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Abstract

This thesis discusses the topic of Boolean algebras. In order to build intuitive

understanding of the topic, research began with the investigation of Boolean algebras in

the area of Abstract Algebra. The content of this initial research used a particular nota-

tion. The ideas of partially ordered sets, lattices, least upper bounds, and greatest lower

bounds were used to define the structure of a Boolean algebra. From this fundamental

understanding, we were able to study atoms, Boolean algebra isomorphisms, and Stone’s

Representation Theorem for finite Boolean algebras. We also verified and proved many

properties involving Boolean algebras and related structures.

We then expanded our study to more thoroughly developed theory. This com-

prehensive theory was more abstract and required the use of a different, more universal,

notation. We continued examining least upper and greatest lower bounds but extended

our knowledge to subalgebras and families of subsets. The notions of cardinality, cellular-

ity, and pairwise disjoint families were investigated, defined, and then used to understand

the Erdös-Tarski Theorem.

Lastly, this study concluded with the investigation of denseness and incompa-

rability as well as normal forms and the completion of Boolean algebras.
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Chapter 1

Introduction

The topic of Boolean algebra is a branch of algebra first introduced by George

Boole that involves mathematical logic. Computations with Boolean algebras involve

the operations of greatest lower bound, least upper bound, and complementation. The

structure of a Boolean algebra develops from a partially ordered set and, subsequently,

from a lattice.

The literature on this subject uses two different types of notation. Because of

this fact, this thesis contains multiple notations to denote a single concept. For example,

∧ and · both denote least upper bound. The varied notation will allow us to understand

all of the necessary definitions and it will also allow the reader to be familiar with the

different notation when reading various articles on the subject.

The motivation to study Boolean algebras comes from an interest in set theory

and mathematical logic, as well as a desire understand some of the mathematics that

apply to the computer design process.
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1.1 Notation

N {0, 1, 2, 3, . . . } — The set of natural numbers
Z {0± 1,±2,±3, . . . } — The set of integers
Z∗ Z \ {0}
Q

{
a
b | a ∈ Z, b ∈ Z

∗} — The set of rational numbers
Q∗ Q \ {0}
R The set of real numbers
R∗ R \ {0}
C

{
a+ bi | a, b ∈ R, i =

√
−1
}

—The set of complex numbers
C∗ C \ {0}
∈ “is an element of”
∪ The union of sets — A ∪B = {x | x ∈ A or x ∈ B}
∩ The intersection of sets — A ∩B = {x | x ∈ A and x ∈ B}
∅ or { } The empty set
⊆ Subset
⊂ Proper subset
gcd(a, d) The greatest common divisor of a and b (a, b ∈ Z)
lcm(a, b) The least common multiple of a and b (a, b ∈ Z)
min(a, b) The minimum or least value of a and b
max(a, b) The maximum or greatest value a and b
a < b a ≤ b and a 6= b
ω The set of all finite ordinals
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1.2 Preliminaries

The following will help provide the necessary background for the content dis-

cussed in this thesis.

Definition 1.1. A set S is a collection of elements. A subset A of a set S is a set in

which all of the elements of A are elements of S. For s ∈ S, the complement of s is all of

S except s, denoted S \ s. A set is considered to be open if its complement is closed and

closed if its complement is open.

Definition 1.2. A number a is congruent modulo n, or mod n, to b if and only if n

divides (b− a). We write a ≡ b (mod n).

Definition 1.3. For a set S, a partition is a collection of nonempty disjoint subsets of S

whose union is the set S.

Definition 1.4. A binary operation on a set G is a function that, for each pair of elements

in G, assigns a single element in G.

Definition 1.5. When a binary operation, denoted ∗ is applied to a nonempty set G,

then G is a group under ∗ if the following properties are true:

(i) For any three elements a, b, c ∈ G, then (a ∗ b) ∗ c = a ∗ (b ∗ c). This is called

the associative property.

(ii) There exists an element e ∈ G such that, for all a ∈ G, a∗e = a and e∗a = a.

The element e is called the identity.

(iii) For each a ∈ G, there exists an inverse of a, denoted a−1, in G such that

a ∗ a−1 = e and a−1 ∗ a = e.

Definition 1.6. The number of elements of a group G is called the order of G and is

denoted | G |.

Definition 1.7. An ordinal number, or ordinal, is the ordering type of a well ordered set.

The cardinal number, or cardinality of a set X, is the least ordinal with which X has a

one-to-one correspondence. The cardinality of X is denoted | X |.

Definition 1.8. A set X is finite if it contains a finite number of elements. A subset A

of X is cofinite in X if X \A is finite. A group G is finite if the order of G, | G |, is finite.
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Definition 1.9. If G is a group and a ∈ G, then the order of a, denoted | a |, is the

smallest number n (where n ∈ Z∗), such that an = e (where e is the identity element of

G). Note: if the operation on G is addition, then | a |= n such that na = e = 0.

Definition 1.10. If A and B are sets, then a map (or function) φ from A to B, denoted

φ : A −→ B, assigns to each element of A exactly one element from B. We use the

notation φ : a 7→ b for a ∈ A, b ∈ B such that φ(a) = b. If φ : A −→ B, then the image of

an element a ∈ A is φ(a) ∈ B, where φ : a 7→ φ(a). Then we call a the preimage of φ(a).

Definition 1.11. A map φ : A −→ B is well defined if it unambiguously assigns one

and only one element of B to each element of A; that is, if x = y, for x, y ∈ A, then

φ(x) = φ(y).

Definition 1.12. A map φ : A −→ B is one to one (or an injection) if whenever a1 6= a2,

then φ(a1) 6= φ(a2). Also, φ : A −→ B is onto (or a surjection) if for every b ∈ B, there

is an element a ∈ A such that φ(a) = b. If φ : A −→ B is one to one and onto, then we

say it is a bijection.

Definition 1.13. If G is a group with operation ∗ and H is a group with operation

†, then the map φ : G −→ H is a group homomorphism if φ(a ∗ b) = φ(a)†φ(b) for all

a, b ∈ G.

Definition 1.14. If φ : G −→ H is a homomorphism and e is the identity element in H,

then the kernel of φ, denoted Kerφ is the set {g ∈ G | φ(g) = e}.

Definition 1.15. A homomorphism φ : G −→ H is an group isomorphism if φ is a

bijection and we say that G and H are isomorphic, denoted G ∼= H.

Definition 1.16. If φ : A −→ B and there exists a map φ−1 : B −→ A such that φ−1 ◦φ
is the identity map on A (that is, φ−1 ◦ φ : A −→ A maps a to φ−1 ◦ φ(a) for all a ∈ A),

and φ ◦ φ−1 is the identity map on B, then φ : A −→ B is said to be invertible. In this

case, φ−1 is the inverse of φ.

Definition 1.17. A topological space is a nonempty set X with a family of subsets, that

are all open sets, such that ∅ and X are open sets, the union of an any number of open

sets is open, and the intersection of a finite amount of open sets is open.
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Definition 1.18. For a topological space X, a cover C of X is a collection of sets Mi,

where i ∈ I, such that X =
⋃
i∈IMi. If Mi are open sets, then C is an open cover. A

subcover of C is a subset of C that is also a cover of X.

Definition 1.19. A topological space X is compact if every open cover of X has a finite

subcover.

Definition 1.20. A topological space X is a Hausdorff space if, for any x, y ∈ X with

x 6= y, there exist open sets M and N , with x ∈M and y ∈ N , such that M ∩N = { }.

Axiom 1.1. Every nonempty set can be well ordered.
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Chapter 2

Partially Ordered Sets and

Lattices

In order to study Boolean algebras, we begin by developing an understanding

of partially ordered sets, followed by lattices. A lattice, equipped with additional charac-

teristics, is the underlying structure of a Boolean algebra.

Definition 2.1. If S is a set and ≤ is a relation on S, then S is a partially ordered set,

denoted 〈S,≤〉, if the following axioms are true for any a, b, c ∈ S:

(i) a ≤ a (reflexivity).

(ii) If a ≤ b and b ≤ a, then a = b (antisymmetry).

(iii) If a ≤ b and b ≤ c, then a ≤ c (transitivity).

Definition 2.2. An element b ∈ 〈S,≤〉 is said to cover an element a ∈ S if a < b and

there is no c ∈ S such that a < c < b.

Definition 2.3. A partially ordered set 〈S,≤〉 that also satisfies a ≤ b or b ≤ a for any

a, b ∈ S (comparability) is called a linearly ordered set or a total order set.

A totally ordered set is well ordred if and only if all of its nonempty subsets

contain a least element.

Example 2.1. The set of integers, Z, is a partially ordered set, where a ≤ b is defined

as a less than or equal to b.

Exercise 2.1. Determine whether the indicated set or relation is an example of a partially

ordered set: the set of integers Z with a ≤ b to mean a | b (a divides b).
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Solution. a | b =⇒ a ∗ m = b for m ∈ Z. Then a ≤ a (reflexivity) since a ∗ m = a,

where m = 1 ∈ Z. Let a ≤ b and b ≤ a for a, b ∈ Z. Then a ∗ m = b and b ∗ n = a

for m,n ∈ Z. So a ∗m = b =⇒ b ∗ n ∗m = b (since a = b ∗ n) =⇒ b ∗ (n ∗m) = b.

Similarly, b ∗ n = a =⇒ a ∗ m ∗ n = a (since b = a ∗ m) =⇒ a ∗ (m ∗ n) = a. So

b∗ (m∗n) = b =⇒ m∗n = b
b = 1 and a∗ (m∗n) = a =⇒ m∗n = a

a = 1. But m,n ∈ Z,

so m = ±1 and n = ±1 since m ∗ n = 1. Then a ∗m = b =⇒ a ∗ (±1) = b =⇒ a = ±b.
Then a 6= b (when a = −b) and antisymmetry does not hold. Therefore, this is not an

example of a partially ordered set.

Exercise 2.2. Determine whether the indicated set or relation is an example of a partially

ordered set: the set of natural numbers N with a ≤ b to mean a | b (a divides b).

Solution. a | b =⇒ a ∗ m = b for m ∈ N. Then a ≤ a (reflexivity) since a ∗ m = a,

where m = 1 ∈ N. Let a ≤ b and b ≤ a for a, b ∈ N. Then a ∗m = b and b ∗ n = a for

m,n ∈ N. So a ∗ m ∗ n = a since b = a ∗ m and b ∗ n ∗ m = b since a = b ∗ n. Then

a ∗ (m ∗ n) = a =⇒ (m ∗ n) = 1 and b ∗ (n ∗m) = b =⇒ n ∗m = 1. Then m = 1 and

n = 1 since m ∗ n = 1 for m,n ∈ N. So a ∗m = b ∗ n (since a ∗m = b and b ∗ n = a) and

a ∗ 1 = b ∗ 1. Then a = b (antisymmetry).

Now, let c ∈ N and a ≤ b and b ≤ c. Then a∗m = b and b∗n = c. So a∗m∗n = c,

but (m ∗ n) ∈ N since the set of natural numbers is closed under multiplication. Then

a ∗ (m ∗ n) = c =⇒ a ≤ c (transitivity). Therefore, the set of natural numbers N with

a ≤ b to mean a divides b is an example of a partially ordered set.

Definition 2.4. For a set A, a subset B of A is cofinal if for every a ∈ A there exists

b ∈ B such that a ≤ b. If A is a partially ordered set, then the smallest of the cardinalities

of the cofinal subsets of A is called the cofinality of A, denoted cf(A).

Definition 2.5. A cardinal number k is regular if and only if k is infinite and the cofinality

of k is k. If k is an infinite cardinal that is not regular, then k is singular.

Definition 2.6. A nonempty set H of a group G is a subgroup of G if H is a subset of

G and it is a group under the same operation as G. It is denoted by H ≤ G.

Definition 2.7. A subgroup H of a group G is maximal if there does not exist a subgroup

J of G such that H < J < G.
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Definition 2.8. If G is a group and a ∈ G, then 〈a〉 = {an | n ∈ Z} is the cyclic subgroup

generated by a. Note: if the operation on G is addition, then 〈a〉 = {na | n ∈ Z}.

Definition 2.9. If H is a subgroup of G and a ∈ G, then the set aH = {ah | h ∈ H} is

a left coset of H in G and the set Ha = {ha | h ∈ H} is a right coset of H in G.

Definition 2.10. A subgroup H of G is a normal subgroup of G if for all a ∈ G, then

aH = Ha; or equivalently, if for all a ∈ G, then aHa−1 = H. We denote H as a normal

subgroup of G by H EG.

Definition 2.11. If H is a normal subgroup of G, then the set of cosets of H in G,

denoted G/H = {aH | a ∈ G} and read “G modulo H”, is a group under the operation

(aH)(bH) = (ab)H and is called the quotient group (or factor group) of G by H.

Exercise 2.3. Determine whether the indicated set or relation is an example of a partially

ordered set: the set of all subgroups of a group G with H ≤ K to mean that H is a normal

subgroup of K, denoted H EK.

Solution. H ≤ H (reflexivity) since for all h ∈ H, then hH = Hh. That is, {hh | h ∈
H} = {hh | h ∈ H}.

Now consider H ≤ K and K ≤ H. If H ≤ K, then H ⊆ K. Similarly, if K ≤ H,

then K ⊆ H. Thererfore H = K (antisymmetry).

For transitivity, we would show that for H ≤ K and K ≤ L, then H ≤ L.

Consider the following sets: L = A4, K = {e, (12)(34), (13)(24), (14)(23)}, and H =

{e, (12)(34)}. Then H ≤ K and K ≤ L. But for h = (12)(34) and l = (123), then H � L

since (14)(23) /∈ H.

Therefore, the set of all subgroups of a group G with H ≤ K to mean that H is

a normal subgroup of K is not an example of a partially ordered set.

Definition 2.12. A group G with operation ∗ is Abelian if, for all a, b ∈ G, a ∗ b = b ∗ a.

This property is called commutativity.

Definition 2.13. A ring is a set R equipped with two operations (∗,+) such that, for

all a, b, c ∈ R, then:

(i) R is an Abelian group under +

(ii) a ∗ b ∈ R (closure)
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(iii) a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity)

(iv) a ∗ (b+ c) = a ∗ b+ a ∗ c and (b+ c) ∗ a = b ∗ a+ c ∗ a (distributivity)

Definition 2.14. A ring R is a commutative ring if, for all a, b ∈ R, then a ∗ b = b ∗ a.

It is a commutative ring with unity if there exits 1 ∈ R such that a ∗ 1 = a = 1 ∗ a for all

a ∈ R.

Definition 2.15. A subring S of a ring R is a subset S of R such that S is a ring under

the operations of R.

Definition 2.16. An ideal of a ring R is a subring S such that for every r ∈ R and every

s ∈ S, then rs ∈ S and sr ∈ S.

Exercise 2.4. Determine whether the indicated set or relation is an example of a partially

ordered set: the set of all ideals in a ring R with I ≤ J to mean that I is an ideal in J .

Solution. Since I is an ideal in J , then for all b ∈ J and for all a ∈ I, ba ∈ I and ab ∈ I.

Also, I is a subring. J is an ideal in R, which implies that for all r ∈ R and for all b ∈ J ,

then rb ∈ J and br ∈ J . Also, J is a subring.

Now I ≤ I (reflexivity) since for all a ∈ I, then aa ∈ I (since I is a subring).

Let I ≤ J and J ≤ I. Then I is a subring of J and J is a subring of I. Therefore I = J

(antisymmetry).

Consider I ≤ J and J ≤ K. We want to show that I ≤ K. Consider the

following: let R be the ring of polynomials of x over Q. Then K = anx
n + . . . +

a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x, J = anx
n + . . . + a5x

5 + a4x
4 + a3x

3 + a2x
2, and

I = anx
n + . . .+ a5x

5 + a4x
4 + a2x

2 are ideals in R such that I ≤ J and J ≤ K. But I is

not an ideal in K since x2 ∈ I and x ∈ K but x ·x2 = x3 /∈ I. Therefore transitivity fails.

So the set of all ideals in a ring R with I ≤ J to mean that I is an ideal in J is

not an example of a partially ordered set.

Definition 2.17. A nonzero element a in a commutative ring R is a zero-divisor if there

is a nonzero element b ∈ R such that a ∗ b = 0.

Definition 2.18. A commutative ring with unity and no zero-divisors is an integral

domain.
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Definition 2.19. In a commutative ring with unity R, an element a in R is a unit if

there exists an inverse element of a in R, denoted a−1, such that a ∗ a−1 = 1 = a−1 ∗ a.

Definition 2.20. A field F is a commutative ring with unity such that every nonzero

element in F is a unit.

Definition 2.21. For a commutative ring R with identity IR, a ring A with identity IA,

and a ring homomorphism f : R −→ A such that f(IR) = IA, an R-algebra is the ring A

together with f such that f(R), is contained in the center of A (where the center of A is

the set of all elements a ∈ A such that a commutes with every element in A).

Definition 2.22. If S is a set, then the power set of S, denoted P (S), is the set of

all subsets of S, where addition and multiplication on P (S) are defined as A + B =

{c | c ∈ A ∪B, c /∈ A ∩B} and A×B = {c | c ∈ A ∩B}.

Definition 2.23. A Hasse diagram displays the elements of a partially ordered set 〈S,≤〉
such that a line is drawn upward from an element a to another element b if b covers a.

Definition 2.24. If A is a subset of S, where 〈S,≤〉 is a partially ordered set, then u ∈ S
is an upper bound for A if for all a ∈ A, then a ≤ u. If v ∈ S and v ≤ a for all a ∈ A,

then v is a lower bound for A. The element w ∈ S is a least upper bound (lub) of A if

it is an upper bound of A and w ≤ u for each upper bound u of A. The element w ∈ S
is a greatest lower bound (glb) of A if it is a lower bound of A and v ≤ w for each lower

bound v of A.

The lub of a set is also called the supremum, denoted sup, and the glb is also

called the infimum, denoted inf .

Proposition 2.1. If 〈S,≤〉 is a partially ordered set and A is a subset of S, then

(i) the lub of A is unique, if it exists, and

(ii) the glb of A is unique, if it exists.

Proof. (i) Suppose w1 and w2 are each a lub of A. Then w1 and w2 are each an upper

bound of A. Now, since w1 is a least upper bound of A, then w1 ≤ u, for all upper bounds

u of A. So w1 ≤ w2. Similarly, since w2 is a least upper bound of A, then w2 ≤ u, and

so, w2 ≤ w1. Then, by antisymmetry of partially ordered sets, w1 = w2 and therefore,

any lub of A is unique.
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(ii) Suppose w1 and w2 are each a glb of A. Then w1 and w2 are each a lower

bound of A. Since w1 is a greatest lower bound of A, then w2 ≤ w1. Similarly, since w2

is a greatest lower bound of A, then w1 ≤ w2. Then, by antisymmetry, w1 = w2, and

therefore any glb of A is unique.

Example 2.2. Let S = {a, b, c}.
Then the power set of S is P (S) = {{ }, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

The Hasse diagram of S is

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

{ }

Figure 2.1: Hasse Diagram of S

Let X ⊆ S such that X = {{a}, {a, b}}. Then lub{X} = {a, b} and glb{X} =

{a}.

Definition 2.25. A lattice is a partially ordered set 〈L,≤〉 such that for any pair of

elements a, b ∈ L:

(i) The lub of {a, b}, denoted a∨ b, exists. a∨ b is read as “a join b” or “a or b”.

(ii) The glb of {a, b}, denoted a∧ b, exists. a∧ b is read as “a meet b” or “a and

b”.

Alternatively, lub{x, y} = x+ y and glb{x, y} = x · y.

A lattice is complete if each subset of 〈L,≤〉 has a lub and a glb.

Definition 2.26. A subgroup lattice is a lattice whose elements are the subgroups of a

group and whose relation is set inclusion.

Definition 2.27. If 〈L,≤〉 is a lattice, then

(i) An element 0 ∈ L is called a zero if 0 ≤ a for all a ∈ L.
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(ii) An element 1 ∈ L is called a unity if a ≤ 1 for all a ∈ L.

(iii) An element a′ ∈ L is called the complement of a if for any a ∈ L, then

a∨ a′ = 1 and a∧ a′ = 0. Alternatively, if −x is the complement of x, then x+ (−x) = 1

and x · (−x) = 0.

Example 2.3. Let S = {1, 2, 3, 5, 6, 10, 15, 30} be the set of positive divisors of 30. Then

S is a lattice with unity = 30 and zero = 1.

Exercise 2.5. Determine whether the indicated set or relation is an example of a lattice:

the set of all positive divisors of 70 with a ≤ b to mean a divides b.

Solution. Let S = {1, 2, 5, 7, 10, 14, 35, 70}. If a ≤ b, then b = a ∗n for n ∈ Z. First, a ≤ a
since a = a ∗ 1 (reflexivity). Now suppose a ≤ b and b ≤ a. Then b = a ∗ n and a = b ∗m
for m,n ∈ Z. So b = a ∗ n = (b ∗m) ∗ n = b ∗ (m ∗ n) =⇒ m ∗ n = 1 =⇒ m = 1, n = 1

(since a > 0, b > 0). Then a = b (antisymmetry).

Suppose a ≤ b and b ≤ c. Then b = a ∗ n and c = b ∗ m for m,n ∈ Z. So

c = b ∗m = (a ∗ n) ∗m = a ∗ (n ∗m) (since Z is closed under multiplication). Therefore

c = a ∗ k for some k = n ∗m ∈ Z and so a ≤ c (transitivity).

For any a, b ∈ S, lcm(a, b) ∈ S and gcd(a, b) ∈ S. So a ∨ b = lcm(a, b) (lub

exists) and a ∧ b = gcd(a, b) (glb exists). Therefore S is an example of a lattice.

Exercise 2.6. Determine whether the indicated set or relation is an example of a lattice:

the set of all positive divisors of 60 with a ≤ b to mean a divides b.

Solution. Let S = {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}. Then a ≤ a since a = a ∗ 1 (re-

flexivity). From Exercise 1.5, we can see that for a ≤ b and b ≤ a, then a = b and for

a ≤ b and b ≤ c, then a ≤ c (antisymmetry and transitivity). For any a, b ∈ S, then

lcm(a, b) ∈ S and gcd(a, b) ∈ S. So a ∨ b = lcm(a, b) and a ∧ b = gcd(a, b) (lub and glb

exist). Therefore S is an example of a lattice.

Definition 2.28. If A and B are sets, then the Cartesian product of A and B is the

collection of ordered pairs of elements of A and B and is denoted A × B = {(a, b) | a ∈
A, b ∈ B}.

Definition 2.29. If S is a set and R is a subset of S × S, then R is a relation on S. For

a, b ∈ S, then (a, b) ∈ R, or equivalently aRb.
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Exercise 2.7. Determine whether the indicated set or relation is an example of a lattice:

the set L×M = {(a, b) | a ∈ L, b ∈ M} where L and M are lattices, with (a, b) ≤ (c, d)

to mean that a ≤ c ∈ L and b ≤ d ∈M .

Solution. Since L and M are lattices, then a ≤ a ∈ L and b ≤ b ∈ M . So (a, b) ≤ (a, b)

(reflexivity). Suppose (a, b) ≤ (c, d) and (c, d) ≤ (a, b). Then a ≤ c ∈ L, b ≤ d ∈ M and

c ≤ a ∈ L, d ≤ b ∈M . Since L and M are lattices, a ≤ c ∈ L and c ≤ a ∈ L =⇒ a = c.

Also, b ≤ d ∈M and d ≤ b ∈M =⇒ b = d. Therefore (a, b) = (c, d) (antisymmetry).

Now consider (a, b) ≤ (c, d) and (c, d) ≤ (e, f). Then a ≤ c and c ≤ e ∈ L. Also,

b ≤ d and d ≤ f ∈ M . Since L and M are lattices, a ≤ c, c ≤ e ∈ L =⇒ a ≤ e and

b ≤ d, d ≤ f ∈M =⇒ b ≤ f . Therefore (a, b) ≤ (e, f) (transitivity).

For any a, c ∈ L, a ∨ c ∈ L and a ∧ c ∈ L since L is a lattice. Similarly, for any

b, d ∈M , b∨d ∈M and b∧d ∈M since M is a lattice. Then (a, b)∨(c, d) = (a∨c, b∨d) ∈
L×M and (a, b) ∧ (c, d) = (a ∧ c, b ∧ d) ∈ L×M (lub and glb exist). Therefore, L×M
is an example of a lattice.

Definition 2.30. If R is a relation on a set S and a, b, c ∈ S then R is an equivalence

relation on S if the following properties are true:

(i) For all a ∈ S, (a, a) ∈ R. This is called reflexivity.

(ii) If (a, b) ∈ R, then (b, a) ∈ R. This is called symmetry.

(iii) If (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R. This is called transitivity.

Definition 2.31. If R is an equivalence relation on a set S and a ∈ S, then the set

[a] = {b ∈ S | (a, b) ∈ R} is the equivalence class of S containing a.

Theorem 2.1. If 〈L,≤〉 is a lattice and a, b, c ∈ 〈L,≤〉, then

(i) a ∨ b = b ∨ a and a ∧ b = b ∧ a (Commutativity)

(ii) a ∨ (b ∨ c) = (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c (Associativity)

(iii) a ∨ a = a and a ∧ a = a (Idempotence)

(iv) (a ∨ b) ∧ a = a and (a ∧ b) ∨ a = a (Absorption)

Proof. (i) a ∨ b = lub{a, b} and b ∨ a = lub{b, a}. Since {a, b} = {b, a} as sets, then

a ∨ b = b ∨ a. Similarly, a ∧ b = glb{a, b} and b ∧ a = glb{b, a}. Since {a, b} = {b, a} as

sets, then a ∧ b = b ∧ a.
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(ii) a ∨ (b ∨ c) = lub{a, lub{b, c}} and (a ∨ b) ∨ c = lub{lub{a, b}, c}. Suppose

lub{a, b, c} = d. Then a ∨ (b ∨ c) = lub{a, lub{b, c}} = lub{a, d} = d = lub{d, c} =

lub{lub{a, b}, c} = (a∨ b)∨ c. Therefore, a∨ (b∨ c) = (a∨ b)∨ c). Similarly, a∧ (b∧ c) =

glb{a, glb{b, c}} and (a ∧ b) ∧ c = glb{glb{a, b}, c} and therefore, a ∧ (b ∧ c) = (a ∧ b) ∧ c.
(iii) a ∨ a = lub{a, a} = a, and therefore a ∨ a = a. Also, a ∧ a = glb{a, a} = a,

and therefore a ∧ a = a.

(iv) We know that a ≤ a ∨ b and a ≤ a by definition of lub and by reflexivity.

Then a ∧ a ≤ (a ∨ b) ∧ a. Then since a ∧ a = a (idempotence), we have a ≤ (a ∨ b) ∧ a.

But (a ∨ b) ∧ a ≤ a by definition of glb. Therefore, by antisymmetry, (a ∨ b) ∧ a = a.

Similarly, we know that a∧b ≤ a and a ≤ a (glb and reflexivity). So (a∧b)∨a ≤
a ∨ a = a (idempotence). But a ≤ (a ∧ b) ∨ a (lub). Therefore, (a ∧ b) ∨ a = a by

antisymmetry.

Proposition 2.2. Any statement that is true for every lattice continues to be true if

(i) ≤ and ≥ are interchanged throughout the statement and

(ii) ∨ and ∧ are interchanged throughout the statement.

The new statement that is obtained from interchanging ≤ and ≥ and also ∨ and ∧ is

called the dual of the original statement.

A dual statement for a Boolean Algebra is obtained by interchanging + and ·
and interchanging 0 and 1. If a statement is true for every Boolean algebra, then so is

its dual statement.

Proof. Let φ represent a statement that holds in every Boolean algebra. Consider a

Boolean algebra B and let B′ be the dual algebra of B, that is, the Boolean algebra

resulting from interchanging +, ·, 0, and 1 in B for ·, +, 1, and 0, respectively, in B′. Let

φ′ be the dual of φ. If φ holds in any Boolean algebra, say B′, then by interchanging +

and ·, also 0 and 1, we have that φ′ holds in B.

Theorem 2.2. If L is a set with operations ∨ and ∧ such that the axioms of commuta-

tivity, associativity, idempotence, and absorption are satisfied, and ≤ on L is defined by

a ≤ b if and only if a ∨ b = b or a ∧ b = a (for a, b ∈ L), then 〈L,≤〉 is a lattice.

Proof. We begin by showing that a∨b = b and a∧b = a are equivalent. Consider a∨b = b.

Then a∧ b = a∧ (a∨ b) = (a∨ b)∧a = a (by commutativity and absorption). So a∨ b = b

implies a ∧ b = a. Conversely, if a ∧ b = a, then a ∨ b = (a ∧ b) ∨ b = (b ∧ a) ∨ b = b. And
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so a ∧ b = a implies a ∨ b = b. Now we want to show that L is a partially ordered set

under ≤.

(i) (Reflexivity) If a ∈ L, then a∧a = a (idempotence). Then a ≤ a (since a ≤ b
if and only if a ∧ b = a).

(ii) (Antisymmetry) If a ≤ b then a ∧ b = a. If b ≤ a, then b ∧ a = b. Since

commutativity is satisfied under ∧, then a ∧ b = b ∧ a and therefore a = b.

(iii) (Transitivity) If a ≤ b, then a ∧ b = a. If b ≤ c, then b ∧ c = b. Since

associativity is satisfied under ∧, a ∧ c = (a ∧ b) ∧ c = a ∧ (b ∧ c) = a ∧ b = a. Therefore

a ∧ c = a, and so a ≤ c.
Lastly, we want to show that a ∨ b is the lub{a, b} and a ∧ b is the glb{a, b}.

Let us evaluate a ∨ b. Consider a ∧ (a ∨ b) = (a ∨ b) ∧ a = a. Then a ≤ a ∨ b. Also,

b∧(a∨b) = (a∨b)∧b = (b∨a)∧b = b. Then b ≤ a∨b. Therefore, a∨b is an upper bound

for a and b. Now, let c ∈ L such that a ≤ c and b ≤ c. Then a ∨ c = c and b ∨ c = c.

So (a∨b)∨c = a∨(b∨c) = a∨c = c. Therefore a∨b ≤ c, so a∨b is the lub{a, b}.
By duality (interchanging ≤ and ≥ and also ∨ and ∧), then glb{a, b} = a ∧ b.

Exercise 2.8. Show that the lattice L is distributive if and only if for all a, b, c ∈ L, then

a ∧ b = a ∧ c and a ∨ b = a ∨ c =⇒ b = c.

Solution.

( =⇒ ) Let L be a distributive lattice. We want to show that for all a, b, c ∈ L, if

a ∧ b = a ∧ c and a ∨ b = a ∨ c, then b = c.

Since L is distributive, then we have the following:

b = (a ∨ b) ∧ b (absorption)
= (a ∨ c) ∧ b (since a ∨ b = a ∨ c)
= b ∧ (a ∨ c) (commutativity)
= (b ∧ a) ∨ (b ∧ c) (distribution)
= (a ∧ b) ∨ (c ∧ b) (commutativity)
= (a ∧ c) ∨ (c ∧ b) (since a ∧ b = a ∧ c)
= (c ∧ a) ∨ (c ∧ b) (commutativity)
= c ∧ (a ∨ b) (distribution)
= c ∧ (a ∨ c) (since a ∨ b = a ∨ c)
= c.
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Therefore, b = c.

(⇐= ) Now assume that for a, b, c in a lattice L, if a∧b = a∧c and a∨b = a∨c =⇒ b = c.

We want to show that L is distributive.

Consider (a ∨ b) ∧ (a ∨ c).
(a ∨ b) ∧ (a ∨ c) = (a ∨ c) ∧ (a ∨ c) (since a ∨ b = a ∨ c)

= a ∨ c (idempotence)
= a ∨ (c ∧ c) (idempotence)
= a ∨ (b ∧ b) (since b = c).

Similarly, (a ∧ b) ∨ (a ∧ c) = (a ∧ c) ∨ (a ∧ c) = a ∧ c = a ∧ (c ∨ c) = a ∧ (b ∨ c).
Therefore, L is distributive.

Exercise 2.9. Construct the Hasse diagram for the lattice of subgroups of S3.

Solution.

The elements of S3 are e, (12), (13), (23), (123), and (132).

The subgroups of S3 are { e, (12)}, {e, (13)}, {e, (23)}, {e, (123), (132)}.

S3

{e, (12)} {e, (13)} {e, (23)} {e, (123), (132)}

{ e}

Figure 2.2: Hasse Diagram of the Lattice of Subgroups of S3

Exercise 2.10. Construct the Hasse diagram for the lattice of subgroups of D4.
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Solution. D4 = {ρ0, ρ, ρ2, ρ3, τ, ρτ, ρ2τ, ρ3τ}. The subgroups of D4 are generated by the

elements in the Hasse diagram:

D4

〈e, ρ2, τ, ρ2τ〉 〈e, ρ, ρ2, ρ3〉 〈e, ρ2, ρτ, ρ3τ〉

〈e, τ〉 〈e, ρ2τ〉 〈e, ρ2〉 〈e, ρτ〉 〈e, ρ3τ〉

〈e〉

Figure 2.3: Hasse Diagram of the Lattice of Subgroups of D4
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Chapter 3

Introduction to Boolean Algebras

Now that we’ve established the notion of lattices, we can begin exploring Boolean

algebras and some of their characteristics.

Definition 3.1. If B is a lattice with zero and unity, then B is a Boolean algebra if

(i) For all a, b, c ∈ B, a∧ (b∨c) = (a∧b)∨ (a∧c) and a∨ (b∧c) = (a∨b)∧ (a∨c)
(Distributivity)

(ii) For each a ∈ B, there exists an a′ ∈ B such that a ∨ a′ = 1 and a ∧ a′ = 0

(Complements).

Alternatively, a Boolean Algebra is a structure (A,+, ·,−, 0, 1) with binary operations

+ and · , unary operation − , zero element 0, and unity element 1, such that for all

x, y, z ∈ A
(i) x+ (y + z) = (x+ y) + z and x · (y · z) = (x · y) · z (associativity)

(ii) x+ y = y + x and x · y = y · x (commutativity)

(iii) x+ (x · y) = x and x · (x+ y) = x (absorption)

(iv) x · (y+ z) = (x · y) + (x · z) and x+ (y · z) = (x+ y) · (x+ z) (distributivity)

(v) x+ (−x) = 1 and x · (−x) = 0 (complementation).

Note: The following operations are equivalent: ∧ and · , ∨ and + , ′ and − .

Example 3.1. S = {1, 2, 3, 5, 6, 10, 15, 30} is a Boolean algebra such that, for a, b ∈ S,

then a ≤ b means a divides b. Then a ∨ b = lcm{a, b} and a ∧ b = gcf{a, b}.

Definition 3.2. If B is a Boolean algebra with operations +B, ·B,−B and zero and unity,
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0B and 1B, then A is a subalgebra of B if A ⊆ B and 0A = 0B, 1A = 1B, and +A, ·A,−A
are equivalent to the restrictions of +B, ·B,−B to A.

Definition 3.3. If A is a set and P (A) is its power set, then P (A) is the power set algebra

of A equipped with zero, unity A, and the operations ∪, ∩, and −, where −a = A \ a
(the complement of a).

Definition 3.4. For a set X = {x}, the power set algebra P (X) is {0, 1}, where 0 = { }
and 1 = X, is called the two-element algebra and is denoted 2.

Definition 3.5. For a set A, a collection of subsets M of A is an algebra of sets if ∅ ∈M ,

for M1,M2 ∈ M then M1 ∪M2 ∈ M and M1 ∩M2 ∈ M , and A \M1 ∈ M for M1 ∈ M .

Equivalently, if M is a subalgebra of the power set algebra P (A), then M is an algebra

of sets over A. If a Boolean algebra B is an algebra of sets over A, then B is an algebra

of sets.

Definition 3.6. A finite-cofinite algebra A on X is the algebra of sets over X such that

A is the set of all a ⊆ X, where a is either finite or cofinite.

Definition 3.7. For a subset X of a Boolean algebra B, the subalgebra generated by X

in B is 〈X〉 =
⋂
{A ⊆ B | X ⊆ A and A is a subalgebra of B}. If X ⊆ B and 〈X〉 = B,

then X is a set of generators for a Boolean algebra B.

Exercise 3.1. Draw the Hasse diagrams of all nonisomorphic Boolean algebras of orders

| B |= 2, 4, or 8.

Solution.

| B |= 2 =⇒ B = {0, 1}

1

0

Figure 3.1: Hasse Diagram of the 2-element Boolean Algebra
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| B |= 4 =⇒ B = {0, a, b, 1}

1

a b

0

Figure 3.2: Hasse Diagram of a 4-element Boolean Algebra

| B |= 8 =⇒ B = {0, a, b, c, d, e, f, 1} ∼= P (S), where S = {x, y, z}

{x, y, z}

{x, y} {x, z} {y, z}

{x} {y} {z}

{ }

Figure 3.3: Hasse Diagram of an 8-element Boolean Algebra

Exercise 3.2. Let n ∈ N and let B(n) be the set of all positive divisors of n. Show

that B(n) with ∧ = gcd and ∨ = lcm is a Boolean algebra if and only if in the prime

factorization of n no prime appears with an exponent ≥ 2.

Solution.

( =⇒ ) Assume B(n) is a Boolean algebra. Suppose x and y are factors of n

and y = x′. Then x ∧ y = 1 and x ∨ y = n. But if n has repeated prime factors, then

it could be that x ∨ y = x. Therefore, in the prime factorization of n no prime appears

with an exponent ≥ 2.
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( ⇐= ) Assume that in the prime factorization of n, no prime appears with an

exponent ≥ 2. For x, y ∈ B(n), x ∨ y = lcm(x, y) and x ∧ y = gcd(x, y). We will show

that B(n) is a Boolean algebra.

Distribution: We know x ∧ (y ∨ z) = gcd(x, lcm(y, z)). Consider the exponents

on the prime factors of x, y, and z. Let x be the product of prime factors with exponents

i, y with j, and z with k, where i, j, k can be 0 or 1. Then the exponent of a prime

factor in gcd(x, lcm(y, z)) is min(i,max(j, k)), which equals max(min, (i, j),min(i, k)),

the exponent of a prime factor in lcm(gcd(x, y), gcd(x, z)) = (x ∧ y) ∨ (x ∧ z). Similarly,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
Complementation: x∧x′ = gcd(x, x′) = gcd(x, nx ) = 1 and x∨x′ = lcm(x, x′) =

lcm(x, nx ) = n.

Commutativity: x ∧ y = gcd(x, y) = gcd(y, x) = y ∧ x and x ∨ y = lcm(x, y) =

lcm(y, x) = y ∨ x.

Associativity: x ∨ (y ∨ z) = lcm(x, lcm(y, z)) = lcm(lcm(x, y), z) = (x ∨ y) ∨ z
and x ∧ (y ∧ z) = gcd(x, gcd(y, z)) = gcd(gcd(x, y), z) = (x ∧ y) ∧ z.

Absorption: x∧(x∨y) = gcd(x, lcm(x, y)) = x and x∨(x∧y) = lcm(x, gcd(x, y)) =

x.

Proposition 3.1. If B is a Boolean algebra, then for any a ∈ B, a∧1 = a and a∨0 = a.

Proof. By definition of unity in a lattice, a ≤ 1 for all a ∈ L. Then a ∧ 1 = a. By

definition of zero in a lattice, 0 ≤ a for all a ∈ L. Then a ∨ 0 = a. Therefore, 1 is an

identity element under ∧ and 0 is an identity element under ∨.

Proposition 3.2. If B is a Boolean algebra, then

(i) the 1 and 0 elements in B are unique,

(ii) the complement, a′, of a in B is unique.

Proof. (i) Let e1 and e2 be identity elements in B under ∧ and ∨. Then e1 = e1 ∧ e2 =

e2 ∧ e1 = e2. Similarly, e1 = e1 ∨ e2 = e2 ∨ e1 = e2. Then, by Proposition 3.1, the 1 and

0 elements in B are unique.

(ii) Let a in B have complements b and c in B . Then
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b = b ∨ 0 (identity)
= b ∨ (a ∧ c) (definition of complement)
= (b ∨ a) ∧ (b ∨ c) (distribution)
= (a ∨ b) ∧ (b ∨ c) (commutativity)
= 1 ∧ (b ∨ c) (definition of complement)
= b ∨ c (identity)

Therefore b = b∨ c and similarly, c = c∨ b. Then b = b∨ c = c∨ b = c by commutativity.

And so, the complement of a is unique.

Proposition 3.3. If B is a Boolean algebra, then for any a, b ∈ B
(i) a ∧ 0 = 0 and a ∨ 1 = 1

(ii) (a ∧ b)′ = a′ ∨ b′ and (a ∨ b)′ = a′ ∧ b′ (de Morgan’s Law)

(iii) (a′)′ = a (Involution)

(iv) 0′ = 1 and 1′ = 0.

Proof. (i) a ∧ 0 = a ∧ (a ∧ a′) = (a ∧ a) ∧ a′ = a ∧ a′ = 0 (by complement, associativity,

and idempotence). By duality, a ∨ 1 = 1.

(ii) We first show that (a ∧ b) ∧ (a′ ∨ b′) = 0. From (i), we have

(a ∧ b) ∧ (a′ ∨ b′)
= [(a ∧ b) ∧ a′] ∨ [(a ∧ b) ∧ b′] (distributivity)
= [(a ∧ a′) ∧ b] ∨ [a ∧ (b ∧ b′)] (associativity and commutativity)
= (0 ∧ b) ∨ (a ∧ 0) (complement)
= 0 ∨ 0 = 0

Also,

(a ∧ b) ∨ (a′ ∨ b′)
= [a ∨ (a′ ∨ b′)] ∧ [(b ∨ (a′ ∨ b′)] (distributivity)
= [(a ∨ a′) ∨ b′] ∧ [a′ ∨ (b ∨ b′)] (associativity and commutativity)
= (1 ∨ b′) ∧ (a′ ∨ 1) (complement)
= 1 ∨ 1 = 1

Therefore, a′ ∨ b′ is the complement of a ∧ b and by duality, a′ ∧ b′ is the complement of

a ∨ b.
(iii) Since a ∧ a′ = a′ ∧ a = 0 and also a′ ∨ a = 1, then a is the complement of

a′. Now, since complements are unique, then (a′)′ = a.
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(iv) By definition of complement, 0∨ 0′ = 1. Then by commutativity, 0′ ∨ 0 = 1

and so, by Proposition 3.1, 0′ = 1. Similarly, 1 ∧ 1′ = 0 by definition. Then 1′ ∧ 1 = 0

and by Proposition 3.1, then 1′ = 0.

Lemma 3.1. For b, c in a boolean algebra B , the following are equivalent:

(i) b ≤ c
(ii) b ∧ c′ = 0

(iii) b′ ∨ c = 1

Proof. We will show that (i) =⇒ (ii), (ii) =⇒ (iii), and (iii) =⇒ (i), therefore showing

that (i), (ii), and (iii) are equivalent.

If b ≤ c, then b ∨ c = c (Theorem 2.2). Then we have

b ∧ c′ = b ∧ (b ∨ c)′ (b ∨ c = c)
= b ∧ (b′ ∧ c′) (de Morgan’s)
= (b ∧ b′) ∧ c′ (associativity)
= 0 ∧ c′ (definition of complement)
= 0

Therefore, (i) =⇒ (ii).

If b ∧ c′ = 0, then

b′ ∨ c = b′ ∨ (c′)′ (involution)
= (b ∧ c′)′ (de Morgan’s)
= 0′ (b ∧ c′ = 0)
= 1 (Proposition 3.3)

Therefore, (ii) =⇒ (iii).

If b′ ∨ c = 1, then

b = b ∧ 1 (Proposition 3.1)
= b ∧ (b′ ∨ c) (b′ ∨ c = 1)
= (b ∧ b′) ∨ (b ∧ c) (distribution)
= 0 ∨ (b ∧ c) (definition of complement)
= b ∧ c (Proposition 3.1)

Since b = b ∧ c, then by definition of glb, b ≤ c. So (iii) =⇒ (i), and therefore (i), (ii),

and (iii) are equivalent.
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Exercise 3.3. Let B be a Boolean algebra and a, b ∈ B. Show that

(i) a ≤ b if and only if b′ ≤ a′

(ii) a ≤ b′ if and only if a ∧ b = 0

(iii) a ≤ b if and only if a′ ∨ b = 1.

Solution.

(i) ( =⇒ ) Suppose a ≤ b. Then

a ∧ b′ = 0 (Lemma 3.1)
=⇒ b′ ∧ a = 0 (commutativity)
=⇒ b′ ∧ (a′)′ = 0 (complement)
=⇒ b′ ≤ a′ (Lemma 3.1)

(⇐= ) Now suppose b′ ≤ a′. Then

b′ ∧ (a′)′ = 0 (Lemma 3.1)
=⇒ b′ ∧ a = 0 (complement)
=⇒ a ∧ b′ = 0 (commutativity)
=⇒ a ≤ b (Lemma 3.1)

(ii) ( =⇒ ) Suppose a ≤ b′. Then a ∧ (b′)′ = 0 =⇒ a ∧ b = 0 (Lemma 3.1).

(⇐= ) Suppose a∧ b = 0. Then a∧ (b′)′ = 0 =⇒ a ≤ b′ (complement and Lemma 3.1).

(iii) ( =⇒ ) Suppose a ≤ b. Then a′ ∨ b = 1 (Lemma 3.1).

(⇐= ) Suppose a′ ∨ b = 1. Then a ≤ b (Lemma 3.1).

Definition 3.8. If A and B are algebras and R is a field (or ring), then φ : A −→ B is

an algebra homomorphism if, for all r ∈ R and a, b ∈ A, then

(i) φ(ra) = rφ(a)

(ii) φ(a+ b) = φ(a) + φ(b)

(iii) φ(ab) = φ(a)φ(b).

If A and B are Boolean algebras and x, y ∈ A, then φ is a Boolean algebra homomorphism

if

(i) φ(0) = 0 and φ(1) = 1

(ii) φ(x+ y) = φ(x) + φ(y)

(iii) φ(x · y) = φ(x) · φ(y).

(iv) φ(−x) = −φ(x)
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If φ is one-to-one, it is a monomorphism or embedding of A into B and if φ is onto, it is

an endomorphism.

Definition 3.9. If A and B are Boolean algebras, then φ : A −→ B is an Boolean algebra

isomorphism if

(i) φ is bijective (one-to-one and onto)

(ii) For all a, b ∈ A, then a ≤ b ∈ A if and only if φ(a) ≤ φ(b) ∈ B (for this, we

say φ is order preserving).

Alternately, if φ is a bijective homomorphism, then φ is an isomorphism and A is iso-

morphic to B, A ∼= B.

Definition 3.10. For a subset p of a Boolean algebra A, the homomorphism from A

into the two-element Boolean algebra is called the characteristic homomorphism and is

denoted χp : A −→ 2.

Exercise 3.4. Show that if φ : B −→ C is a Boolean algebra isomorphism, then for all

a, b ∈ B
(i) φ(a ∨ b) = φ(a) ∨ φ(b)

(ii) φ(a ∧ b) = φ(a) ∧ φ(b)

Solution. (i) Since φ is a Boolean algebra isomorphism, then φ is one-to-one, onto, and

a ≤ b if and only if φ(a) ≤ φ(b).

Consider φ(a) ≤ φ(b). Then φ(a) ∨ φ(b) = φ(b). Now consider a ≤ b. Then

a ∨ b = b, which implies φ(a ∨ b) = φ(b). Therefore, φ(a ∨ b) = φ(b) = φ(a) ∨ φ(b).

(ii) Similar to (i), φ(a) ≤ φ(b) =⇒ φ(a) ∧ φ(b) = φ(a) and a ≤ b =⇒ a ∧ b = a =⇒
φ(a ∧ b) = φ(a). Therefore, φ(a ∧ b) = φ(a) = φ(a) ∧ φ(b).

Exercise 3.5. Show that if φ : B −→ C is a Boolean algebra isomorphism, then

(i) φ(1B) = 1C

(ii) φ(0B) = 0C

(iii) φ(a′) = (φ(a))′ for all a ∈ B.

Solution.
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(i) For all b ∈ B, b ≤ 1B. For all φ(b) ∈ C, φ(b) ≤ 1C . Then b ∨ 1B = 1B. Since φ is an

isomorphism, then φ(b ∨ 1B) = φ(1B) and by Exercise 3.4, φ(b) ∨ φ(1B) = φ(1B).

Now, by definition of unity, φ(b) ∨ 1C = 1C in C. Since φ is onto, there exists

1C1 ∈ B such that φ(1C1) = 1C . If 1B = 1C1 , then φ(1B) = 1C . Suppose 1B 6= 1C1 . Then

1C1 ∨ 1B = 1B (definition of unity) and so, φ(1C1 ∨ 1B) = φ(1C1) ∨ φ(1B) = φ(1B). But

φ(1C1) = 1C and so φ(1C1) ∨ φ(1B) = 1C ∨ φ(1B) = 1C . Therefore, φ(1B) = 1C .

(ii) For all b ∈ B, 0B ≤ b. For all φ(b) ∈ C, 0c ≤ φ(b). So 0B ∧ b = 0B and φ(0B ∧ b) =

φ(0B) ∧ φ(b) = φ(0B).

In C, 0C ∧ φ(b) = 0C . Since φ is onto, ∃ 0C1 ∈ B such that φ(0C1) = 0C .

If 0B = 0C1 , then φ(0B) = 0C . Suppose 0B 6= 0C1 . Then 0C1 ∧ 0B = 0B (definition

of zero) and so, φ(0C1 ∧ 0B) = φ(0C1) ∧ φ(0B) = φ(0B). But φ(0C1) = 0C and so

φ(0C1) ∧ φ(0B) = 0C ∧ φ(0B) = 0C . Therefore, φ(0B) = 0C .

(iii) By (i) and complementation, 1C = φ(1B) = φ(a ∨ a′) = φ(a) ∨ φ(a′). But 1C =

φ(a) ∨ (φ(a))′. So φ(a) ∨ φ(a′) = φ(a) ∨ (φ(a))′. Similary, by (ii) and complementation,

0C = φ(0B) = φ(a ∧ a′) = φ(a) ∧ φ(a′) and 0C = φ(a) ∧ (φ(a))′. Then φ(a) ∧ φ(a′) =

φ(a) ∧ (φ(a))′. Therefore, by Exercise 2.8, φ(a′) = (φ(a))′.

Definition 3.11. A ring R with unity is a Boolean ring if a · a = a and a+ a = 0 for all

a ∈ R. A Boolean ring is commutative.

Exercise 3.6. Let R be a Boolean ring with unity 1 and for a, b ∈ R define a ∨ b =

a+ b− a · b and a∧ b = a · b. Show that R with ∨ and ∧ is a Boolean algebra with unity

1, zero element 0, and a′ = 1− a.

Solution. We know that all of the ring axioms hold for R under +, ·, and ′, and for all

a ∈ R, then a · a = a and a+ a = 0. Also, R is commutative.

Complementation: We will show a ∨ a′ = 1 and a ∧ a′ = 0.

a ∨ a′ = a+ a′ + (−a) · a′
= a+ (1 + (−a)) + (−a) · (1 + (−a)) (a′ = 1 + (−a))
= a+ [(1 + (−a)) · (1 + (−a))] (distribution)
= a+ (1 + (−a)) (idempotence)
= a+ a′ (a′ = 1 + (−a))
= 1 ( + complementation)
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Since a · a′ = 0, then a ∧ a′ = a · a′ = 0.

Commutativity: We will show a ∨ b = b ∨ a and a ∧ b = b ∧ a.

a ∨ b = a+ b+ (−a) · b
= b+ a+ (−a) · b (+ commutativity)
= b · b+ a+ (−a) · b (idempotence)
= b · (b+ (−a)) + a (distribution and + commutativity)
= b+ a (absorption)
= a+ b (+ commutativity)
= a · (a+ (−b)) + b (absorption)
= a · a+ b+ (−b) · a (distribution and commutativity)
= a+ b+ (−b) · a (idempotence)
= b+ a+ (−b) · a (+ commutativity)
= b ∨ a.

Since R is commutative, then a ∧ b = a · b = b · a = b ∧ a.

Absorption: We will show a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a.

a ∨ (a ∧ b) = a+ (a · b) + (−a) · (a · b)
= a+ (a · b) + (−a · a) · b (· associativity)
= a+ (a · b) + 0 · b (complementation)
= a+ (a · b) + 0 (glb)
= a+ (a · b) (identity)
= a (absorption)

a ∧ (a ∨ b) = a · (a+ b+ (−a) · b)
= a · a+ a · b+ a · (−a) · b (distribution)
= a · (a+ b) + 0 · b (distribution and compl.)
= a · (a+ b) + 0 (glb)
= a · (a+ b) (identity)
= a (absorption)

Distribution: We will show a∧ (b∨ c) = (a∧ b)∨ (a∧ c) and a∨ (b∧ c) = (a∨ b)∧ (a∨ c).

a ∧ (b ∨ c) = a · (b+ c+ (−b) · c)
= a · (b+ c) + a · ((−b) · c) (distribution)
= a · (b+ c) + (−b) · (a · c) (comm. and assoc.)
= a · (b+ c) + 0 + (−b) · (a · c) (identity)
= a · (b+ c) + 0 · c+ (−b) · (a · c) (glb)
= a · (b+ c) + (−a · a) · c+ (−b) · (a · c) (complementation)
= a · (b+ c) + (−a) · (a · c) + (−b) · (a · c) (associativity)
= (a · b) + (a · c) + (−a+ b) · (a · c) (distribution)
= (a · b) + (a · c) + (−(a · b)) · (a · c) (de Morgan’s)
= (a ∧ b) ∨ (a ∧ c)
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a ∨ (b ∧ c) = a+ (b · c) + (−a) · (b · c)
= a+ (b · c) · 1 + (b · c) · (−a) (identity and comm.)
= a+ [(b · c) · (1 + (−a))] (distribution)
= a+ [(b · c) · (1 + (−a)) · (1 + (−a))] (idempotence)
= a+ [(b · (1 + (−a)) · (c · (1 + (−a))] (comm. and associativity)
= a+ [(b+ b · (−a)) · (c+ c · (−a))] (distribution)
= a+ (b+ b · (−a)) · a+ (c+ c · (−a)) (distribution)
= (a+ b+ (−a) · b) · (a+ c+ (−a) · c) (associativity and comm.)
= (a ∨ b) ∧ (a ∨ c)

Associativity: We will show a ∨ (b ∨ c) = (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c.
First, we will establish that a + a′ · b = a + b. By distribution, a + a′ · b =

(a + a′) · (a + b). Then, (a + a′) · (a + b) = 1 · (a + b) = a + b by complementation and

identity. Therefore, a+ a′ · b = a+ b, which we will refer to as ?.

a ∨ (b ∨ c) = a+ (b+ c+ (−b) · c) + (−a) · (b+ c+ (−b) · c)
= a+ (b+ c) + (−a) · (b+ c) (absorption)
= a+ (b+ c) · (1 + (−a)) (distribution)
= a+ (b+ c) · a′ (a′ = 1 + (−a))
= (a+ b) + c (? and + associativity)
= (a+ b) + c · (a+ b)′ (?)
= (a+ b) + c · (1 +−(a+ b)) (a′ = 1 + (−a))
= (a+ b) + c+−(a+ b) · c (distribution)
= (a+ b+ (−a) · b) + c+−(a+ b+ (−a) · b) · c (absorption)
= (a ∨ b) ∨ c.

Since · is associative, a ∧ (b ∧ c) = a · (b · c) = (a · b) · c = (a ∧ b) ∧ c.
Therefore, R is a Boolean algebra.

Exercise 3.7. Define, in a Boolean algebra A, the binary operations | and ↑ by x | y =

−x · −y and x ↑ y = −x+−y. Prove that 0, 1 and the Boolean operations are definable,

in terms of equations, both by | and ↑.

Solution.

We will show that x+ y and x · y are definable in terms of ↑ and |.
−x ↑ −y = −(−x) +−(−y) = x+ y and −x | −y = −(−x) · −(−y) = x · y.

Now, we will show x | −x = 0 and x ↑ −x = 1.

By +, · complementation and −(−x) = x, then x | −x = −x·−(−x) = −x·x = 0

and x ↑ −x = −x+−(−x) = −x+ x = 1.
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Definition 3.12. For a Boolean algebra B with x, y ∈ B, the symmetric difference of x

and y is x∆y = x · (−y) + y · (−x).

Alternately, the symmetric difference of a and b is a+ b = (a ∧ b′) ∨ (a′ ∧ b).

Exercise 3.8. Using the following notation, check that bR is a Boolean algebra and that

brB = B and rbR = R:

R = (R,⊕, ·, 0, 1) is a Boolean ring,

B = (B,+, ·,−, 0, 1) is a Boolean algebra,

rB = (B,4, ·, 0, 1) where x4y = x · −y + y · −x,

bR = (R,+, ·,−, 0, 1) where x+ y = x⊕ y ⊕ (x · y) and x⊕ 1 = −x.

Solution. We want to show that bR is a Boolean algebra. First, we will show that R is

commutative.

Consider x ⊕ y. By idempotence and distribution, x ⊕ y = (x ⊕ y) · (x ⊕ y) =

x · x⊕ x · y ⊕ y · x⊕ y · y = x⊕ x · y ⊕ y · x⊕ y = x⊕ 0⊕ y. Then x · y ⊕ y · x = 0.

If x = y, then x · x⊕ x · x = x⊕ x = 0. So x · y = y · x and R is commutative.

Commutativity: Since R is commutative under · and ⊕, then x + y = x ⊕ y ⊕ (x · y) =

y ⊕ x⊕ (y · x) = y + x.

Absorption: We will show x+ (x · y) = x and x · (x+ y) = x.

x+ (x · y) = x⊕ (x · y)⊕ (x · (x · y))
= x⊕ (x · y)⊕ ((x · x) · y) (· associativity)
= x⊕ (x · y)⊕ (x · y) (idempotence)
= x⊕ 0 (x⊕ x = 0)
= x (x⊕ 0 = x).

x · (x+ y) = x · (x⊕ y ⊕ (x · y))
= x · (y ⊕ (x · y)⊕ x) (⊕ commutativity)
= x · y ⊕ x · (x · y)⊕ x · x (distribution)
= 0⊕ x (idempotence & x⊕ x = 0)
= x (x⊕ 0 = x).

Distribution: We will show x · (y+ z) = (x · y) + (x · z) and x+ (y · z) = (x+ y) · (x+ z).

x · (y + z) = x · (y ⊕ z ⊕ (y · z))
= (x · y)⊕ (x · z)⊕ (x · (y · z)) (distribution)
= (x · y)⊕ (x · z)⊕ ((x · y) · (x · z)) (assoc., comm., idemp.)
= (x · y) + (x · z)
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x+ (y · z) = x⊕ (y · z)⊕ (x · (y · z))
= (x⊕ (y · z)⊕ x) · (x⊕ (y · z)⊕ (y · z)) (distribution)

= (0⊕ (y · z)) · (x⊕ 0) (comm. & x⊕ x = 0)
= (y · z) · x (x⊕ x = 0)
= (y · x) · (z · x) (idemp., comm., assoc.)
= ((x⊕ y ⊕ x) · (x⊕ y ⊕ y)) · ((x⊕ z ⊕ x) · (x⊕ z ⊕ z)) (x⊕ x = 0, id, comm.)
= (x⊕ y ⊕ (x · y)) · (x⊕ z ⊕ (x · z)) (distribution)
= (x+ y) · (x+ z).

Complementation: Since complementation holds in R for · and ⊕ and x ⊕ 0 = x, then

x+−x = x⊕−x⊕ (x · −x) = x⊕−x⊕ 0 = x⊕−x = 1.

Associativity: Since R is associative for · and ⊕, we will show x+ (y + z) = (x+ y) + z.

x+ (y + z) = x⊕ (y ⊕ z ⊕ (y · z))⊕ (x · (y ⊕ z ⊕ (y · z))
= (x⊕ y ⊕ z ⊕ (y · z)⊕ x) · (x⊕ y ⊕ z ⊕ (y · z)⊕ y ⊕ z ⊕ (y · z)) (distribution)
= (x⊕ x⊕ y ⊕ z ⊕ (y · z)) · (x⊕ y ⊕ y ⊕ z ⊕ z ⊕ (y · z)⊕ (y · z)) (commutativity)
= (0⊕ y ⊕ z ⊕ (y · z)) · (x⊕ 0⊕ 0⊕ 0) (x⊕ x = 0)
= (y ⊕ z ⊕ (y · z)) · x (x⊕ 0 = x)
= (y ⊕ z ⊕ y) · (y ⊕ z ⊕ z) · x (distribution)
= (0⊕ z) · (y ⊕ 0) · (x) (x⊕ x = 0, comm.)
= (z) · (0⊕ y) · (x⊕ 0) (x⊕ 0 = x, comm.)
= z · (x⊕ x⊕ y) · (x⊕ y ⊕ y) (x⊕ x = 0)
= z · (x⊕ y ⊕ (x · y)) (comm. & dist.)
= (0⊕ 0⊕ 0⊕ z) · (x⊕ y ⊕ (x · y)⊕ 0) (x⊕ 0 = x)
= (x⊕ x⊕ y ⊕ y ⊕ (x · y)⊕ (x · y)⊕ z) · (x⊕ y ⊕ (x · y)⊕ z ⊕ z) (x⊕ x = 0)
= (x⊕ y ⊕ (x · y)⊕ z ⊕ x⊕ y ⊕ (x · y)) · (x⊕ y ⊕ (x · y)⊕ z ⊕ z) (commutativity)
= (x⊕ y ⊕ (x · y))⊕ z ⊕ ((x⊕ y ⊕ (x · y) · z) (distribution)
= (x+ y) + z.

Therefore, bR is a Boolean algebra. Now we want to show brB = B and rbR = R.

For rbR, we want to show x⊕ 1 = −x and x⊕ y ⊕ (x · y) = x+ y and for brB,

we want to show −x = x41 and x+ y = x4y4(x · y).

By complementation and the zero and unity properties, x ⊕ 1 = (x · −1) ⊕
(1 · −x) ⊕ ((x · −1) · (1 · −x)) = (x · 0) ⊕ (−x) ⊕ ((x · 0) · (−x)) = −x. Similarly,

x41 = (x · −1) + (1 · −x) = (x · 0) + (−x) = 0 + −x = −x. Now, we will show

x⊕ y ⊕ (x · y) = x+ y:
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x⊕ y ⊕ (x · y)
= ((x · −y + y · −x) · −(x · y)) + ((x · y) · −(x · −y + y · −x))
= ((x · −y + y · −x) · (−x+−y)) + ((x · y) · (−x+ y · −y + x)) (de Morgan’s)
= ((x · −y) · (−x+−y)) + ((y · −x) · (−x+−y))
+ ((x · y) · (((−x+ y) · −y) + ((−x+ y) · x))) (distribution)
= (x · −y · −x) + (x · −y · −y) + (y · −x · −x) + (y · −x · −y)
+ ((x · y) · ((−x · −y) + (y · −y) + (−x · x) + (y · x))) (distribution)
= (x · −y) + (y · −x) + (x · y · −x · −y) + (x · y · y · x) (comp., zero, dist.)
= (x · −y) + (y · −x) + (x · y) (comp., zero)
= x · (−y + y) + y · −x (comm., dist.)
= x+ (y · −x) (comp., unity)
= x+ y · x+−x (comp., unity)
= x+ y.

Similarly, x4y4(x · y) =

((x · −y + y · −x) · −(x · y)) + ((x · y) · −(x · −y + y · −x)) = x + y. Therefore, rbR = R

and brB = B.
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Chapter 4

Atoms and Ultrafilters

We have developed an understanding for Boolean algebras and some of their

properties thus far. We can now examine atoms and ultrafilters, which are foundational

elements of Boolean algebras.

Definition 4.1. If B is a Boolean algebra and a < b, then a ∈ B is an atom if 0 < a and

there does not exist x ∈ B such that 0 < x < a. The set of atoms of B is denoted At B.

We say B is atomless if it contains no atoms, and atomic if there exists an atom a ≤ x

for each positive x ∈ B.

Example 4.1. For the Boolean algebra S = {1, 2, 3, 5, 6, 10, 15, 30}, the elements 2, 3,

and 5 are all atoms in S.

Example 4.2. The power set algebra P (X) of a set X and the finite-cofinite algebra on

X are both atomic sets.

The interval algebra of the real number line and the regular open algebra of the

real numbers are both atomless sets.

Lemma 4.1. If B is a finite Boolean algebra and b is any nonzero element in B, then

there exists an atom a in B such that a ≤ b.

Proof. If b is an atom in B, then b = a.

Suppose b is not an atom in B. Then there exists a1 ∈ B such that 0 < a1 < b.

If a1 is an atom, then a1 = a. If a1 is not an atom, then there exists a2 ∈ B such that
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0 < a2 < a1. If a2 is an atom, then a2 = a. If a2 is not an atom, then we continue in this

manner and eventually obtain 0 < an < . . . < a2 < a1 < b since B is finite. Then an = a.

Definition 4.2. A subset p of a Boolean algebra A is a filter if (i) 1 ∈ p, (ii) if x, y ∈ p,
then x · y ∈ p, and (iii) if x ∈ p, y ∈ A, and x ≤ y, then y ∈ p. For a ∈ A, p is a principal

filter if p = {x ∈ X | a ≤ x}. We say p is the principal filter generated by a. If p = {1},
then p is the trivial filter and if 0 /∈ p, then p is a proper filter.

Definition 4.3. If M ⊆ A for a Boolean algebra A, then M is said to have the finite

intersection property if
⋂
{m1,m2, . . . ,mn} 6= ∅ for mi ∈M (i = 1, 2, . . . , n).

Definition 4.4. An ultrafilter is a filter p of a Boolean algebra A where x ∈ p or −x ∈ p,
but not both, for each x ∈ A. If p is proper and x + y ∈ p =⇒ x ∈ p or y ∈ p for

x, y ∈ A, then p is a prime filter. If p is proper and @ proper filter q of A with p ⊂ q,

then p is a maximal filter.

The set of ultrafilters of A is Ult A = {p ⊆ A | p is an ultrafilter of A}.

Example 4.3. The set {a ∈ A | x ∈ a}, where A is an algebra of sets over X and x is

any point in X, is an ultrafilter.

Definition 4.5. The Stone map of a Boolean algebra A is the map s : A −→ P (Ult A),

where s(x) = {p ∈ Ult A | x ∈ p}.

Definition 4.6. If φ : A −→ B is a Boolean algebra homomorphism and ΣAM exists for

M ⊆ A, then φ preserves ΣAM if ΣBφ[M ] exists and φ
(
ΣAM

)
= ΣBφ[M ]. Similarly, φ

preserves ΠAM if φ
(
ΠAM

)
= ΠBφ[M ]. For an ultrafilter p of A, p preserves ΣM if, for

some m ∈M , ΣM ∈ p =⇒ m ∈ p and preserves ΠM if M ⊆ p =⇒ ΠM ∈ p.

Exercise 4.1. In a Boolean algebra A, let M ⊆ A such that ΣM exists. The Stone

homomorphism s : A −→ P (Ult A) preserves ΣM if and only if ΣM = ΣM0 for some

finite subset M0 of M .

Similarly, let M and N be subsets of A such that
⋂
s[M ] ⊆

⋃
s[N ]. Then there

are finite subsets M0 of M and N0 of N such that
⋂
s[M0] ⊆

⋃
s[N0].

Solution.
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( =⇒ ) We know M ⊆ A and ΣM exists. Suppose s : A −→ P (Ult A) preserves

ΣM ; that is, s[ΣM ] = Σs[M ]. We want to show ΣM = ΣM0 for finite M0 ⊆M .

Suppose ΣM 6= ΣM0. Then ΣM0 < ΣM or ΣM < ΣM0. Consider ΣM0 < ΣM .

Since M0 ⊆M , then ∀ y ∈M0, y ∈M . Now, since ΣM exists and ΣM ≤ x for all x ∈M ,

then ΣM ≤ y ∈ M0. So ΣM0 ≮ ΣM =⇒ ΣM0 ≤ ΣM . Now consider ΣM < ΣM0.

Suppose ∃ x ∈M such that x < y ∀ y ∈M0. Then x /∈M0 since ΣM0 exists because M0

is finite. But M0 ⊆ M and ∀ x ∈ M0 =⇒ x ∈ M . So ΣM ≮ ΣM0 =⇒ ΣM ≤ ΣM0.

Therefore ΣM = ΣM0.

( ⇐= ) We know that ΣM = ΣM0 for some finite M0 ⊆ M . Also, Σs[M ] ∈
P (Ult A). We want to show that s[ΣM ] = Σs[M ]. Since s is a homomorphism, s[ΣM ∩
x] = s[ΣM ] ∩ s[x] for x ∈ M . But ΣM ∩ x = ΣM for all x ∈ M . So s[ΣM ∩ x] =

s[ΣM ] ∩ s[x] = s[ΣM ] for all s[x] ∈ P (Ult A). Therefore, s[ΣM ] = Σs[M ].

Now, let M,N ⊆ A such that
⋂
s[M ] ⊆

⋃
s[N ]. We want to show that for

M0 ⊆ M and N0 ⊆ N , where M0 and N0 are finite, then
⋂
s[M0] ⊆

⋃
s[N0]. Since s

preserves ΣM , then ΣM = ΣM0.

Lemma 4.2. If a1 and a2 are atoms in B and a1 ∧ a2 6= 0, then a1 = a2.

Proof. By the definition of glb, a1 ∧ a2 ≤ a1. Since a1 is an atom, either a1 ∧ a2 = 0 or

a1 ∧ a2 = a1. But a1 ∧ a2 6= 0. Then a1 ∧ a2 = a1.

Similarly, a1 ∧ a2 ≤ a2. Since a2 is an atom and a1 ∧ a2 6= 0, then a1 ∧ a2 = a2.

Therefore a1 = a1 ∧ a2 = a2.

Lemma 4.3. If b, c ∈ B and b � c, then there exists an atom a ∈ B such that a ≤ b and

a � c.

Proof. Since b � c, then b > c and b ∧ c′ 6= 0 (Lemma 3.1). Then by Lemma 4.1, there

exists an atom a ∈ B such that a ≤ b∧ c′. By definition of glb, a ≤ b and a ≤ c′. Now, if

a ≤ c′ and a ≤ c, then a ≤ c ∧ c′. But c ∧ c′ = 0 and so a ≤ 0. This contradictions the

fact that a is an atom in B. Therefore a � c.

Lemma 4.4. If b ∈ B and a1, a2, . . . , an are all of the atoms that satisfy ai ≤ b (where

i = 1, 2, . . . , n) in B, then b = a1 ∨ a2 ∨ · · · ∨ an.
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Proof. We will let a1 ∨ a2 ∨ · · · ∨ an = c. Since each ai ≤ b, then c ≤ b. Now suppose

b � c. Then by Lemma 4.3, there exists an atom in B such that a ≤ b and a � c. But

since a ≤ b and a is an atom in B, then a = ai, for some i = 1, 2, . . . , n. Therefore

a ≤ c, contradicting a � c, so b ≤ c. Then c ≤ b and b ≤ c, implying b = c. Therefore

b = a1 ∨ a2 ∨ · · · ∨ an.

Lemma 4.5. Suppose b ∈ B and a1, a2, . . . , an are all of the atoms in B such that

b = a1∨a2∨· · ·∨an. If a is an atom in B and a ≤ b, then a = ai for some i = 1, 2, . . . , n.

Proof. Since a ≤ b, then a ∧ b = a (Theorem 2.2).

So a = a∧b = a∧(a1∨a2∨· · ·∨an) = (a∧a1)∨(a∧a2)∨· · ·∨(a∧an) (by distribution). Now

since a is an atom in B, then a 6= 0. So for some i = 1, 2, . . . , n, a ∧ ai 6= 0 (Proposition

3.2). Therefore, by Lemma 4.2, a = ai.

Proposition 4.1. For a Boolean algebra A and a power set algebra P (At A), φ : A −→
P (At A), where φ(b) = {a ∈ At A | a ≤ b}, is a homomorphism. If A is atomic, φ is an

embedding and if A is complete, φ is an epimorphism.

Proof. Since φ(b) = {a ∈ At A | a ≤ b}, we know that φ(0) = { } and φ(1) = At A.

Now, φ(−b) = {a ∈ At A | a ≤ −b}, which equals At A \ {a ∈ At A | a ≤ b}. Then

At A \ {a ∈ At A | a ≤ b} = At A \ φ(b) and so φ(−b) = −φ(b). Then, we know that

for every a ∈ A, then a ≤ b · c ⇐⇒ a ≤ b and a ≤ c by definition of lub and atom and

so, φ(b · c) = φ(b) ∩ φ(c). In a similar manner, φ(b + c) = φ(b) ∪ φ(c). Therefore, φ is a

homomorphism.

Now let A be atomic and consider b 6= c. Then b 6≤ c or c 6≤ b. Without loss of

generality, say b 6≤ c. Then, by Lemma 3.1, b · −c 6= 0 and so, there exists an atom a ∈ A
such that a ≤ b · −c. So a ≤ b and a ≤ −c. Since a ≤ −c, then a 6≤ c and so a ∈ φ(b) and

a /∈ φ(c). Therefore φ(b) 6= φ(c) and so φ is an embedding.

Lastly, we will let A be complete and M ⊆ At A and show φ is an epimorphism

if M = φ(b), where b = ΣM . If a ∈ M , then a ∈ φ(b) since a ≤ b = ΣM . Suppose A is

not in M . Then a ∈ At A \M and so a is distinct from m for every m ∈M and a 6≤ m.

Then, a ≤ −m and so a ·m = 0 by Lemma 3.1. Therefore a /∈ φ(b).
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Chapter 5

More on Boolean Algebras

For the end of this study, we used the knowledge and understanding devel-

oped throughout the previous chapters in order to research the more complex aspects of

Boolean algebras.

Theorem 5.1. If B is a finite Boolean algebra, then B is isomorphic to the power set

P (S) of some nonempty finite set S. This is Stone’s representation theorem for

finite Boolean algebras.

Proof. Let B be a finite Boolean algebra and let S be the set of all atoms in B. We want

to show that B is isomorphic to the power set of S (B ∼= P (S)); that is, we want to show

there exists a map φ : B −→ P (S) such that φ is a bijection and φ is order preserving.

Since B 6= { }, there exists some b ∈ B. We will define φ : B −→ P (S) such

that for b ∈ B, then φ(b) = A, where A = {a | a ∈ S and a ≤ b}. Note that if b = 0,

then φ(b) = { }, since there does not exist a ∈ S such that a ≤ 0 (by the definition of

atom). Also, if b = 1, then φ(b) = S, since for all a ∈ S, a ≤ 1 (definition of unity). We

will assume b 6= 0, b 6= 1.

First, we will consider {a ∈ S | a ≤ b, for some b ∈ B} = {a1, a2, . . . , ak} ⊆ S.

Then b = a1 ∨ a2 ∨ · · · ∨ ak by Lemma 4.4. Now, by Lemma 4.5, for any atom a ≤ b in B,

then a = ai for some i = 1, 2, . . . k. Therefore, φ(b) = φ(a1∨a2∨· · ·∨ak) = {a1, a2, . . . , ak}
and so φ is onto.

Now, φ is order preserving if for b, c ∈ B, b ≤ c in B if and only if φ(b) ⊆ φ(c) in

P (S). If b ≤ c, then every atom a, such that a ≤ b, is an atom such that a ≤ c. Therefore
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φ(b) ⊆ φ(c). Now assume that b � c. Then there exists an atom a such that a ≤ b and

a � c (Lemma 4.3). Then a ∈ φ(b) and a /∈ φ(c). This implies φ(b) * φ(c).

Lastly, if φ(b) = φ(c), then φ(b) ⊆ φ(c) and φ(c) ⊆ φ(b). Since φ is order

preserving, φ(b) ≤ φ(c) implies b ≤ c and similarly, φ(c) ≤ φ(b) implies c ≤ b. Then, by

antisymmetry, b = c and therefore φ is one-to-one.

Corollary 5.1. If B is a finite Boolean algebra, then | B |= 2n for some positive integer

n.

Proof. Since B is a finite Boolean algebra, then by Theorem 5.1, there exists a map

φ : B −→ P (S) for a finite set S, where φ is one-to-one and onto. So | B |=| P (S) |.
Then, since S is finite, | S |= n, for some n > 0. By induction on n, S has 2n subsets.

Therefore, | P (S) |= 2n and so | B |= 2n.

Definition 5.1. Let A be a Boolean algebra and let a ∈ A. Then the subset {x ∈ A |
x ≤ a} of A, denoted A � a, is a Boolean algebra with the partial order inherited from A

and is called the relative algebra or factor algebra of A with respect to a.

Lemma 5.1. For each a in A, A ∼= (A � a)× (A � −a)

Proof. Let f be a function such that f : A −→ (A � a)× (A � −a), where f(x) = (x ·a, x ·
−a). Let g be a function such that g : (A � a)× (A � −a) −→ A, where g(y, z) = y + z.

Now, let x ·a = y and x ·−a = z. Then x = y+z (since y+z = (x ·a)+(x ·−a) =

x · (a + −a) = x · 1 = x). So f(x) = (x · a, x · −a) = (y, z) and g(y, z) = y + z = x.

Therefore, f and g are inverses.

Now, f is a homomorphism:

(i) f(x) = f(y+ z) = (x ·a, x ·−a) = (x ·a, 0) + (0, x ·−a) = (x ·a ·a, x ·a ·−a) +

(x · −a · a, x · −a · −a) = f(x · a) + f(x · −a) = f(y) + f(z).

(ii) f(y · z) = f(x · a · x · −a) = f(0) = 0 = (0, 0) = (x · a · 0, 0 · x · −a) =

(x · a, 0) · (0, x · −a) = f(x · a) · f(x · −a) = f(y) · f(z).

(iii) f(−x) = (−x · a,−x · −a) = (−x · −a,−x · a) = −(x · a, x · −a) = −f(x).

Then f is a bijective homomorphism and therefore A ∼= (A � a)× (A � −a).

Definition 5.2. Let x and y be in A, a Boolean algebra, and let X ⊆ A. If x · y = 0,

then x and y are disjoint. If 0 < x for x ∈ X and any two distinct elements in X are

disjoint, then X is said to be a pairwise disjoint family.
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Definition 5.3. For a Boolean algebra A, a subset X ⊆ A is a partition of unity if it is

a maximal pairwise disjoint family.

Proposition 5.1. Let A be an infinite Boolean algebra. Then

(i) X, an infinite pairwise disjoint family, is in A,

(ii) (an)n∈ω, a strictly decreasing infinite sequence, is in A, and

(iii) (−an)n∈ω, a strictly increasing infinite sequence, is in A.

Proof. Let A � an be infinite for every n ∈ ω and consider (an)n∈ω, a strictly decreasing

sequence in A. Now, let a0 = 1. Consider a ∈ A � an such that 0 < a < an. If A � a is

infinite, then let a = an+1. If A � a is finite, then A � (an · −a) is infinite (Lemma 1.9)

and so we let an+1 = an · −a.

Since (an)n∈ω is strictly decreasing, then (−an)n∈ω is strictly increasing. Now,

an ≤ am+1 for m < n and (am · −am+1) · (an · −an+1) ≤ an · −am+1 = 0, so {an · −an+1 |
n ∈ ω} is an infinite pairwise disjoint family.

Definition 5.4. Let A be a Boolean algebra and M ⊆ A. Then ΣM is the least upper

bound (lub) of M and ΠM is the greatest lower bound (glb) of M in (A,≤). Σ is referred

to as sum and Π as product. If ΣM and ΠM exist for every M ⊆ A, then A is said to be

a complete Boolean algebra.

If M is a family of subsets of A, then the lub and glb of M in (P (A),⊆) are⋃
M and

⋂
M , respectively.

If A is a subalgebra of a Boolean algebra B and M ⊆ A, then the least upper

bound of M in A is ΣAM and the lub of M in B is ΣBM . Similarly, the greatest lower

bound of M in A is ΠAM and the glb of A in B is ΠBM .

Definition 5.5. If B is a Boolean algebra, then a subalgebra A of B is a regular subalgebra

if for each M ⊆ A such that ΣAM exists, then ΣBM also exists and ΣAM = ΣBM .

Similarly, if for each M ⊆ A such that ΠAM exists, then ΠBM also exists and ΠAM =

ΠBM . A is a complete subalgebra if for each M ⊆ A such that ΣBM exists, then ΣAM

also exists and ΣBM = ΣAM .

Definition 5.6. A subalgebra A of a Boolean algebra B is a k-complete subalgebra of B

if for each subset M of A, where | M |< k (some cardinal) and ΣBM exists, then ΣAM

exists and ΣAM = ΣBM . A is a σ-complete subalgebra of B if for each countable subset

M of A where ΣBM exists, the ΣAM exists and ΣAM = ΣBM .
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Definition 5.7. If M is an algebra of sets and
⋃
Mi ∈ M and

⋂
Mi ∈ M for each

Mi ⊆ M , then M is a complete algebra of sets. If
⋃
Mi ∈ M and

⋂
Mi ∈ M for each

Mi ⊆ M of size less than k, then M is a k-algebra of sets. M is a σ-algebra of sets if⋃
Mi ∈M and

⋂
Mi ∈M for each countable Mi ⊆M .

Definition 5.8. Let B be a Boolean algebra and [0, 1] be the real unit interval. The map

µ : B −→ [0, 1] is called a finitely additive measure if µ(1) = 1 and µ (Σi∈Iai) = Σi∈Iµ(ai)

for every finite set {ai | i ∈ I}, where {ai | i ∈ I} consists of pairwise disjoint elements.

Additionally, if µ (Σi∈Iai) = Σi∈Iµ(ai) for every countable set, where {ai | i ∈ I} consists

of pairwise disjoint elements and Σi∈Iai exists, then µ is said to be a σ-additive measure.

If a > 0 =⇒ µ(a) > 0, then µ is strictly positive.

Corollary 5.2. An infinite σ-complete Boolean algebra has cardinality of at least 2ω.

Proof. Let A be an infinite σ-complete Boolean algebra. Then there exists a pairwise

disjoint family {dm | m ∈ ω} in A. Now, let f : P (ω) −→ A be a function such that

f(M) = Σm∈Mdm and let M and N be distinct subsets of ω. Then, without loss of

generality, there exists m in M \N and so dm ≤ f(M). Therefore dm · f(M) = dm > 0.

But dm · f(N) = Σn∈N (dm · dn) = 0. Therefore, f : P (ω) −→ A is one-to-one.

Lemma 5.2. A pairwise disjoint family X is maximal if and only if ΣX = 1.

Proof. ( =⇒ ) Let X be a maximal pairwise disjoint family. Then ΣX = 1.

(⇐= ) Assume that ΣX < 1. Then there exist a ∈ X such that ΣX = a and a < 1. But

then X is not maximal since X is a pairwise disjoint family and Σ X ∪ {−a} = 1.

Definition 5.9. For a Boolean algebra A and a cardinal k, the cellularity of A is cA =

sup{ | X | | X is a pairwise disjoint family in A}. If cA = | X | for some pairwise disjoint

family X in A, then cA is said to be attained. The saturation of A is sat A = min{µ | µ
is a cardinal,| X |< µ for each pairwise disjoint family X in A}. The cellularity of A � a

is denoted ca.

Theorem 5.2. For every Boolean algebra A, cA is attained if singular. This is the

Erdös-Tarski Theorem.

Proof. Let us first consider the following fact: let a ∈ A and µ be some cardinal. If

µ < ca, then there exists a pairwise disjoint family Y in A � a such that µ ≤| Y |. Then

there also exists a pairwise disjoint family X ⊆ Y in A � a such that | X |= µ.
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Now, let cA = λ such that λ = supα<kλα for a strictly increasing sequence of

cardinals, where k is the cofinality of A. We will consider three cases.

Case 1: There exists b ∈ A such that, for every x ∈ A such that 0 < x ≤ b,

cx = λ. Since cA is singular, then cb = λ > k. Let {bα | α < k} be a pairwise disjoint

family in A � b. Then cbα = λ > λα. Let Zα be a pairwise disjoint family in A � bα

such that | Zα |= λα. Then Z =
⋃
α<k Zα and Z is a pairwise disjoint family such that

| Z |= λ.

Now, if Case 1 does not hold, then let S = {a ∈ A+ | ca < λ} and let X be a

maximal pairwise disjoint family in S. Then there exists s ∈ S such that s ≤ b for each

b ∈ A+. Therefore X is a partition of unity.

Case 2: Suppose supx∈Xcx = λ. Let (xα)α<k be a recursively constructed

sequence of pairwise distinct elements xα of X such that λα < cxα. This is possible

because cx < λ for x ∈ X. Then, for each α < k, choose a pairwise disjoint family Zα of

size λα in A � xα. Let Z =
⋃
α<k Zα. Therefore Z is a pairwise disjoint family such that

| Z |= λ.

Case 3: Suppose supx∈Xcx = µ < λ. We want to show that | X |= λ. Suppose

not. Let | X |< λ and let µ′ = max (| X |, µ)+. Then µ′ < λ = cA. Now, let Y be

a pairwise disjoint family in A such that | Y |= µ′ and let Yx = {y ∈ Y | x · y > 0}
for x ∈ X. Since X is maximal, then ΣX = 1 by Lemma 8. So

⋃
x∈X Yx = Y . Now,

{x · y | y ∈ Yx} is a pairwise disjoint family in A � x. Then | Yx |≤ cx ≤ µ. And so

| Y |≤ µ· | X |< µ′. But we chose Y such that | Y |= µ′, and so there is a contradiction.

Therefore | X |= λ.

Thus, if cA is singular then cA = λ, where λ is the cardinality of a pairwise

disjoint family in A.

Definition 5.10. For a Boolean algebra B, let εx ∈ B be (+1)x = x or (−1)x = −x,

where x ∈ B and ε = +1 or −1. Then for X ⊆ B, an elementary product over X is a

finite product with factors of the form εx. An element of B is said to be in normal form

over X if it is represented as a finite sum of pairwise disjoint elementary products over

X.

Definition 5.11. If A is a subalgebra of B and x1, x2, . . . , xn ∈ B, then the finite

extension of A by x1, x2, . . . , xn is 〈A∪{x1, x2, . . . , xn}〉 and is denoted A(x1, x2, . . . , xn).

The simple extension of A by x is 〈A ∪ {x}〉 and is denoted A(x).
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Theorem 5.3. The subalgebra generated by X ⊆ B contains exactly the elements of B

representable in normal form over X.

Proof. First we will prove that an element b in a Boolean algebra B is generated by X if

and only if b is generated by a finite subset Y of X.

Suppose b is generated by X and consider A = ∪{Y }. Then A ⊆ 〈X〉 since

Y ⊆ X =⇒ 〈Y 〉 ⊆ 〈X〉 (order-preserving). Also, A is a subalgebra of B since the

subalgebras generated by Y make up a directed family.

Now suppose b is generated by Y . Then for every x ∈ X, x ∈ 〈x〉 ⊆ ∪{Y } = A.

So X ⊆ A and 〈X〉 ⊆ A.

Now we want to show that for b ∈ B generated by a finite subset X of B, b is

representable in normal form over X.

Let X = {x1, x2, . . . , xn} and let R = {ρ}, where ρ : {1, 2, . . . , n} 7→ {+1,−1}.
Then for ρ ∈ R, let hρ = ρ(1)x1 · ρ(2)x2 · · · · · ρ(n)xn, an elementary product over X.

Consider ρ 6= ρ′.

Without loss of generality, let ρ(3) = +1 and ρ′(3) = −1. So hρ · hρ′ = ρ(1)x1 ·
ρ(2)x2 · (+1)x3 · ρ′(1)x1 · ρ′(2)x2 · (−1)x3 = ρ(1)x1 · ρ(2)x2 · x3 · ρ′(1)x1 · ρ′(2)x2 · −x3 =

ρ(1)x1 · ρ(2)x2 · ρ′(1)x1 · ρ′(2)x2 ·x3 · −x3 = ρ(1)x1 · ρ(2)x2 · ρ′(1)x1 · ρ′(2)x2 · 0 = 0. Then,

hρ · hρ′ = 0 for ρ 6= ρ′.

Now consider Σρ∈Rhρ. By distribution, hρ1 + hρ2 + · · · + hρn = (x1 + −x1) ·
(x2 +−x2) · · · · · (xn +−xn) = 1. Therefore, Σρ∈Rhρ = 1. So Σρ∈Mhρ, for M ⊆ R, is in

normal form over X and we will let A = ∪{Y } = {Σρ∈Mhρ |M ⊆ R}. We will show that

〈X〉 ⊆ A.

Since hρ · hρ′ = 0 and Σρ∈Rhρ = 1, then Σρ∈Mhρ + Σρ∈M ′hρ = Σρ∈M∪M ′hρ and

−Σρ∈Mhρ = Σρ∈R\Mhρ. Therefore, A is non-empty and closed under the operations +

and −, and so A is a subalgebra of B.

Lastly, consider xi ∈ B. Then xi = xi · Πj 6=i(xj + −xj) and, by distribution,

xi = Σρ∈Mhρ for M = {ρ ∈ R | ρ(i) = +1}. Then every xi is in A and therefore

〈X〉 ⊆ A.

Corollary 5.3. If A is a subalgebra of B, then for x ∈ B, A(x) = {a ·x+ a′ · −x | a, a′ ∈
A} = {a1 · x+ a2 · −x+ a3 | a1, a2, a3 ∈ A are pairwise disjoint}.

Proof. We know that A(x) = 〈A∪ {x}〉 and so, by Theorem 5.3, A(x) = {a · x+ a′ · −x},
where a, a′ ∈ A. Now, to show A(x) = {a1 · x + a2 · −x + a3}, where a1, a2, a3 ∈ A are
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pairwise disjoint, consider a · x+ a′ · −x.

a ·x+a′ ·−x = a · (−a′+a′) ·x+a′ · (−a+a) ·−x = (a ·−a′+a ·a′) ·x+(a′ ·−a+a ·a′) ·−x

= (a · −a′) · x+ (a′ · −a) · −x+ a · a′.

Since (a · −a′), (a′ · −a), and (a · a′) are disjoint, let a1 = a · −a′, a2 = a′ · −a, and

a3 = a · a′.

Definition 5.12. For a Boolean algebra B, a subset X of B∗ is dense in B if for every

b ∈ B∗, there exists x ∈ X such that 0 < x ≤ b. For a subalgebra A of B, if A∗ is dense

in B, then A is a dense subalgebra. The density of a Boolean algebra B is denoted πB

and is the minimum of {| X |}, where X is a dense subset in B.

Definition 5.13. For a Boolean algebra A, a subset X of A is called a chain in A if X

is a linear order under the partial order inherited from A. The set X is a well-ordered

chain in A if it is a well-ordering under the partial order of A.

Definition 5.14. If | X |< k for each pairwise disjoint family X in a Boolean algebra

A, that is if sat A ≤ k, then A satisfies the k-chain condition. If each pairwise disjoint

family in A is at most countable, then A satisfies the countable chain condition.

Lemma 5.3. For X ⊆ B∗, the following are equivalent:

(i) X is dense in B.

(ii) For every b ∈ B, there is a pairwise disjoint family M ⊆ X such that ΣM = b.

(iii) For every b ∈ B, there exists M ⊆ X such that ΣM = b.

(iv) For every b ∈ B, b = Σ{x ∈ X | x ≤ b}.

Proof. We will first show (i) =⇒ (ii): Let b ∈ B and let M be a pairwise disjoint family

such that M ⊆ X ∩ (B � b) and M is maximal (well ordering principle). If ΣM 6= b,

then there exists an upper bound c of M such that c < b. Now, since X is dense in

B, let 0 < x ≤ b · −c. Then M ∪ {x} is maximal. But this contradicts that M is

maximal. Therefore ΣM = b. Next, (ii) immediately implies (iii). For (iii) =⇒ (iv), let

M = {x ∈ X | x ≤ b}. Lastly, by the definition of dense, (iv) =⇒ (i).

Definition 5.15. For a subset A of a topological space X, the interior of A, denoted

int A, is the union of all open sets contained in A. The closure of A is denoted cl A and

is the intersection of all closed sets containing A. The regularization of A is the interior

of the closure of A and is denoted rA = int cl A.
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Definition 5.16. A subset A of a topological space X is said to be regular open if rA = A

and regular closed if A = cl int A. The regular open algebra of X is RO(X) = {A ⊆ X |
A is regular open}.

Definition 5.17. For a topological space X, a ⊆ X is said to be nowhere dense if

int cl a = ∅. If a is the union of a countable number of nowhere dense sets then it is said

to be meager.

Definition 5.18. Two elements p and q of a partial order P are compatible if there exists

r ∈ P such that r ≤ p and r ≤ q. If there does not exist such an r in P , then p and q

are incompatible. The partial order topology is a topology of P where {up | p ∈ P} is the

base, with up = {q ∈ P | q ≤ p}.

Definition 5.19. For a partial order P , a complete Boolean algebra B, and a mapping

λ from P into B∗, the pair (λ,B) is a completion of P if

(i) λ is order-preserving

(ii) λ preserves compatability

(iii) λ[P ], the image of P under λ, is dense in B.

Theorem 5.4. Every partial order P has RO(P ) as a completion.

Proof. Let {up | p ∈ P} be the partial order topology of P . The regular open algebra of

P , RO(P ), is {p ⊆ P | p = int cl p}. Let h be a mapping from P into RO(P ) such that

h(p) = int cl up.

Since h(p) ⊆ cl up and cl h(p) ⊆ cl up, then h(h(p)) ⊆ h(p), where h(h(p)) =

int cl h(p). But h(p) ⊆ h(h(p)), and therefore h(h(p)) = h(p). So, for every p ∈ P ,

h(p) is regular open. Now, up ⊆ P is non-empty and so up ⊆ h(p), since up ⊆ cl up and

up = int up ⊆ int cl h(p). Therefore h(p) ∈ RO(P )∗.

We will show that (h,RO(P )) is a completion of P . First, we will show that the

image of P under h, h[P ], is dense in RO(P ). If r ⊆ P is non-empty and regular open,

then there exists p such that up ⊆ r, since {up | p ∈ P} is the partial order topology. Then

h(p) is the least regular open subset of P such that up ⊆ h(p) since up ⊆ h(p) ∈ RO(P )

and up ⊆ ur ∈ RO(P ) =⇒ h(p) ⊆ h(r) = ur. Therefore h(p) ⊆ r and so h[P ] is dense

in RO(P ). Now, since q ≤ p =⇒ uq ⊆ up, then h(q) ⊆ h(p) and order is preserved.

Lastly, if p and q are incompatible then up and uq are disjoint. Then up ⊆ P \ uq and so
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cl up ⊆ cl P \ uq, where cl P \ uq = P \ uq. Then cl uq and up are disjoint. Similarly,

uq and cl up are disjoint. Therefore h(p) and h(q) are disjoint and so (h,RO(P )) is a

completion of P .

Definition 5.20. If for all p and q in a partial order P such that q � p there exists r ≤ q,
where r is incompatible with p, then P is said to be separative.

Definition 5.21. For a Boolean algebra A and a complete Boolean algebra B, B is a

completion of A, denoted B = Ā, if A is a dense subalgebra of B.

Theorem 5.5. Every Boolean algebra has a unique completion, up to isomorphism.

Proof. First, we will prove that for a Boolean algebra A, there exists a complete Boolean

algebra B such that B = Ā. Consider A∗ ⊆ A. If q � p in A∗, then q ·−p 6= 0 in A. Since

A∗ is dense in A, there exists r ∈ A∗ such that 0 < r ≤ q · −p. Then r ≤ q and r · p = 0,

so r and p are incompatible in A∗. Therefore A∗ is a separative partial order. We will

pick B to equal RO(A∗) and let h(p) = int cl up. Then (h,B) is the completion of A∗.

Now, we will extend h : A∗ −→ B to f such that f : A −→ B with f(0) = 0. If

we can show that f is a Boolean homomorphism, then f [A] is a dense subalgebra of B

and B is the completion of f [A].

Since A∗ is separative, h is one-to-one. Then, since f(0) = 0 and f [A] ⊆ B∗, f

is also one-to-one. We know f(0A) = 0B and f(1A) = 1B. Consider p, q ∈ A. If p · q > 0,

then f(p ·q) = up·q = up∩uq. But f(p) ·f(q) = up∩uq. So f(p ·q) = f(p) ·f(q). If p ·q = 0,

then f(p · q) = f(0) = 0 and f(p) · f(q) = f(p) ∩ f(q) = ∅. Therefore f(p) · f(−p) = 0.

Now if p = 0, then f(p)+f(−p) = 0+1 = 1 and if −p = 0, then f(p)+f(−p) =

1 + 0 = 1. So consider p 6= 0 and −p 6= 0. Since h[A∗] is dense in B, then there exists

q ∈ A∗ such that h(q) · h(p) = 0 and h(q) · h(−p) = 0. But h(q) · h(p) = 0 =⇒ h(q · p) =

0 =⇒ q · p = 0. Similarly, h(q) · h(−p) = 0 =⇒ q · −p = 0. And since p,−p 6= 0,

then q = 0. But this is a contradiction since q ∈ A∗. Therefore f(p) + f(−p) = 1. Then

f preserves · and − and so, f : A −→ B is a homomorphism. Then f [A] is a dense

subalgebra of B since h[A∗] is dense in B.

Now, to show uniqueness, let B and C be complete Boolean algebras and let

A be a dense subalgebra of B and of C. Then A∗ is a dense subset of B and C. Then

h : B −→ C is an isomorphism such that h � A = idA.
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Chapter 6

Conclusion

The structure of a Boolean algebra developed from partially ordered sets and

lattices and the operations of least upper bound, greatest lower bound, and complemen-

tation were used to establish its characteristics. Atoms and ultrafilters are underlying

elements of some Boolean algebras that lead to useful properties. By Stone’s representa-

tion theorem for finite Boolean algebras, we concluded that every finite Boolean algebra

is isomorphic to the power set of a finite set. We showed that the cellularity of a Boolean

algebra is attained if it is singular by the Erdös-Tarski theorem. Lastly, we proved that,

up to isomorphism, every Boolean algebra has a unique completion.
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