼ϕ is a theorem.

https://github.com/ianshil/PhD_thesis/blob/9058e65ad4042b94d01143a94f231f186c2b4ddc/FO_Bi_Int/FO_BiInt_wcompleteness.v#L460
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So, in the first-order case, we cannot perform the step using the Lindenbaum lemma as in
the propositional case.

Naturally, one could be tempted to simply release this restriction on the Lindenbaum
lemma: start from an unprovable pair [Γ | ∆] (not necessarily closed), and extend it.
However, in this situation we could encounter a pair that already contains all natural
numbers as “free” variables, making any instantiation of an existential or universal formula
potentially unsafe: it could break unprovability. In a way, we need to have an infinite stock
of natural numbers which are safe to use for instantiations.

In a similar spirit, one could think about extending the signature with a copy of natural
numbers. Then, we could consider any unprovable pair [Γ | ∆] in a signature S0 and
extend it in an unprovable ∃∀-complete pair in the signature S1, which contains one more
copy of natural numbers than S0 does. This trick of shifting to another signature does
indeed give us enough safe unused variables for all instantiations. However, we encounter
a similar issue as in the initial case: the new Lindenbaum Lemma becomes inapplicable
in the given context. In this situation, the canonical model is built on unprovable and
∃∀-complete pairs in the extended signature S1. So, when we consider [Γ | ∆] ∈ W c, we
are facing such a pair. Consequently, when we try to apply the Lindenbaum lemma to
[Γ, ϕ | ψ] we are stuck: this pair is expressed in S1 and not S0. Here again, we are unable
to proceed further.

It seems that to obtain a completeness proof through a canonical model we need to
consider another proof technique. Grigory Olkhovikov informed us in May 2022 via private
communication of a discovery of his: Dieter Klemke may have a correct proof of complete-
ness for first-order bi-intuitionistic logic using a canonical model [81]. There, he defines a
notion of “universal bush”, which seems to be a version of the Lindenbaum Lemma where
families of extensions are created at each step, giving more controlled machinery. Unfor-
tunately, we could not attempt at formalising his proof in the time we had left for this
dissertation, notably because the article is written in German. We intend to investigate
this direction in further work.

9.11 Why Rauszer’s proofs are erroneous

We do not possess a formalised completeness proof for FOwBIL, because of the frictions
exhibited above, but we collected enough results to explain why Rauszer’s proofs are
erroneous. The errors these proofs contain are similar to the ones mentioned in Section
8.11.

The first pertains to an issue already pointed out in the propositional case: behind
bi-intuitionistic logic lie two distinct logics, understood as consequence relations, i.e. a
weak (wBIL) and strong (sBIL) version. This distinction also shows in the first-order
case, separating FOBIL into FOwBIL and FOsBIL as we showed in Section 9.8.1. In
Rauszer’s proofs, both logics are confused as properties proper to each logic are used
indistinguishably, as explained in Section 8.11.

Second, the structure of the first-order Kripke frames used in both proofs to show
completeness leads to a contradiction. These frames are rooted, i.e. they contain a point,
the root, from which all other points are reachable through the accessibility relation. Thus,
the use of these models in the completeness proofs shows completeness with respect to
the class of rooted first-order Kripke frames. However, this class of frames validates the
formula ∼P (0) ∨ ¬∼P (0) (Lemma 9.9.1), which is not a theorem of FOwBIL or FOsBIL
as argued in the impossible scenarios of Section 9.9.

Finally, the first proof exploits the Lemma 8.11.1 from Gabbay [49], showing the
completeness of the fragment of FOBIL containing the logical symbols ∧,→,¬ and ∀ with
respect to the class of first-order Kripke frames with constant domains. Rauszer added
Lemma 8.11.2, which is dual to Gabbay’s lemma, showing that the fragment of FOBIL
containing the dual of each of the symbols above is also complete in some way with respect
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to the same class of frames. These results are then combined to show that FOBIL with all
symbols is complete with respect to this class. However, the application of these lemmas
in this context is incorrect as symbols from both fragments are interleaved in the formulas
under consideration.

9.12 Conclusion

The use of generalized Hilbert calculi here again allowed us to clearly distinguish two logics,
FOsBIL and FOwBIL, emerging from the obviously different rules (wDN) and (sDN). The
logics FOwBIL and FOsBIL are distinguishable not only on an extensional level but also
on the meta-level through the deduction-detachment theorem, its dual and the dual of the
rule (MP). All these distinctions are identical to the propositional ones, distinguishing
wBIL and sBIL. So, the same phenomenon occurs in the first-order bi-intuitionistic logic,
stressing the need to consider logics as consequence relations in this context as well.

As we have shown, the logics FOwBIL and FOsBIL are respectively sound for the local
and global semantic consequence relations on the class of all first-order Kripke frames. This
result is sufficient to show with certainty not only the differences between the two logics,
but also the incompleteness of the latter with respect to the local and global relations on
the class of rooted frames.

We investigated various scenarios for completeness, which led us to the educated guess
that FOwBIL and FOsBIL must be respectively complete with respect to the local and
global semantic consequence relations on the class of all first-order Kripke frames. Not only
we ruled out some plausible scenarios, where rooted frames are considered, for example,
but we showed that if “FOwBIL is local” then “FOsBIL is global”. Thus, we were only left
with finding a proof for the completeness of FOwBIL to complete the picture.

Unfortunately, we exhibited in a final moment the issues we encountered when trying
to adapt a common proof technique for completeness to the case of FOwBIL. In essence,
frictions between the Lindenbaum lemma and existence lemmas, pertaining to the unavail-
ability of unused variables, prevent us from pushing the proof technique through. So, we
could only complete a proof of completeness for FOwBIL by admitting the aforementioned
existence lemmas without proving them.

There are two lines of work we wish to pursue next. First, we intend to build on
the work on first-order bi-intuitionistic logics we formalised this far by formalising and/or
adapting Klemke’s proof [81]. With such a proof in hand, we would finally have solid,
formalised, and reliable foundations for these logics. Second, we would like to investigate
the possibility of obtaining a first-order bi-intuitionistic logic that does not deduce the
constant domain axiom. As explained in Section 9.6, we cannot escape this theorem in
the given setting. However, there are two conceivable ways of avoiding it. A first approach
would consist in using an existence predicate E [132], determining which terms refer to
existing entities, and which allows a better control over the quantifiers: the latter are
defined on existing entities, and not on all entities. A second approach follows a line of
research developed by van Benthem [157] and conceiving of quantifiers as modal operators.
There, we can define substructural quantifiers that are weaker than the one we defined in
this dissertation.
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Chapter 10

Afterwords on Bi-Intuitionistic
Logics

The lesson we learnt is clear: for the last fifty years, we grounded our work on bi-
intuitionistic logic on unreliable foundations. For this long, we have been relying on
Cecylia Rauszer’s seminal work on this logic, which unfortunately contains critical mis-
takes.

Both in the propositional and first-order case, we can clearly identify the source of
Rauszer’s mistakes: behind what is usually conceived of as a unique logic, lies two dif-
ferent logics. This phenomenon, which happens in both propositional and first-order
bi-intuitionistic logic, can be traced back to the use of traditional axiomatic calculi. With
these calculi logics are not consequence relations but sets of theorems, leading to a striking
ambiguity in rules like (DN) and (Nec) in the bi-intuitionistic and modal case. It is in this
ambiguity that the confusion between two distinct rules, hence two distinct logics, nests.

We eradicated this confusion by distinguishing a weak and strong logic in each case:
the propositional wBIL and sBIL, and the first-order FOwBIL and FOsBIL. To do so we
relied on the use of generalized Hilbert calculi, which are aimed at capturing consequence
relations by taking consecutions of the shape Γ ` ϕ as first-class citizens. In this set-
ting the rule (DN) splits into two rules (wDN) and (sDN), defining the weak and strong
logics respectively. This is extremely similar to the modal case, where (Nec) splits into
(wNec) and (sNec), giving birth to the two logics wKL and sKL. The similarities with
modal logic do not stop here, as the weak and strong bi-intuitionistic logics differ from
each other analogously to how wKL and sKL do. First, wBIL and sBIL as well as FOwBIL
and FOsBIL interact extensionally as sets in an identical way to wKL and sKL: while
they share the same set of theorems, the former is a subset of the latter. Second, some
meta-level features like the deduction theorem, and its dual in the bi-intuitionistic case,
are not shared by both logics. More precisely, in each case the weak logic, i.e. wKL, wBIL
and FOwBIL, satisfies the (dual) deduction theorem, while the strong logic, i.e. sKL, sBIL
and FOsBIL, only satisfies a modified version of it. Finally, the weak logic corresponds
to the local (Kripke) semantic consequence relation, while the strong logic corresponds
to the global semantic consequence relation. This well-known fact in the modal case was
ported to the propositional bi-intuitionistic case with absolute certainty, but could not be
entirely obtained in the first-order case. However, we expect this correspondence to hold
for first-order bi-intuitionistic logic as it is the most plausible scenario out of the ones we
considered.

To prevent our work from being the source of another fifty years of confusions we
formalised all our results in Coq. As a consequence, we formalised rather common elements
in a (modal) logician’s life: axiomatic systems, results about them, Kripke semantics,
Lindenbaum lemma, canonical model constructions, soundness and completeness results.
By doing so, we have shown that the technology of interactive theorem provers is ready for
use: much of the results published about (modal) logic are amenable to formalisation. This
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statement even holds for first-order results, now that there are readily available libraries
formalising first-order syntax like the one we used in this dissertation.

Still, our results and their formalisation could be improved in at least two ways. First,
a completeness proof for FOwBIL needs to be found. We did our best to adapt the usual
proofs via canonical model construction, but could not succeed because of the frictions we
exhibited. However, we can hope to formalise the proof contained in Klemke’s article [81].
Unfortunately, this article is in German, a language we do not speak. So, we intend
to collaborate with a German-speaking researcher to explore the formalisability of this
proof. Second, we can investigate the level of non-constructivity of our proofs. We found
convenient to use classical logic to complete our proofs, most of the time through the
use of the law of the excluded middle. However, it could very well be that our proofs,
notably completeness ones, could rely on less powerful non-constructive principles. Thus,
by relying on our formalisation we can contribute to an already existing program of reverse
mathematics on completeness proofs via canonical model constructions [47].



Part III

Provability Logics
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Chapter 11

Forewords on Provability Logics

Modal logics are extremely popular because of the multiplicity of interpretations for their
characteristic modal connectives. For example, the well-known unary connective re-
ceived numerous readings: alethic, where ϕ is read as “ϕ is necessary” [85] ; epistemic,
where ϕ is read as “ϕ is known” [74] ; doxastic, where ϕ is read as “ϕ is believed”
[74] ; deontic, where ϕ is read as “ϕ is obligatory” [160, 161] ; temporal, where ϕ is
read as “ϕ holds in the future” or as “ϕ holds in the past” [113, 114]; etc. Following the
variations of the notion is interpreted by, these interpretations get divided into many
refinements. Thus, we have a myriad of alethic logics (commonly called “modal logics”,
for simplicity), epistemic logics, doxastic logics, deontic logics, and temporal logics. Modal
logics are consequently extraordinarily useful tools to study in a formal way notions of
primary importance.

Among these interpretations, one holds a specific place: the interpretation in terms of
provability in a formal theory of arithmetic (Peano, Heyting, etc.) with a provability pred-
icate Prov. While the interpretations presented above require us to read the connective
informally, the interpretation of ϕ as “ϕ is provable in a theory of arithmetic” relies on
formal connections between the so-called provability logics and the formal theories of arith-
metic. More precisely, some provability logics are tightly connected to specific theories
of arithmetic through translations f from the modal to the arithmetic language notably
respecting the equality f( ϕ) = Prov(pf(ϕ)q), where pf(ϕ)q is the Gödel number of the
arithmetical formula f(ϕ) (i.e. a natural number encoding this formula). The connection
expresses itself through such translations in the following way: a formula ϕ is provable in
the provability logic if and only if its translation f(ϕ) is provable in the arithmetic theory.
While such a connection was first hinted at by Gödel [56], Solovay inaugurated the formal
treatment of this type of connection by proving its existence between the logic GLL and
the theory of Peano arithmetic PA [139]. Research aimed at finding such connections was
notably led on Heyting arithmetic HA, whose corresponding provability logic was for long
unknown: it is only very recently that Mojtahedi discovered it [97].

Provability logics are modal logics. Consequently, provability logics axiomatically ex-
tend basic modal logics (classical or intuitionistic) with additional axioms. There are
several axioms, named after Gödel, Löb and Grzegorczyk, characterizing specific provabil-
ity logics:

GL ( ϕ→ ϕ)→ ϕ
Go ( (ϕ→ ϕ)→ ϕ)→ ϕ
Grz ( (ϕ→ ϕ)→ ϕ)→ ϕ

When added to the classical modal logic wKL, defined right after Definition 4.1.4,
the above axioms give birth to the logics GLL, GoL and GrzL. Note that these logics are
usually designated as GL,Go and Grz [2, 5, 15, 16, 18]. However, we preserve the uniformity
in this dissertation by using the suffix L when naming a logic. Furthermore, when added
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to the intuitionistic modal logic iKL, presented right before Definition 13.2.2, the above
axioms give birth to the logics iGLL, iGoL and iGrzL.

In this dissertation, we focus on the proof theory of some of the provability logics
we mentioned: GLL and iGLL. In general, the proof theory of provability logics is well-
developed. In the literature there are calculi of all sorts for these logics: Hilbert calculi [2,
14, 139], sequent calculi [5, 18, 62, 90, 128, 156, 158], tableaux calculi [2, 123], labelled
calculi [44, 99, 100], tree-hypersequent calculi [108], cyclic sequent calculi [134]. We restrict
our attention to sequent calculi notably because of their interesting history, which we give
below.

Following Gentzen [53, 54], the literature abounds with proofs of cut-admissibility for
various sequent calculi based on the size of the cut-formula and the height of the premise
proofs. But these measures looked, at first sight, inadequate for proving cut-elimination
for the standard set-based sequent calculus GLS for classical provability logic GLL, where
sequents are built from sets of formulas. So, Leivant first modified Gentzen’s approach by
using the so-called “secondary grade”, a different induction measure from the traditional
height of the premise proofs [90]. Shortly after, Valentini detected that one of Leivant’s
proofs was incorrect, and proceeded to introduce a third novel measure called “width”,
and showed that cut-elimination for GLS could be obtained via a triple induction over
size, height, and width [156].

A substantial controversy arose when it was (erroneously) claimed that Valentini’s
proofs contained a gap [96] and various authors provided alternative proofs of cut-elimination
in response [17, 95, 99, 100, 128]. The question was resolved in Valentini’s favour [61],
with all proofs later verified using an interactive theorem prover Isabelle/HOL [31].

The cut-elimination proof for the logic GoL (due to Goré and Ramanayake [62] via
a deeper analysis of the structure of derivations, and subsequently by Savateev and
Shamkanov [129] via non-well founded-proofs) is even more intricate. The proof the-
ory of classical provability logics can therefore be described as complicated. While it is
barely developed [158], we expect the proof theory of intuitionistic provability logics to be
at least as convoluted, given that sequent calculi for intuitionistic logics are usually more
technical to deal with.

This part of our dissertation contains investigations located at the heart of these intri-
cate proof-theoretic issues. Because of their nature, we decided to formalise our results in
Coq. First, their proof-theoretic nature demands a formalised treatment. Indeed, proof
theory is a discipline in which results are obtained through the tedious analysis of hun-
dreds of cases. As a consequence, most pen-and-paper proofs elide cases for the sake of
readability, leaving comfortable nests for mistakes. By formalising our results we avoid
the creation of such nests, thereby producing reliable proof theory. Second, the issues we
consider here already have a troubled history. This assessment leads to a duty of reliability
of the results produced, hence to the formalisation of the latter.

We divide this part of the dissertation on provability logics into two chapters. In
Chapter 12 we focus on the proof theory of the classical provability logic characterized by
the axiom GL. Then, we tackle the proof theory of the intuitionistic counterpart to this
logic in Chapter 13.



Chapter 12

Classical Provability Logic

For this chapter the following sections of the Toolbox I are required: Section 2.1, Section 5.1
and the entirety of Chapter 4.

The results of this chapter are extensions of the article “Cut-Elimination for Provabil-
ity Logic by Terminating Proof-Search: Formalised and Deconstructed Using Coq.” [63],
written jointly with Rajeev Goré and Revantha Ramanayake.

Their formalisation can be found here: https://github.com/ianshil/PhD thesis/tree/
main/Cut Elim GLS.

12.1 Introduction

As mentioned above, propositional classical modal provability logics are axiomatically
captured by extending the generalized Hilbert calculus wKH with one of the axioms GL,
Go and Grz. The resulting systems define the logics GLL, GoL and GrzL, where the
connective can be interpreted as the mathematical notion of being “provable” in Peano
Arithmetic [15, 139].

While the provability interpretation of these logics is now well-understood, their proof
theory is intricate and somewhat controversial, as explained in the above forewords. More
precisely, the obtention cut-admissibility for a sequent calculus for the logic GLL has
been a technical and troubled quest. However, it was settled by Goré, Ramanayake and
Dawson [61, 31] who thoroughly showed that Valentini’s proof, via a triple induction over
size, height, and width, was correct [156].

Recently, Brighton [19] provided yet another proof of cut-admissibility for GLS which
is significantly simpler than any of the existing proofs of cut-admissibility in the literature.
It uses a double induction with the traditional size of the cut-formula as primary measure.
The secondary measure is called the “maximum height of regress trees” and it is a novel
measure defined using a backward proof-search procedure for GLS called RGL, based on
regress trees / regressants.

Backward proof-search can often be employed to obtain cut-free completeness with
respect to the Kripke semantics of a logic. However, cut-elimination is not a result directly
obtained by the use of backward proof-search. For this reason, Brighton’s method is
intriguing from a structural proof-theoretic perspective. Even more so because, from a
tableaux perspective, the RGL calculus is nothing but the backward proof-search decision
procedure for GLL that is well-known to be cut-free complete with respect to the Kripke
semantics of GLL. Unfortunately, Brighton’s arguments are clouded by various issues that
become apparent when studying them in detail.

In what follows, we explain why Brighton’s use of a set-based sequent calculus leads to
confusion, and explain how this can be clarified using multisets. We then show that the
special calculus RGL on regress trees can be replaced by a standard proof-search procedure
PSGLS on GLS itself. Putting this all together, we replace Brighton’s detour through
tautology elimination [77] with a direct proof of cut-admissibility for GLL making use of
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the maximum height of a derivation (the existence of the latter follows from the termination
of backward proof-search). Noting that Brighton’s proof seems to ignore the structure of
the given cut-free derivations of the premises, and since such a shortcoming undermines
cut-elimination as a procedure that manipulates the given derivations to produce a cut-free
derivation, we take particular care to highlight the local nature of our transformations.

This chapter is organized as follows. We introduce the syntax, generalized Hilbert
calculus, and Kripke semantics for GLL in Section 12.2. In Section 12.3 we explain how
the set-based calculus leads to a confusion. Then, we introduce the multiset-based calculus
GLS in Section 12.4. Section 12.5 exhibits common proof-theoretical properties of GLS.
In Section 12.6 we define the calculus PSGLS, which captures a backward proof-search
procedure on GLS. Furthermore, we show that sequents have a derivation of maximal
height in PSGLS. Section 12.7 contains our main result, i.e. cut-elimination, which we
obtain by proving in cut-admissibility by local transformations on proofs. We finally
conclude in Section 12.8.

12.2 Basics of GLL

Throughout this chapter we work with the propositional modal language LCM defined in
Section 2.1, which has as set of connectives {⊥,→, }. For a set Γ = {ϕ1, . . . , ϕn}, we
define �Γ = {ϕ1, ϕ1, . . . , ϕn, ϕn}. The last syntactic element we need to specify is the
notion of size of a formula, defined recursively on the structure of formulas, which counts
the number of symbols present in a formula.

Definition 12.2.1. The size size(ϕ) of a formula ϕ is defined as follows:

size(⊥) = size(p) = 1
size(ψ → χ) = size(ψ) + size(χ) + 1

size( ψ) = size(ψ) + 1

Next, we define the generalized Hilbert calculus GLH = (AKL∪{GL}, {(MP), (wNec)})
which extends the calculus wKH from Section 4.1 with the axiom GL. We define the logic
GLL as the set {(Γ, ϕ) | Γ `GLH ϕ}.

To define a Kripke semantics for GLL, we reuse the notions of frame and model from
Section 5.1. However, we consider a specific class of frames.

Definition 12.2.2. A GL-Kripke frame is a Kripke frame F = (W,R) such that R is:

- transitive, i.e. for all w, v, u ∈W if [wRv and vRu] then wRu;

- converse well-founded, i.e. there are no infinite ascending sequences, that is sequences
of the form w1Rw2Rw3R . . . .

A GL-Kripke model M is a model M = (F , I), where F is a GL-Kripke frame.

Note that converse well-founded frames are necessarily irreflexive, else we would have
an infinite ascending sequence of the form wRwRwR . . . . For short, we talk about GL-
frames and GL-models.

We reuse and recall the notion of forcing from Definition 5.1.4.

Definition 12.2.3. Given a GL-model M = (W,R, I), we define the forcing relation as
follows:

M, w  p iff w ∈ I(p)
M, w  ⊥ never
M, w  ϕ→ ψ iff if M, w  ϕ then M, w  ψ
M, w  ϕ iff for all v such that wRv we have M, v  ϕ
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With these models and a definition of forcing in hand, we can define restrictions of
the local and global semantic consequence relations from Definition 5.1.3 to GL-models,
respectively writing Γ |=GL

l ϕ and Γ |=GL
g ϕ to designate them.

One can easily show that GLL is sound for the local semantic consequence relation:

Theorem 12.2.1. Γ `GLH ϕ implies Γ |=GL
l ϕ.

Proof. It suffices to prove that the axioms of GLH are valid on GL-frames, and that rules
of GLH preserve local semantic consecutions. For the former, we refer to Boolos’ work [16,
Chapter 4]. For the latter, we leave the straightforward proof to the reader. �

Consequently, we know that GLL cannot be complete with respect to the global se-
mantic consequence relation, as p 6|=GL

l p but p |=GL
g p. Unfortunately, we also have

that GLL is not complete with respect to the local semantic consequence relation. To
show this, we use a result from Boolos [16, p.102][159, Section 3.3] relying on the notion
of compactness defined in Definition 3.0.1.

Theorem 12.2.2. The local semantic consequence relation |=GL
l is not compact.

Proof -. We show that Γ |=GL
l ⊥ for the following infinite set Γ.

Γ = { p0, (p0 → p1), (p1 → p2), (p2 → p3), . . . , (pn → pn+1), . . . }

As is well known in the classical setting, and are De Morgan dual: is definable as
¬ ¬. Indeed, the usual semantic definition of this connective is as follows: M, w  ϕ
if and only if there exists a v ∈ W such that wRv and M, v  ϕ. With this reading
in mind, one can rather straightforwardly see that the forcing of the set Γ enforces the
existence of an infinite ascending chain. Assume for a model M and a point w that
M, w  Γ. As M, w0  p0 there is a w1 such that w0Rw1 and M, w1  p0. Now, as
M, w0  (p0 → p1) we get thatM, w1  p1 entailing the existence of a w2 such that
w1Rw2 andM, w2  p1. In turn, given thatM, w0  (p1 → p2) and w0Rw2 (by using
transitivity on w0Rw1 and w1Rw2) we get that M, w2  p2. It then clearly appears
that each formula (pn → pn+1) implies the existence of another element in the chain
w0Rw1Rw2 . . . Rwn. Consequently, the infinite set Γ entails the presence of an infinite
ascending chain, which is impossible in a GL-frame. So, as no point in no GL-model can
force Γ, we trivially get that Γ |=GL

l ⊥.

Furthermore, it is straightforward to see that any finite subset Γ′ of Γ can be forced
in a model: it suffices to have a model with a finite chain described by the finite number
of formulas in Γ′.

So, we have that Γ |=GL
l ⊥ but there is no finite Γ′ ⊆ Γ such that Γ′ |=GL

l ⊥. Conse-
quently |=GL

l is not compact. �

Now, we can show straightforwardly that GLL is compact, or finitary as in Defini-
tion 3.0.2. So, we have that GLL is not complete with respect to the local semantic
consequence relation.

Still, we can find a weaker connection between these relations.

Theorem 12.2.3. ∅ `GLH ϕ if and only if ∅ |=GL
l ϕ.

Proof. Such a proof was notably given by Segerberg [133]. �

In the remainder of this chapter, we focus on the proof theory of GLL. More specifically,
we discuss sequent calculi for this logic.
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12.3 Various issues with the method used by Brighton

In 2016 Brighton provided a new and much simpler proof of cut-admissibility for the
canonical sequent calculus for GLL. Although his work is extremely appealing, we have
already mentioned that the argument and the proof technique supporting it require further
clarification. Let us exhibit the two main elements that appeared through the formalisation
process to be responsible for this unclarity.

First, as the sequents that are used are based on sets, the rule for implication on the
right, presented below on the left, is just a notation for the rule on the right where the
comma is interpreted as set union.

ϕ,Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ→ ψ

{ϕ} ∪ Γ⇒ ∆ ∪ {ψ}
(→RSet)

Γ⇒ ∆ ∪ {ϕ→ ψ}

However, it is well-known that (→RSet) contains an implicit contraction [61]. As a
consequence, (→RSet) could be reapplied as many times as one wants above ⇒ p→ q on
the formula p→ q. That implies the existence of derivations of all heights for this sequent,
as shown below.

{p} ∪ ∅ ⇒ ∅ ∪ {q} ∪ {p→ q}
(→RSet){p} ∪ ∅ ⇒ ∅ ∪ {q} ∪ {p→ q}
(→RSet)∅ ⇒ ∅ ∪ {p→ q}

Brighton’s argument requires (and proves) that all sequents have a derivation of maximum
height - this would contradict our observation above. For his argument to hold, it must
therefore be the case that Brighton is not using the usual interpretation for the rules (→R)
and (→L).

The only reasonable option seems to be that Brighton intends for the comma to be
interpreted as disjoint union. This amounts to the following rule.

{ϕ} ∪ Γ⇒ (∆ \ {ϕ→ ψ}) ∪ {ψ}
(→RDis)

Γ⇒ ∆ ∪ {ϕ→ ψ}

If that was the case, a proof that the calculus is complete for GLL under this interpre-
tation is required. Moreover, further issues arise with this interpretation.

For example, it is not true in general that the premise of the sequent Γ ⇒ ∆, ψ → χ
via the rule (→RDis) is ψ,Γ⇒ ∆, χ (Case 2 of Theorem 1 of Brighton’s article). Indeed,
if ψ → χ ∈ ∆ then ψ,Γ ⇒ ∆, χ and ψ,Γ ⇒ (∆ \ {ψ → χ}), χ would be different. This
issue seems repairable, at the cost of numerous hours of work. However, the situation is
undesirable given the sensitivity of structural proof theory to small syntactic details and
especially given the history of cut-elimination for GLL.

Second, Brighton provides an unusual argument for the admissibility of cut. To obtain
a proof of the latter, Brighton proves a result equivalent to it in the case of classical
calculi: tautology elimination. More precisely, this lemma has the following shape: if
ϕ → ϕ,Γ ⇒ ∆ is provable then so is Γ ⇒ ∆. On inspection, it is clear that a procedure
for tautology elimination can easily be turned into a procedure for cut-elimination, and
vice versa. Given the proximity between these results, arguing for the admissibility of cut
by proving tautology elimination seems to be an unnecessary detour.

12.4 The sequent calculus GLS

We define the sequent calculus GLS, manipulating sequents in LCM and given in Fig-
ure 12.1.

For the rule (IdP), (⊥L), (→L) and (→R) we define the notion of principal formula
following the modal case given in Section 4.2. In a rule instance of (GLR), the formula ψ
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(IdP)
p,Γ⇒ ∆, p

(⊥L)
⊥,Γ⇒ ∆

Γ⇒ ∆, ϕ ψ,Γ⇒ ∆
(→L)

ϕ→ ψ,Γ⇒ ∆

ϕ,Γ⇒ ∆, ψ
(→R)

Γ⇒ ∆, ϕ→ ψ

�Γ, ψ ⇒ ψ
(GLR)

Φ, Γ⇒ ψ, ∆,Ψ

Figure 12.1: The sequent calculus GLS. Here, Φ and Ψ do not contain any boxed formulas.

has an extremely unusual behavior. Indeed, it changes polarity by jumping from the right-
hand side of the conclusion to the left-hand side of the premise without being altered. As
this formula holds a noticeable role in the rule it is given a specific name: the diagonal
formula [126].

Example 12.4.1. The following are examples of derivations in GLS. Note that while the
first and second examples are derivations, the third is a proof.

p⇒ q → r
p, q ⇒ r, r

(→R)p⇒ q → r, r

(IdP)
p, p, p⇒ p

(GLR)
p⇒ p, q

Example 12.4.2. A special example of derivation in GLS is the following:

ϕ→ ϕ, ( ϕ→ ϕ), ϕ, ϕ, ϕ, ϕ, ϕ⇒ ϕ
(GLR)

( ϕ→ ϕ), ϕ, ϕ, ϕ⇒ ϕ, ϕ ( ϕ→ ϕ), ϕ, ϕ, ϕ, ϕ⇒ ϕ
(→L)

ϕ→ ϕ, ( ϕ→ ϕ), ϕ, ϕ, ϕ⇒ ϕ

By noticing the identity modulo formula multiplicities between the topmost and the lowest
sequents, it appears that the sequence of application of rules in the above could be iterated
indefinitely on the topmost sequent. This notably means that the “naive” backward proof-
search procedure, i.e. which allows to apply any rule upwards without restriction, in GLS
does not terminate.

Finally, we recall the additive cut rule from Section 4.2. In this rule we call ϕ the
cut-formula.

Γ⇒ ∆, ϕ ϕ,Γ⇒ ∆
(cut)

Γ⇒ ∆

By adding the rule (cut) to GLS, giving us the calculus GLS + (cut), we obtain a
sequent calculus for GLL [126].

Theorem 12.4.1. For all ϕ ∈ FormLCM
we have: (Γ, ϕ) ∈ GLL iff there is a finite Γ′ ⊆ Γ

such that Γ′ ⇒ ϕ is provable in GLS + (cut)

12.5 Properties of GLS

In this section, we prove that GLS satisfies properties commonly used in proof theory.
First, through a proof-theoretical property, we highlight a distinction between our pen-

and-paper approach and our formalisation in Coq. While we consider here sequents based
on finite multisets, in our formalisation sequents are based on lists. The crucial difference
between the two pertains to order : in lists the order of elements matters, in multisets it
does not. Consequently, if we consider the sequents p, r ⇒ q and r, p ⇒ q, then we are
facing identical multiset-sequents but different list-sequents. This situation may worry our
reader: did we really formalise the results we present in this chapter? Strictly speaking,
the answer is “no”. However, we defined the rules of GLS such that exchange is admissible
(see Definition 4.2.1). Below, list_exch_L s se encodes the fact that se is obtained
from the sequent s by permuting two sub-lists in the list representing its antecedent, and
list_exch_R s se encodes the same idea in the succedent.
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Lemma 12.5.1 (Admissibility of exchange). For all Γ,Γ0,Γ1,Γ2,Γ3,∆,∆0,∆1,∆2 and ∆3:

(i) If Γ0,Γ1,Γ2,Γ3 ⇒ ∆ has a proof in GLS, then Γ0,Γ2,Γ1,Γ3 ⇒ ∆ has a proof in GLS.

(ii) If Γ⇒ ∆0,∆1,∆2,∆3 has a proof in GLS, then Γ⇒ ∆0,∆2,∆1,∆3 has a proof GLS.

Lemma GLS_adm_list_exch_LR : forall s (D0: GLS_prv s),

(forall se, (( list_exch_L s se) -> (GLS_prv se)) *

(( list_exch_R s se) -> (GLS_prv se))).

Proof. This result is immediate for multiset-sequents. For list-sequents, we refer to our
formalisation (Ï). �

This result informs us that the order in which formulas are presented in a list does
not matter in the formalised calculus GLS. Consequently, we are ensured that the latter
calculus on list-sequents mimics adequately the pen-and-paper version of GLS on multiset-
sequents presented here.

Second, we prove that all identities, i.e. sequents of the shape ϕ,Γ ⇒ ∆, ϕ for any
formula ϕ, are provable in GLS.

Lemma 12.5.2. For all ϕ, Γ and ∆, the sequent ϕ,Γ⇒ ∆, ϕ has a proof.

Proof. (Ï) We reason by induction on the structure of ϕ.

- ϕ = p: We immediately get a proof of p,Γ⇒ ∆, p through the rule (IdP).

- ϕ = ⊥: A proof of ⊥,Γ⇒ ∆,⊥ is directly obtained using the (⊥L).

- ϕ = ψ → χ: By induction hypothesis, we have a proof of both ψ,Γ ⇒ ∆, χ, ψ and
ψ, χ,Γ⇒ ∆, χ. So, using these proofs we build the following:

ψ,Γ⇒ ∆, χ, ψ ψ, χ,Γ⇒ ∆, χ

ψ, ψ → χ,Γ⇒ ∆, χ
(→L)

ψ → χ,Γ⇒ ∆, ψ → χ
(→R)

- ϕ = ψ: We need to give a proof of ψ,Γ⇒ ∆, ψ. To do so, we first divide Γ into
its subset of boxed formulas Γ0 and its set of remaining formulas Γ1. Note that
each set can be empty. By the induction hypothesis, we have a proof of the sequent
ψ, ψ,Γ0, Γ0, ψ ⇒ ψ, as ψ appears on both sides of this sequent. Thus, we use
this proof to build the following.

ψ, ψ,Γ0, Γ0, ψ ⇒ ψ

ψ, Γ0,Γ1 ⇒ ∆, ψ
(GLR)

�

Third, we prove that the rules of weakening on the left and right are height-preserving
admissible in GLS.

Lemma 12.5.3 (Height-preserving admissibility of weakening). For all Γ,∆, ϕ and ψ:

(i) If Γ ⇒ ∆ has a proof p in GLS, then Γ ⇒ ∆, ϕ has a proof p′ in GLS such that
h(p′) ≤ h(p).

(ii) If Γ ⇒ ∆ has a proof p in GLS, then ϕ,Γ ⇒ ∆ has a proof p′ in GLS such that
h(p′) ≤ h(p).

Proof. We prove each statement independently.

https://github.com/ianshil/PhD_thesis/blob/5f15e72fd31b04049676f92f8f8a5701ba6018ec/Cut_Elim_GLS/GLS_exch.v#L2215
https://github.com/ianshil/PhD_thesis/blob/49958882d4f55821e16a254eb653cb2666dfe7da/Cut_Elim_GLS/GLS_PSGLS_calcs.v#L336
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(i) (Ï) Let p be a proof of Γ ⇒ ∆ of height n. We prove by strong induction on n
that there is a proof p′ of Γ⇒ ∆, ϕ such that h(p′) ≤ n. We consider the last rule r
applied in p:

(a) r ∈ {(IdP), (⊥L)}: then either p ∈ Γ ∩∆ or ⊥ ∈ Γ. In all cases Γ⇒ ∆, ϕ is an
instance of an initial sequent.

(b) r = (GLR): then r is

�Γ0, ψ ⇒ ψ
(GLR)

Φ, Γ0 ⇒ ψ, ∆0,Ψ

Either ϕ is boxed and then we can apply (GLR) on the premise to obtain
Φ, Γ0 ⇒ ψ, ∆1,Ψ where ∆1 = ∆0, ϕ. Or ϕ is not boxed and then we
can apply (GLR) on the premise to obtain a proof of Φ, Γ0 ⇒ ψ, ∆0,Ψ0

where Ψ0 = Ψ, ϕ. In both cases, we get that the height of the proof is preserved.

(c) r = (→R): then r is

χ,Γ⇒ ∆0, ψ
(→R)

Γ⇒ ∆0, χ→ ψ

Then we can apply the induction hypothesis on the premise to get a proof of
χ,Γ⇒ ∆0, ϕ, ψ of height less than or equal to h(p)− 1. We can thus apply the
rule (→R) to get a proof of Γ ⇒ ∆0, ϕ, χ → ψ of height less than or equal to
h(p).

(d) r = (→L): then r is

Γ0 ⇒ ∆, χ ψ,Γ0 ⇒ ∆
(→L)

χ→ ψ,Γ0 ⇒ ∆

Then we can apply the induction hypothesis on both premises to get proofs of
height less than or equal to h(p) − 1 of Γ0 ⇒ ∆, ϕ, χ and ψ,Γ0 ⇒ ∆, ϕ. We
can consequently apply the rule (→L) to obtain a proof of χ → ψ,Γ0 ⇒ ∆, ϕ
of height less than or equal to h(p)− 1.

(ii) (Ï) Let p be a proof of Γ ⇒ ∆ of height n. We prove by strong induction on n
that there is a proof p′ of ϕ,Γ⇒ ∆ such that h(p′) ≤ n. We consider the last rule r
applied in p:

(a) r ∈ {(IdP), (⊥L)}: then either p ∈ Γ ∩∆ or ⊥ ∈ Γ. In all cases ϕ,Γ⇒ ∆ is an
instance of an initial sequent.

(b) r = (GLR): then r is

�Γ0, ψ ⇒ ψ
(GLR)

Φ, Γ0 ⇒ ψ, ∆0,Ψ

Either ϕ is boxed, i.e. ϕ = χ for some χ, and then we can apply the induction
hypothesis twice to obtain a proof of χ, χ,�Γ0, ψ ⇒ ψ of height less than
or equal to h(p) − 1. We can then apply the (GLR) rule to obtain a proof
of Φ, χ, Γ0 ⇒ ψ, ∆0,Ψ of height less than or equal to h(p). Or ϕ is
not boxed and then we can apply (GLR) on the premise to obtain a proof of
Φ0, Γ0 ⇒ ψ, ∆0,Ψ of height h(p), where Φ0 = Φ, ϕ.

(c) r = (→R): then r is

χ,Γ⇒ ∆0, ψ
(→R)

Γ⇒ ∆0, χ→ ψ

Then we can apply the induction hypothesis on the premise to get a proof of
χ,Γ, ϕ⇒ ∆0, ψ of height less than or equal to h(p)− 1. We can thus apply the
rule (→R) to get a proof of Γ, ϕ ⇒ ∆0, χ → ψ of height less than or equal to
h(p).

https://github.com/ianshil/PhD_thesis/blob/49958882d4f55821e16a254eb653cb2666dfe7da/Cut_Elim_GLS/GLS_wkn.v#L372
https://github.com/ianshil/PhD_thesis/blob/49958882d4f55821e16a254eb653cb2666dfe7da/Cut_Elim_GLS/GLS_wkn.v#L224
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(d) r = (→L): then r is

Γ0 ⇒ ∆, χ ψ,Γ0 ⇒ ∆
(→L)

χ→ ψ,Γ0 ⇒ ∆

Then we can apply the induction hypothesis on both premises to get proofs of
height less than or equal to h(p)− 1 of Γ0, ϕ⇒ ∆, χ and ψ,Γ0, ϕ⇒ ∆. We can
consequently apply the rule to obtain a proof of χ → ψ,Γ0, ϕ ⇒ ∆ of height
less than or equal to h(p).

�

Fourth, we prove that the implication rules (→R) and (→L) are height-preserving
invertible.

Lemma 12.5.4 (Height-preserving invertibility of the implication rules). For all Γ,∆, ϕ
and ψ:

(i) If ϕ→ ψ,Γ⇒ ∆ has a proof p in GLS, then Γ⇒ ∆, ϕ and ψ,Γ⇒ ∆ have proofs p′

and p′′ in GLS such that h(p′) ≤ h(p) and h(p′′) ≤ h(p).

(ii) If Γ⇒ ∆, ϕ→ ψ has a proof p in GLS, then ϕ,Γ⇒ ∆, ψ has a proof p′ in GLS such
that h(p′) ≤ h(p).

Proof. (Ï) We prove (i) and (ii) simultaneously by strong induction on the height of the
given proof.

(i) Let p be a proof of ϕ→ ψ,Γ⇒ ∆. We consider the last rule r applied in p:

(a) r ∈ {(IdP), (⊥L)}: then either p ∈ Γ ∩ ∆ or ⊥ ∈ Γ. In all cases Γ ⇒ ∆, ϕ
and ψ,Γ⇒ ∆ are instances of an initial sequent.

(b) r is (GLR): then r is

�Γ0, χ⇒ χ
(GLR)

ϕ→ ψ,Φ, Γ0 ⇒ χ, ∆0,Ψ

Then we can apply (GLR) on the premise to obtain a proof of Φ, Γ0 ⇒
χ, ∆0,Ψ, ϕ of height h(p). Now, to get a proof for the other desired se-

quent Φ, ψ, Γ0 ⇒ χ, ∆0,Ψ, we need to distinguish two cases. If ψ is
boxed, i.e. there is a δ such that ψ = δ, then we apply Lemma 12.5.3(ii)
twice on �Γ0, χ⇒ χ to get a proof of δ, δ,�Γ0, χ⇒ χ of height less than
or equal to h(p)− 1. We can thus apply (GLR) on the latter to obtain a proof
of Φ, ψ, Γ0 ⇒ χ, ∆0,Ψ of height less than or equal to h(p). If ψ is not
boxed, then we can simply apply (GLR) on �Γ0, χ ⇒ χ to obtain a proof of
Φ, ψ, Γ0 ⇒ χ, ∆0,Ψ of height less than or equal to h(p).

(c) r is (→R):

χ, ϕ→ ψ,Γ⇒ ∆, δ
(→R)

ϕ→ ψ,Γ⇒ ∆, χ→ δ

Applying the induction hypothesis to the proof of χ, ϕ→ ψ,Γ⇒ ∆, δ we obtain
a proof of height less than or equal to h(p)− 1 for

χ,Γ⇒ ∆, δ, ϕ (12.1)

ψ, χ,Γ⇒ ∆, δ (12.2)

Applying (→R) to the proof of (12.2) yields a proof of ψ,Γ ⇒ ∆, χ → δ of
height less than or equal to h(p). Also, we can apply (→R) to the proof of
(12.1) to obtain a proof of Γ⇒ ∆, χ→ δ, ϕ of height less than or equal to h(p).
We have obtained proofs for the desired sequents.

https://github.com/ianshil/PhD_thesis/blob/49958882d4f55821e16a254eb653cb2666dfe7da/Cut_Elim_GLS/GLS_inv_ImpR_ImpL.v#L61
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(d) Now suppose that r is (→L). If ϕ → ψ is principal in r then the premises are
Γ⇒ ∆, ϕ and ψ,Γ⇒ ∆ so we are done. If ϕ→ ψ is not principal in r then we
have the following.

ϕ→ ψ,Γ⇒ ∆, χ δ, ϕ→ ψ,Γ⇒ ∆
(→L)

ϕ→ ψ, χ→ δ,Γ⇒ ∆

Applying the induction hypothesis to the proofs of the premises we can obtain
proofs of height less than or equal to h(p)− 1 of

Γ⇒ ∆, χ, ϕ (12.3)

ψ,Γ⇒ ∆, χ (12.4)

δ,Γ⇒ ∆, ϕ (12.5)

ψ, δ,Γ⇒ ∆ (12.6)

From the proofs of (12.3) and (12.5) we get a proof of height less than or equal
to h(p) for one of the desired sequents.

Γ⇒ ∆, χ, ϕ δ,Γ⇒ ∆, ϕ
(→L)

χ→ δ,Γ⇒ ∆, ϕ

Also, from the proofs of (12.4) and (12.6):

ψ,Γ⇒ ∆, χ ψ, δ,Γ⇒ ∆
(→L)

ψ, χ→ δ,Γ⇒ ∆

So we have obtained a proof of height less than or equal to h(p) for the desired
sequents.

(ii) Let p be a proof of Γ⇒ ∆, ϕ→ ψ. We consider the last rule r applied in p:

(a) r ∈ {(IdP), (⊥L)}: then either p ∈ Γ ∩∆ or ⊥ ∈ Γ. In all cases Γ, ϕ⇒ ∆, ψ is
an instance of an initial sequent.

(b) r is (GLR): then r is

�Γ0, χ⇒ χ
(GLR)

Φ, Γ0 ⇒ χ, ∆0,Ψ, ϕ→ ψ

We need to distinguish two cases. If ϕ is boxed, i.e. there is a δ such that
ϕ = δ, then we apply Lemma 12.5.3(i) twice on the proof of �Γ0, χ⇒ χ to
get a proof of δ, δ,�Γ0, χ⇒ χ of height less than or equal to h(p)−1. We can
thus apply (GLR) on the latter to obtain a proof of Φ, ϕ, Γ0 ⇒ χ, ∆0,Ψ, ψ
of height less than or equal to h(p). If ϕ is not boxed, then we can simply
apply (GLR) on �Γ0, χ ⇒ χ to obtain a proof of Φ, ϕ, Γ0 ⇒ χ, ∆0,Ψ, ψ
of height h(p).

(c) Suppose that r is (→R). If ϕ→ ψ is principal in r then the premise is ϕ,Γ⇒
∆, ψ so we are done. If ϕ→ ψ is not principal in r then we have the following.

χ,Γ⇒ ∆, ϕ→ ψ, δ
(→R)

Γ⇒ ∆, ϕ→ ψ, χ→ δ

Applying the induction hypothesis to the proof of χ,Γ ⇒ ∆, ϕ → ψ, δ we can
obtain a proof of ϕ, χ,Γ⇒ ∆, δ, ψ of height less than or equal to h(p)−1. Then
we can apply (→R) to get a proof of ϕ,Γ⇒ ∆, ψ, χ→ δ of height less than or
equal to h(p), so we have obtained a proof for the desired sequent.

(d) Finally, suppose that r is (→L).

Γ⇒ ∆, ϕ→ ψ, χ δ,Γ⇒ ∆, ϕ→ ψ
(→L)

χ→ δ,Γ⇒ ∆, ϕ→ ψ
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Applying the induction hypothesis to the proofs of the premises we can obtain
proofs of height less than or equal to h(p)− 1 for

ϕ,Γ⇒ ∆, χ, ψ (12.7)

ϕ, δ,Γ⇒ ∆, ψ (12.8)

Then proceed:

ϕ,Γ⇒ ∆, χ, ψ ϕ, δ,Γ⇒ ∆, ψ
(→L)

ϕ, χ→ δ,Γ⇒ ∆, ψ

So we have obtained proofs of height less than or equal to h(p) for the desired
sequent.

�

Fifth, we proceed to show that the left and right rules of contraction are height-
preserving admissible.

Lemma 12.5.5 (Height-preserving admissibility of contraction). For all Γ,∆, ϕ and ψ:

(i) If Γ⇒ ∆, ϕ, ϕ has a proof p in GLS, then Γ⇒ ∆, ϕ has a proof p′ in GLS such that
h(p′) ≤ h(p).

(ii) If ϕ,ϕ,Γ⇒ ∆ has a proof p in GLS, then ϕ,Γ⇒ ∆ has a proof p′ in GLS such that
h(p′) ≤ h(p).

Proof. (Ï) We prove (i) and (ii) simultaneously by strong induction on the height of the
given proof.

(i) Let p be a proof of Γ⇒ ∆, ϕ, ϕ of height n. We consider the last rule r applied in p:

(a) r ∈ {(IdP), (⊥L)}: either p ∈ Γ ∩ (∆ ∪ {ϕ,ϕ}) or ⊥ ∈ Γ. In all cases Γ⇒ ∆, ϕ
is an instance of an initial sequent.

(b) r = (GLR): then r is

�Γ0, ψ ⇒ ψ
(GLR)

Φ, Γ0 ⇒ ψ, ∆0,Ψ

Either ϕ is not boxed (i.e. ϕ ∈ Ψ) and then we can apply (GLR) on the premise
to obtain a proof of height h(p) of Φ, Γ0 ⇒ ψ, ∆0,Ψ0 where Ψ0, ϕ = Ψ.
Or ϕ is boxed. If ϕ ∈ ∆0 then we can apply (GLR) on the premise to obtain
a proof of height h(p) of Φ, Γ0 ⇒ ψ, ∆1,Ψ where ∆1, ϕ = ∆0. If ϕ is
the diagonal formula ψ we consequently have that the second ψ appearing
in the conclusion is an element of ∆0 and then we can apply the rule on the
proof of the premise using ∆1 instead of ∆0.

(c) r = (→R): then r is

χ,Γ0 ⇒ ∆0, ψ
(→R)

Γ0 ⇒ ∆0, χ→ ψ

Either ϕ = χ→ ψ, and then we use Lemma 12.5.4(ii) on the premise of the form
χ,Γ0 ⇒ ∆1, χ → ψ,ψ to obtain a proof χ, χ,Γ0 ⇒ ∆1, ψ, ψ of height less than
or equal to h(p − 1). Then we can apply the induction hypothesis to contract
on both sides and obtain a proof of χ,Γ0 ⇒ ∆1, ψ of height less than or equal
to h(p− 1). It consequently suffices to apply (→R) on the latter to get a proof
of Γ0 ⇒ ∆1, χ → ψ of height less than or equal to h(p). Or ϕ 6= χ → ψ, and
then {ϕ,ϕ} ⊆ ∆0. Thus we can apply the induction hypothesis on the premise
to get a proof of height less than or equal to h(p − 1) of χ,Γ ⇒ ∆1, ψ where
∆1, ϕ = ∆0. We can thus apply the rule (→R) to get a proof of Γ⇒ ∆1, χ→ ψ
of height less than or equal to h(p).

https://github.com/ianshil/PhD_thesis/blob/49958882d4f55821e16a254eb653cb2666dfe7da/Cut_Elim_GLS/GLS_ctr.v#L680
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(d) r = (→L): then r is

Γ0 ⇒ ∆, χ ψ,Γ0 ⇒ ∆
(→L)

χ→ ψ,Γ0 ⇒ ∆

Then we can apply the induction hypothesis on both premises to get proofs of
height less than or equal to h(p − 1) of Γ0 ⇒ ∆0, χ and ψ,Γ0 ⇒ ∆0 where
∆0, ϕ = ∆. We can consequently apply the rule to obtain a proof of height less
than or equal to h(p) of χ→ ψ,Γ0 ⇒ ∆0.

(ii) Let p be a proof of ϕ,ϕ,Γ⇒ ∆ of height n. We consider the last rule r applied in p:

(a) r ∈ {(IdP), (⊥L)}: either p ∈ ({ϕ,ϕ} ∪ Γ) ∩ ∆ or ⊥ ∈ {ϕ,ϕ} ∪ Γ. In all
cases ϕ,Γ⇒ ∆ is an instance of an initial sequent.

(b) r = (GLR): then r is

�Γ0, ψ ⇒ ψ
(GLR)

Φ, Γ0 ⇒ ψ, ∆0,Ψ

Either ϕ is boxed, i.e. there is a χ such that ϕ = χ, and consequently the
premise is of the form χ, χ, χ, χ,�Γ1, ψ ⇒ ψ, where Γ1, χ, χ = Γ0. Then
we can apply the induction hypothesis twice to obtain a proof of height less than
or equal to h(p−1) of χ, χ,�Γ1, ψ ⇒ ψ. We can then apply the (GLR) rule to
obtain a proof of height less than or equal to h(p) of Φ, χ, Γ1 ⇒ ψ, ∆0,Ψ.
Or ϕ is not boxed and then we can apply (GLR) on the premise to obtain a
proof of of height h(p) of Φ0, Γ0 ⇒ ψ, ∆0,Ψ where Φ0, ϕ = Φ.

(c) r = (→R): then r is

χ,Γ0 ⇒ ∆0, ψ
(→R)

Γ0 ⇒ ∆0, χ→ ψ

Then {ϕ,ϕ} ⊆ Γ0 and we can apply the induction hypothesis on the premise
to get a proof of height less than or equal to h(p − 1) of χ,Γ1 ⇒ ∆0, ψ where
Γ1, ϕ = Γ0. We can thus apply the rule (→R) to get a proof of height less than
or equal to h(p) of Γ1 ⇒ ∆0, χ→ ψ.

(d) r = (→L): then r is

Γ0 ⇒ ∆, χ ψ,Γ0 ⇒ ∆
(→L)

χ→ ψ,Γ0 ⇒ ∆

Either ϕ = χ → ψ, and then we use Lemma 12.5.4(i) on both premises to get
proofs of height less than or equal to h(p− 1) of:

Γ1 ⇒ ∆, χ, χ (12.9)

ψ,Γ1 ⇒ ∆, χ (12.10)

ψ,Γ1 ⇒ ∆, χ (12.11)

ψ,ψ,Γ1 ⇒ ∆ (12.12)

where Γ1, χ → ψ = Γ0. Then we can apply the induction hypothesis on the
proofs of (12.9) and (12.12) to obtain proofs of height less than or equal to
h(p− 1) of Γ1 ⇒ ∆, χ and, respectively, ψ,Γ1 ⇒ ∆. It consequently suffices to
apply (→L) on these sequents get a proof of height less than or equal to h(p) of
χ→ ψ,Γ1 ⇒ ∆. Or ϕ 6= χ→ ψ, and then {ϕ,ϕ} ⊆ ∆0. Thus we can apply the
induction hypothesis on the premise to get proofs of height less than or equal to
h(p−1) of χ,Γ1 ⇒ ∆ and Γ1 ⇒ ∆, ψ, where Γ1, ϕ = Γ0. We can thus apply the
rule (→L) to get a proof of height less than or equal to h(p) of χ→ ψ,Γ1 ⇒ ∆.

�
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All the properties we proved in this section are not only canonical properties in proof
theory, but they are used as either crucial lemmas in later proofs or preliminary lemmas
to crucial lemmas.

In the following section, we introduce a sequent calculus embodying a proof-search
procedure for GLS which terminates. This allows us to define the maximum height of
a derivation of a sequent with respect to this procedure. Later on this notion of maxi-
mum height of a derivation constitutes the secondary induction measure in the proof of
admissibility of cut.

12.6 PSGLS: a terminating proof-search

In this section, we define the sequent calculus PSGLS which intends to embody a proof-
search procedure on GLS. We aim at obtaining two results about this calculus. First,
we proceed to show the existence of a derivation of maximal height in PSGLS for each
sequent, which allows us to define a measure mhd on sequents used in our cut-admissibility
proof. Second, we justify our use of the prefix PS in PSGLS by showing that the latter
helps decide the provability of sequents in GLS, as discussed in Section 4.2.

Let us turn to the definition of PSGLS. The latter restricts the rules of GLS in the
following way.

(IdentBox) An additional identity rule (IdB), derivable in GLS as shown in Lemma
12.5.2, is introduced.

(IdB)
ϕ,Γ⇒ ∆, ϕ

(NoInit) The conclusion of the rule (GLR) is not permitted to be an instance of either
(IdP) or (⊥L) or (IdB).

Conjointly, these restrictions aim at avoiding repetitions along a branch of a sequent
which is either an identity described by (IdP) or (IdB), or an instance of (⊥L), as in
Example 12.4.2. More precisely, restriction (NoInit) disallows the destruction of a formula
upwards in presence of a sequent that is obviously provable, while (IdentBox) allows to
designate the latter as provable. In fact, by showing that no loop can appear in a branch
of a PSGLS derivation, we concretely show that the only type of loop present in PSGLS
are loops on provable sequents.

Next, we proceed to show that each sequent has a derivation of maximum height in
PSGLS (something that does not hold of GLS, as witnessed by Example 12.4.2). This
crucial result is not thoroughly proved in Brighton’s work.

In general, it is easy to prove that if there is a measure that decreases, given a well-
founded order, upwards through the rules of a sequent calculus S, then each sequent has
a derivation of maximum height in S. We intend to apply this strategy to show that each
sequent has a derivation of maximum height in PSGLS. To do so, we need to define a
measure on sequents.

Definition 12.6.1. We define:

1. the number of occurrences of “→” imp(Γ⇒ ∆) of Γ⇒ ∆.

2. the usable boxes ub(Γ⇒ χ) of Γ⇒ ∆ as:

ub(Γ⇒ ∆) := { ϕ | ϕ ∈ Subf(Γ ∪∆)} \ { ϕ | ϕ ∈ Γ}

3. the number of usable boxes β(Γ⇒ ∆) of Γ⇒ ∆ as β(Γ⇒ ∆) = Card(ub(Γ⇒ ∆)),
where Card(Φ) is the cardinality of the set Φ.

4. the measure Θ(Γ⇒ ∆) of Γ⇒ ∆ as
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Θ(Γ⇒ ∆) := (β(Γ⇒ ∆), imp(Γ⇒ ∆))

The notion of usable boxes of a sequent Γ⇒ ∆ is the set of boxed formulas of Γ⇒ ∆
minus the boxed formulas elements of Γ, i.e. appearing on the “top-level”. Intuitively,
this notion captures the set of boxed formulas of a sequent s which might be the diagonal
formula of an instance of (GLR) in a derivation of s in PSGLS. Consequently, the number
of usable boxes gives an upper bound to the number of applications of (GLR) in a branch
of a derivation of s in PSGLS.

We proceed to prove that the measure Θ decreases on the usual lexicographic ordering
on n-tuples, which is well-known to be well-founded, upwards through the rules of PSGLS.

Lemma 12.6.1. Let s0 and s1, ..., sn be sequents. If there is an instance of a rule r of
PSGLS of the following form, then Θ(si) < Θ(s0) for 1 ≤ i ≤ n.

s1 . . . sn
s0

r

Proof. (Ï) We reason by case analysis on r:

1. If r is (IdP) or (IdB) or (⊥L), then we are done as there is no premise.

2. If r is (→R), then it must have the following form.

Γ, ϕ⇒ ∆, ψ
(→R)

Γ⇒ ∆, ϕ→ ψ

Then we distinguish two cases. If ϕ is boxed, then { ψ | ψ ∈ Γ} ⊆ { ψ | ψ ∈
Γ ∪ {ϕ}}. As a consequence, we have that ub(Γ, ϕ ⇒ ∆, ψ) ⊆ ub(Γ ⇒ ∆, ϕ → ψ)
hence β(Γ, ϕ ⇒ ∆, ψ) ≤ β(Γ ⇒ ∆, ϕ → ψ). If β(Γ, ϕ ⇒ ∆, ψ) < β(Γ ⇒ ∆, ϕ → ψ)
then we are done. If β(Γ, ϕ ⇒ ∆, ψ) = β(Γ ⇒ ∆, ϕ → ψ), then we can see that
imp(Γ, ϕ ⇒ ∆, ψ) = imp(Γ ⇒ ∆, ϕ → ψ) − 1 hence Θ(Γ, ϕ ⇒ ∆, ψ) < Θ(Γ ⇒
∆, ϕ → ψ). If ϕ is not boxed, then obviously we get that β(Γ, ϕ ⇒ ∆, ψ) =
β(Γ ⇒ ∆, ϕ → ψ) but also imp(Γ, ϕ ⇒ ∆, ψ) = imp(Γ ⇒ ∆, ϕ → ψ) − 1 hence
Θ(Γ, ϕ⇒ ∆, ψ) < Θ(Γ⇒ ∆, ϕ→ ψ).

3. If r is (→L), then it must have the following form.

Γ⇒ ∆, ϕ ψ,Γ⇒ ∆
(→L)

ϕ→ ψ,Γ⇒ ∆

We can easily establish that Θ(Γ ⇒ ∆, ϕ) < Θ(ϕ → ψ,Γ ⇒ ∆) as one implication
symbol is deleted while the cardinality of usable boxes stays the same. To prove
that Θ(ψ,Γ⇒ ∆) < Θ(ϕ→ ψ,Γ⇒ ∆) we reason as in (2).

4. If r is (GLR) then it must have the following form.

�Γ, ψ ⇒ ψ
(GLR)

Φ, Γ⇒ ψ, ∆,Ψ

Clearly, we have that { ϕ | ϕ ∈ Subf(�Γ ∪ { ψ} ∪ {ψ})} ⊆ { ϕ | ϕ ∈ Subf(Φ ∪
Γ ∪ { ψ} ∪ ∆ ∪ Ψ)}. Also, given that we consider a derivation in PSGLS, we

can note that (IdB) is not applicable on Φ, Γ⇒ ψ, ∆,Ψ by assumption, hence
ψ 6∈ Γ. Consequently, we get { ϕ | ϕ ∈ Φ∪ Γ} ⊂ { ϕ | ϕ ∈ �Γ∪{ ψ}}. An

easy set-theoretic argument leads to ub(�Γ, ψ ⇒ ψ) ⊂ ub(Φ, Γ ⇒ ψ, ∆,Ψ).
As a consequence we obtain β(�Γ, ψ ⇒ ψ) < β(Φ, Γ ⇒ ψ, ∆,Ψ), hence
Θ(�Γ, ψ ⇒ ψ) < Θ(Φ, Γ⇒ ψ, ∆,Ψ).

�

https://github.com/ianshil/PhD_thesis/blob/49958882d4f55821e16a254eb653cb2666dfe7da/Cut_Elim_GLS/PSGLS_termination_measure.v#L764
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Next, we prove that each sequent has a (finite) list of premises through rules of PSGLS.

Lemma 12.6.2. For all sequent s there is a list Prems(s) such that for all s′, s′ is a
premise of the conclusion s for an instance of a rule r in PSGLS iff s′ is in Prems(s).

Proof. (Ï) The proof idea is similar to the one of Lemma 4.2.5. �

Conjointly, the two previous lemmas imply the existence of a derivation in PSGLS of
maximum height for all sequents. Indeed, for a sequent s we can explore its space of all pos-
sible derivation in PSGLS by repetitively using Lemma 12.6.2, potentially infinitely many
times. These repetitive applications of Lemma 12.6.2 are building derivations starting from
the root. But as Θ decreases upwards in rule applications as shown in Lemma 12.6.1, each
application of Lemma 12.6.2 gives birth to a list of sequents with a decreased measure.
Thus, we only need to apply Lemma 12.6.2 finitely many times above s to exhaust the
space of all possible derivation in PSGLS. Next, we formally prove this theorem.

Theorem 12.6.1. Every sequent s has a PSGLS derivation of maximum height.

Theorem PSGLS_termin :

forall s, existsT2 (DMax: PSGLS_drv s), (is_mhd DMax).

Proof. We reason by strong induction on the ordered pair Θ(s). As the applicability of
the rules of PSGLS is decidable (Ï), we distinguish two cases:

(I) No PSGLS rule is applicable to s. Then the derivation of maximum height sought
after is simply the derivation constituted of s solely, which is the only derivation for s.

(II) Some PSGLS rule is applicable to s. Either only initial rules are applicable, in
which case the derivation of maximum height sought after is simply the derivation of
height 1 constituted of the application of the applicable initial rule to s. Or, some other
rules than the initial rules are applicable. Then by Lemma 12.6.2 there is a list Prems(s)
of all sequents s0 such that there is an application of a PSGLS rule r with s as conclusion
of r and s0 as premise of r. By Lemma 12.6.1 we know that every element s0 in the list
Prems(s) is such that Θ(s0) < Θ(s). Consequently, the induction hypothesis allows us to
consider the derivation of maximum height of all the sequents in Prems(s). As Prems(s)
is finite, there must be an element smax of Prems(s) such that its derivation of maximum
height is higher than the derivation of maximum height of all sequents in Prems(s) or
of the same height. It thus suffices to pick that smax, use its derivation of maximum
height, and apply the appropriate rule to obtain s as a conclusion: this is by choice the
derivation of maximum height of s. �

Here, DMax is a derivation, the existence of which is guaranteed by the constructive
existential quantifier existsT2. This quantifier not only requires us to construct a witness-
ing term but also to provide a proof that the witness is of the correct type. The function
is_mhd returns the constructive Coq proposition True if and only if its argument, DMax,
is a derivation of maximum height.

As the previous lemma implies the existence of a derivation d of maximum height
in PSGLS, we are entitled to let mhd(s) denote the height of d. Similarly to Brighton, we
later use mhd(s) as the secondary induction measure used in the proof of admissibility of
cut.

Before proving the only property we need from mhd(s), let us interpret the previous
lemma from two points of view.

First, we consider the point of view of the proof-search procedure underlying PSGLS.
The existence of a derivation of maximum height for each sequent in PSGLS shows that
in the backward application of rules of PSGLS on a sequent, i.e. the carrying of the
proof-search procedure, a halting point has to be encountered. As a consequence, the
proof-search procedure is terminating.

https://github.com/ianshil/PhD_thesis/blob/49958882d4f55821e16a254eb653cb2666dfe7da/Cut_Elim_GLS/PSGLS_termination.v#L1028
https://github.com/ianshil/PhD_thesis/blob/49958882d4f55821e16a254eb653cb2666dfe7da/Cut_Elim_GLS/GLS_PSGLS_dec.v#L333
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Second, we consider the termination of PSGLS from a semantic point of view. It has to
be noted that loops like in Example 12.4.2 emerge from the use of the rule (GLR). In ad-
dition to that, each rule application of (GLR) semantically corresponds to a “jump” from
one point in the frame to another. Given that the GL-frames are irreflexive we know that
these jumps are effectively transitioning from one point to a different one. Furthermore,
the converse well-foundedness of the accessibility relation of GL-frames entails that we can
only do finitely many such jumps. This semantic property of converse well-foundedness
consequently manifests itself proof-theoretically by allowing only finitely many applications
of the rule (GLR) above a sequent without creating a contradiction. How does a contra-
diction manifest itself in this setting? Through an identity sequent or an instance of (⊥L),
assuming the semantic interpretation of a sequent Γ ⇒ ∆ as M, w  Γ and M, w 6 ∆.
In the case of GLS, it so happens that the identities on boxes and propositional variables
are sufficient to detect the contradictions pertaining to an identity. Following a suggestion
by Stepan Kuznetsov at the conference Advances in Modal Logic 2022, we believe that a
similar proof-theoretic manifestation of converse well-foundedness is at play in the cyclic
sequent calculus for GLL defined by Shamkanov [134]. This sequent calculus is nothing
but the usual sequent calculus for K4L [126], accounting for transitivity, enhanced with
cycles, accounting for well-foundedness.

While this is the essence of the content of the previous lemma, we effectively only use
the fact that mhd(s) decreases upwards in the rules of PSGLS.

Lemma 12.6.3. If r is a rule instance from PSGLS with conclusion s0 and s1 as one of
the premises, then mhd(s1) < mhd(s0).

Proof. (Ï) Suppose that mhd(s1) ≥ mhd(s0). Let d0 and d1 be the derivations of, respec-
tively, s0 and s1 witnessing Theorem 12.6.1. Then the following d2 is derivation of s0 of
height mhd(s1) + 1.

d1

s1 · · ·
rs0

Because of the maximality of d0, we get that the height of d0 is greater than the height of d2,
i.e. mhd(s1)+1 ≤ mhd(s0). As our initial assumption implies that mhd(s1)+1 > mhd(s0),
we reached a contradiction. �

Coq is constructive, so how does it allow a proof by contradiction? It can do a proof
by contradiction (without having to introduce classical axioms) when dealing with an
expression of the decidable fragment. Here, mhd(s1) < mhd(s0) can be decided because
mhd is computable.

Now that the mhd notion is defined, we show that the PS prefix in PSGLS is justified:
we can use the latter to decide the provability of sequents in GLS.

To do so, we first prove straightforwardly that a sequent is provable in PSGLS if and
only if it is provable in GLS.

Proposition 12.6.1. For all Γ and ∆: Γ ⇒ ∆ has a proof in PSGLS iff Γ ⇒ ∆ has a
proof in GLS.

Proof. (Ï) From left to right it suffices to notice that all rules of PSGLS but (IdB) are
rules of GLS, and that the latter rule is admissible in GLS by Lemma 12.5.2. (Ï) From
right to left, we notice that all rules of GLS but (GLR) are rules of PSGLS. Indeed, (GLR)
in GLS is not restricted, while it is PSGLS. However, if the application of (GLR) in GLS
violates the conditions imposed in PSGLS, we can clearly prove the conclusion of this
application via (IdP), (⊥L) or (IdB). �

https://github.com/ianshil/PhD_thesis/blob/49958882d4f55821e16a254eb653cb2666dfe7da/Cut_Elim_GLS/PSGLS_termination.v#L1603
https://github.com/ianshil/PhD_thesis/blob/80dc89a7743a30c61c15764f64aa7662ed5af4dd/Cut_Elim_GLS/GLS_prv_dec.v#L45
https://github.com/ianshil/PhD_thesis/blob/80dc89a7743a30c61c15764f64aa7662ed5af4dd/Cut_Elim_GLS/GLS_prv_dec.v#L134
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So, according to the above general description, it suffices to prove that PSGLS can
be used to decide the provability of sequents in GLS to show that the former deserves its
prefix. We obtain these results through the existence for each sequent of a derivation of
maximum height in PSGLS.

Second, we obtain a decision procedure for the provability of sequents in PSGLS using
Lemma 12.6.3.

Theorem 12.6.2. Provability in PSGLS is decidable.

Proof. (Ï) We prove the statement by strong induction on the mhd of sequents. So, we
assume that the result holds for all sequent s′ such that mhd(s′) < mhd(s) and proceed
to show that the result holds for s. By Lemma 12.6.2 we can consider the finite list
Prems(s) of all sequents s0 such that there is an application of a PSGLS rule r with s as
conclusion of r and s0 as premise of r. By Lemma 12.6.3 we know that any s0 in Prems(s)
is such that mhd(s0) < mhd(s). So, we can apply the induction hypothesis on all of the
sequents in Prems(s). It then suffices to check whether there is a rule r with conclusion
s and premises in Prems(s) and provable, which is doable in finite time as there are only
finitely many rules applicable to s. If there is such a rule and premises, then s is provable.
If not, s is not provable. �

As an immediate corollary, we obtain that the provability of sequents in GLS is decid-
able.

Corollary 12.6.1. Provability in GLS is decidable.

Proof. (Ï) By Proposition 12.6.1, the results holds for GLS if and only if it holds for
PSGLS. Consequently, Theorem 12.6.2 gives us the desired result. �

So, PSGLS embodies a proof-search procedure on GLS according to our general def-
inition. Note that we formalised the latter result in Type, so we can extract a program
effectively deciding sequents in GLS.

In the next section, we use the notion of mhd, obtained through the termination of
PSGLS, to establish cut-elimination for GLS.

12.7 Cut-elimination for GLS

To prove cut-elimination, our main theorem, we first prove through local proof transfor-
mations that additive cut is admissible.

Theorem 12.7.1. The additive cut rule is admissible in GLS.

Theorem GLS_cut_adm : forall ϕ Γ0 Γ1 ∆0 ∆1,

(GLS_prv (Γ0++Γ1,∆0++ϕ::∆1) * GLS_prv (Γ0++ϕ::Γ1,∆0++∆1))

-> GLS_prv (Γ0++Γ1,∆0++∆1).

Proof. (Ï) Let p1 (with last rule r1) and p2 (with last rule r2) be proofs in GLS of Γ⇒ ∆, ϕ
and ϕ,Γ⇒ ∆ respectively, as shown below.

p1

r1
Γ⇒ ∆, ϕ

p2

r2
ϕ,Γ⇒ ∆

It suffices to show that there is a proof in GLS of Γ ⇒ ∆. We reason by strong primary
induction (PI) on the size of the cut-formula ϕ, giving the primary inductive hypothesis
(PIH), and strong secondary induction (SI) on mhd(s) of the conclusion of a cut, giving
the secondary inductive hypothesis (SIH).

https://github.com/ianshil/PhD_thesis/blob/80dc89a7743a30c61c15764f64aa7662ed5af4dd/Cut_Elim_GLS/GLS_prv_dec.v#L157
https://github.com/ianshil/PhD_thesis/blob/80dc89a7743a30c61c15764f64aa7662ed5af4dd/Cut_Elim_GLS/GLS_prv_dec.v#L230
https://github.com/ianshil/PhD_thesis/blob/80dc89a7743a30c61c15764f64aa7662ed5af4dd/Cut_Elim_GLS/GLS_additive_cut.v#L690
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There are five cases to consider for r1: one for each rule in GLS. We separate them by
using Roman numerals. The SIH is invoked in all of the following cases: (III-a), (III-b-1),
(III-b-2), (IV) and (V-a-2).

(I) r1 =(IdP) : If ϕ is not principal in r1, then the latter must have the following form.

(IdP)
Γ0, p⇒ ∆0, p, ϕ

where Γ0, p = Γ and ∆0, p = ∆. Thus, we have that the sequent Γ ⇒ ∆ is of the form
Γ0, p⇒ ∆0, p, and is an instance of an initial sequent. So we are done.

If ϕ principal in r1, i.e. ϕ = p, then Γ ⇒ ∆ is of the form Γ0, p ⇒ ∆. Thus, the
conclusion of r2 is of the form Γ0, p, p⇒ ∆. We can consequently apply Lemma 12.5.5 (ii)
to obtain a proof of Γ0, p⇒ ∆.

(II) r1 =(⊥L): Then r1 must have the following form.

(⊥L)
Γ0,⊥ ⇒ ∆, ϕ

where Γ0,⊥ = Γ. Thus, we have that the sequent Γ ⇒ ∆ is of the form Γ0,⊥ ⇒ ∆, and
is an instance of an initial sequent. So we are done.

(III) r1 =(→R) : We distinguish two cases.

(III-a) If ϕ is not principal in r1, then the latter must have the following form.

Γ, ψ ⇒ ∆0, χ, ϕ
(→R)

Γ⇒ ∆0, ψ → χ, ϕ

where ∆0, ψ → χ = ∆. Thus, we have that the sequent Γ ⇒ ∆ and ϕ,Γ ⇒ ∆ are
respectively of the form Γ ⇒ ∆0, ψ → χ and ϕ,Γ ⇒ ∆0, ψ → χ. We can apply Lemma
12.5.4 (ii) on the proof of the latter to get a proof of ϕ,Γ, ψ ⇒ ∆0, χ. Thus proceed as
follows.

Γ, ψ ⇒ ∆0, χ, ϕ ϕ,Γ, ψ ⇒ ∆0, χ
SIH

Γ, ψ ⇒ ∆0, χ
(→R)

Γ⇒ ∆0, ψ → χ

Note that the use of SIH is justified here since the last rule in this proof is an instance of
(→R) in PSGLS and hence mhd(Γ, ψ ⇒ ∆0, χ) < mhd(Γ⇒ ∆0, ψ → χ) by Lemma 12.6.3.

(III-b) If ϕ principal in r1, i.e. ϕ = ψ → χ, then r1 must have the following form.

ψ,Γ⇒ ∆, χ
(→R)

Γ⇒ ∆, ψ → χ

The conclusion of r2 must be of the form ψ → χ,Γ⇒ ∆. In that case, we distinguish two
further cases. In the first case, ψ → χ is principal in r2. Consequently, the latter must
have the following form.

Γ⇒ ∆, ψ χ,Γ⇒ ∆
(→L)

ψ → χ,Γ⇒ ∆

Proceed as follows.

Γ⇒ ∆, ψ

ψ,Γ⇒ ∆, χ

χ,Γ⇒ ∆
Lem.12.5.3 (ii)

χ, ψ,Γ⇒ ∆
PIH

ψ,Γ⇒ ∆
PIH

Γ⇒ ∆

In the second case, ψ → χ is not principal in r2. In the cases where r2 is one of (IdP)
and (⊥L) proceed respectively as in (I) and (II) when the cut-formula is not principal in
the rule considered. We are left with the cases where r2 is one of (→R), (→L) and (GLR).

(III-b-1) If r2 is (→R) then it must have the following form.
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ψ → χ, δ,Γ⇒ ∆0, γ
(→R)

ψ → χ,Γ⇒ ∆0, δ → γ

where ∆0, δ → γ = ∆. In that case, note that the provable sequent Γ ⇒ ∆, ψ → χ is of
the form Γ⇒ ∆0, δ → γ, ψ → χ. We can use Lemma 12.5.4 (ii) on the proof of the latter
to get a proof of δ,Γ⇒ ∆0, γ, ψ → χ. Proceed as follows.

δ,Γ⇒ ∆0, γ, ψ → χ ψ → χ, δ,Γ⇒ ∆0, γ
SIH

δ,Γ⇒ ∆0, γ
(→R)

Γ⇒ ∆0, δ → γ

Note that the use of SIH is justified here as the last rule in this proof is effectively an
instance of (→R) in PSGLS, hence mhd(Γ, D ⇒ ∆0, γ) < mhd(Γ ⇒ ∆0, δ → γ) by
Lemma 12.6.3.

(III-b-2) If r2 is (→L) then it must have the following form.

ψ → χ,Γ0 ⇒ ∆, δ ψ → χ, γ,Γ0 ⇒ ∆
(→L)

ψ → χ, δ → γ,Γ0 ⇒ ∆

where Γ0, δ → γ = Γ. In that case, note that the provable sequent Γ ⇒ ∆, ψ → χ is of
the form Γ0, δ → γ ⇒ ∆, ψ → χ. We can use Lemma 12.5.4 (i) on the proof of the latter
to get proofs of both Γ0 ⇒ ∆, δ, ψ → χ and Γ0, γ ⇒ ∆, ψ → χ. Thus proceed as follows.

Γ0 ⇒ ∆, δ, ψ → χ ψ → χ,Γ0 ⇒ ∆, δ
SIH

Γ0 ⇒ ∆, δ

Γ0, γ ⇒ ∆, ψ → χ ψ → χ, γ,Γ0 ⇒ ∆
SIH

Γ0, γ ⇒ ∆
(→L)

Γ0, δ → γ ⇒ ∆

Note that both uses of SIH are justified here as the last rule in this proof is effectively
an instance of (→L) in PSGLS, hence mhd(Γ0 ⇒ ∆, δ) < mhd(Γ0, δ → γ ⇒ ∆) and
mhd(Γ0, γ ⇒ ∆) < mhd(Γ0, δ → γ ⇒ ∆) by Lemma 12.6.3.

(III-b-3) If r2 is (GLR) then it must have the following form.

�Γ0, δ ⇒ δ
(GLR)

Φ, ψ → χ, Γ0 ⇒ δ, ∆0,Ψ

where Φ, Γ0 = Γ and δ, ∆0,Ψ = ∆. In that case, note that the sequent Γ ⇒ ∆ is of
the form Φ, Γ0 ⇒ δ, ∆0,Ψ. To obtain a proof of the latter, we apply the rule (GLR)
on the premise of r2 without weakening ψ → χ:

�Γ0, δ ⇒ δ
(GLR)

Φ, Γ0 ⇒ δ, ∆0,Ψ

(IV) r1 =(→L): Then r1 must have the following form.

Γ0 ⇒ ∆, ψ, ϕ χ,Γ0 ⇒ ∆, ϕ
(→L)

ψ → χ,Γ0 ⇒ ∆, ϕ

where ψ → χ,Γ0 = Γ. Thus, we have that the sequents Γ ⇒ ∆ and ϕ,Γ ⇒ ∆ are
respectively of the form ψ → χ,Γ0 ⇒ ∆ and ϕ,ψ → χ,Γ0 ⇒ ∆. It thus suffices to apply
Lemma 12.5.4 (i) on the proof of the latter to obtain proofs of both ϕ,Γ0 ⇒ ∆, ψ and
ϕ, χ,Γ0 ⇒ ∆, and then proceed as follows.

Γ0 ⇒ ∆, ψ, ϕ ϕ,Γ0 ⇒ ∆, ψ
SIH

Γ0 ⇒ ∆, ψ

χ,Γ0 ⇒ ∆, ϕ ϕ, χ,Γ0 ⇒ ∆
SIH

χ,Γ0 ⇒ ∆
(→L)

ψ → χ,Γ0 ⇒ ∆

Note that both uses of SIH are justified here as the last rule in this proof is effectively
an instance of (→L) in PSGLS, hence mhd(Γ0 ⇒ ∆, ψ) < mhd(ψ → χ,Γ0 ⇒ ∆) and
mhd(χ,Γ0 ⇒ ∆) < mhd(ψ → χ,Γ0 ⇒ ∆) by Lemma 12.6.3.

(V) r1 =(GLR): Then we distinguish two cases.

(V-a) ϕ is the diagonal formula in r1:
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�Γ0, ψ ⇒ ψ
(GLR)

Φ, Γ0 ⇒ ψ, ∆0,Ψ

where ϕ = ψ and Φ, Γ0 = Γ and ∆0,Ψ = ∆. Thus, we have that the sequents Γ⇒ ∆
and ϕ,Γ ⇒ ∆ are respectively of the form Φ, Γ0 ⇒ ∆0,Ψ and ψ,Φ, Γ0 ⇒ ∆0,Ψ.
We now consider r2. If r2 is one of (IdP), (⊥L), (→R) and (→L) then respectively proceed
as in (I), (II), (III) and (IV) when the cut-formula is not principal in the rules considered
by using SIH. We are consequently left to consider the case when r2 is (GLR). Then r2 is
of the following form:

ψ, ψ,�Γ0, χ⇒ χ
(GLR)

Φ, ψ, Γ0 ⇒ χ, ∆1,Ψ

where χ, ∆1 = ∆0. In this situation, we distinguish two sub-cases.

(V-a-1) One of the rules (IdP), (⊥L) or (IdB) is applicable to Φ, Γ0 ⇒ χ, ∆1,Ψ,
then we are done for the two first cases as it suffices to apply the corresponding rules to
obtain a proof of the conclusion of the cut-rule. For the case of (IdB) it suffices to apply
Lemma 12.5.2.

(V-a-2) None of these rules is applicable to Φ, Γ0 ⇒ χ, ∆1,Ψ (NoInit). Then, proceed
as follows.

�Γ0, ψ ⇒ ψ
(GLR)

Γ0 ⇒ ψ
Lem.12.5.3

�Γ0, χ⇒ χ, ψ

�Γ0, ψ ⇒ ψ
Lem.12.5.3

�Γ0, ψ, χ⇒ χ, ψ ψ, ψ,�Γ0, χ⇒ χ
PIH

�Γ0, ψ, χ⇒ χ
SIH

�Γ0, χ⇒ χ
(GLR)

Φ, Γ0 ⇒ χ, ∆1,Ψ

Note that the use of SIH is justified here as the assumption NoInit ensures that the last
rule in this proof is effectively an instance of (GLR) in PSGLS, hence mhd(�Γ0, χ ⇒
χ) < mhd(Φ, Γ0 ⇒ χ, ∆1,Ψ) by Lemma 12.6.3.

(V-b) ϕ is not the diagonal formula in r1:

�Γ0, χ⇒ χ
(GLR)

Φ, Γ0 ⇒ χ, ϕ, ∆0,Ψ

where Φ, Γ0 = Γ and χ, ∆0,Ψ = ∆. In that case, note that the sequent Γ⇒ ∆ is of
the form Φ, Γ0 ⇒ χ, ∆0,Ψ. To obtain a proof of the latter, we apply the rule (GLR)
on the premise of r1 without weakening ϕ:

�Γ0, χ⇒ χ
(GLR)

Φ, Γ0 ⇒ χ, ∆0,Ψ

�

Before turning to cut-elimination let us comment on the need to use additive cuts in
the previous proof. To justify a cut through SIH, we need to link the sequent-conclusion
of the initial cut to the sequent-conclusion of the newly created cut by a chain of rule
applications which make mhd decrease upwards. Now, contraction and weakening can
increase mhd upwards. While it is obvious for contraction, this fact is surprising for
weakening. Ultimately, weakening can increase mhd upwards as it can delete on the left
a boxed formula ϕ whose role is to block another potential application of (GLR) on
ϕ. So, in the mhd technique we cannot use contraction or weakening in the chain

linking the two sequent-conclusion, forbidding us from considering multiplicative cuts.
The use of additive cuts allows us to circumvent this difficulty. This sensitivity of the
proof technique is surprising as both calculi admit weakening and contraction, making
additive and multiplicative cuts equivalent.

It is commonly accepted that a purely syntactic proof of cut-admissibility, based on
local proof transformations, provides a cut-elimination procedure: eliminate topmost cuts
first. So, the above proof-theoretically establishes that cuts are eliminable in the calculus
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GLS extended with (cut). To effectively prove this statement in Coq we explicitly encode
the additive cut rule as follows:

(Γ0++Γ1,∆0++ϕ::∆1) (Γ0++ϕ::Γ1,∆0++∆1)

(Γ0++Γ1,∆0++∆1)

With this rule in hand, we can encode the set of rules GLS_cut_rules as GLS_rules

enhanced with (cut), i.e. the calculus GLS + (cut). We can finally turn to the elimination
of additive cuts:

Theorem 12.7.2. The additive cut rule is eliminable from GLS + (cut).

Theorem GLS_cut_elimination : forall s,

(GLS_cut_prv s) -> (GLS_prv s).

Proof. (Ï) Let p be the proof in GLS + (cut) of the sequent s. We prove the statement
by induction on the structure of p. If the last rule applied is a rule in GLS, then it
suffices to apply the induction hypothesis on the premises and then the rule. If the last
rule applied is (cut), then we use the induction hypothesis on both premises and then
Theorem 12.7.1. �

The above theorem shows that given a proof in GLS + (cut) of a sequent, that is
GLS_cut_prv s, we can transform this proof directly to obtain a proof in GLS of the same
sequent. Given that this theorem is in fact a constructive function based on elements
defined on Type, we can use the extraction feature of Coq and obtain a cut-eliminating
Haskell program.

12.8 Conclusion

In this chapter, we introduced GLS, a multiset-based sequent calculus for the logic GLL,
which avoids the confusions of the set-based calculus used by Brighton. We showed that
this calculus enjoys the canonical proof-theoretical properties of exchange, weakening, and
contraction.

Then, we introduced a second sequent calculus: PSGLS. In this calculus each sequent
has a derivation of maximal height, allowing us to define the measure mhd, i.e. the height
of this maximal derivation. We made use of this measure to provide a decision procedure
for the provability of sequents in GLS using PSGLS, justifying our use of the prefix PS:
PSGLS embodies a terminating backward proof-search procedure for GLS.

The mhd measure was crucially involved in the proof technique used to obtain cut-
admissibility and first described by Brighton [19]. A cut-elimination result for GLS was
consequently obtained as the proof of cut-admissibility only relied on steps locally trans-
forming given proofs. From the formalisation of this result, we extracted a Haskell program
effectively eliminating cuts from cut-containing GLS proofs.

In essence, we have seen how the termination of backward proof-search can be exploited
to obtain cut-elimination. This phenomenon, relying on the mhd technique, is particularly
interesting because the termination of backward proof-search is close to a semantic proof
of completeness, and the latter is typically much simpler to achieve than a proof of cut-
elimination. Investigations in the range of applicability of this technique are consequently
in order, with a focus on calculi possessing a terminating proof-search procedure. The
next chapter constitutes a step in this direction.

Before closing the current chapter, let us defuse a potential misreading of our results.
Indeed, our work may appear to beg the following question: if we first need to show seman-
tic cut-free completeness to use this technique, then we already know that every instance
of cut is admissible, so, what is the point? Note that this misses the mark. We chose to
introduce PSGLS to clarify the role of terminating proof-search in the argument, and to
demonstrate that the additional notion of regress tree was not essential. In particular, we
did not have to show that PSGLS was complete for our purposes.

https://github.com/ianshil/PhD_thesis/blob/80dc89a7743a30c61c15764f64aa7662ed5af4dd/Cut_Elim_GLS/GLS_cut_elim.v#L41


Chapter 13

Intuitionistic Provability Logic

For this chapter the following sections of the Toolbox I are required: Section 2.1, Sec-
tion 5.1, the introduction of Chapter 4 and Section 4.2.

The results of this chapter are extensions of the article “Direct elimination of additive-
cuts in GL4ip: verified and extracted.” [65], written jointly with Rajeev Goré.

Their formalisation can be found here: https://github.com/ianshil/PhD thesis/tree/
main/Cut Elim iGLS.

13.1 Introduction

As shown in the previous Chapter 12, proofs of cut-admissibility for classical modal prov-
ability logics are usually not trivial. More specifically, the standard double-induction on
the size of the cut-formula and the height of the derivation do not suffice. To solve this
problem, there are now two known approaches. First, Valentini’s introduction of a third
complex parameter called “width” [156] in addition to these two traditional induction mea-
sures [156] led to a proof of cut-admissibility, as confirmed by Goré and Ramanayake [61]
despite controversies. Second, the mhd technique introduced by Brighton [19] and rectified
in Chapter 12 constitutes another pathway to cut-admissibility.

Recently, van der Giessen and Iemhoff [158] showed that the proof theory of intuition-
istic provability logics is also complicated. They gave a cut-free sequent calculus GL3ip for
intuitionistic provability logic extending the standard G3ip [153] calculus for intuitionistic
logic with the following well-known rule:

Γ, Γ, ϕ⇒ ϕ

Φ, ∆, Γ⇒ ϕ
(GLR)

Similarly to G3ip, the admissibility of the rules of weakening and contraction can easily
be shown for GL3ip. However, the admissibility of cut encounters the same problems as for
GLS, leading van der Giessen and Iemhoff to successfully adapt the technique developed
by Valentini, thus obtaining a direct proof of cut-admissibility for intuitionistic provability
logic.

However, GL3ip cannot support a simple terminating backward proof-search strategy
because its left-implication rule, inherited from G3ip and shown below, allows trivial cycles
up the left premise as is well known:

Γ, ϕ→ ψ ⇒ ϕ X,ψ ⇒ χ

Γ, ϕ→ ψ ⇒ χ
(→L)

To solve this problem and characterize a terminating proof-search procedure, they
follow Vorob’ev [162, 163], Dyckhoff [41] and Hudelmaier [76] (see Dyckhoff’s paper for
historical developments [42]) and define the calculus GL4ip by both slightly modifying the
rule (GLR) and mimicking G4ip by replacing (→L) with a collection of rules sensitive to
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the form of the formula ϕ in ϕ→ ψ. To prove cut-admissibility they show that GL3ip and
GL4ip are equivalent, in that they prove the same sequents.

They point out that although the calculus GL4ip enjoys terminating backward proof-
search, the existence of a direct proof of cut-admissibility is doubtful: all standard meth-
ods fail, including Valentini’s. While a direct and syntactic proof of cut-admissibility
usually leads to a straightforward algorithm for cut-elimination, here the only potential
cut-elimination algorithm for GL4ip is quite convoluted: (1) take a GL4ip proof containing
cuts; (2) transform it to a GL3ip proof containing cuts ; (3) apply the cut-elimination
procedure for GL3ip to obtain a cut-free GL3ip proof ; (4) transform the cut-free GL3ip
proof into a cut-free GL4ip proof. In particular, the steps from (2) to (3), which rely on
Valentini’s complicated argument, and from (3) to (4), which involve intricate transforma-
tions, are anything but trivial. This indirection, coupled with the intricacies mentioned,
can only lead to a painful and obscure algorithm for cut-elimination for GL4ip.

Naturally, the following question comes to mind: can we eliminate the indirection
from GL4ip+(cut) to GL3ip+(cut) to GL3ip to GL4ip, and obtain a direct cut-elimination
procedure for GL4ip? If so, then we would be able to extract the associated computer pro-
gram for cut-elimination from a Coq formalisation using the automatic program extraction
facilities of Coq.

Here, we answer this question positively by porting the second approach to cut-
admissibility for the classical provability logic GLL, i.e. the mhd technique, to the in-
tuitionistic case. Consequently, to obtain a direct syntactic proof of cut-admissibility for
GL4ip we follow the argumentative structure laid out in Chapter 12. First, we show the
admissibility in GL4ip of the structural rules by adapting the arguments from Dyckhoff and
Negri [43]. Second, we define a proof-search procedure PSGL4ip on GL4ip. Furthermore,
we develop a thorough termination argument by defining a local measure on sequents and
a well-founded relation along which this measure decreases upwards in the proof-search.
Finally, we directly prove cut-admissibility for GL4ip using the mhd proof technique, which
makes use of the termination of PSGL4ip to attribute a maximum height of derivations
to each sequent [19]. We use this number as an induction measure in an argument in-
volving local and syntactic transformations, allowing us to exhibit and hence extract a
cut-elimination procedure.

This chapter is organized as follows. We introduce the syntax, generalized Hilbert
calculus, and Kripke semantics for iGLL in Section 13.2. Then, we introduce the multiset-
based calculus GL4ip in Section 13.3. Section 13.4 exhibits common proof-theoretical
properties of GL4ip. In Section 13.5 we define the calculus PSGL4ip, which captures a
backward proof-search procedure on GL4ip. Furthermore, we show that sequents have a
derivation of maximal height in PSGL4ip. Section 13.6 contains our main result, i.e. cut-
elimination, which we obtain by proving in cut-admissibility by local transformations on
proofs. We finally conclude in Section 13.7.

13.2 Basics of iGLL

In this chapter we consider a larger set of connectives than CCM defined in Section 2.1,
i.e. the Intuitionistic Modal set of connectives CIM = (ConIM, ArConIM

) where:

- ConIM = {⊥,∧,∨,→, } ;

- ArConIM
is such that:

ArConBI
(⊥) = 0

ArConIM
(∧) = ArConIM

(∨) = ArConIM
(→) = 2

ArConIM
( ) = 1
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We can thus define the propositional language LIM = (V, CIM) and obtain its infix
grammar:

ϕ ::= p ∈ V | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ

The reason we consider this extended set of connectives is that, unlike in classical logic,
in intuitionistic logic we cannot define ∧ and ∨ from the connectives of CCM. We recall
that for a set Γ = {ϕ1, . . . , ϕn}, �Γ is the set {ϕ1, ϕ1, . . . , ϕn, ϕn}. The last syntactic
element we need to specify is the notion of weight of a formula, defined recursively on the
structure of formulas.

Definition 13.2.1. The weight w(ϕ) of a formula ϕ is defined as follows:

weight(⊥) = weight(p) = 1
weight(ψ ∨ χ) = weight(ψ → χ) = weight(ψ) + weight(χ) + 1

weight(ψ ∧ χ) = weight(ψ) + weight(χ) + 2

This notion is different from the size of formula defined in Definition 12.2.1, as it does
not simply count the number of symbols appearing in a formula. More specifically, the
weight differs from the size in one place: the clause for conjunction. The main reason
behind this oddity is that we use the notion of weight to show the termination of a proof-
search procedure on a given set of rules, and without giving a heavier weight to conjunction
the argument would not go through. So, the peculiarity of this definition originates from
nothing else but technical details.

Next, we define the generalized Hilbert calculus iGLH = (AiK∪{GL}, {(MP), (wNec)})
where AiK , presented below, is the set of axioms for iKL. The latter is the intuitionistic
variant of the basic normal modal logic wKL, and is captured by the generalized Hilbert
calculus iKH = (AiK , {(MP), (wNec)}). The logic iGLL is defined as the set {(Γ, ϕ) |
Γ `iGLH ϕ}.

Definition 13.2.2. We define the set of axioms AiK below:

A1 (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) A7 (ϕ→ ψ)→ ((ϕ→ χ)→ (ϕ→ (ψ ∧ χ)))
A2 ϕ→ (ϕ ∨ ψ) A8 (ϕ→ (ψ → χ))→ ((ϕ ∧ ψ)→ χ)
A3 ψ → (ϕ ∨ ψ) A9 ((ϕ ∧ ψ)→ χ)→ (ϕ→ (ψ → χ))
A4 (ϕ→ χ)→ ((ψ → χ)→ ((ϕ ∨ ψ)→ χ)) A10 (ϕ→ ψ)→ (¬ψ → ¬ϕ)
A5 (ϕ ∧ ψ)→ ϕ A11 ⊥ → ϕ
A6 (ϕ ∧ ψ)→ ψ A12 (ϕ→ ψ)→ ( ϕ→ ψ)

The Kripke semantics for iGLL has an intuitionistic and modal flavor. As a conse-
quence, two relations of accessibility are required to deal with each dimension: R for the
modal and ≤ for the intuitionistic. In addition to that, one needs to add further constraints
on these relations to make the persistence lemma hold [138, Section 3.3]. As discussed by
Litak [91, Section 2.1], requiring that the relation composition of ≤ and R is a subset of R,
in symbols “≤;R ⊆ R”, is an adequate constraint. Consequently, we obtain the following
notions of frames and models.

Definition 13.2.3. An iGL-Kripke frame is a Kripke frame F = (W,≤, R) such that:

- ≤ is reflexive, i.e. for all w ∈W we have w ≤ w;

- ≤ is transitive, i.e. for all w, v, u ∈W if [w ≤ v and v ≤ u] then w ≤ u;

- (≤;R) ⊆ R where ; is relation composition;

- R is transitive, i.e. for all w, v, u ∈W if [wRv and vRu] then wRu;

- R is converse well-founded, i.e. there are no infinite ascending sequences, that is
sequences of the form w1Rw2Rw3R . . . .
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An iGL-Kripke model M is a model M = (F , I), where F is a iGL-Kripke frame and
I : V → Pow(W ) is an interpretation function obeying persistence: for every v, w ∈ W
with w ≤ v and p ∈ V, if w ∈ I(p) then v ∈ I(p).

Here again, such frames are necessarily irreflexive in R, else we would have a sequence
of the form wRwRwR . . . . For short, we talk about iGL-frames and iGL-models.

To define forcing in this context we combine the forcing notions we used in a modal
(Definition 5.1.4) and intuitionistic case (Definition 8.7.2).

Definition 13.2.4. Given a, iGL-model M = (W,≤, R, I), we define the forcing relation
as follows:

M, w  p iff w ∈ I(p)
M, w  ⊥ never
M, w  ϕ ∧ ψ iff M, w  ϕ and M, w  ψ
M, w  ϕ ∨ ψ iff M, w  ϕ or M, w  ψ
M, w  ϕ→ ψ iff for all v s.t. w ≤ v, if M, v  ϕ then M, v  ψ
M, w  ϕ iff for all v s.t. wRv we have M, v  ϕ

The local and global semantic consequence relation from Definition 5.1.3 can be re-
stricted to iGL-models. We write Γ |=iGL

l ϕ and Γ |=iGL
g ϕ to designate them. The

situation is identical to the classical case GLL: (1) iGLL is sound for the local semantic
consequence relation, and hence cannot be complete for the global semantic consequence
relation ; (2) iGLL is compact while the local semantic consequence relation is not, hence
the former cannot be complete with respect to the latter ; (3) iGLL and the local semantic
consequence relation coincide on their sets of theorems.

The result (1) is rather straightforward to obtain as it suffices to check that axioms
are valid and that rules preserve local semantic consecutions.

The second result (2) follows from an adaptation of the counterexample for the GLL
case exhibited in Theorem 12.2.2.

Γ = { p0, (p0 → p1), (p1 → p2), (p2 → p3), . . . , (pn → pn+1), . . . }

This set cannot be used in the current context as we are not anymore in a classical setting,
where is definable as ¬ ¬, but in an intuitionistic setting, where this definability is
known to be lost [138]. More precisely, we have that ϕ entails ¬ ¬ϕ, but not the other
way around. So, without we cannot simply reuse the set Γ above. However, as pointed
out by Rosalie Iemhoff in private communication, it is in fact sufficient to use the weaker
combination ¬ ¬ instead of .

Theorem 13.2.1. The local semantic consequence relation |=iGL
l is not compact.

Proof -. We show that Γ |=iGL
l ⊥ for the following infinite set Γ.

Γ′ = {¬ ¬p0, (p0 → ¬ ¬p1), (p1 → ¬ ¬p2), . . . , (pn → ¬ ¬pn+1), . . . }

Here again, we get that the forcing of this set Γ′ enforces the existence of an infinite
ascending chain. Assume for a model M and a point w that M, w  Γ′. As M, w0 
¬ ¬p0, we notably get M, w0 6 ¬p0 by reflexivity of ≤. So, we have that there is a w1

such that w0Rw1 and M, w1 6 ¬p0. As a consequence, we get that there is a w2 such
that w1 ≤ w2 and M, w2  p0. So, we have the following setting, where dashed arrows
represent ≤ and plain arrows represent R.

w0 w1 p0

w2
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Now, as M, w0  (p0 → ¬ ¬p1) we get that M, w1  p0 → ¬ ¬p1, hence M, w2 
¬ ¬p1 as w1 ≤ w2 and M, w2  p0. Here again, M, w2  ¬ ¬p1 entails the existence of
two further worlds w3 and w4 as described below.

w0 w1 p0

w2

w3 p1

w4

But how do we proceed from here? We have M, w0  (p1 → ¬ ¬p2) but no obvious
way to reach w3 from w0 through an R relation. However, we need to remember that
(≤;R) ⊆ R. Thus, we get that w1Rw3 as w1 ≤ w2 and w2Rw3. In addition to that,
given that R is transitive, we obtain w0Rw3 from w0Rw1 and w1Rw3. The situation is as
follows.

w0 w1 p0

w2

w3 p1

w4

Thus, we are able to connect w0 and w3 in the appropriate way to use the formula p1 →
¬ ¬p2 in w3 in a similar way as we did with p0 → ¬ ¬p1 in w1. It then clearly appears
that each formula (pn → ¬ ¬pn+1) implies the existence of another element in the chain
w0Rw1Rw3 . . . Rw2n+1. Consequently, the infinite set Γ′ entails the presence of an infinite
ascending chain, which is impossible in a iGL-frame. So, as no point in no iGL-model can
force Γ, we trivially get that Γ |=iGL

l ⊥.
Furthermore, it is straightforward to see that any finite subset Γ′ of Γ can be forced

in a model: it suffices to have a model with a finite chain described by the finite number
of formulas in Γ′.

So, we have that Γ |=iGL
l ⊥ but there is no finite Γ′ ⊆ Γ such that Γ′ |=iGL

l ⊥.
Consequently |=iGL

l is not compact. �

The last result (3) is due to Ursini [155].

Theorem 13.2.2. ∅ `iGLH ϕ if and only if ∅ |=iGL
l ϕ.

In the remainder of this chapter, we focus on the proof theory of iGLL. More specifi-
cally, we discuss sequent calculi for this logic.

13.3 The sequent calculus GL4ip

The sequent calculus GL4ip is given in Figure 13.1. While GL4ip manipulates sequents, it
has to be noted that these sequents are of a different nature from the sequents manipulated
in GLS: the former are of the shape Γ⇒ ϕ while the latter are of the shape Γ⇒ ∆, where
Γ,∆ ⊆ FormLIM

and ϕ ∈ FormLIM
. This restriction, only allowing a single formula in

the succedent instead of a set of formulas, was already imposed by Gentzen in his sequent
calculus LJ for intuitionistic logic [53, 154].

When defining rules we put the label naming the rule on the left of the horizontal line
for aesthetic reasons, while the label appears on the right of the line in the remaining of
the article.

For the rule (IdP), (⊥L) and (→R) we define the notion of principal formula following
the modal case given in Section 4.2. For the rules (∧R), (∧L), (∨Ri) and (∨L) the
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(⊥L)
⊥,Γ⇒ χ

(IdP)
Γ, p⇒ p

Γ, ϕ, ψ ⇒ χ
(∧L)

Γ, ϕ ∧ ψ ⇒ χ

Γ⇒ ϕ Γ⇒ ψ
(∧R)

Γ⇒ ϕ ∧ ψ

Γ, ϕ⇒ χ Γ, ψ ⇒ χ
(∨L)

Γ, ϕ ∨ ψ ⇒ χ

Γ⇒ ϕi
(∨Ri) (i ∈ {1, 2})

Γ⇒ ϕ1 ∨ ϕ2

Γ, p, ϕ⇒ χ
(p→L)

Γ, p, p→ ϕ⇒ χ

Γ, ϕ⇒ ψ
(→R)

Γ⇒ ϕ→ ψ

�Γ, ϕ⇒ ϕ Φ, Γ, ψ ⇒ χ
( →L)

Φ, Γ, ϕ→ ψ ⇒ χ

�Γ, ϕ⇒ ϕ
(GLR)

Φ, Γ⇒ ϕ

Γ, ϕ→ (ψ → χ)⇒ δ
(∧→L)

Γ, (ϕ ∧ ψ)→ χ⇒ δ

Γ, ϕ→ χ, ψ → χ⇒ δ
(∨→L)

Γ, (ϕ ∨ ψ)→ χ⇒ δ

Γ, ψ → χ⇒ ϕ→ ψ Γ, χ⇒ δ
(→→L)

Γ, (ϕ→ ψ)→ χ⇒ δ

Figure 13.1: The sequent calculus GL4ip. Here, Φ does not contain any (top-level) boxed
formula.

principal formula of that instance is defined as usual. In a rule instance of (p→L), both
a propositional variable instantiating p and the formula instantiating the featured p→ ϕ
are principal formulas of that instance. In a rule instance of (∧→L), (∨→L), (→→L) or
( →L), the formula instantiating respectively (ϕ∧ψ)→ χ, (ϕ∨ψ)→ χ, (ϕ→ ψ)→ χ or
ϕ→ ψ is the principal formula of that instance. Finally, we recall that in a rule instance

of (GLR), the formula ϕ is called the diagonal formula [126].

Example 13.3.1. The following are examples of derivations in GL4ip. Note that while
the first and second examples are derivations, the third is a proof.

p⇒ q → r
⇒ p

(∨R1)
⇒ p ∨ (p→ ⊥)

(IdP)
p, p, p⇒ p

(GLR)
p⇒ p

Example 13.3.2. A special example of a derivation in GL4ip is the following:

ϕ→ ϕ, ( ϕ→ ϕ), ϕ, ϕ, ϕ, ϕ, ϕ⇒ ϕ ( ϕ→ ϕ), ϕ, ϕ, ϕ⇒ ϕ
( →L)

ϕ→ ϕ, ( ϕ→ ϕ), ϕ, ϕ, ϕ⇒ ϕ

The conclusion and left premise are identical modulo formula multiplicities, so the rule
( →L) can be infinitely applied upwards on the left branch. As a consequence, the naive
backward proof-search procedure in GL4ip does not terminate.

Finally, we restrict the additive cut rule, presented in Section 4.2, to sequents with a
single formula in the succedent. In this rule ϕ is called the cut-formula.

Γ⇒ ϕ ϕ,Γ⇒ ψ
(cut)

Γ⇒ ψ

The addition of the rule (cut) to GL4ip, giving us the calculus GL4ip+ (cut), we obtain
a sequent calculus for iGLL [158].

Theorem 13.3.1. For all ϕ ∈ FormLIM
we have: (Γ, ϕ) ∈ iGLL iff there is a finite Γ′ ⊆ Γ

such that Γ′ ⇒ ϕ is provable in GL4ip + (cut)
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13.4 A path to contraction for GL4ip

In a similar way to our formalisation of the calculus GLS, the calculus GL4ip is encoded
with sequents using lists and not multisets. Despite this distance between our formalisation
and the pen-and-paper definition, list-sequents from the former mimic multiset-sequents
from the latter thanks to the way we formalised our rules, as explained in Section 4.2.
Below, exch s se encodes the fact that se is obtained from the sequent s by permuting
two sub-lists in the list representing its antecedent.

Lemma 13.4.1 (Admissibility of exchange). For all Γ0,Γ1,Γ2,Γ3, ϕ, ψ and χ, if we have
that Γ0,Γ1,Γ2,Γ3 ⇒ χ is provable in GL4ip, then so is Γ0,Γ2,Γ1,Γ3 ⇒ χ.

Lemma GL4ip_adm_exch : forall s, (GL4ip_prv s) ->

(forall se, (exch s se) -> (GL4ip_prv se)).

Proof. (Ï) This result is immediate for multiset-sequents. For list-sequents, we refer to
our long formalisation (the file GL4ip exch.v has 5000 lines of code!). �

Given the above lemma, we allow ourselves to consider that the left-hand side of se-
quents is indeed a multiset. The remaining of this section extends the work of Dyckhoff
and Negri [43] on G4ip to the sequent calculus GL4ip. Thus, the proofs they developed are
embedded in our proofs and hence formalised. Most lemmata are proven by straightfor-
ward inductions on the structure of formulas or derivations.

First, we prove that the rule of weakening on the left is height-preserving admissible
in GL4ip.

Lemma 13.4.2 (Height-preserving admissibility of weakening). For all Γ, ϕ and ψ, if
Γ⇒ ψ has a proof p in GL4ip, then Γ, ϕ⇒ ψ has a proof p′ in GL4ip such that h(p′) ≤ h(p).

Proof. (Ï) Let p be a proof of Γ⇒ ψ of height n. We prove by strong induction on n that
there is a proof p′ of Γ, ϕ⇒ ψ such that h(p′) ≤ n. We consider the last rule r applied in
p:

1. r ∈ {(IdP), (⊥L)}: then either p ∈ Γ or ⊥ ∈ Γ. In all cases Γ, ϕ⇒ ψ is an instance
of an initial sequent.

2. r = (∧R): then r is

Γ⇒ ψ0 Γ⇒ ψ1
(∧R)

Γ⇒ ψ0 ∧ ψ1

Then we can apply the induction hypothesis on the premises to get proofs of Γ, ϕ⇒
ψ0 and Γ, ϕ ⇒ ψ1 of height less than or equal to h(p) − 1. We can thus apply the
rule (∧R) to get a proof of Γ, ϕ⇒ ψ0 ∧ ψ1 of height less than or equal to h(p).

3. r = (∧L): then r is

χ0, χ1Γ0 ⇒ ψ
(∧L)

χ0 ∧ χ1Γ0 ⇒ ψ

Then we can apply the induction hypothesis on the premise to get a proof of
χ0, χ1Γ0, ϕ⇒ ψ of height less than or equal to h(p)− 1. We can thus apply the rule
(∧L) to get a proof of χ0 ∧ χ1Γ0, ϕ⇒ ψ of height less than or equal to h(p).

4. r = (∨Ri) for i ∈ {1, 2}: then r is

Γ⇒ ψi
(∨Ri)

Γ⇒ ψ1 ∨ ψ2

https://github.com/ianshil/PhD_thesis/blob/0998dfb48a27889a0abd7e9d9120a8eb3acbb856/Cut_Elim_iGLS/GL4ip_exch.v#L4899
https://github.com/ianshil/PhD_thesis/blob/0998dfb48a27889a0abd7e9d9120a8eb3acbb856/Cut_Elim_iGLS/GL4ip_exch.v
https://github.com/ianshil/PhD_thesis/blob/0998dfb48a27889a0abd7e9d9120a8eb3acbb856/Cut_Elim_iGLS/GL4ip_wkn.v#L487
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Then we can apply the induction hypothesis on the premise to get a proof of Γ, ϕ⇒
ψi of height less than or equal to h(p)− 1. We can thus apply the rule (∨R1) to get
a proof of Γ, ϕ⇒ ψ1 ∨ ψ2 of height less than or equal to h(p).

5. r = (∨L): then r is

χ0,Γ0 ⇒ ψ χ1,Γ0 ⇒ ψ
(∨L)

χ0 ∨ χ1,Γ0 ⇒ ψ

Then we can apply the induction hypothesis on the premises to get proofs of χ0,Γ0, ϕ⇒
ψ and χ0,Γ1, ϕ⇒ ψ of height less than or equal to h(p)− 1. We can thus apply the
rule (∨L) to get a proof of χ0 ∨ χ1,Γ0, ϕ⇒ ψ of height less than or equal to h(p).

6. r = (→R): then r is

ψ0Γ⇒ ψ1
(→R)

Γ⇒ ψ0 → ψ1

Then we can apply the induction hypothesis on the premise to get a proof ψ0,Γ, ϕ⇒
ψ1 of height less than or equal to h(p)− 1. We can thus apply the rule (→R) to get
a proof of Γ, ϕ⇒ ψ0 → ψ1 of height less than or equal to h(p).

7. r = (p→L): then r is

p, χ,Γ0 ⇒ ψ
(p→L)

p, p→ χ,Γ0 ⇒ ψ

Then we can apply the induction hypothesis on the premise to get a proof of
p, χ,Γ0, ϕ ⇒ ψ of height less than or equal to h(p) − 1. We can thus apply the
rule (p→L) to get a proof of p, p→ χ,Γ0, ϕ⇒ ψ of height less than or equal to h(p).

8. r = (∧→L): then r is

χ0 → (χ1 → χ2),Γ0 ⇒ ψ
(∧→L)

(χ0 ∧ χ1)→ χ2,Γ0 ⇒ ψ

Then we can apply the induction hypothesis on the premise to get a proof of χ0 →
(χ1 → χ2),Γ0, ϕ ⇒ ψ of height less than or equal to h(p) − 1. We can thus apply
the rule (∧→L) to get a proof of (χ0 ∧ χ1) → χ2,Γ0, ϕ ⇒ ψ of height less than or
equal to h(p).

9. r = (∨→L): then r is

χ0 → χ2, χ1 → χ2,Γ0 ⇒ ψ
(∨→L)

(χ0 ∨ χ1)→ χ2,Γ0 ⇒ ψ

Then we can apply the induction hypothesis on the premise to get a proof of χ0 →
χ2, χ1 → χ2,Γ0, ϕ⇒ ψ of height less than or equal to h(p)− 1. We can thus apply
the rule (∨→L) to get a proof of (χ0 ∨ χ1) → χ2,Γ0, ϕ ⇒ ψ of height less than or
equal to h(p).

10. r = (→→L): then r is

χ1 → χ2,Γ0 ⇒ χ0 → χ1 χ2,Γ0 ⇒ ψ
(→→L)

(χ0 → χ1)→ χ2,Γ0 ⇒ ψ

Then we can apply the induction hypothesis on the premises to get proofs of χ1 →
χ2,Γ0, ϕ⇒ χ0 → χ1 and χ2,Γ0, ϕ⇒ ψ of height less than or equal to h(p)− 1. We
can thus apply the rule (→→L) to get a proof of (χ0 → χ1) → χ2,Γ0, ϕ ⇒ ψ of
height less than or equal to h(p).
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11. r = ( →L): then r is

�Γ0, χ0 ⇒ χ0 χ1,Φ, Γ0 ⇒ ψ
( →L)

χ0 → χ1,Φ, Γ0 ⇒ ψ

Either ϕ is boxed, i.e. ϕ = ϕ0 for some ϕ0, and then we can first apply the induction
hypothesis twice on the left premise to obtain a proof of ϕ0, ϕ0,�Γ0, χ0 ⇒ χ0

of height less than or equal to h(p)− 1. Second, we apply the induction hypothesis
on the right premise to obtain a proof of χ1,Φ, ϕ0, Γ0 ⇒ ψ of height less than
or equal to h(p) − 1. We can then apply the ( →L) rule to obtain a proof of
χ0 → χ1,Φ, Γ0, ϕ0 ⇒ ψ of height less than or equal to h(p). Or ϕ is not boxed

and then we apply the induction hypothesis on the right premise to obtain a proof
of χ1,Φ, ϕ, Γ0 ⇒ ψ of height less than or equal to h(p) − 1. Then we can apply
( →L) on the initial left premise and the obtained sequent to obtain a proof of
χ0 → χ1,Φ, ϕ, Γ0 ⇒ ψ of height less than or equal to h(p).

12. r = (GLR): then r is

�Γ0, ψ0 ⇒ ψ0
(GLR)

Φ, Γ0 ⇒ ψ0

Either ϕ is boxed, i.e. ϕ = χ for some χ, and then we can apply the induction
hypothesis twice to obtain a proof of χ, χ,�Γ0, ψ0 ⇒ ψ0 of height less than
or equal to h(p) − 1. We can then apply the (GLR) rule to obtain a proof of
Φ, χ,�Γ0 ⇒ ψ0 of height less than or equal to h(p). Or ϕ is not boxed and then
we can apply (GLR) on the premise to obtain a proof of Φ0, Γ0 ⇒ ψ0 of height
h(p), where Φ0 = Φ, ϕ.

�

Second, we show the height-preserving invertibility in GL4ip of a majority of rules.

Lemma 13.4.3 (Height-preserving invertibility of rules). The rules (∧R), (∧L), (∨L),
(→R), (p→L), (∧→L), (∨→L) are height-preserving invertible.

Proof. Each of these height-preserving invertibility results is obtained through a proof by
strong induction on the height of the given derivation, and on an analysis of the last rule
applied. All their proofs require the application of Lemma 13.4.2. Their formalisations
can be found in the following list: (∧R) Ï, (∧L) Ï, (∨L) Ï, (p→L) Ï, (∧→L) Ï, (∨→L)
Ï. We only consider the height-preserving invertibility of (→R) as an example (Ï).

Let p be a proof of Γ ⇒ ϕ → ψ of height n. We prove by strong induction on n that
there is a proof p′ of Γ, ϕ⇒ ψ such that h(p′) ≤ n. We consider the last rule r applied in
p:

1. r ∈ {(IdP), (∧R), (∨R1), (∨R2), (GLR)}: Then we reach a contradiction, as the ap-
plication of these rules implies that the succedent of the sequent Γ ⇒ ϕ → ψ is a
formula other than an implication.

2. r = (⊥L): then either ⊥ ∈ Γ, and as a consequence Γ, ϕ⇒ ψ is an instance of (⊥L).

3. r = (∧L): then r is

χ0, χ1Γ0 ⇒ ϕ→ ψ
(∧L)

χ0 ∧ χ1Γ0 ⇒ ϕ→ ψ

Then we can apply the induction hypothesis on the premise to get a proof of
χ0, χ1Γ0, ϕ⇒ ψ of height less than or equal to h(p)− 1. We can thus apply the rule
(∧L) to get a proof of χ0 ∧ χ1Γ0, ϕ⇒ ψ of height less than or equal to h(p).

https://github.com/ianshil/PhD_thesis/blob/0998dfb48a27889a0abd7e9d9120a8eb3acbb856/Cut_Elim_iGLS/GL4ip_inv_AndR_AndL.v#L22
https://github.com/ianshil/PhD_thesis/blob/0998dfb48a27889a0abd7e9d9120a8eb3acbb856/Cut_Elim_iGLS/GL4ip_inv_AndR_AndL.v#L22
https://github.com/ianshil/PhD_thesis/blob/0998dfb48a27889a0abd7e9d9120a8eb3acbb856/Cut_Elim_iGLS/GL4ip_inv_OrL.v#L22
https://github.com/ianshil/PhD_thesis/blob/0998dfb48a27889a0abd7e9d9120a8eb3acbb856/Cut_Elim_iGLS/GL4ip_inv_AtomImpL.v#L512
https://github.com/ianshil/PhD_thesis/blob/0998dfb48a27889a0abd7e9d9120a8eb3acbb856/Cut_Elim_iGLS/GL4ip_inv_AndImpL.v#L22
https://github.com/ianshil/PhD_thesis/blob/0998dfb48a27889a0abd7e9d9120a8eb3acbb856/Cut_Elim_iGLS/GL4ip_inv_OrImpL.v#L22
https://github.com/ianshil/PhD_thesis/blob/0998dfb48a27889a0abd7e9d9120a8eb3acbb856/Cut_Elim_iGLS/GL4ip_inv_ImpR.v#L22
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4. r = (∨L): then r is

χ0,Γ0 ⇒ ϕ→ ψ χ1,Γ0 ⇒ ϕ→ ψ
(∨L)

χ0 ∨ χ1,Γ0 ⇒ ϕ→ ψ

Then we can apply the induction hypothesis on the premises to get proofs of the
sequents χ0,Γ0, ϕ ⇒ ψ and χ0,Γ1, ϕ ⇒ ψ of height less than or equal to h(p) − 1.
We can thus apply the rule (∨L) to get a proof of χ0 ∨ χ1,Γ0, ϕ ⇒ ψ of height less
than or equal to h(p).

5. r = (→R): then r is

ϕ,Γ⇒ ψ
(→R)

Γ⇒ ϕ→ ψ

Then we directly have a proof of Γ, ϕ⇒ ψ of height h(p)− 1.

6. r = (p→L): then r is

p, χ,Γ0 ⇒ ϕ→ ψ
(p→L)

p, p→ χ,Γ0 ⇒ ϕ→ ψ

Then we can apply the induction hypothesis on the premise to get a proof of
p, χ,Γ0, ϕ ⇒ ψ of height less than or equal to h(p) − 1. We can thus apply the
rule (p→L) to get a proof of p, p→ χ,Γ0, ϕ⇒ ψ of height less than or equal to h(p).

7. r = (∧→L): then r is

χ0 → (χ1 → χ2),Γ0 ⇒ ϕ→ ψ
(∧→L)

(χ0 ∧ χ1)→ χ2,Γ0 ⇒ ϕ→ ψ

Then we can apply the induction hypothesis on the premise to get a proof of χ0 →
(χ1 → χ2),Γ0, ϕ ⇒ ψ of height less than or equal to h(p) − 1. We can thus apply
the rule (∧→L) to get a proof of (χ0 ∧ χ1) → χ2,Γ0, ϕ ⇒ ψ of height less than or
equal to h(p).

8. r = (∨→L): then r is

χ0 → χ2, χ1 → χ2,Γ0 ⇒ ϕ→ ψ
(∨→L)

(χ0 ∨ χ1)→ χ2,Γ0 ⇒ ϕ→ ψ

Then we can apply the induction hypothesis on the premise to get a proof of χ0 →
χ2, χ1 → χ2,Γ0, ϕ⇒ ψ of height less than or equal to h(p)− 1. We can thus apply
the rule (∨→L) to get a proof of (χ0 ∨ χ1) → χ2,Γ0, ϕ ⇒ ψ of height less than or
equal to h(p).

9. r = (→→L): then r is

χ1 → χ2,Γ0 ⇒ χ0 → χ1 χ2,Γ0 ⇒ ϕ→ ψ
(→→L)

(χ0 → χ1)→ χ2,Γ0 ⇒ ϕ→ ψ

Then we can first apply the induction hypothesis on the right premise to get a
proof of χ2,Γ0, ϕ ⇒ ψ of height less than or equal to h(p) − 1. Second, we apply
Lemma 13.4.2 on the left premise to obtain a proof of χ1 → χ2,Γ0, ϕ⇒ χ0 → χ1 of
height less than or equal to h(p) − 1. We can thus apply the rule (→→L) to get a
proof of (χ0 → χ1)→ χ2,Γ0, ϕ⇒ ψ of height less than or equal to h(p).

10. r = ( →L): then r is
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�Γ0, χ0 ⇒ χ0 χ1,Φ, Γ0 ⇒ ϕ→ ψ
( →L)

χ0 → χ1,Φ, Γ0 ⇒ ϕ→ ψ

First, we apply the induction hypothesis on the right premise to get a proof of
χ1,Φ, Γ0, ϕ⇒ ψ of height less than or equal to h(p)−1. Now, we need to distinguish
two cases. If ϕ is boxed, i.e. ϕ = ϕ0 for some ϕ0, then we apply Lemma 13.4.2
twice on the left premise to obtain a proof of ϕ0, ϕ0,�Γ0, χ0 ⇒ χ0 of height less
than or equal to h(p)− 1. We can then apply the ( →L) rule to obtain a proof of
χ0 → χ1,Φ, Γ0, ϕ0 ⇒ ψ of height less than or equal to h(p). Or ϕ is not boxed

and then we can straightforwardly apply ( →L) on the initial left premise and the
obtained sequent χ1,Φ, Γ0, ϕ ⇒ ψ to obtain a proof of χ0 → χ1,Φ, ϕ, Γ0 ⇒ ψ
of height less than or equal to h(p).

�

Third, we prove that all identities, i.e. sequents of the shape ϕ,Γ⇒ ϕ for any formula ϕ,
are provable in GL4ip. Note that the equivalent to this lemma for GLS, i.e. Lemma 12.5.2,
could be proved first in Section 12.5. Here, we needed to prove preliminary lemmas.

Lemma 13.4.4. For all Γ and ϕ, the sequent ϕ,Γ⇒ ϕ has a proof.

Proof. (Ï) Let ϕ be a formula and n ∈ N be such that weight(ϕ) = n. We prove by
strong induction on n that for Γ we have that the sequent ϕ,Γ ⇒ ϕ has a proof. We
consider the structure of ϕ.

1. ϕ := p: We immediately get a proof of p,Γ⇒ p through the rule (IdP).

2. ϕ := ⊥: A proof of ⊥,Γ⇒ ⊥ is directly obtained using the (⊥L).

3. ϕ := ψ∧χ: Given that weight(ψ) < weight(ψ∧χ) and weight(χ) < weight(ψ∧χ),
by induction hypothesis we get a proof of both ψ, χ,Γ ⇒ ψ and ψ, χ,Γ ⇒ χ. So,
using these proofs we build the following:

ψ, χ,Γ⇒ ψ ψ, χ,Γ⇒ χ

ψ, χ,Γ⇒ ψ ∧ χ
(∧R)

ψ ∧ χ,Γ⇒ ψ ∧ χ
(∧L)

4. ϕ := ψ∨χ: Given that weight(ψ) < weight(ψ∨χ) and weight(χ) < weight(ψ∨χ),
by induction hypothesis we get a proof of both ψΓ ⇒ ψ and χ,Γ ⇒ χ. So, using
these proofs we build the following:

ψ,Γ⇒ ψ

ψ,Γ⇒ ψ ∨ χ
(∨R1)

χ,Γ⇒ χ

χ,Γ⇒ ψ ∨ χ
(∨R2)

ψ ∨ χ,Γ⇒ ψ ∨ χ
(∨L)

5. ϕ := ψ → χ: Consider the following.

ψ,ψ → χ,Γ⇒ χ

ψ → χ,Γ⇒ ψ → χ
(→R)

Thus, if we find a proof of ψ,ψ → χ,Γ ⇒ χ we are done. To obtain such a proof,
we consider the structure of ψ.

(a) ψ := p: Then we need to give a proof of p, p → χ,Γ ⇒ χ. Given that
weight(χ) < weight(p→ χ), by induction hypothesis we get a proof of p, χ,Γ⇒
χ. So, using this proof we build the following:

p, χ,Γ⇒ χ

p, p→ χ,Γ⇒ χ
(p→L)

https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/GL4ip_Id.v#L151
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(b) ψ := ⊥: Then we need to give a proof of ⊥,⊥ → χ,Γ⇒ χ. This is immediately
obtained through an application of (⊥L).

(c) ψ := ψ0 ∧ ψ1: Then we need to give a proof of ψ0 ∧ ψ1, (ψ0 ∧ ψ1)→ χ,Γ⇒ χ.
Now, note that weight(ψ0 → (ψ1 → χ)) < weight((ψ0 ∧ ψ1)→ χ). This is the
case as ∧ adds 2 to the weight of a formula while → adds only 1. This justifies
the following equations, founding our inequality.

weight(ψ0 → (ψ1 → χ)) = weight(ψ0) + weight(ψ1) + weight(χ) + 2

weight((ψ0 ∧ ψ1)→ χ) = weight(ψ0) + weight(ψ1) + weight(χ) + 3

Consequently, by induction hypothesis we get a proof of ψ0 → (ψ1 → χ),Γ ⇒
ψ0 → (ψ1 → χ). We can thus apply Lemma 13.4.3, more precisely the invertibil-
ity of the rule (→R), twice to obtain a proof of ψ0, ψ1, ψ0 → (ψ1 → χ),Γ⇒ χ.
Then, using this proof we build the following:

ψ0, ψ1, ψ0 → (ψ1 → χ),Γ⇒ χ

ψ0, ψ1, (ψ0 ∧ ψ1)→ χ,Γ⇒ χ
(∧→L)

ψ0 ∧ ψ1, (ψ0 ∧ ψ1)→ χ,Γ⇒ χ
(∧L)

(d) ψ := ψ0 ∨ ψ1: Then we need to give a proof of ψ0 ∨ ψ1, (ψ0 ∨ ψ1)→ χ,Γ⇒ χ.
Given that weight(ψ0 → χ) < weight((ψ0 ∨ ψ1) → χ) and weight(ψ1 → χ) <
weight((ψ0∨ψ1)→ χ), by induction hypothesis we get proofs of ψ0 → χ, ψ1 →
χ,Γ ⇒ ψ0 → χ and ψ1 → χ, ψ1 → χ,Γ ⇒ ψ1 → χ. We can thus apply
Lemma 13.4.3, more precisely the invertibility of the rule (→R), once on each
proof to obtain proofs of ψ0, ψ0 → χ, ψ1 → χ,Γ ⇒ χ and ψ1, ψ0 → χ, ψ1 →
χ,Γ⇒ χ. Then, using this proof we build the following:

ψ0, ψ0 → χ, ψ1 → χ,Γ⇒ χ

ψ0, (ψ0 ∨ ψ1)→ χ,Γ⇒ χ
(∧→L)

ψ1, ψ0 → χ, ψ1 → χ,Γ⇒ χ

ψ1, (ψ0 ∨ ψ1)→ χ,Γ⇒ χ
(∧→L)

ψ0 ∨ ψ1, (ψ0 ∨ ψ1)→ χ,Γ⇒ χ
(∧L)

(e) ψ := ψ0 → ψ1: Then we need to give a proof of ψ0 → ψ1, (ψ0 → ψ1) →
χ,Γ ⇒ χ. Given that weight(ψ0 → ψ1) < weight((ψ0 → ψ1) → χ) and
weight(χ) < weight((ψ0 → ψ1)→ χ), by induction hypothesis we get proofs of
ψ0 → ψ1, ψ1 → χ,Γ⇒ ψ0 → ψ1 and ψ0 → ψ1, χ,Γ⇒ χ. So, using these proofs
we build the following:

ψ0 → ψ1, ψ1 → χ,Γ⇒ ψ0 → ψ1 ψ0 → ψ1, χ,Γ⇒ χ

ψ0 → ψ1, (ψ0 → ψ1)→ χ,Γ⇒ χ
(→→L)

(f) ψ := ψ0: Then we need to give a proof of ψ0, ψ0 → χ,Γ⇒ χ. Given that
weight(ψ0) < weight( ψ0 → χ) and weight(χ) < weight( ψ0 → χ), by induc-
tion hypothesis we get proofs of ψ0, ψ0, ψ0,�Γ0 ⇒ ψ0 and ψ0, χ, Γ0,Γ1 ⇒
χ where Γ = Γ0,Γ1. So, using these proofs we build the following:

ψ0, ψ0, ψ0,�Γ0 ⇒ ψ0 ψ0, χ, Γ0,Γ1 ⇒ χ

ψ0, ψ0 → χ, Γ0,Γ1 ⇒ χ
( →L)

6. ϕ := ψ: We need to give a proof of ψ,Γ ⇒ ψ. To do so, we first divide Γ into
its subset of boxed formulas Γ0 and its set of remaining formulas Γ1. Note that
each set can be empty. By induction hypothesis, we have a proof of the sequent
ψ, ψ,Γ0, Γ0, ψ ⇒ ψ, as ψ appears on both side of this sequent and weight(ψ) <
weight( ψ). Thus, we use this proof to build the following.

ψ, ψ,Γ0, Γ0, ψ ⇒ ψ

ψ, Γ0,Γ1 ⇒ ψ
(GLR)
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�

Fourth, we can show that the height-preserving invertibility of the rules (→→L) and
( →L) holds for the right premise:

Lemma 13.4.5 (Height-preserving right-invertibility of rules). For all Γ, ϕ, ψ, δ and χ:

(i) If Γ, (ϕ→ ψ)→ δ ⇒ χ has a proof p in GL4ip, then Γ, δ ⇒ χ has a proof p′ in GL4ip
such that h(p′) ≤ h(p).

(ii) If Γ, ϕ→ ψ ⇒ χ has a proof p in GL4ip, then Γ, ψ ⇒ χ has a proof p′ in GL4ip such
that h(p′) ≤ h(p).

Proof. Both of these height-preserving right-invertibility results are obtained through a
proof by strong induction on the height of the given derivation, and on an analysis of the
last rule applied. Their proofs require the application of Lemma 13.4.2. We only consider
the height-preserving right-invertibility of ( →L) as an example (Ï), and refer to our
formalisation for item (i) (Ï).

Let p be a proof of Γ, ϕ → ψ ⇒ χ of height n. We prove by strong induction on
n that there is a proof p′ of Γ, ψ ⇒ χ such that h(p′) ≤ n. We consider the last rule r
applied in p:

1. r ∈ {(IdP), (⊥L)}: then either p ∈ Γ or ⊥ ∈ Γ. In all cases Γ, ψ ⇒ χ is an instance
of an initial sequent.

2. r = (∧R): then r is

Γ, ϕ→ ψ ⇒ χ0 Γ, ϕ→ ψ ⇒ χ1
(∧R)

Γ, ϕ→ ψ ⇒ χ0 ∧ χ1

Then we can apply the induction hypothesis on the premises to get proofs of Γ, ψ ⇒
χ0 and Γ, ψ ⇒ χ1 of height less than or equal to h(p) − 1. We can thus apply the
rule (∧R) to get a proof of Γ, ψ ⇒ χ0 ∧ χ1 of height less than or equal to h(p).

3. r = (∧L): then r is

γ0, γ1,Γ0, ϕ→ ψ ⇒ χ
(∧L)

γ0 ∧ γ1,Γ0, ϕ→ ψ ⇒ χ

Then we can apply the induction hypothesis on the premise to get a proof of
γ0, γ1,Γ0, ψ ⇒ χ of height less than or equal to h(p)−1. We can thus apply the rule
(∧L) to get a proof of γ0 ∧ γ1,Γ0, ψ ⇒ χ of height less than or equal to h(p).

4. r = (∨Ri) for i ∈ {1, 2}: then r is

Γ, ϕ→ ψ ⇒ χi
(∨Ri)

Γ, ϕ→ ψ ⇒ χ1 ∨ χ2

Then we can apply the induction hypothesis on the premise to get a proof of Γ, ψ ⇒
χi of height less than or equal to h(p)− 1. We can thus apply the rule (∨Ri) to get
a proof of Γ, ψ ⇒ χ1 ∨ χ2 of height less than or equal to h(p).

5. r = (∨L): then r is

γ0,Γ0, ϕ→ ψ ⇒ χ γ1,Γ0, ϕ→ ψ ⇒ χ
(∨L)

γ0 ∨ γ1,Γ0, ϕ→ ψ ⇒ χ

Then we can apply the induction hypothesis on the premises to get proofs of γ0,Γ0, ψ ⇒
χ and γ1,Γ0, ψ ⇒ χ of height less than or equal to h(p)− 1. We can thus apply the
rule (∨L) to get a proof of γ0 ∨ γ1,Γ0, ψ ⇒ χ of height less than or equal to h(p).

https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/GL4ip_inv_BoxImpL_R.v#L22
https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/GL4ip_inv_ImpImpL_R.v#L22
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6. r = (→R): then r is

χ0,Γ, ϕ→ ψ ⇒ χ1
(→R)

Γ, ϕ→ ψ ⇒ χ0 → χ1

Then we can apply the induction hypothesis on the premise to get a proof χ0,Γ, ψ ⇒
χ1 of height less than or equal to h(p)− 1. We can thus apply the rule (→R) to get
a proof of Γ, ψ ⇒ χ0 → χ1 of height less than or equal to h(p).

7. r = (p→L): then r is

p, γ,Γ0, ϕ→ ψ ⇒ χ
(p→L)

p, p→ γ,Γ0, ϕ→ ψ ⇒ χ

Then we can apply the induction hypothesis on the premise to get a proof of
p, γ,Γ0, ψ ⇒ χ of height less than or equal to h(p) − 1. We can thus apply the
rule (p→L) to get a proof of p, p→ γ,Γ0, ψ ⇒ χ of height less than or equal to h(p).

8. r = (∧→L): then r is

γ0 → (γ1 → γ2),Γ0, ϕ→ ψ ⇒ χ
(∧→L)

(γ0 ∧ γ1)→ γ2,Γ0, ϕ→ ψ ⇒ χ

Then we can apply the induction hypothesis on the premise to get a proof of γ0 →
(γ1 → γ2),Γ0, ψ ⇒ χ of height less than or equal to h(p)− 1. We can thus apply the
rule (∧→L) to get a proof of (γ0 ∧ γ1)→ γ2,Γ0, ψ ⇒ χ of height less than or equal
to h(p).

9. r = (∨→L): then r is

γ0 → γ2, γ1 → γ2,Γ0, ϕ→ ψ ⇒ χ
(∨→L)

(γ0 ∨ γ1)→ γ2,Γ0, ϕ→ ψ ⇒ χ

Then we can apply the induction hypothesis on the premise to get a proof of γ0 →
γ2, γ1 → γ2,Γ0, ψ ⇒ χ of height less than or equal to h(p) − 1. We can thus apply
the rule (∨→L) to get a proof of (γ0 ∨ γ1) → γ2,Γ0, ψ ⇒ χ of height less than or
equal to h(p).

10. r = (→→L): then r is

γ1 → γ2,Γ0, ϕ→ ψ ⇒ γ0 → γ1 γ2,Γ0, ϕ→ ψ ⇒ χ
(→→L)

(γ0 → γ1)→ γ2,Γ0, ϕ→ ψ ⇒ χ

Then we can apply the induction hypothesis on the premises to get proofs of γ1 →
γ2,Γ0, ψ ⇒ γ0 → γ1 and γ2,Γ0, ψ ⇒ χ of height less than or equal to h(p)− 1. We
can thus apply the rule (→→L) to get a proof of (γ0 → γ1) → γ2,Γ0, ψ ⇒ χ of
height less than or equal to h(p).

11. r = ( →L): Then we consider two cases. If ϕ → ψ is principal in the rule
application, then r is

�Γ0, ϕ⇒ ϕ ψ,Φ, Γ0 ⇒ χ
( →L)

Φ, Γ0, ϕ→ ψ ⇒ χ

In this case, we are given a proof of ψ,Φ, Γ0 ⇒ χ of height less than or equal to
h(p)− 1, so we are done. If ϕ→ ψ is not principal in the rule application, then r
is
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�Γ0, γ0 ⇒ γ0 γ1,Φ, Γ0, ϕ→ ψ ⇒ χ
( →L)

Φ, γ0 → γ1, Γ0, ϕ→ ψ ⇒ χ

In this case, we apply the induction hypothesis on the right premise to obtain a
proof of γ1,Φ, Γ0, ψ ⇒ χ of height less than or equal to h(p) − 1. Note that
( →L) is not necessarily applicable on �Γ0, γ0 ⇒ γ0 and γ1,Φ, Γ0, ψ ⇒ χ,
as if ψ is boxed it needs to appear in the first premise. If ψ is not boxed, we
can apply ( →L) on the two mentioned sequents to obtain a proof of Φ, γ0 →
γ1, Γ0, ψ ⇒ χ of height less than or equal to h(p). If ψ is boxed, i.e. ψ = ψ0,
then we apply twice Lemma 13.4.2 on the proof of �Γ0, ϕ ⇒ ϕ to obtain a proof
of ψ0, ψ0 � Γ0, ϕ⇒ ϕ of height less than or equal to h(p)− 1. Consequently, we
apply ( →L) onψ0, ψ0 � Γ0, ϕ ⇒ ϕ and γ1,Φ, Γ0, ψ0 ⇒ χ to obtain a proof
of Φ, γ0 → γ1, Γ0, ψ0 ⇒ χ of height less than or equal to h(p).

12. r = (GLR): then r is

�Γ0, χ0 ⇒ χ0
(GLR)

Φ, Γ0, ϕ→ ψ ⇒ χ0

Either ψ is boxed, i.e. ψ = ψ0, and then we can apply the induction hypothesis
twice to obtain a proof of ψ0, ψ0,�Γ0, χ0 ⇒ χ0 of height less than or equal to
h(p)− 1. We can then apply the (GLR) rule to obtain a proof of Φ, ψ,�Γ0 ⇒ χ0

of height less than or equal to h(p). Or ψ is not boxed and then we can apply (GLR)
on the premise to obtain a proof of Φ0, Γ0 ⇒ χ0 of height h(p), where Φ0 = Φ, ψ.

�

Fifth, we need to show that the usual left-implication rule is admissible. This lemma
will allow us to prove Lemma 13.4.7, pertaining to the rule (→→L), which is key for the
admissibility of contraction.

Lemma 13.4.6. The rule (→L) is admissible in GL4ip:

Γ⇒ ϕ Γ, ψ ⇒ χ
(→L)

Γ, ϕ→ ψ ⇒ χ

Proof. (Ï) We prove by strong induction on n that for all Γ,∆ ⊆ FormLIM
and ϕ,ψ, χ ∈

FormLIM
, if we have a proof of Γ⇒ ϕ of height n and a proof of Γ, ψ ⇒ χ, then we have

a proof of Γ, ϕ → ψ ⇒ χ. Let p be a proof of a sequent Γ ⇒ ϕ of height n, and p′ a
proof of a sequent Γ, ψ ⇒ χ. We need to show that there is a proof of Γ, ϕ→ ψ ⇒ χ. We
consider the last rule r applied in p:

1. r = (IdP): then Γ ⇒ ϕ is of the form p,Γ0 ⇒ p. As a consequence, Γ, ϕ → ψ ⇒ χ
is of the form p,Γ0, p→ ψ ⇒ χ. Furthermore, we have a proof of Γ, ψ ⇒ χ which is
of the form p,Γ0, ψ ⇒ χ. Then consider the following proof.

p,Γ0, ψ ⇒ χ
(p→L)

p,Γ0, p→ ψ ⇒ χ

2. r = (⊥L): then ⊥ ∈ Γ, hence Γ, ϕ→ ψ ⇒ χ is an instance of (⊥L).

3. r = (∧R): then r is

Γ⇒ ϕ0 Γ⇒ ϕ1
(∧R)

Γ⇒ ϕ0 ∧ ϕ1

Then we can apply the induction hypothesis using the proofs of Γ⇒ ϕ1 and Γ, ψ ⇒ χ
to get a proof of Γ, ϕ1 → ψ ⇒ χ. In turn, we apply the induction hypothesis using
Γ ⇒ ϕ0 and Γ, ϕ1 → ψ ⇒ χ to obtain a proof of Γ, ϕ0 → (ϕ1 → ψ) ⇒ χ. Then
consider the following.

https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/GL4ip_ImpL_adm.v#L29
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Γ, ϕ0 → (ϕ1 → ψ)⇒ χ
(∧R)

Γ, (ϕ0 ∧ ϕ1)→ ψ ⇒ χ

4. r = (∧L): then r is

γ0, γ1Γ0 ⇒ ϕ
(∧L)

γ0 ∧ γ1Γ0 ⇒ ϕ

We apply the invertibility of the rule (∧L) proved in Lemma 13.4.3 to the proof of
γ0∧γ1Γ0, ψ ⇒ χ to get a proof of γ0, γ1Γ0, ψ ⇒ χ. Then we can apply the induction
hypothesis using the proofs of γ0, γ1Γ0 ⇒ ϕ and γ0, γ1Γ0, ψ ⇒ χ to get a proof of
γ0, γ1Γ0, ϕ → ψ ⇒ χ. Thus it suffices to apply the rule (∧L) to get a proof of
γ0 ∧ γ1Γ0, ϕ→ ψ ⇒ χ.

5. r = (∨Ri) for i ∈ {1, 2}: then r is

Γ⇒ ϕi
(∨Ri)

Γ⇒ ϕ1 ∨ ϕ2

Then we can apply the induction hypothesis using the proofs of Γ⇒ ϕi and Γ, ψ ⇒ χ
to get a proof of Γ, ϕi → ψ ⇒ χ. We use this proof with Lemma 13.4.2 to get a
proof of Γ, ϕ0 → ψ,ϕ1 → ψ ⇒ χ. Then consider the following.

Γ, ϕ0 → ψ,ϕ1 → ψ ⇒ χ
(∧R)

Γ, (ϕ0 ∨ ϕ1)→ ψ ⇒ χ

6. r = (∨L): then r is

γ0,Γ0 ⇒ ϕ γ1,Γ0 ⇒ ϕ
(∨L)

γ0 ∨ γ1,Γ0 ⇒ ϕ

Note that the sequent Γ, ψ ⇒ χ has the form γ0 ∨ γ1,Γ0, ψ ⇒ χ. We use the in-
vertibility of (∨L) from Lemma 13.4.3 on the given proof of the latter to obtain
proofs of γ0,Γ0, ψ ⇒ χ and γ1,Γ0, ψ ⇒ χ. Then, we apply the induction hypoth-
esis on the above premises and the proof of the last two sequents to get proofs of
γ0,Γ0, ϕ→ ψ ⇒ χ and γ1,Γ0, ϕ→ ψ ⇒ χ. We can thus apply the rule (∨L) to get
a proof of γ0 ∨ γ1,Γ0, ϕ→ ψ ⇒ χ.

7. r = (→R): then r is

ϕ0,Γ⇒ ϕ1
(→R)

Γ⇒ ϕ0 → ϕ1

Note that the sequent Γ, ϕψ ⇒ χ has the form Γ, (ϕ0 → ϕ1) → ψ ⇒ χ. Consider
the following semi-proof.

ϕ0,Γ⇒ ϕ1
Lem. 13.4.2

ϕ0,Γ, ϕ1 → ψ ⇒ ϕ1
(→R)

Γ, ϕ1 → ψ ⇒ ϕ0 → ϕ1 Γ, ψ ⇒ χ
(→→L)

Γ, (ϕ0 → ϕ1)→ ψ ⇒ χ

8. r = (p→L): then r is

p, γ,Γ0 ⇒ ϕ
(p→L)

p, p→ γ,Γ0 ⇒ ϕ
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Note that Γ, ψ ⇒ χ is of the form p, p → γ,Γ0, ψ ⇒ χ. We use the invertibility
of (p→L) on the proof of the latter to obtain a proof of p, γ,Γ0, ψ ⇒ χ. Then
we apply the induction hypothesis on the proof of premise above and the proof of
p, γ,Γ0, ψ ⇒ χ to get a proof of p, γ,Γ0, ϕ → ψ ⇒ χ. An application of the rule
(p→L) gives a proof of p, p→ γ,Γ0, ϕ→ ψ ⇒ χ.

9. r = (∧→L): then r is

γ0 → (γ1 → γ2),Γ0 ⇒ ϕ
(∧→L)

(γ0 ∧ γ1)→ γ2,Γ0 ⇒ ϕ

Note that Γ, ψ ⇒ χ is of the form (γ0∧γ1)→ γ2,Γ0, ψ ⇒ χ. We use the invertibility
of (∧→L) on the proof of the latter to obtain a proof of γ0 → (γ1 → γ2),Γ0, ψ ⇒ χ.
Then we can apply the induction hypothesis on the premise and the latter sequent
to get a proof of γ0 → (γ1 → γ2),Γ0, ϕ → ψ ⇒ χ. We can thus apply the rule
(∧→L) to get a proof of (γ0 ∧ γ1)→ γ2,Γ0, ϕ→ ψ ⇒ χ.

10. r = (∨→L): then r is

γ0 → γ2, γ1 → γ2,Γ0 ⇒ ϕ
(∨→L)

(γ0 ∨ γ1)→ γ2,Γ0 ⇒ ϕ

Note that Γ, ψ ⇒ χ is of the form (γ0∨γ1)→ γ2,Γ0, ψ ⇒ χ. We use the invertibility
of (∨→L) on the proof of the latter to obtain a proof of γ0 → γ2, γ1 → γ2,Γ0, ψ ⇒ χ.
Then we can apply the induction hypothesis on the premise and the latter sequent
to get a proof of γ0 → γ2, γ1 → γ2,Γ0, ϕ → ψ ⇒ χ. We can thus apply the rule
(∧→L) to get a proof of (γ0 ∨ γ1)→ γ2,Γ0, ϕ→ ψ ⇒ χ.

11. r = (→→L): then r is

γ1 → γ2,Γ0 ⇒ γ0 → γ1 γ2,Γ0 ⇒ ϕ
(→→L)

(γ0 → γ1)→ γ2,Γ0 ⇒ ϕ

Note that Γ, ψ ⇒ χ is of the form (γ0 → γ1) → γ2,Γ0, ψ ⇒ χ. We use the right-
invertibility of (→→L) from Lemma 13.4.5 on the proof of the latter to obtain a
proof of γ2,Γ0, ψ ⇒ χ. Then we can apply the induction hypothesis on the right
premise above and the proof of the latter sequent to get a proof of γ2,Γ0, ϕ→ ψ ⇒ χ.
Consider the following semi-proof.

γ1 → γ2,Γ0 ⇒ γ0 → γ1
Lem. 13.4.2

γ1 → γ2,Γ0, ϕ→ ψ ⇒ γ0 → γ1 γ2,Γ0, ϕ→ ψ ⇒ χ
(→→L)

(γ0 → γ1)→ γ2,Γ0, ϕ→ ψ ⇒ χ

12. r = ( →L): Then r is

�Γ0, γ0 ⇒ γ0 γ1,Φ, Γ0 ⇒ ϕ
( →L)

Φ, γ0 → γ1, Γ0 ⇒ ϕ

Note that Γ, ψ ⇒ χ is of the form Φ, γ0 → γ1, Γ0, ψ ⇒ χ. We use the right-
invertibility of ( →L) from Lemma 13.4.5 on the proof of the latter to obtain a
proof of Φ, γ1, Γ0, ψ ⇒ χ. Then we can apply the induction hypothesis on the right
premise above and the proof of the latter sequent to get a proof of Φ, γ1, Γ0, ϕ →
ψ ⇒ χ. Consider the following.

�Γ0, γ0 ⇒ γ0 Φ, γ1, Γ0, ϕ→ ψ ⇒ χ
( →L)

Φ, γ0 → γ1, Γ0, ϕ→ ψ ⇒ χ
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13. r = (GLR): then r is

�Γ0, ϕ0 ⇒ ϕ0
(GLR)

Φ, Γ0 ⇒ ϕ0

Note that Γ, ψ ⇒ χ is of the form Φ, Γ0, ψ ⇒ χ. Consider the following.

�Γ0, ϕ0 ⇒ ϕ0 Φ, Γ0, ψ ⇒ χ
( →L)

Φ, Γ0, ϕ0 → ψ ⇒ χ

�

With the above lemma, we can prove a crucial result to prove that contraction is
admissible.

Lemma 13.4.7. For all Γ, ϕ, ψ, δ and χ, if Γ, (ϕ → ψ) → δ ⇒ χ is provable in GL4ip,
then Γ, ϕ, ψ → δ, ψ → δ ⇒ χ is provable in GL4ip.

Proof. (Ï) We prove by strong induction on n that for all Γ,∆ ⊆ FormLIM
and ϕ,ψ, δ, χ ∈

FormLIM
, if we have a proof of Γ, (ϕ→ ψ)→ δ ⇒ χ of height n then we have a proof of

Γ, ϕ, ψ → δ, ψ → δ ⇒ χ. Let p be a proof of a sequent Γ, (ϕ→ ψ)→ δ ⇒ χ of height n,.
We need to show that there is a proof of Γ, ϕ, ψ → δ, ψ → δ ⇒ χ. We consider the last
rule r applied in p:

1. r = (IdP): then Γ, (ϕ → ψ) → δ ⇒ χ is of the form p,Γ0, (ϕ → ψ) → δ ⇒ p. As
a consequence, Γ, ϕ, ψ → δ, ψ → δ ⇒ χ is of the form p,Γ0, ϕ, ψ → δ, ψ → δ ⇒ p,
which is an obvious instance of (IdP).

2. r = (⊥L): then ⊥ ∈ Γ, hence Γ, ϕ, ψ → δ, ψ → δ ⇒ χ is an instance of (⊥L).

3. r = (∧R): then r is

Γ, (ϕ→ ψ)→ δ ⇒ χ0 Γ, (ϕ→ ψ)→ δ ⇒ χ1
(∧R)

Γ, (ϕ→ ψ)→ δ ⇒ χ0 ∧ χ1

Then we can apply the induction hypothesis on both premises to get proofs of
Γ, ϕ, ψ → δ, ψ → δ ⇒ χ0 and Γ, ϕ, ψ → δ, ψ → δ ⇒ χ1. Then an application
of (∧R) gives us a proof of Γ, ϕ, ψ → δ, ψ → δ ⇒ χ0 ∧ χ1.

4. r = (∧L): then r is

γ0, γ1,Γ0, (ϕ→ ψ)→ δ ⇒ χ
(∧L)

γ0 ∧ γ1,Γ0, (ϕ→ ψ)→ δ ⇒ χ

Then we can apply the induction hypothesis on the premise to get a proof of
γ0, γ1,Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ. Then an application of (∧L) gives us a proof
of γ0 ∧ γ1,Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ.

5. r = (∨Ri) for i ∈ {1, 2}: then r is

Γ, (ϕ→ ψ)→ δ ⇒ χi
(∨Ri)

Γ, (ϕ→ ψ)→ δ ⇒ χ1 ∨ χ2

Then we can apply the induction hypothesis on the premise to get a proof of
Γ, ϕ, ψ → δ, ψ → δ ⇒ χi. An application of (∨Ri) gives us a proof of Γ, ϕ, ψ →
δ, ψ → δ ⇒ χ1 ∨ χ2.

6. r = (∨L): then r is

https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/GL4ip_inv_ImpImpL_L.v#L25
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γ0,Γ0, (ϕ→ ψ)→ δ ⇒ χ γ1,Γ0, (ϕ→ ψ)→ δ ⇒ χ
(∨L)

γ0 ∨ γ1,Γ0, (ϕ→ ψ)→ δ ⇒ χ

Then we can apply the induction hypothesis on both premises to get proofs of
γ0,Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ and γ1,Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ. An application
of (∨L) gives us a proof of γ0 ∨ γ2,Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ.

7. r = (→R): then r is

χ0,Γ, (ϕ→ ψ)→ δ ⇒ χ1
(→R)

Γ, (ϕ→ ψ)→ δ ⇒ χ0 → χ1

Then we can apply the induction hypothesis on the premise to get a proof of
χ0,Γ, ϕ, ψ → δ, ψ → δ ⇒ χ1. An application of (→R) gives us a proof of Γ, ϕ, ψ →
δ, ψ → δ ⇒ χ0 → χ1.

8. r = (p→L): then r is

p, γ,Γ0, (ϕ→ ψ)→ δ ⇒ χ
(p→L)

p, p→ γ,Γ0, (ϕ→ ψ)→ δ ⇒ χ

Then we can apply the induction hypothesis on the premise to get a proof of
p, γ,Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ. An application of (p→L) gives us a proof of
p, p→ γ,Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ.

9. r = (∧→L): then r is

γ0 → (γ1 → γ2),Γ0, (ϕ→ ψ)→ δ ⇒ χ
(∧→L)

(γ0 ∧ γ1)→ γ2,Γ0, (ϕ→ ψ)→ δ ⇒ χ

Then we can apply the induction hypothesis on the premise to get a proof of γ0 →
(γ1 → γ2),Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ. An application of (∧→L) gives us a proof of
(γ0 ∧ γ1)→ γ2,Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ.

10. r = (∨→L): then r is

γ0 → γ2, γ1 → γ2,Γ0, (ϕ→ ψ)→ δ ⇒ χ
(∨→L)

(γ0 ∨ γ1)→ γ2,Γ0, (ϕ→ ψ)→ δ ⇒ χ

Then we can apply the induction hypothesis on the premise to get a proof of γ0 →
γ2, γ1 → γ2,Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ. An application of (∨→L) gives us a proof of
(γ0 ∨ γ1)→ γ2,Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ.

11. r = (→→L): then we consider two cases. If (ϕ→ ψ)→ δ is principal in r, then the
latter is:

ψ → δ,Γ⇒ ϕ→ ψ δ,Γ⇒ χ
(→→L)

Γ, (ϕ→ ψ)→ δ ⇒ χ

In this case we apply the invertibility of (→R) from Lemma 13.4.3 on the left premise
to obtain a proof of ϕ,ψ → δ,Γ⇒ ψ. Then we use Lemma 13.4.2 twice on the right
premise to obtain a proof of ϕ,ψ → δ, δ,Γ ⇒ χ. Consider the following use of the
admissibility of the rule (→L).

ϕ,ψ → δ,Γ⇒ ψ ϕ,ψ → δ, δ,Γ⇒ χ
Lem. 13.4.6

ϕ,ψ → δ, ψ → δ,Γ⇒ χ

If (ϕ→ ψ)→ δ is not principal in r, then the latter is:
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γ1 → γ2,Γ0, (ϕ→ ψ)→ δ ⇒ γ0 → γ1 γ2,Γ0, (ϕ→ ψ)→ δ ⇒ χ
(→→L)

(γ0 → γ1)→ γ2,Γ0, (ϕ→ ψ)→ δ ⇒ χ

Then we can apply the induction hypothesis on the premises to get proofs of γ1 →
γ2,Γ0, ϕ, ψ → δ, ψ → δ ⇒ γ0 → γ1 and γ2,Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ. An application
of (→→L) gives us a proof of (γ0 → γ1)→ γ2,Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ.

12. r = ( →L): Then r is

�Γ0, γ0 ⇒ γ0 γ1,Φ, Γ0, (ϕ→ ψ)→ δ ⇒ χ
( →L)

Φ, γ0 → γ1, Γ0, (ϕ→ ψ)→ δ ⇒ χ

Then we can apply the induction hypothesis on the right premise to obtain a proof of
γ1,Φ, Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ. There are two cases to consider. If ϕ is boxed,
i.e. ϕ = ϕ0, then we use Lemma 13.4.2 on the left premise to obtain a proof of
ϕ0, ϕ0,�Γ0, γ0 ⇒ γ0. In this case, consider the following.

ϕ0, ϕ0,�Γ0, γ0 ⇒ γ0 γ1,Φ, Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ
( →L)

Φ, γ0 → γ1, Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ

If ϕ is not boxed, then consider the following.

�Γ0, γ0 ⇒ γ0 γ1,Φ, Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ
( →L)

Φ, γ0 → γ1, Γ0, ϕ, ψ → δ, ψ → δ ⇒ χ

13. r = (GLR): then r is

�Γ0, χ0 ⇒ χ0
(GLR)

Φ, Γ0, (ϕ→ ψ)→ δ ⇒ χ0

There are two cases to consider. If ϕ is boxed, i.e. ϕ = ϕ0, then we use Lemma 13.4.2
on the premise to obtain a proof of ϕ0, ϕ0,�Γ0, γ0 ⇒ γ0. In this case, a straight-
forward application of (GLR) gives us Φ, Γ0, ϕ0, ψ → δ, ψ → δ ⇒ χ0. If ϕ is
not boxed, then we simply apply (GLR) on the premise to obtain Φ, Γ0, ϕ, ψ →
δ, ψ → δ ⇒ χ0.

�

The building of the series of lemmas we proved in this section has one purpose: proving
the admissibility of contraction in GL4ip. We finally turn to this result.

Lemma 13.4.8 (Admissibility of contraction). For all Γ, ϕ and χ, if ϕ,ϕ,Γ ⇒ χ is
provable in GL4ip then ϕ,Γ⇒ χ is provable in GL4ip.

Proof. (Ï) We reason by two strong inductions: first on the weight of the contracted
formula ϕ (PIH), and second on the height of the proof p of ϕ,ϕ,Γ ⇒ χ (SIH). We need
to show that there is a proof of ϕ,Γ⇒ χ. We consider the last rule r applied in p:

1. r = (IdP): then either ϕ = p or p ∈ Γ. In both cases, ϕ,Γ ⇒ χ is an instance of
(IdP).

2. r = (⊥L): then either ϕ = ⊥ or ⊥ ∈ Γ., hence ϕ,Γ⇒ χ is an instance of (⊥L).

3. r = (∧R): then r is

ϕ,ϕ,Γ⇒ χ0 ϕ,ϕ,Γ⇒ χ1
(∧R)

ϕ,ϕ,Γ⇒ χ0 ∧ χ1

https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/GL4ip_ctr.v#L1342
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Then we can apply the induction hypothesis SIH on both premises to get proofs of
ϕ,Γ ⇒ χ0 and ϕ,Γ ⇒ χ1. Then an application of (∧R) gives us a proof of ϕ,Γ ⇒
χ0 ∧ χ1.

4. r = (∧L): then there are two cases. If ϕ is principal in r, then the latter is

ϕ0, ϕ1, ϕ0 ∧ ϕ1,Γ⇒ χ
(∧L)

ϕ0 ∧ ϕ1, ϕ0 ∧ ϕ1,Γ⇒ χ

We use the invertibility of (∧L) from Lemma 13.4.3 to obtain a proof of ϕ0, ϕ1, ϕ0, ϕ1,Γ⇒
χ. Then we can use PIH twice on the proof of the latter to obtain a proof of
ϕ0, ϕ1,Γ⇒ χ. A simple application of (∧L) gives us a proof of ϕ0 ∧ϕ1,Γ⇒ χ. If ϕ
is not principal in r, then the latter is

ϕ,ϕ, γ0, γ1,Γ0 ⇒ χ
(∧L)

ϕ,ϕ, γ0 ∧ γ1,Γ0 ⇒ χ

Then we can use SIH on the proof of the premise to obtain a proof of ϕ, γ0, γ1,Γ0 ⇒ χ.
A simple application of (∧L) gives us a proof of ϕ, γ0 ∧ γ1,Γ0 ⇒ χ.

5. r = (∨Ri) for i ∈ {1, 2}: then r is

ϕ,ϕ,Γ⇒ χi
(∨Ri)

ϕ,ϕ,Γ⇒ χ1 ∨ χ2

Then we can apply the induction hypothesis SIH on the premise to get a proof of
ϕ,Γ⇒ χi. An application of (∨Ri) gives us a proof of ϕ,Γ⇒ χ1 ∨ χ2.

6. r = (∨L): then there are two cases. If ϕ is principal in r, then the latter is

ϕ0, ϕ0 ∨ ϕ1,Γ⇒ χ ϕ1, ϕ0 ∨ ϕ1,Γ⇒ χ
(∨L)

ϕ0 ∨ ϕ1, ϕ0 ∨ ϕ1,Γ⇒ χ

We use the invertibility of (∨L) from Lemma 13.4.3 to obtain proofs of ϕ0, ϕ0,Γ⇒ χ
and ϕ1, ϕ1,Γ ⇒ χ. Then we can use PIH twice on each of these proofs to obtain
proofs of ϕ0,Γ⇒ χ and ϕ1,Γ⇒ χ. A simple application of (∨L) gives us a proof of
ϕ0 ∨ ϕ1,Γ⇒ χ. If ϕ is not principal in r, then the latter is

ϕ,ϕ, γ0,Γ0 ⇒ χ ϕ,ϕ, γ1,Γ0 ⇒ χ
(∨L)

ϕ,ϕ, γ0 ∨ γ1,Γ0 ⇒ χ

Then we can use SIH on the proof of each premise to obtain proofs of ϕ, γ0,Γ0 ⇒ χ
and ϕ, γ1,Γ0 ⇒ χ. A simple application of (∨L) gives us a proof of ϕ, γ0∨γ1,Γ0 ⇒ χ.

7. r = (→R): then r is

χ0, ϕ, ϕ,Γ⇒ χ1
(→R)

ϕ,ϕ,Γ⇒ χ0 → χ1

Then we can apply the induction hypothesis SIH on the premise to get a proof of
χ0, ϕ,Γ⇒ χ1. An application of (→R) gives us a proof of ϕ,Γ⇒ χ0 → χ1.

8. r = (p→L): then there are three cases. If ϕ is principal in r and ϕ = p, then the
latter is

p, p, γ,Γ0 ⇒ χ
(p→L)

p, p, p→ γ,Γ0 ⇒ χ
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Then we can use SIH on the proof of the premise to obtain a proof of p, γ,Γ0 ⇒ χ.
A simple application of (p→L) gives us a proof of p, p→ γ,Γ0 ⇒ χ. If ϕ is principal
in r and ϕ = p→ ϕ0, then the latter is

ϕ0, p→ ϕ0, p,Γ0 ⇒ χ
(p→L)

p→ ϕ0, p→ ϕ0, p,Γ0 ⇒ χ

We use the invertibility of (p→L) from Lemma 13.4.3 to obtain a proof of ϕ0, ϕ0, p,Γ0 ⇒
χ. Then we can use PIH on the proof of the latter to obtain a proof of ϕ0, p,Γ0 ⇒ χ.
A simple application of (p→L) gives us a proof of p → ϕ0, p,Γ0 ⇒ χ. If ϕ is not
principal in r, then the latter is

ϕ,ϕ, p, γ,Γ0 ⇒ χ
(p→L)

ϕ,ϕ, p, p→ γ,Γ0 ⇒ χ

Then we can use SIH on the proof of the premise to obtain a proof of ϕ, p, γ,Γ0 ⇒ χ.
A simple application of (p→L) gives us a proof of ϕ, p, p→ γ,Γ0 ⇒ χ.

9. r = (∧→L): then there are two cases. If ϕ is principal in r, then the latter is

ϕ0 → (ϕ1 → ϕ2), (ϕ0 ∧ ϕ1)→ ϕ2,Γ⇒ χ
(∧→L)

(ϕ0 ∧ ϕ1)→ ϕ2, (ϕ0 ∧ ϕ1)→ ϕ2,Γ⇒ χ

We use the invertibility of (∧→L) from Lemma 13.4.3 to obtain a proof of ϕ0 →
(ϕ1 → ϕ2), ϕ0 → (ϕ1 → ϕ2),Γ ⇒ χ. Now, note that weight(ϕ0 → (ϕ1 → ϕ2)) <
weight((ϕ0 ∧ϕ1)→ ϕ2). So, we can use PIH on the proof of ϕ0 → (ϕ1 → ϕ2), ϕ0 →
(ϕ1 → ϕ2),Γ⇒ χ to obtain a proof of ϕ0 → (ϕ1 → ϕ2),Γ⇒ χ. A simple application
of (∧→L) gives us a proof of (ϕ0 ∧ϕ1)→ ϕ2,Γ⇒ χ. If ϕ is not principal in r, then
the latter is

ϕ,ϕ, γ0 → (γ1 → γ2),Γ0 ⇒ χ
(∧→L)

ϕ,ϕ, (γ0 ∧ γ1)→ γ2,Γ0 ⇒ χ

Then we can use SIH on the proof of the premise to obtain a proof of ϕ, γ0 → (γ1 →
γ2),Γ0 ⇒ χ. A simple application of (∧→L) gives us a proof of ϕ, (γ0 ∧ γ1) →
γ2,Γ0 ⇒ χ.

10. r = (∨→L): then there are two cases. If ϕ is principal in r, then the latter is

ϕ0 → ϕ2, ϕ1 → ϕ2, (ϕ0 ∨ ϕ1)→ ϕ2,Γ⇒ χ
(∧→L)

(ϕ0 ∨ ϕ1)→ ϕ2, (ϕ0 ∨ ϕ1)→ ϕ2,Γ⇒ χ

We use the invertibility of (∨→L) from Lemma 13.4.3 to obtain a proof of ϕ0 →
ϕ2, ϕ1 → ϕ2, ϕ0 → ϕ2, ϕ1 → ϕ2,Γ ⇒ χ. Then we use PIH twice on the proof of
the latter to obtain a proof of ϕ0 → ϕ2, ϕ1 → ϕ2,Γ ⇒ χ. A simple application of
(∨→L) gives us a proof of (ϕ0 ∨ ϕ1) → ϕ2,Γ ⇒ χ. If ϕ is not principal in r, then
the latter is

ϕ,ϕ, γ0 → γ2, γ1 → γ2,Γ0 ⇒ χ
(∧→L)

ϕ,ϕ, (γ0 ∨ γ1)→ γ2,Γ0 ⇒ χ

Then we can use SIH on the proof of the premise to obtain a proof of ϕ, γ0 → γ2, γ1 →
γ2,Γ0 ⇒ χ. A simple application of (∨→L) gives us a proof of ϕ, (γ0∨γ1)→ γ2,Γ0 ⇒
χ.

11. r = (→→L): then there are two cases. If ϕ is principal in r, then the latter is
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ϕ1 → ϕ2, (ϕ0 → ϕ1)→ ϕ2,Γ⇒ ϕ0 → ϕ1 ϕ2, (ϕ0 → ϕ1)→ ϕ2,Γ⇒ χ
(→→L)

(ϕ0 → ϕ1)→ ϕ2, (ϕ0 → ϕ1)→ ϕ2,Γ⇒ χ

First, we use the right-invertibility of (→→L) from Lemma 13.4.5 on the right
premise to obtain a proof of ϕ2, ϕ2,Γ ⇒ χ. An application of PIH on the latter
gives a proof of ϕ2,Γ ⇒ χ. Second, we use the key Lemma 13.4.7 on the right
premise to obtain a proof of ϕ1 → ϕ2, ϕ0, ϕ1 → ϕ2, ϕ1 → ϕ2,Γ ⇒ ϕ0 → ϕ1. Then
we use PIH twice to obtain a proof of ϕ0, ϕ1 → ϕ2,Γ⇒ ϕ0 → ϕ1. The invertibility
of (→R) from Lemma 13.4.3 gives us a proof of ϕ0, ϕ0, ϕ1 → ϕ2,Γ ⇒ ϕ1. Then,
we can use once again PIH to obtain a proof of ϕ0, ϕ1 → ϕ2,Γ ⇒ ϕ1. Finally, an
application of the (→R) gives a proof of ϕ1 → ϕ2,Γ ⇒ ϕ0 → ϕ1. Third, we can
build the following semi-proof.

ϕ1 → ϕ2,Γ⇒ ϕ0 → ϕ1 ϕ2,Γ⇒ χ
(→→L)

(ϕ0 → ϕ1)→ ϕ2,Γ⇒ χ

If ϕ is not principal in r, then the latter is

ϕ,ϕ, γ1 → γ2,Γ0 ⇒ γ0 → γ1 ϕ,ϕ, γ2,Γ0 ⇒ χ
(→→L)

ϕ,ϕ, (γ0 → γ1)→ γ2,Γ0 ⇒ χ

Then we can use SIH on the proof of each premise to obtain proofs of ϕ, γ1 →
γ2,Γ0 ⇒ γ0 → γ1 and ϕ, γ2,Γ0 ⇒ χ. A simple application of (→→L) gives us a
proof of ϕ, (γ0 → γ1)→ γ2,Γ0 ⇒ χ.

12. r = ( →L): then there are two cases. If ϕ is principal in r, then the latter is

�Γ0, ϕ0 ⇒ ϕ0 ϕ1, ϕ0 → ϕ1,Φ,Γ0 ⇒ χ
( →L)

ϕ0 → ϕ1, ϕ0 → ϕ1,Φ,Γ0 ⇒ χ

First, we use the right-invertibility of ( →L) from Lemma 13.4.5 on the right premise
to obtain a proof of ϕ1, ϕ1,Γ⇒ χ. An application of PIH on the latter gives a proof
of ϕ1,Γ⇒ χ. Second, we can build the following semi-proof.

�Γ0, ϕ0 ⇒ ϕ0 ϕ1,Γ⇒ χ
( →L)

ϕ0 → ϕ1,Γ⇒ χ

If ϕ is not principal in r, then there are two subcases to consider. If ϕ is boxed,
i.e. ϕ = ϕ0, then r is

ϕ0, ϕ0, ϕ0, ϕ0,�Γ0, γ0 ⇒ γ0 γ1, ϕ0, ϕ0,Φ, Γ0 ⇒ χ
( →L)

ϕ0, ϕ0,Φ, γ0 → γ1, Γ0 ⇒ χ

First, we use SIH on the proof of the right premise to obtain a proof of the se-
quent γ1, ϕ0,Φ, Γ0 ⇒ χ. Second, we use SIH on the proof of the sequent
ϕ0, ϕ0, ϕ0, ϕ0,�Γ0, γ0 ⇒ γ0 to obtain a proof of ϕ0, ϕ0, ϕ0,�Γ0, γ0 ⇒ γ0.
Third, we use PIH on the latter to obtain a proof of ϕ0, ϕ0,�Γ0, γ0 ⇒ γ0. It
has to be noted that we need to perform the second step before the third, as the
second step is sensitive to the height of the proof consider, which may be lost in an
application of PIH. Finally, we build the following semi-proof.

ϕ0, ϕ0,�Γ0, γ0 ⇒ γ0 γ1, ϕ0,Φ, Γ0 ⇒ χ
( →L)

ϕ0,Φ, γ0 → γ1, Γ0 ⇒ χ

If ϕ is not boxed, then r is

�Γ0, γ0 ⇒ γ0 γ1, ϕ, ϕ,Φ, Γ0 ⇒ χ
( →L)

ϕ,ϕ,Φ, γ0 → γ1, Γ0 ⇒ χ
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Then we can use SIH on the proof of the right premise to obtain a proof of the
sequent γ1, ϕ,Φ, Γ0 ⇒ χ. A simple application of ( →L) gives us a proof of
ϕ, γ0 → γ1,Γ0 ⇒ χ.

13. r = (GLR): then there are two cases to consider. If ϕ is boxed, i.e. ϕ = ϕ0, then
r is

ϕ0, ϕ0, ϕ0, ϕ0,�Γ0, χ0 ⇒ χ0
(GLR)

ϕ0, ϕ0,Φ, Γ0 ⇒ χ0

First, we use SIH on the proof of the premise to obtain a proof of the sequent
ϕ0, ϕ0, ϕ0,�Γ0, χ0 ⇒ χ0. Second, we use PIH on the proof of the latter to obtain
a proof of ϕ0, ϕ0,�Γ0, χ0 ⇒ χ0. Then an application of (GLR) gives us a proof
of ϕ0,Φ, Γ0 ⇒ χ0. If ϕ is not boxed, then r is

�Γ0, γ0 ⇒ γ0
( →L)

ϕ,ϕ,Φ, Γ0 ⇒ χ0

It suffices to adequately apply (GLR) on the premise, i.e. by adding only one of the
ϕ in the conclusion, to obtain a proof of ϕ,Φ, Γ0 ⇒ χ0.

�

We are now in possession of the two main structural properties of GL4ip: weakening and
contraction. While we make use of these properties only in Section 13.6, in the following
we introduce a second calculus PSGL4ip which embodies a terminating non-deterministic
backward proof-search procedure for GL4ip. This will allow us to define the maximum
height of derivations for a sequent with respect to this procedure. Later on, this will
constitute the secondary induction measure in the proof of admissibility of cut.

13.5 PSGL4ip: terminating backward proof-search

In this section, we define the sequent calculus PSGL4ip which embodies a proof-search
procedure on GL4ip. This type of embodiment is explained in Section 4.2. Two results are
targeted here. First, we proceed to show the existence of a derivation of maximal height
in PSGL4ip for each sequent, which allows us to define a measure mhd on sequents used
in our cut-admissibility proof. Second, here again we justify our use of the prefix PS in
PSGL4ip by showing that the latter helps decide the provability of sequents in GL4ip.

The calculus PSGL4ip restricts the rules of GL4ip in the following way.

(Ident) The rule (IdP) is replaced by the identity rule (Id) on formulas of any weight
shown. Note that it is derivable in GL4ip as shown in Lemma 13.4.4.

(Id)
ϕ,Γ⇒ ϕ

(NoInit) The conclusion of no rule is permitted to be an instance of either (Id) or (⊥L).

These restrictions have an identical aim as the one found in the calculus PSGLS:
avoiding repetitions of some sequents in a branch. In particular, with PSGL4ip we try to get
rid of loops as presented in Example 13.3.2. By scrutinizing the latter, one can see that the
identity that can be found in the left premise is an identity on ϕ. So, we need to consider
identities on formulas of all structures in PSGL4ip, on the contrary to PSGLS where we
could focus only on identities on boxed formulas and atoms. This is why the addition of
the rule (Id) is required, and the addition of (IdB) would be insufficient. The restrictions
constituting PSGL4ip differ from the ones constituting PSGLS in another significant way:
here the restriction (NoInit) is imposed on all rules, and not only on (GLR). Why is this
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brutal extension necessary? Simply because identities are not preserved upwards in rule
applications. Concretely, if we were to impose this restriction on the rules (GLR) and
( →L), say, we would indeed avoid the loop presented in Example 13.3.2. However, we
could very easily twist the example by interleaving a rule application at the beginning of
each loop as follows:

(ϕ ∧ ψ)→ (ϕ ∧ ψ), ( (ϕ ∧ ψ)→ (ϕ ∧ ψ)), (ϕ ∧ ψ), (ϕ ∧ ψ), (ϕ ∧ ψ)3 ⇒ (ϕ ∧ ψ) . . .⇒ . . .
( →L)

(ϕ ∧ ψ)→ (ϕ ∧ ψ), ( (ϕ ∧ ψ)→ (ϕ ∧ ψ)),ϕ,ψ, (ϕ ∧ ψ)2 ⇒ (ϕ ∧ ψ)
(∧L)

(ϕ ∧ ψ)→ (ϕ ∧ ψ), ( (ϕ ∧ ψ)→ (ϕ ∧ ψ)), (ϕ ∧ ψ), (ϕ ∧ ψ)2 ⇒ (ϕ ∧ ψ)

By breaking the conjunction (ϕ∧ψ) using (∧L), we make sure that (Id), applicable to the
bottom line on the formulas in bold font, is not anymore on the line right above. So, we
transition upwards from a sequent on which ( →L) is not applicable to one on which the
rule is applicable. If we do not restrict the rule (∧L) in (NoInit) as well, we are thus still
allowing loops.

To sum up, the restrictions (NoInit) and (Ident) disallow all loops and enable us to
consider any sequent violating these conditions as provable. In fact, by showing that no
loop can appear in a branch of a PSGL4ip derivation, we concretely show that the only
type of loop present in GL4ip are loops on provable sequents.

In the remainder of this section, we proceed to show that no loop can exist in PSGL4ip.
We do so by proving that each sequent has a derivation of maximum height in PSGL4ip.
The existence of such derivations is ensured by the strict decreasing of a local measure on
sequents upwards in the rules of PSGL4ip.

13.5.1 A well-founded order on (N× N× listN)

For the PSGLS case we could rely on a well-known well-founded order: the lexicographic
order on natural numbers. Here, we need to build a well-founded order tailored to the mea-
sure we introduce below. This order is essentially a composition of other well-known orders.
More precisely, we define a well-founded order on triples (n,m, l) ∈ (N×N× listN) where
listN is the set of all lists of natural numbers. The formalisation of the well-foundedness of
the various orders presented here is due to Dominique Larchey-Wendling [135], who shared
his work in a thread we started [135] in the historic mailing list on Coq: the coq-club.

A first order we require is the usual order on natural numbers. In the following, we
use < to designate this order. Then, we require and recall the general definition of a
lexicographic order.

Definition 13.5.1 (Lexicographic order). Let (A1, <1), · · ·, (An, <n) be a collection of
sets Ai with respective (strict total) orders <i on these sets. We define the lexicographic

order <
(A1,<1),··· ,(An,<n)
lex as follows. For two n-tuples (a1, · · · , an) and (a′1, · · · , a′n) of the

Cartesian product A1 ×· · ·× An , we write (a1, · · · , an) <
(A1,<1),··· ,(An,<n)
lex (a′1, · · · , a′n) if

there is a 1≤j≤n such that:

1. ap = a′p, for all 1 ≤ p < j

2. aj <j a
′
j

Note that if <i is a well-founded relation for all 1 ≤ i ≤ n, then <
(A1,<1),...,(An,<n)
lex is

also well-founded [104]. If (Ai, <i) = (Aj , <j) for all 1 ≤ i, j ≤ n, then we note (Ai, <i)
n

the sequence (A1, <1), ..., (An, <n).

Now, we define the shortlex order, also called breadth-first [89] or length-lexicographic
order, over lists of natural numbers <<:

Definition 13.5.2 (Shortlex order). The shortlex order over lists of natural numbers,
noted <<, is defined as follows. For two lists l0 and l1 of natural numbers, we say that
l0 << l1 whenever one of the following conditions is satisfied:
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1. length(l0) < length(l1) ;

2. length(l0) = length(l1) = n and l0 <
(N,<)n

lex l1 ;

Intuitively, the shortlex order is ordering lists according to their length and follows the
lexicographic order whenever length does not discriminate. This order is also well-founded
(Ï).

Finally, we define the order <3 on (N × N × listN) as <
(N,<),(N,<),(list(N),<<)
lex . Given

that < and << are well-founded orders, we get that <3 is a well-founded order too (Ï).

13.5.2 A (N× N× listN)-measure on sequents

In what follows we use the term “measure” in an informal way, notably distinct from its
use in measure theory [13, 143]. We proceed to attach to each sequent Γ ⇒ χ a measure
Θ(Γ ⇒ χ) which is a triple (α(Γ ⇒ χ), β(Γ ⇒ χ), η(Γ ⇒ χ)) ∈ (N × N × listN). For
simplicity, in the following paragraphs we consider a fixed sequent Γ ⇒ χ for which we
define the triple and thus erase the mention of the sequent in the measures.

First, we focus on η. As Γ ⇒ χ is built from a finite multiset of formulas, it contains
a formula of maximal weight. Let ϕ be that formula and n = weight(ϕ). We can create
a list of length n such that at each position m in the list (counting from right to left) for
1 ≤ m ≤ n, we find the number of occurrences in Γ ⇒ χ of topmost formulas of weight
m. Such a list gives the count of occurrences in Γ ⇒ χ of formulas of weight n in its
leftmost (i.e. n-th) component, then of occurrences of formulas of weight n− 1 in the next
(i.e. (n− 1)-th) component, and so on until we reach 1. We define η to be this unique list.
For example, η(p ∧ q, p ∨ q ⇒ q → p) is the list [1, 2, 0, 0] because p ∧ q is the maximal
formula of weight 4, and it is the only formula with this weight occurring in the list, while
both p∨ q and q → p are of weight 3. Two things need to be noted about such lists. First,
if no topmost occurrence of a formula is of weight 1 ≤ k ≤ n, then a 0 appears in position
k in the list. This is the case for the weight 2 in the example just given. Second, as in
general no formula is of weight 0 we do not need to dedicate a position for this particular
weight in our list.

Why do we need such a list? With this list, the shortlex order becomes an adequate
substitute to the Dershowitz-Manna order [38] considered in Dyckhoff’s work on G4ip. We
recall this order, given two multisets Γ0 and Γ1, by quoting van der Giessen and Iemhoff
[158]: “Γ0 << Γ1 if and only if Γ0 is the result of replacing one or more formulas in Γ1 by
zero or more formulas of lower degree”. As our use of the symbol << for the shortlex order
suggests, the shortlex order can replace the order given above to order finite multisets of
formulas.

A similar list was independently formalised in Coq by Daniel Schepler in the study
of the calculus G4ip which he, following Dyckhoff, calls LJT [130]. However, he does not
involve this list in a termination argument: instead, he uses it to show the equivalence of
G4ip and the usual natural deduction system for intuitionistic logic.

Second, we turn to β. On the contrary to the measure defined by B́ılková [10] and used
by van der Giessen and Iemhoff, which attributes a natural number to a sequent appearing
in a proof-search tree which depends on the root, we use the local notion of “number of
usable boxes” we defined in Definition 12.6.1. We port it to sequents with a single formula
as succedent.

Definition 13.5.3. We define:

1. the usable boxes ub(Γ⇒ χ) of Γ⇒ χ as:

ub(Γ⇒ χ) := { ϕ | ϕ ∈ Subf(Γ ∪ {χ}) } \ { ϕ | ϕ ∈ Γ}

2. the number of usable boxes β(Γ⇒ χ) of Γ⇒ χ as β(Γ⇒ χ) = Card(ub(Γ⇒ χ)).

https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/DLW_WO_list_nat.v#L106
https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/PSGL4ip_termination_measure.v#L693
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Thus, the notion of usable boxes of Γ ⇒ χ is the set of boxed subformulas of Γ ⇒ χ
minus the topmost boxed formulas in Γ. Intuitively, this notion captures the set of boxed
formulas of a sequent s which might be the diagonal formula of an instance of (GLR) in
a derivation of s in PSGL4ip.

Third, we finally consider α. As Γ is a finite multiset of formulas, the checking of
whether or not Γ⇒ χ is an instance of the rule (Id) or (⊥L) is decidable (Ï). So, we can
constructively define the following test function:

α(Γ⇒ χ) =

{
0 if Γ⇒ χ is an instance of (Id) or (⊥L)

1 otherwise

13.5.3 Every rule of PSGL4ip reduces Θ upwards

We are now in possession of a precisely defined measure on sequents and a well-founded
order on that type of measure. Next, we proceed to prove that the measure Θ decreases
upwards through the rules of PSGL4ip on the <3 ordering.

Lemma 13.5.1. For all sequents s0, s1, ..., sn and for all 1 ≤ i ≤ n, if there is an instance
of a rule r of PSGL4ip of the form below, then Θ(si) <

3 Θ(s0):

s1 . . . sn
s0

r

Proof. (Ï) We reason by case analysis on r:

1. If r is (Id) or (⊥L), then we are done as there is no premise.

2. If r is (∧R), (∧L), (∨R1), (∨R2), (∨L), (→R), (p→L), (∧→L), (∨→L) or (→→L),
then we have that η(s0) << η(s1) and η(s0) << η(s2) (if it exists), as shown by
Dyckhoff and Negri [43]. Obviously, α can only decrease upwards in these rules, as
no rule of PSGL4ip with premises can be applied to an initial sequent. Also, it is not
hard to convince oneself that the number of usable boxes can only decrease in these
rules as the boxed formulas on the left of the sequent are preserved upwards and the
set of boxed subformulas is either stable or loses elements. So we can easily deduce
that Θ decreases on <3 from the conclusion to the premises of these rules.

3. If r is (GLR) then it must have the following form.

�Γ, ψ ⇒ ψ
(GLR)

Φ, Γ⇒ ψ

Clearly, we have the following inclusion.

{ ϕ | ϕ ∈ Subf(�Γ ∪ { ψ} ∪ {ψ})} ⊆ { ϕ | ϕ ∈ Subf(Φ ∪ Γ ∪ { ψ})}

Also, given that we consider a derivation in PSGL4ip, we can note that (Id) is not
applicable on Φ, Γ ⇒ ψ by assumption, hence ψ 6∈ Γ. Consequently, we
get { ϕ | ϕ ∈ Φ ∪ Γ} ⊂ { ϕ | ϕ ∈ �Γ ∪ { ψ}}. An easy set-theoretic
argument leads to ub(�Γ, ψ ⇒ ψ) ⊂ ub(Φ, Γ⇒ ψ). As a consequence we obtain
β(�Γ, ψ ⇒ ψ) < β(Φ, Γ⇒ ψ), hence Θ(�Γ, ψ ⇒ ψ) <3 Θ(Φ, Γ⇒ ψ).

4. If r is ( →L) then it must have the following form.

�Γ, ϕ⇒ ϕ Φ, Γ, ψ ⇒ χ
( →L)

Φ, Γ, ϕ→ ψ ⇒ χ

https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/GL4ip_PSGL4ip_dec.v#L196
https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/PSGL4ip_termination_measure.v#L2451
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For the right premise we can straightforwardly see that both α and β either are stable
or decrease upwards, and that η(Φ, Γ, ψ ⇒ χ) << η(Φ, Γ, ϕ → ψ ⇒ χ). So, we
obtain Θ(Φ, Γ, ψ ⇒ χ) <3 Θ(Φ, Γ, ϕ → ψ ⇒ χ). The case of the left premise
is more complex but can be treated similarly to the (GLR) as follows. Note that
{ δ | δ ∈ Subf(�Γ∪{ ϕ}∪{ϕ})} ⊆ { δ | δ ∈ Subf(Φ∪ Γ∪{ ϕ→ ψ}∪{ψ})}.
We consider two cases.

In the first case, we have that ϕ 6∈ Γ. Then as in (GLR) we obtain { δ | δ ∈
Φ∪ Γ∪{ ϕ→ ψ}} ⊂ { δ | δ ∈ �Γ∪{ ϕ}} and consequently β(�Γ, ϕ⇒ ϕ) <
β(Φ, Γ, ϕ → ψ ⇒ χ). So, regardless of the value of α(�Γ, ϕ ⇒ ϕ), we obtain
Θ(�Γ, ϕ⇒ ϕ) <3 Θ(Φ, ϕ, Γ, ϕ→ ψ ⇒ χ).

In the second case, we have that ϕ ∈ Γ. Then the rule application is of the
following form:

�Γ, ϕ, ϕ, ϕ⇒ ϕ Φ, ϕ, Γ, ψ ⇒ χ
( →L)

Φ, ϕ, Γ, ϕ→ ψ ⇒ χ

Clearly, we get α(�Γ, ϕ, ϕ, ϕ⇒ ϕ) = 0 as it is an instance of an initial sequent,
hence α(�Γ, ϕ, ϕ, ϕ ⇒ ϕ) < α(Φ, ϕ, Γ, ϕ → ψ ⇒ χ). Consequently, we get
Θ(�Γ, ϕ, ϕ, ϕ⇒ ϕ) <3 Θ(Φ, ϕ, Γ, ϕ→ ψ ⇒ χ).

�

Note that contraction and weakening as rules allow Θ to increase upwards. While it is
rather obvious for contraction, this statement for weakening is surprising. The key point
here is to note that weakening allows the deletion of boxed formulas in the antecedent
of sequents, leading to a potential increase in the number of usable boxes β: that is,
weakening may remove some of the boxes that “block” some applications of (GLR) upwards
and so the number of usable boxes increases.

Now, for convenience we define the order on sequents as follows:

s0 s1 if and only if Θ(s0) <3 Θ(s1)

As <3 is a well-founded order, it is obvious that is so as well. As a consequence, we
obtain a strong induction principle following the order (Ï).

Theorem 13.5.1. For any property P on sequents, to prove the statement ∀sP (s) it
is sufficient to show that every sequent s0 satisfies P under the assumption that all its

-predecessors satisfy P .

Theorem less_than3_strong_inductionT:

forall (P : Seq -> Type),

(forall s0 , (forall s1 , ((s1 <3 s0) -> P s1)) -> P s0)

-> forall s, P s.

13.5.4 The existence of a derivation of maximum height

Here, we make use of the order and the strong induction principle which comes with it
to show that each sequent has a derivation of maximal height.

First, we prove that each sequent has a list of premises through rules of PSGL4ip.

Lemma 13.5.2. For all sequent s there is a list Prems(s) such that for all s′, s′ is a
premise of the conclusion s for an instance of a rule r in PSGL4ip iff s′ is in Prems(s).

Proof. (Ï) In essence we proceed as in the proof of Lemma 12.6.2: show that each rule can
be applied backwards on s only in finitely many ways, generating a list. We put together
the list of each rule to obtain our final list. Note that this list is effectively computable,
as shown by formalisation. �

https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/PSGL4ip_termination_measure.v#L723
https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/PSGL4ip_termination.v#L4635
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Second, if we use the strong induction principle of with Lemma 13.5.1 and Lemma 13.5.2,
we can easily prove the existence of a derivation in PSGL4ip of maximum height for all
sequents.

Theorem 13.5.2. Every sequent s has a PSGL4ip derivation of maximum height.

Theorem PSGL4ip_termin :

forall s, existsT2 (DMax: PSGL4ip_drv s), (is_mhd DMax).

Proof. (Ï) We use less_than3_strong_inductionT, the strong induction principle on
from Theorem 13.5.1. As the applicability of the rules of PSGL4ip is decidable (Ï), we

distinguish two cases:
(I) No PSGL4ip rule is applicable to s. Then the derivation of maximum height sought

after is simply the derivation constituted of s solely, which is the only derivation for s.
(II) Some PSGL4ip rule is applicable to s. Either only initial rules are applicable,

in which case the derivation of maximum height sought after is simply the derivation of
height 1 constituted of the application of the applicable initial rule to s. Or, some other
rules than the initial rules are applicable. By Lemma 13.5.2 we can consider the finite
list Prems(s) of all sequents sprem such that there is an application of a PSGL4ip rule r
with s as conclusion of r and sprem as premise of r. By Lemma 13.5.1 we know that every
element s0 in the list Prems(s) is such that sprem s. Consequently, the strong induction
hypothesis allows us to consider the derivation of maximum height of all the sequents in
Prems(s). As Prems(s) is finite, there must be an element smax of Prems(s) such that
its derivation of maximum height is higher than the derivation of maximum height of all
sequents in Prems(s) or of the same height. It thus suffices to pick that smax, use its
derivation of maximum height, and apply the appropriate rule to obtain s as a conclusion:
this is by choice the derivation of maximum height of s. �

Here, DMax is a derivation, the existence of which is guaranteed by the constructive
existential quantifier existsT2. This quantifier not only requires us to construct a witness-
ing term but also to provide a proof that the witness is of the correct type. The function
is_mhd returns the constructive Coq proposition True if and only if its argument, D, is a
derivation of maximum height.

As the previous lemma implies the constructive existence of a derivation d of maximum
height in PSGL4ip for any sequent s, we are entitled to let mhd(s) denote the height of
d. As in Section 12.6, we later use mhd(s) as the secondary induction measure used in
the proof of admissibility of cut. The previous lemma receives a similar interpretation as
Lemma 13.5.2: it shows the termination of the proof-search embodied in PSGL4ip, and
expresses the converse well-foundedness of iGL-frames.

Now we prove the sole result about mhd(s) we effectively use: it decreases upwards in
the rules of PSGL4ip.

Lemma 13.5.3. If r is a rule instance from PSGL4ip with conclusion s0 and s1 as one of
the premises, then mhd(s1) < mhd(s0).

Proof. (Ï) As < and = are decidable relations over natural numbers, we can reason by
contradiction. So, suppose that mhd(s1) ≥ mhd(s0). Let d0 be the derivation of s0 of
maximal height and let d1 be the derivation of s1 of maximal height as guaranteed by
Theorem 13.5.2. If r is a rule instance from PSGL4ip with s1 as one of the premises
and with conclusion s0, then d2 as shown below is a derivation of s0 of height greater
than mhd(s1) + 1:

d1

s1 · · ·
rs0

https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/PSGL4ip_termination.v#L5248
https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/GL4ip_PSGL4ip_dec.v#L679
https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/PSGL4ip_termination.v#L5284
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The maximality of d0 implies that the height of d0 is greater than the height of d2: thus
mhd(s1) + 1 ≤ mhd(s0). As our initial assumption implies that mhd(s1) + 1 > mhd(s0),
we reached a contradiction. �

13.5.5 Justifying the prefix PS

Now that the mhd notion is defined, we show that the PS prefix in PSGL4ip is justified:
we can use the latter to decide the provability of sequents in GL4ip.

First, we prove that a sequent is provable in PSGL4ip if and only if it is provable in
GL4ip.

Proposition 13.5.1. For all Γ and ∆: Γ ⇒ ∆ has a proof in PSGL4ip iff Γ ⇒ ∆ has a
proof in GL4ip.

Proof. (Ï) From left to right it suffices to notice that all rules of PSGL4ip but (Id) are
rules of GL4ip, and that the latter rule is admissible in GL4ip by Lemma 13.4.4. (Ï) From
right to left, we notice that all rules of GL4ip are either rules of PSGL4ip or restricted
in PSGL4ip. However, if the application of any unrestricted rule in GL4ip violates the
conditions imposed in PSGL4ip, we can clearly prove the conclusion of this application via
(Id) or (⊥L). �

If we follow the general description given in Section 12.6, we are left to show that
PSGL4ip can be used to decide the provability of sequents in GL4ip to show that the
former deserves its prefix. This result is obtained through the existence for each sequent
of a derivation of maximum height in PSGL4ip, leading to a decision procedure for the
provability of sequents in PSGL4ip obtained using Lemma 13.5.3.

Theorem 13.5.3. Provability in PSGL4ip is decidable.

Proof. (Ï) We prove the statement by strong induction on the mhd of sequents. So, we
assume that the result holds for all sequent s′ such that mhd(s′) < mhd(s) and proceed
to show that the result holds for s. By Lemma 13.5.2 we can consider the finite list
Prems(s) of all sequents s0 such that there is an application of a PSGL4ip rule r with s as
conclusion of r and s0 as premise of r. By Lemma 13.5.3 we know that any s0 in Prems(s)
is such that mhd(s0) < mhd(s). So, we can apply the induction hypothesis on all of the
sequents in Prems(s). It then suffices to check whether there is a rule r with conclusion
s and premises in Prems(s) and provable, which is doable in finite time as there are only
finitely many rules applicable to s. If there is such a rule and premises, then s is provable.
If not, s is not provable. �

As an immediate corollary, we obtain that the provability of sequents in GL4ip is
decidable.

Corollary 13.5.1. Provability in GL4ip is decidable.

Proof. (Ï) By Proposition 13.5.1, the results holds for GL4ip if and only if it holds for
PSGL4ip. Consequently, Theorem 13.5.3 gives us the desired result. �

So, PSGL4ip embodies a proof-search procedure on GL4ip according to the general
definition given in Section 12.6. Here again, our result is formalised in Type, so we can
extract a program effectively deciding sequents in GL4ip.

In the next section, we use the notion of mhd, obtained through the termination of
PSGL4ip, to establish cut-elimination for GL4ip.

https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/GL4ip_prv_dec.v#L45
https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/GL4ip_prv_dec.v#L97
https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/GL4ip_prv_dec.v#L154
https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/GL4ip_prv_dec.v#L332
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13.6 Cut-elimination for GL4ip

To reach cut-elimination, our main theorem, we first state and prove cut-admissibility in a
purely syntactic way via local proof transformations. More precisely, we proceed to prove
that the additive-cut rule is admissible, as in the GLS case.

Theorem 13.6.1. The additive cut rule is admissible in GL4ip.

Theorem GL4ip_cut_adm : forall ϕ Γ0 Γ1 χ,
(GL4ip_prv (Γ0++Γ1,ϕ) * GL4ip_prv (Γ0++ϕ::Γ1,χ)) ->

GL4ip_prv (Γ0++Γ1,χ).

Proof. (Ï) Let p1 (with last rule r1) and p2 (with last rule r2) be proofs in GL4ip of Γ⇒ ϕ
and ϕ,Γ⇒ χ respectively, as shown below.

p1

r1
Γ⇒ ϕ

p2

r2
ϕ,Γ⇒ χ

It suffices to show that there is a proof in GL4ip of Γ⇒ χ. We reason by strong primary
induction (PI) on the weight of the cut-formula ϕ, giving the primary inductive hypothesis
(PIH). We also use a strong secondary induction (SI) on mhd(s) of the conclusion of a
cut, giving the secondary inductive hypothesis (SIH).

We make a first case distinction: does Γ ⇒ χ violate (NoInit)? If it is the case, then
this sequent is an instance of (Id) or (⊥L). So, we use Lemma 13.4.4 or apply (⊥L) to
obtain a proof of Γ⇒ χ. If Γ⇒ χ satisfies (NoInit), then it is not an instance of (Id) or
(⊥L). In this case we consider r1. In total, there are thirteen cases to consider for r1: one
for each rule in GL4ip. However, we can gather some of the cases together and reduce the
number of cases to eight. We separate them by using Roman numerals.

(I) r1 =(IdP) : then we have that ϕ = p. Consequently, Γ⇒ χ is of the form Γ0, p⇒ χ.
Also, the conclusion of r2 is of the form Γ0, p, p⇒ χ. We can apply the contraction Lemma
13.4.8 to obtain a proof of Γ0, p⇒ χ.

(II) r1 =(⊥L): Then r1 must have the following form.

(⊥L)
Γ0,⊥ ⇒ ϕ

where Γ0,⊥ = Γ. Thus, we have that the sequent Γ⇒ χ is of the form Γ0,⊥ ⇒ χ, and is
an instance of ⊥L. But this is in contradiction with (NoInit). So we are done.

(III) r1 ∈{(∧L), (∨L), (p→L), (∧→L), (∨→L)}: In all these cases, the cut formula
is not principal in r1 so it is preserved in the premise. Given that the rules considered
are invertible, we simply take the conclusion of r2 and use the corresponding invertibility
lemma to destruct the principal formula of r1. Then, we use SIH to cut on ϕ in the
obtained premises, and apply r1 on the conclusion of the cut. As an example, we consider
the case of (∧L), where r1 is of the following form and where Γ0, ψ ∧ δ = Γ:

Γ0, ψ, δ ⇒ ϕ
(∧L)

Γ0, ψ ∧ δ ⇒ ϕ

Thus, we have that the sequents Γ ⇒ χ and ϕ,Γ ⇒ χ are respectively of the form
Γ0, ψ ∧ δ ⇒ χ and ϕ,Γ0, ψ ∧ δ ⇒ χ. Using the invertibility of (∧L), proven in Lemma
13.4.3, on ϕ,Γ0, ψ ∧ δ ⇒ χ we obtain a proof of the sequent ϕ,Γ0, ψ, δ ⇒ χ. Then, we
proceed as follows.

Γ0, ψ, δ ⇒ ϕ ϕ,Γ0, ψ, δ ⇒ χ
SIH

Γ0, ψ, δ ⇒ χ
(∧L)

Γ0, ψ ∧ δ ⇒ χ

https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/GL4ip_additive_cut.v#L1788
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Note that the use of SIH is justified here as the assumption (NoInit) ensures that the last
rule in this proof is effectively an instance of (∧L) in PSGL4ip, hence mhd(Γ0, ψ, δ ⇒ χ) <
mhd(Γ0, ψ ∧ δ ⇒ χ) by Lemma 13.5.3.

(IV) r1 ∈{(∧R), (∨R1), (∨R2)}: In all these cases, the cut formula is principal in r1 so
it is deconstructed in the premise. Given that the corresponding left rules are invertible,
we simply take the conclusion of r2 and use the adequate invertibility lemma to destruct
the cut formula. Then, we use PIH to cut on the obtained subformulas. As an example,
we consider the case of (∨R1), where r1 is of the following form and where ψ ∨ δ = ϕ:

Γ⇒ ψ
(∨R1)

Γ⇒ ψ ∨ δ

Thus, we have that the sequents ϕ,Γ ⇒ χ is of the form ψ ∨ δ,Γ ⇒ χ. Using the
invertibility of (∨L), proven in Lemma 13.4.3, on ψ ∨ δ,Γ ⇒ χ we obtain a proof of the
sequents ψ,Γ⇒ χ and δ,Γ⇒ χ. Then, we proceed as follows.

Γ⇒ ψ ψ,Γ⇒ χ
PIH

Γ⇒ χ

(V) r1 =(→R) : Then r1 has the following form where ϕ = ϕ0 → ϕ1:

ϕ0,Γ⇒ ϕ1
(→R)

Γ⇒ ϕ0 → ϕ1

For the cases where ϕ0 → ϕ1 is principal in r2 and r2 6= ( →L), or where r2 ∈
{(IdP), (⊥L)}, we refer to Dyckhoff and Negri’s proof [43] as the cuts produced in these
cases involve the traditional induction hypothesis PIH. We are left with seven sub-cases.

(V-a) If r2 is (→R) then it must have the following form.

ϕ0 → ϕ1, χ0,Γ⇒ χ1
(→R)

ϕ0 → ϕ1,Γ⇒ χ0 → χ1

where χ0 → χ1 = χ. We can use Lemma 13.4.2 on the proof of Γ ⇒ ϕ0 → ϕ1 to get a
proof of χ0,Γ⇒ ϕ0 → ϕ1. Proceed as follows.

χ0,Γ⇒ ϕ0 → ϕ1 ϕ0 → ϕ1, χ0,Γ⇒ χ1
SIH

χ0,Γ⇒ χ1
(→R)

Γ⇒ χ0 → χ1

Note that the use of SIH is justified here as the last rule in this proof is effectively an
instance of (→R) in PSGL4ip, hence mhd(χ0,Γ ⇒ χ1) < mhd(Γ ⇒ χ0 → χ1) by Lemma
13.5.3.

(V-b) If r2 is (∧R) or (∨Ri), then we simply use cut with the premise(s) of r2 and the
conclusion of r1 using SIH. As an example, we consider the case of (∨R1), where r2 has
the form:

ϕ0 → ϕ1,Γ⇒ χ0
(∨R1)

ϕ0 → ϕ1,Γ⇒ χ0 ∨ χ1

where χ0 ∨ χ1 = χ. Then we proceed as follows:

Γ⇒ ϕ0 → ϕ1 ϕ0 → ϕ1,Γ⇒ χ0
SIH

Γ⇒ χ0
(∨R1)

Γ⇒ χ0 ∨ χ1

(V-c) If r2 is (∧L), (∨L), (p→L), (∨→R) or (∧→R) where the cut formula is not principal
in r2, then we use the inversion lemma for r2 on the conclusion of r1, and then apply cut
using SIH. As an example, we consider the case of (∧→L), where r2 has the form:

ϕ0 → ϕ1, γ0 → (γ1 → γ2),Γ0 ⇒ χ
(∧→L)

ϕ0 → ϕ1, (γ0 ∧ γ1)→ γ2,Γ0 ⇒ χ
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where (γ0∧γ1)→ γ2,Γ0 = Γ. Thus, we have that the sequents Γ⇒ χ and Γ⇒ ϕ0 → ϕ1 are
respectively of the form (γ0 ∧ γ1)→ γ2,Γ0 ⇒ χ and (γ0 ∧ γ1)→ γ2,Γ0 ⇒ ϕ0 → ϕ1. Using
the invertibility of (∧→L), proven in Lemma 13.4.3, on (γ0 ∧ γ1) → γ2,Γ0 ⇒ ϕ0 → ϕ1

we obtain a proof of the sequent γ0 → (γ1 → γ2),Γ0 ⇒ ϕ0 → ϕ1. Then, we proceed as
follows.

γ0 → (γ1 → γ2),Γ0 ⇒ ϕ0 → ϕ1 ϕ0 → ϕ1, γ0 → (γ1 → γ2),Γ0 ⇒ χ
SIH

γ0 → (γ1 → γ2),Γ0 ⇒ χ
(∧→L)

(γ0 ∧ γ1)→ γ2,Γ0 ⇒ χ

(V-d) If r2 is (→→L) where the cut formula is not principal in r2, then it must have the
following form where (γ0 → γ1)→ γ2,Γ0 = Γ.

ϕ0 → ϕ1, γ1 → γ2,Γ0 ⇒ γ0 → γ1 ϕ0 → ϕ1, γ2,Γ0 ⇒ χ
(→→L)

ϕ0 → ϕ1, (γ0 → γ1)→ γ2,Γ0 ⇒ χ

Thus, we have that the sequents Γ ⇒ χ and Γ ⇒ ϕ0 → ϕ1 are respectively of the
form (γ0 → γ1) → γ2,Γ0 ⇒ χ and (γ0 → γ1) → γ2,Γ0 ⇒ ϕ0 → ϕ1. Using the right-
invertibility of (→→L), proven in Lemma 13.4.5, on the latter we obtain a proof of the
sequent γ2,Γ0 ⇒ ϕ0 → ϕ1. Then, we make a case distinction on whether the sequent
γ1 → γ2,Γ0 ⇒ γ0 → γ1 is an instance of (Id) or (⊥L). If it is the case, then we proceed as
follows.

γ1 → γ2,Γ0 ⇒ γ0 → γ1

γ2,Γ0 ⇒ ϕ0 → ϕ1 ϕ0 → ϕ1, γ2,Γ0 ⇒ χ
SIH

γ2,Γ0 ⇒ χ
(→→L)

(γ0 → γ1)→ γ2,Γ0 ⇒ χ

Here the left branch is obviously provable either by invoking Lemma 13.4.4 or by applying
(⊥L). If γ1 → γ2,Γ0 ⇒ γ → γ1 is not an instance of these rules, then consider the following
proof of this sequent, where Lemma 13.4.7 deconstructs the implication (γ0 → γ1) → γ2,
Lemma 13.4.8 contracts γ1 → γ2 and Lemma 13.4.3 is the invertibility of the rule (→R).

(γ0 → γ1)→ γ2,Γ0 ⇒ ϕ0 → ϕ1
Lem.13.4.7

γ0, γ1 → γ2, γ1 → γ2,Γ0 ⇒ ϕ0 → ϕ1
Lem.13.4.8

γ0, γ1 → γ2,Γ0 ⇒ ϕ0 → ϕ1

ϕ0 → ϕ1, γ1 → γ2,Γ0 ⇒ γ0 → γ1
Lem.13.4.3

ϕ0 → ϕ1, γ0, γ1 → γ2,Γ0 ⇒ γ1
SIH

γ0, γ1 → γ2,Γ0 ⇒ γ1
(→R)

γ1 → γ2,Γ0 ⇒ γ0 → γ1

The crucial point here is to see that the use of SIH is justified, i.e. that mhd(γ0, γ1 →
γ2,Γ0 ⇒ γ1) < mhd((γ0 → γ1) → γ2,Γ0 ⇒ χ). This is the case as we made sure that
the rule applications (→→L) and (→R) are both instances of rules of PSGL4ip because
their respective conclusions (γ0 → γ1) → γ2,Γ0 ⇒ χ and γ1 → γ2,Γ0 ⇒ γ0 → γ1 are
not instance of (Id) or (⊥L). So, we get that mhd(γ0, γ1 → γ2,Γ0 ⇒ γ1) < mhd(γ1 →
γ2,Γ0 ⇒ γ0 → γ1) < mhd((γ0 → γ1)→ γ2,Γ0 ⇒ χ) by Lemma 13.5.3 hence mhd(γ0, γ1 →
γ2,Γ0 ⇒ γ1) < mhd((γ0 → γ1)→ γ2,Γ0 ⇒ χ) by transitivity of <. So, we are done. Note
that the created cut could not be justified by usual induction on height, as Lemma 13.4.7
is not height-preserving.
(V-e) If r2 is ( →L) with the cut formula as principal formula, then it must have the
following form, where Φ, Γ0 = Γ and ϕ0 = ϕ2.

�Γ0, ϕ2 ⇒ ϕ2 ϕ1,Φ, Γ0 ⇒ χ
( →L)

ϕ2 → ϕ1,Φ, Γ0 ⇒ χ

Thus, we have that the sequents Γ ⇒ χ and ϕ0,Γ ⇒ ϕ1 are respectively of the form
Φ, Γ0 ⇒ χ and ϕ2,Φ, Γ0 ⇒ ϕ1. Then, we proceed as follows.

�Γ0, ϕ2 ⇒ ϕ2
(GLR)

Γ0 ⇒ ϕ2
Lem.13.4.2

Φ, Γ0 ⇒ ϕ2

ϕ2,Φ, Γ0 ⇒ ϕ1

ϕ1,Φ, Γ0 ⇒ χ
Lem.13.4.2

ϕ1, ϕ2,Φ, Γ0 ⇒ χ
PIH

ϕ2,Φ, Γ0 ⇒ χ
PIH

Φ, Γ0 ⇒ χ

(V-f) If r2 is ( →L) with a principal formula different from the cut formula, then it must
have the following form where γ0 → γ1,Φ, Γ0 = Γ.
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�Γ0, γ0 ⇒ γ0 γ1, ϕ0 → ϕ1,Φ, Γ0 ⇒ χ
( →L)

ϕ0 → ϕ1, γ0 → γ1,Φ, Γ0 ⇒ χ

Thus, we have that Γ ⇒ χ and Γ ⇒ ϕ0 → ϕ1 are respectively of the form γ0 →
γ1,Φ, Γ0 ⇒ χ and γ0 → γ1,Φ, Γ0 ⇒ ϕ0 → ϕ1. Using the right-invertibility of
( →L), proven in Lemma 13.4.5, on γ0 → γ1,Φ, Γ0 ⇒ ϕ0 → ϕ1 we obtain a proof of
γ1,Φ, Γ0 ⇒ ϕ0 → ϕ1. Then, we proceed as follows.

�Γ0, γ0 ⇒ γ0

γ1,Φ, Γ0 ⇒ ϕ0 → ϕ1 γ1, ϕ0 → ϕ1,Φ, Γ0 ⇒ χ
SIH

γ1,Φ, Γ0 ⇒ χ
( →L)

γ0 → γ1,Φ, Γ0 ⇒ χ

Note that the use of SIH is justified here as the assumption (NoInit) ensures that the last
rule in this proof is effectively an instance of ( →L) in PSGL4ip, hence mhd(γ1,Φ, Γ0 ⇒
χ) < mhd( γ0 → γ1,Φ, Γ0 ⇒ χ) by Lemma 13.5.3.

(V-g) If r2 is (GLR) then it must have the following form.

�Γ0, χ0 ⇒ χ0
(GLR)

Φ, ϕ0 → ϕ1, Γ0 ⇒ χ0

where Φ, Γ0 = Γ and χ0 = χ. In that case, note that the sequent Γ⇒ χ is of the form
Φ, Γ0 ⇒ χ0. To obtain a proof of the latter, we apply the rule (GLR) on the premise
of r2 without weakening ψ → δ:

�Γ0, χ0 ⇒ χ0
(GLR)

Φ, Γ0 ⇒ χ0

(VI) r1 =(→→L): Then r1 is as follows, where (γ0 → γ1)→ γ2,Γ0 = Γ.

γ1 → γ2,Γ0 ⇒ γ0 → γ1 γ2,Γ0 ⇒ ϕ
(→→L)

(γ0 → γ1)→ γ2,Γ0 ⇒ ϕ

Thus, we have that the sequents Γ ⇒ χ and ϕ,Γ ⇒ χ are respectively of the form
(γ0 → γ1) → γ2,Γ0 ⇒ χ and ϕ, (γ0 → γ1) → γ2,Γ0 ⇒ χ. Using the right-invertibility of
(→→L), proven in Lemma 13.4.5, on ϕ, (γ0 → γ1)→ γ2,Γ0 ⇒ χ we obtain a proof of the
sequent ϕ, γ2,Γ0 ⇒ χ. Then, we proceed as follows.

γ1 → γ2,Γ0 ⇒ γ0 → γ1

γ2,Γ0 ⇒ ϕ ϕ, γ2,Γ0 ⇒ χ
SIH

γ2,Γ0 ⇒ χ
(→→L)

(γ0 → γ1)→ γ2,Γ0 ⇒ χ

Note that the use of SIH is justified here as the assumption (NoInit) ensures that the last
rule in this proof is effectively an instance of (→→L) in PSGL4ip, hence mhd(γ2,Γ0 ⇒
χ) < mhd((γ0 → γ1)→ γ2,Γ0 ⇒ χ) by Lemma 13.5.3.

(VII) r1 =( →L): We proceed as in (V-f).

(VIII) r1 =(GLR): Then ϕ is the diagonal formula in r1:

�Γ0, ϕ0 ⇒ ϕ0
(GLR)

Φ, Γ0 ⇒ ϕ0

where ϕ = ϕ0 and Φ, Γ0 = Γ. Thus, we have that the sequents Γ ⇒ χ and ϕ,Γ ⇒ χ
are respectively of the form Φ, Γ0 ⇒ χ and ϕ0,Φ, Γ0 ⇒ χ. We now consider r2.

(VIII-a) If r2 is one of (IdP), (⊥L), (∧R), (∧L), (∨R1), (∨R2), (∨L), (→R), (p→L),
(∧→L), (∨→L) and (→→L) then proceed similarly to the cases (I), (II), (III), (IV) and
(VI), where the cut-formula is not principal in the rules considered by using SIH.

(VIII-b) If r2 is ( →L). Then r2 is of the following form and where γ0 → γ1,Φ0 = Φ:

ϕ0, ϕ0,�Γ0, γ0 ⇒ γ0 γ1,Φ0, ϕ0, Γ0 ⇒ χ
( →L)

γ0 → γ1,Φ0, ϕ0, Γ0 ⇒ χ

We proceed as follows.
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p

�Γ0, γ0 ⇒ γ0

�Γ0, ϕ0 ⇒ ϕ0
(GLR)

Γ0 ⇒ ϕ0
Lem.13.4.2

γ1,Φ0, Γ0 ⇒ ϕ0 γ1,Φ0, ϕ0, Γ0 ⇒ χ
SIH

γ1,Φ0, Γ0 ⇒ χ
( →L)

γ0 → γ1,Φ0, Γ0 ⇒ χ

where p is:

�Γ0, ϕ0 ⇒ ϕ0
(GLR)

Γ0 ⇒ ϕ0
Lem.13.4.2

�Γ0, γ0 ⇒ ϕ0

�Γ0, ϕ0 ⇒ ϕ0
Lem.13.4.2

�Γ0, ϕ0, γ0 ⇒ ϕ0 ϕ0, ϕ0,�Γ0, γ0 ⇒ γ0
PIH

�Γ0, ϕ0, γ0 ⇒ γ0
SIH

�Γ0, γ0 ⇒ γ0

Note that both uses of SIH are justified here as the assumption (NoInit) ensures that the
last rule in this proof is effectively an instance of ( →L) in PSGL4ip, hence mhd(�Γ0, γ0 ⇒
γ0) < mhd( γ0 → γ1,Φ0, Γ0 ⇒ χ) and mhd(γ1,Φ0, Γ0 ⇒ χ) < mhd( γ0 → γ1,Φ0, Γ0 ⇒
χ) by Lemma 13.5.3.

(VIII-c) If r2 is (GLR). Then r2 is of the following form where χ0 = χ:

ϕ0, ϕ0,�Γ0, χ0 ⇒ χ0
(GLR)

Φ, ϕ0, Γ0 ⇒ χ0

We proceed as follows where p is taken from the case (VIII-b):

p

�Γ0, χ0 ⇒ χ0
(GLR)

Φ, Γ0 ⇒ χ0

Note that the use of SIH is justified here as the assumption (NoInit) ensures that the last
rule in this proof is effectively an instance of (GLR) in PSGL4ip, hence mhd(�Γ0, χ0 ⇒
χ0) < mhd(Φ, Γ0 ⇒ χ0) by Lemma 13.5.3. �

The above theorem proof-theoretically establishes that cuts are eliminable in the cal-
culus GL4ip extended with (cut). To effectively prove this statement in Coq we explicitly
encode the version of the additive cut rule on sequents with a single formula as succedent
as follows:

(Γ0++Γ1,ϕ) (Γ0++ϕ::Γ1,χ)

(Γ0++Γ1,χ)

With this rule in hand, we can encode the set of rules GL4ip_cut_rules as GL4ip_rules
enhanced with (cut), i.e. the calculus GL4ip+(cut). We can finally turn to the elimination
of additive cuts:

Theorem 13.6.2. The additive cut rule is eliminable from GL4ip + (cut).

Theorem GL4ip_cut_elimination : forall s,

(GL4ip_cut_prv s) -> (GL4ip_prv s).

Proof. (Ï) Let p be the proof in GL4ip + (cut) of the sequent s. We prove the statement
by induction on the structure of p. If the last rule applied is a rule in GL4ip, then it
suffices to apply the induction hypothesis on the premises and then the rule. If the last
rule applied is (cut), then we use the induction hypothesis on both premises and then
Theorem 13.6.1. �

The above theorem shows that given a proof in GL4ip + (cut) of a sequent, i.e.
GL4ip_cut_prv s, we can transform this proof directly to obtain a proof in GL4ip of the
same sequent. Given that this theorem is in fact a constructive function based on elements
defined on Type, we can use the extraction feature of Coq and obtain a cut-eliminating
Haskell program.

https://github.com/ianshil/PhD_thesis/blob/a121992512590aa6df08384cda7ade12ebbfd1fb/Cut_Elim_iGLS/GL4ip_cut_elim.v#L25


222 CHAPTER 13. INTUITIONISTIC PROVABILITY LOGIC

13.7 Conclusion

In this chapter, we ventured down the alley pointed at in the conclusion of Chapter 12:
the range of applicability of the mhd technique. To do so, we introduced GL4ip, a multiset-
based sequent calculus for the logic iGLL based on the terminating calculus G4ip for IL.
We showed that this calculus enjoys the canonical proof-theoretical properties of exchange,
weakening and, after some effort, contraction.

Then, we introduced a second sequent calculus: PSGL4ip. In this calculus each sequent
has a derivation of maximal height, allowing us to define the measure mhd, i.e. the height
of this maximal derivation. We made use of this measure to provide a decision procedure
for the provability of sequents in GL4ip using PSGL4ip, justifying our use of the prefix PS:
PSGL4ip embodies a terminating backward proof-search procedure for GL4ip.

The mhd measure was crucially involved in the proof technique used to obtain cut-
admissibility. More than an alternative proof technique, the use of mhd in the case of
GL4ip is to date the only known pathway to a direct proof of admissibility of cut: as
admitted by van der Giessen and Iemhoff [158], all other available proof techniques fail. A
cut-elimination result for GL4ip was consequently obtained as the proof of cut-admissibility
only relied on steps locally transforming given proofs. From the formalisation of this result,
we extracted a Haskell program that effectively eliminates cuts from cut-containing GL4ip
proofs.

So, in addition to proving termination of proof-search using a local measure, while van
der Giessen and Iemhoff use B́ılková’s non-local measure [10], and formalising on the way
most of Dyckhoff and Negri’s results on G4ip, we consequently addressed van der Giessen
and Iemhoff’s issue by providing a formalised direct proof of additive-cut admissibility for
GL4ip. Crucially, this direct syntactic proof allows to obtain an extractable simple cut-
elimination procedure for GL4ip hardly obtainable from the indirection in van der Giessen
and Iemhoff’s work.



Chapter 14

Afterwords on Provability Logics

As already mentioned, the proof theory of provability logics is extremely intricate. Indeed,
in this context convoluted results such as cut-admissibility are commonly recognized as
harder to obtain, because their proofs are even more intricate and involve non-trivial no-
tions. For example, in the GLS case the proof of cut-admissibility contains a technical case
involving the rule (GLR), which is solved by appealing in a crucial way to the unintuitive
notion of “width” [156].

In this part, we confirmed the hardness of the treatment of provability logics via sequent
calculi. However, we changed and shifted this hardness by using the mhd proof technique
for cut-admissibility, which was recently discovered by Brighton [19].

First, we changed the hardness by replacing the unintuitive notion of “width” with a
more easily graspable notion of “maximal height of derivations”. The latter, shortened to
“mhd”, is defined using a terminating backward proof-search procedure which allows to
exhibit for a given sequent a derivation of maximum height, hence bounding the height
of all the possible derivations of this sequent. As we could see in the cases for wKS (see
Subsection 4.2.1), GLS and GL4ip, reaching the definition of mhd is a non-trivial task:
one has to show the termination of the backward proof-search through a local measure,
and then use computationally heavy arguments to show the existence of a derivation of
maximal height. Thus, the journey to the intuitive notion of maximal height of derivations
is an intricate one, on the contrary to the unintuitive but easily definable notion of width.

Second, we shifted the hardness of the cut-admissibility proof by significantly simpli-
fying the intricate (GLR) cases using the mhd proof technique. As seen above in the
cut-admissibility proofs for wKS, GLS and GL4ip, the novelty of this technique consists
in the binary induction measure it relies on: while the first component is the traditional
“size of the cut formula”, the second is mhd. Thus, as displayed in the proofs, with
this technique we traded a simpler cut-admissibility proof for a harder-to-reach (but more
intuitive) mhd induction measure.

On top of these benefits of clarity and simplicity, the mhd proof technique is interesting
for two reasons.

The first reason is that this technique reverses the usual order of things by making cut-
admissibility rely on the termination of backward proof-search. Indeed, one would usually
prove that cut is admissible and then turn to the design of a proof-search procedure on
the cut-free system and show its termination. This oddity is promising for a general
treatment of cut admissibility via local transformations for calculi with a terminating
backward proof-search.

The second reason is the sensitivity of the proof technique to the type of cut admitted.
More precisely, this technique seems to only apply to additive cuts. To justify a cut through
the secondary induction hypothesis, involving mhd, we need to link the sequent-conclusion
of the initial cut to the sequent-conclusion of the newly created cut by a chain of rule
applications that make mhd decrease upwards. However, we explained that contraction
and weakening can increase mhd upwards. So, in the mhd technique we cannot use
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contraction or weakening in the chain linking the two sequent-conclusion, forbidding us
from considering multiplicative cuts of the form below.

Γ0 ⇒ ϕ Γ1 ⇒ χ

Γ0,Γ1 ⇒ χ

The use of additive cuts allows us to circumvent this difficulty. This sensitivity of the proof
technique is surprising as all three calculi we considered admit weakening and contraction,
making additive and multiplicative cuts equivalent.

All the proof-theoretic results presented in the last two chapters are formalised in Coq.
As such, our work is a contribution to the dynamic field of formalised proof-theory [23,
27, 31, 149, 166] (see Reis’ invited paper [124] for an interesting overview). However,
our results are of a specific kind as they allow for program extraction. Let us recall that
in Subsection 4.2.2, we formalised the results leading to the admissibility of cut for the
sequent calculus wKS in such a way that we could extract a Haskell program, which should
effectively eliminate cuts from proofs in wKS + (cut). For both GLS and GL4ip, we could
formalise our results in a similar way, using Type, and thus obtain for each of these calculi
a cut-elimination Haskell program, using the extraction feature of Coq. While we have
neither tested nor tried to optimize any of these programs, their extraction is a promising
milestone we managed to reach.

As further work, we are planning to tackle three lines of research.
First, we intend to pursue our exploration of the range of applicability of the mhd proof

technique by considering calculi with terminating backward proof-search. Indeed, there
are many sequent calculi for non-classical logics which enjoy terminating backward proof-
search, and often in the intuitionistic case, they are based upon G4ip in some way. So,
could we apply the mhd method to all these calculi? Answering this question would help
in the generation of a general theory of cut-admissibility using the mhd proof technique.

Second, we intend to explore the limitation of the mhd proof technique by trying to
apply it to sequent calculi with cycles. The calculi wKS, GLS, G4ip and GL4ip either
contain no cycles or only contain provable cycles, i.e. cycles going through a provable
sequent. As a consequence, the proof-search on these calculi only needs to get rid of
provable cycles. This is done by imposing restrictions on the application of rules that,
when violated, entail the provability of the sequent under consideration. For example, if
a sequent violates the restrictions of the PSGL4ip calculus, then we know that either it is
an instance of (⊥L) or (Id), which entails its provability. So, for every rule application
of GL4ip we have the crucial case distinction, which we make use of in the admissibility
of cut: either it is an instance of PSGL4ip, which makes mhd decrease, or its conclusion
is obviously provable. A similar situation holds for GLS and PSGLS. Now, if we face a
calculus containing unprovable cycles, such as the standard ones for modal logic K4L or
S4L, then a terminating proof-search on this calculus needs to involve restrictions which,
when violated, do not entail the provability of the sequent violating them. Then, the
case distinction we mentioned above does not give us much when the sequent is violating
the restrictions of the proof-search: its provability is not obvious. The applicability or
adaptation of the mhd proof technique in this situation is still unclear and needs to be
investigated.

Third, we intend to follow D’Abrera, Dawson and Goré [27] by testing and optimizing
the Haskell programs we extracted from our formalisation. This way, we could experi-
mentally determine the complexity of our cut-elimination algorithm, and try to obtain
effectively usable and efficient programs performing cut-elimination.



Conclusion

In this dissertation, we contributed to the establishment of the formalised practice in logic
in two different ways.

First, we provided reusable and adaptable formalisations in Coq of many of the tools
a logician can use daily. Indeed, in Part I we presented general tools and results, which
we instantiated (both in theory and in Coq) with propositional and first-order variants of
the basic modal logic. We started in Chapter 2 by defining syntaxes for propositional and
first-order logics, with the propositional modal and first-order modal language as exam-
ples. Then, we defined what logics are in Chapter 3. To capture logics we gave two main
tools. First, we considered proof systems in Chapter 4. In particular, we considered two
types of proof systems. In Section 4.1 we presented generalized Hilbert calculi, which we
instantiated with the calculi wKH and sKH for the modal logics wKL and sKL. There, we
showed that these calculi were closely related but different, as is well-known, notably be-
cause the deduction theorem holds in wKH but not in sKH. In Section 4.2 we presented
sequent calculi, and gave the sequent calculus wKS for the logic wKL. We proceeded
to obtain a cut-elimination result for wKS using the mhd proof technique. Second, to
capture logics we also presented Kripke semantics in Chapter 5. More precisely, we gave
Kripke semantics for propositional (Section 5.1) and first-order languages (Section 5.2). In
particular, we gave a Kripke semantics for the modal propositional and modal first-order
languages. Finally, we defined in Chapter 6 soundness and completeness. We thus pro-
ceeded to instantiate meta-theoretic proofs of these results between the local (resp. global)
semantic consequence relation for the propositional modal language, and the generalized
Hilbert calculus wKH (resp. sKH). These results notably involved the construction of a
canonical model. It should appear clearly that most of these tools and results, which we
formalised in Coq, are commonly used by logicians.

Second, we confirmed that the formalisation of results in logic does not solely consist
in the formalisation of known results. Indeed, we proved and formalised results that are
at the forefront of the research in bi-intuitionistic and provability logics.

In Part II we showed, both in the propositional and first-order case, that behind what
has been so far considered as a unique bi-intuitionistic logic lie in fact two distinct bi-
intuitionistic logics. This phenomenon is given an account of by using both generalized
Hilbert calculi, and local and global semantic consequences of the Kripke semantics. For
the propositional case in Chapter 8, we could show that the logic wBIL is sound and
complete for the local semantic consequence relation, while the logic sBIL is sound and
complete for the global semantic consequence relation. This clearly showed their differ-
ences. For the first-order case in Chapter 9, we could prove the difference between the
logics FOwBIL and FOsBIL, using the soundness of the former (resp. latter) with the local
(resp. global) semantic consequence relation. However, we did not manage to obtain a
formalised completeness proofs for these logics, as we explained.

Finally, in Part III we obtained formalised cut-elimination results for GLS (Chapter 12)
and GL4ip (Chapter 13), which are sequent calculi for, respectively, the classical provability
logic GLL and the intuitionistic provability logic iGLL. These cut-elimination results
involve a newly discovered proof technique for cut-admissibility called the “mhd proof
technique”, which ultimately relies on the termination of backward proof-search. Thus,
we notably explored the applicability of a new proof technique that reverses the usual
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order of things by first requiring a proof of the termination of the proof-search procedure,
to then obtain a proof of cut-admissibility.
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eines mathematischen Kolloquiums, 4:39–40, 1933.
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Mazurkiewicz and Józef Winkowski, editors, CONCUR ’97: Concurrency Theory,
pages 347–360, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[104] Lawrence C. Paulson. Constructing recursion operators in intuitionistic type theory.
Journal of Symbolic Computation, 2(4):325–355, 1986.

[105] Benjamin C. Pierce, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cătălin
Hriţcu, Sjöberg Vilhelm, and Brent Yorgey. Software Foundations. https://
softwarefoundations.cis.upenn.edu, 2013.
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