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Feature Subset Selection and Ranking for
Data Dimensionality Reduction

Hua-Liang Wei and Stephen A. Billings

Abstract—A new unsupervised forward orthogonal search (FOS) algorithm is

introduced for feature selection and ranking. In the new algorithm, features are

selected in a stepwise way, one at a time, by estimating the capability of each

specified candidate feature subset to represent the overall features in the

measurement space. A squared correlation function is employed as the criterion to

measure the dependency between features and this makes the new algorithm easy

to implement. The forward orthogonalization strategy, which combines good

effectiveness with high efficiency, enables the new algorithm to produce efficient

feature subsets with a clear physical interpretation.

Index Terms—Dimensionality reduction, feature selection, high-dimensional data.

Ç

1 INTRODUCTION

IN the literature many approaches have been proposed for
dimensionality reduction [1], [2], [3]. The existing dimensionality
reduction methods can roughly be categorized into two classes:
feature extraction and feature selection. In feature extraction
problems [3], [4], the original features in the measurement space
are initially transformed into a new dimension-reduced space via
some specified transformation. Significant features are then
determined in the new space. Although the significant variables
determined in the new space are related to the original variables, the
physical interpretation in terms of the original variables may be lost.
In addition, although the dimensionality may be greatly reduced
using some feature extraction methods, such as principal compo-
nent analysis (PCA) [5], the transformed variables usually involve
all the original variables. Often, the original variables may be
redundant when forming the transformed variables. In many cases,
it is desirable to reduce not only the dimensionality in the
transformed space, but also the number of variables that need to
be considered or measured [6], [7].

Unlike feature extraction, feature selection aims to seek optimal
or suboptimal subsets of the original features [7], [8], [9], [10], [11],
[12], [13], [14], [15], by preserving the main information carried by
the collected complete data, to facilitate future analysis for high-
dimensional problems. In fact, in many cases, the inclusion of
insignificant variables will inevitably complicate data inspection
and modeling without providing any extra information, because
the insignificant variables are, in a sense, irrelative or redundant
and, thus, can be ignored [16]. Detailed discussions on various
feature selection algorithms can be found in [3], [8], [11].

It is worth mentioning that dimensionality reduction is not
necessarily always the best solution to all high-dimensional
problems [17]. Consider the following scenario: Assume that there
are hundreds or even thousands of features and each feature
potentially carries a small amount of information. The problem is
how to extract and integrate these little pieces of information. Instead
of reducing the dimensionality, Breiman [17] suggested an attractive
and almost opposite approach to handle this problem: increase the
dimensionality by addingmany functions of the predictor variables.
Two outstanding examples of work in this direction are the Amit-
Geman method [18], [19] and support vector machines [20].

This study introduces a new unsupervised feature selection and
rankingmethod, which belongs to the second class aforementioned.
This is a forward orthogonal search (FOS) algorithm bymaximizing the
overall dependency (MOD), to detect significant variables and select a
subset from a library consisting of all the original variables. The
main idea behind the new method is that the overall features in the
original measurement space should be sufficiently represented,
using the selected subset. The new feature selection method, which
will be referred to as the FOS-MODalgorithm, provides a ranked list
of selected features ordered according to the percentage contribu-
tion (the capability for representing the overall features). The new
unsupervised learning algorithm is different from other selection
methods in that it subtly combines the forward orthogonalization
scheme with the maximization of the overall dependency. The
mechanism of the FOS-MOD algorithm is simple and quite easy to
implement and can produce efficient subsets with a direct link back
to the underlying system.

2 THE NEW UNSUPERVISED LEARNING ALGORITHM

2.1 The Basic Idea
LetS ¼ fx1;x2; � � � ;xngbe the collected full data set formedbya total

of N observations (instances) and n attributes in the measurement

space, where the kth instance vector is ½x1ðkÞ;x2ðkÞ; � � � ;xnðkÞ� and
the observation vector for the jth attribute is xj ¼ ½xjð1Þ; xjð2Þ; � � � ;
xjðNÞ�T . The objective of feature selection is to find a subset

Sd ¼ fz1; z2; � � � ; zdg ¼ fxi1 ; � � � ;xidg, which can be used to represent

the original features, where zm ¼ xim , im 2 f1; 2; � � � ; ng, m ¼
1; 2; . . . ; d with d � n (generally d << n if the measurement space

is of large dimension). The basic requirement is that the overall

features in the measurement space should be sufficiently repre-

sented using Sd by ensuring that the variation in the overall features

can be explained by the elements of Sd with an acceptable degree of

accuracy. This means that any data vector xi in the measurement

space should be well approximated using Sd in the sense that

xi ¼ fiðz1; z2; � � � ; zdÞ þ ei; ð1Þ

where fi is an unknown function describing the relationship
between the ith variable and the selected variables, and ei is an
unobservable error representing the discrepancy in the approxima-
tion. In the present study, the commonly used linear model will be
considered

xi ¼
X

d

m¼1

�i;mzm þ ei: ð2Þ

The performance of the selected subset Sd can be evaluated by
inspecting the approximation capability of Sd in reproducing
individual features xiði ¼ 1; 2; . . . ; nÞ in the measurement space,
for example, what percentage of the variation in xi can be accounted
for by the elements in Sd. Assume that the percentage that the
variation in xi can be accounted for by the elements in Sd is piðdÞ, the
average percentage that the variation in the overall features
x1;x2; � � � ;xn can be accounted for by Sd can then be defined as
pðdÞ ¼ ð1=nÞPn

i¼1 piðdÞ. If the percentage pðdÞ is larger than a given
threshold, Sd can then be determined as the final subset; otherwise,
new significant variables need to be added into Sd.

2.2 Feature Detection and Ranking
The objective of feature selection is to seek a number of significant

features to form a feature subset, which is representative and can

characterize the main property of all the original features. Feature

selection starts from a given full data set S ¼ fx1;x2; � � � ;xng, and
significant features are selected in a stepwise way, one feature at a

time. Many criteria [8] can be employed to measure the similarity

between features. In the present study, the squared-correlation

coefficient [21], [22] will be used to interfere with the selection
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procedure. The squared-correlation coefficient between two ran-

dom vectors x and y of size N � 1 is given below

scðx;yÞ ¼ ðxTyÞ2
ðxTxÞðyTyÞ ¼

ðPN
i¼1 xiyiÞ

2

PN
i¼1 x

2
i

PN
i¼1 y

2
i

: ð3Þ

At the first step, let

C½i; j; 1� ¼ scðxi;xjÞ ; i; j ¼ 1; 2; . . . ; n; ð4Þ

C½j; 1� ¼ 1

n

X

n

i¼1

C½i; j; 1�; ð5Þ

‘1 ¼ arg max
1�j�n

fC½j; 1�g: ð6Þ

The first significant variable can then be selected as z1 ¼ x‘1 , and
the associated orthogonal variable can be chosen as q1 ¼ z1. Notice
that the first selected feature z1 ¼ x‘1 explains the variation in the
overall features with the highest percentage, compared with any
other single feature in the candidate set S. In other words, z1 ¼ x‘1

is the most relevant feature in S to represent all the other features.
Assume that a feature subset Sm�1, consisting of ðm� 1Þ

significant variables, z1; � � � ; zm�1, has been determined at step
ðm� 1Þ, and the ðm� 1Þ selected variables have been transformed
into a new group of orthogonalized variables q1;q2; � � � ;qm�1 via
some orthogonal transformation. The mth significant feature zm

will be chosen in such a manner: The subset Sm�1 þ fzmg should be
the most “representative” and, thus, the most “informative” subset
compared with any other subsets formed by adding a candidate
feature to Sm�1. To select the mth significant variable zm, let
�j 2 S � Sm�1. Orthogonalize �j with q1;q2; � � � ;qm�1 as below

qðmÞ
j ¼ �j �

�T
j q1

qT
1 q1

q1 � � � � �
�T
j qm�1

qT
m�1qm�1

qm�1: ð7Þ

The squared-correlation coefficient between xi and qðmÞ
j is

C½i; j;m� ¼ sc xi;q
ðmÞ
j

� �

: ð8Þ

Let

C½j;m� ¼ 1

n

X

n

i¼1

C½i; j;m�; ð9Þ

‘m ¼ arg max
1�j�n

fC½j;m�g: ð10Þ

The mth significant variable can then be chosen as zr ¼ x‘m ,
and the associated orthogonal variable can be chosen as
qm ¼ qðmÞ

‘m
. The ðm� 1Þ features z1; � � � ; zm�1 (respectively, the

associated orthogonalized variables q1;q2; � � � ;qm�1), by includ-
ing the mth feature zm ¼ x‘m (respectively, the qm ¼ qðmÞ

‘m
), can

explain the variation in the overall features with a higher
percentage than by including any other candidate feature.

Subsequent significant variables can be selected in the same way
step by step. At each step, the “best” variable that accounts for the
variation of the overall features with the highest percentage is
selected. The FOS-MOD algorithm is thus quite easy to implement
and can often produce sparse feature subsets for general selection
problems. This algorithm, as agreedynonexhaustive searchmethod,
however, may not always produce an optimal feature subset. In fact,
for any nonexhaustive search algorithm, there is no guarantee that
the algorithm can produce an optimal feature subset [23].

2.3 Monitoring the Search Procedure
Assume that a subset Sm ¼ fz1; � � � ; zmg ¼ fxi1 ; � � � ;ximg � S has
been obtained, where each element of Sm is considered to be
“important” for representing the overall features. In the linear case,

each data vector xjðj ¼ 1; 2; . . . ; nÞ in the measurement space can

be approximated using a linear combination of z1; � � � ; zm as below

xj ¼
X

m

k¼1

�j;kzk þ ej; ð11Þ

or in a compact matrix form

xj ¼ P��j þ ej; ð12Þ

where the matrix P ¼ ½z1; � � � ; zm� is of full column rank, ��j ¼
½�j;1; � � � ; �j;m�T is a parameter vector, and ej is an approximation

error. From the above feature selection procedure, the full rank

matrix P can be orthogonally decomposed as

P ¼ QR; ð13Þ

where R is an m�m unit upper triangular matrix and Q is an

N �m matrix with orthogonal columns q1;q2; � � � ;qm. Substituting

(13) into (12) yields

xj ¼ ðPR�1ÞðR��jÞ þ ej ¼ Qgj þ ej; ð14Þ

where gj ¼ ½gj;1; � � � ; gj;m�T ¼ R��j is an auxiliary parameter vector.

Using the orthogonal property of Q, gj;k can be directly calculated

from xj and Q using gj;k ¼ ðxT
j qkÞ=ðqT

k qkÞ for k ¼ 1; 2; . . . ;m. The

unknown parameter vector ��j can then be easily calculated from gj

and R by substitution using the special structure of R.
From (14), the total sum of squares of the independent

variable xj, with respect to q1;q2; � � � ;qm (or, equivalently, with

respect to z1; � � � ; zm), can be expressed as

xT
j xj ¼

X

m

k¼1

g2j;kq
T
k qk þ eT

j ej: ð15Þ

Following [21], [22], the kth error reduction ratio (ERR) introduced

by including qk (or, equally by including zk) in to the subset, is

defined as

ERR½j; k� ¼
g2j;kðqT

k qkÞ
xT
j xj

� 100% ¼
ðxT

j qkÞ2

ðxT
j xjÞðqT

k qkÞ
� 100%;

k ¼ 1; 2; . . . ; m:

ð16Þ

The sum of error reduction ratio (SERR) due to q1;q2; � � � ;qm (or

equally due to z1; � � � ; zm) are defined as [24]

SERR½j;m� ¼
X

m

k¼1

ERR½j; k�: ð17Þ

The percentage of the variation in the overall features that can be

accounted for by the subset Sm can then be calculated as

SERR½m� ¼ 1

n

X

n

j¼1

SERR½j;m�: ð18Þ

The criterion SERR can be used to measure the performance of the

selected subset Sm and to monitor the search procedure. If SERR

is larger than a given threshold, the associated subset Sm can then

be considered to be sufficient to represent the overall features,

otherwise, more significant variables need to be included.
The time required to implement the FOS-MOD algorithm is

mainly determined by two parts: the orthogonalization procedure

(7) and the calculation of the correlation matrix (8). The

orthogonalization procedure (7) is of the complexity Oððm� 1ÞNÞ
with m << n, and the calculation of the correlation matrix (8) is of

the complexity Oðn2NÞ, where n is the number of candidate

features and N is the number of observations. The overall

computational complexity of the FOS-MOD algorithm for each

search step is thus of the order Oðn2NÞ.
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3 EXPERIMENTS

3.1 Example 1—The Alate Adelges Data
TheAlate Adelges data set comprises 19 variablesmeasured on each
of 40 winged aphids (alate adelges) that had been caught in a light
trap. This data set was studied in [25] using principal component
analysis. The full 40� 19 datamatrix is available in [7], where a very
efficient procrustes analysis method has been proposed to select
variables that preserve multivariate data structure.

The original data were standardized and the following analysis
was based on the normalized data. Denote the 19 variables
(attributes) by x1; x2; � � � ; x19. By applying the new FOS-MOD
algorithm to the data set, the significance of the 19 variables has
been detected and the detection results are shown in Table 1, where
variables are ranked according to the percentage contribution to the
underlying overall characteristics. Note that the first three features,
x13; x17; x11, selected by the FOS-MOD algorithm are identical to
those selected by the B4 method in [26]. The B4 method is a PCA
based approach, which involves the use of the first p components
themselves. Candidate variables are associated with each of the first
p components in some specifiedmanner and p variables are retained
and the remaining variables are rejected (see [16] and the references
therein for details about the B4 method).

If the threshold for SERR is set to be 0.95, a subset of nine
features should then be considered. To evaluate how well the
9-feature subset captures the structure of the complete data, a
further principal component analysis was done on both the
complete data and the data formed by the selected nine features.
Fig. 1a presents the two-dimensional graph of the complete data
matrix while Fig. 1b presents the two-dimensional representation
of the 9-feature subset. Clearly, the 9-feature subset provides a
satisfactory representation for the complete data providing that
capturing the data structure is the prime objective. In Fig. 1a, both
of the first two principal components (PCs) are functions of all the
19 variables, while in Fig. 1b, the first two PCs only involve the
nine selected variables. Table 1 clearly shows which of these

individual variables contribute most and provides a ranked list of

these. This aids interpretation because PCs in general cases are

functions of all the original variables but FOS-MOD shows

individual contributions.
Notice that Fig. 1 only graphically presents the performance of

the FOS-MOD algorithm by qualitatively comparing the structure

formed by the first two associated PCs. From this visual

illustration, however, it is difficult to obtain a quantitive measure

about how efficient the subsets selected by the FOS-MOD

algorithm are. In the following, the FOS-MOD algorithm was thus

applied to pattern classification by analysing several real data sets,

to quantitively inspect the efficiency of the new algorithm.

3.2 Example 2—Data Sets from UCI Machine Learning
Repository

Five real data sets, taken from the UCI machine learning repository

[27], are considered. The objective is to select a subset for each data

set using the FOS-MOD algorithm and the selected subset is then

used to replace the associated complete data for designed pattern

classification. The threshold for SERR in the FOS-MOD algorithm

was set to be 0.95 for all the five data sets. Details about the five

data sets and associate experiments are given below:

. Wisconsin Breast Cancer (WBC). The Wisconsin breast
cancer data contains 699 samples, where 458 are benign
samples (65.52 percent) and 241 are malignant samples
(34.48 percent). Each instance is characterized by nine
attributes. The objective is to predict diagnosis results that
are either benign or malignant.

. Wisconsin Diagnostic Breast Cancer (WDBC). This data set
contains 569 samples, where 357 are benign samples
(62.74 percent) and 212 are malignant samples (37.26 per-
cent). Each instance is characterized by 30 real-valued
attributes. The objective is as in the WBC data.

. Johns Hopkins University Ionosphere. This data set contains
351 samples and 34 real-valued attributes. This data set
involves a binary classification task.
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TABLE 1
Feature Detection and Ranking Results for the Alate Adelges Data

Fig. 1. Alate Adelges data plotted against the first two principal components.

(a) Computed from all the 19 variables and (b) computed from the first nine

selected variables listed in Table 1.



. Cardiac Arrhythmia. This data set contains 452 instances and
279 attributes. The task is to classify a patient into one of the
16 classes of cardiac arrhythmia. This data set was
preprocessed as below. Some values are missing for the
attributes numbered by 11, 12, 13, and 15, and the missing
values were filled with some values chosen randomly
according to the distribution of the known values for the
three attributes. Most of the values for the 14th attribute are
missing and this attribute was not included in our
experiment. Among the 279 attributes, 17 are trivial because
all the observations for these attributes are zero. The 17 zero-
valued attributes were not used in our experiment.

. Forest Cover Type. This data set represents the forest cover
types in a region. There are 54 attributes, 581,012 instances
and seven classes of cover types. The first 11,340 instances
were used as the training data and the next 3,780 instances
were used as the test data. Following [8], only the first
10 numerical-valued attributes were considered.

To inspect the performance of the new FOS-MOD algorithm,
the k-nearest-neighbor (k-NN) algorithm was applied to evaluate
the classification accuracy calculated by performing the following
random cross-validation procedure. The k-NN algorithm was
performed 20 times over the training and validation data defined
as below: at each time, about 10 percent of the samples were
randomly selected and left out, and these were used as the test
data; the remaining 90 percent samples were used as the training
data. The average classification accuracy of the 20 runs of the k-NN
algorithm, over the test data, was then calculated. The value of k, in
the k-NN rule, was chosen by performing many experiments for
different values of k, where 1 � k �

ffiffiffiffiffiffiffi

Ntr

p
and Ntr is the number of

the samples in the training set, and k was chosen as the one that
gives the best classification performance.

A feature subset for each of the five data sets, WBC, WDBC,
Forest, Ionosphere, and Arrhythmia, was selected. The number of
features in the selected subsets for the five data sets was 4, 13, 5, 19,
and 96, respectively. The k-NN algorithm was applied to both the
original complete data and the associated feature subset for each of
the five data sets. A comparison between the classification
accuracy based on the complete data and the associated subset
for the five data sets is reported in Table 2, where the associated
algorithms are implemented using Matlab (R14) on a Sun-Blade-
2500 workstation (1.28GHz ).

It can be seen from Table 2 that the classification accuracy based
on the selected subsets is comparable with those based on the
complete data. This means that the selected feature subsets are
representative and informative and, thus, can be used to replace
the complete data for pattern classification. Table 2 only presents
the classification accuracy at some specific value of k, where the k-
NN rule provides the best classification performance. It may be
informative to compare the overall classification accuracy for
different values of k, with respect to both the selected subset and
the associated complete data. As a benchmark, Fig. 2 depicts such a
comparison for the two data sets Forest and Arrhythmia.

For the data set WBC, the classification accuracy based on the
selected subset is 97.42 percent, which is very near to the best
result (97.5 percent) given in [28], where many classifiers were
compared. For the data set WDBC, the classification accuracy
based on the selected subset here is near to the result in [15], where
the number of features involved in selected subsets is much more
than the 13 used here. In this sense, the subset produced by the
proposed algorithm for the data set WDBC is more compact. While
for the data set Forest, the result produced by the FOS-MOD
algorithm is comparable with those in [8], where several feature
selection algorithms were compared, for the data sets Ionosphere
and Arrhythmia, the results here are slightly better than those in
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TABLE 2
A Comparison of the Classification Accuracy over the Original Complete Data and the Associated Selected Subsets, Using the k-NN Algorithm

Fig. 2. A compassion of the classification accuracy based on the complete data and the associated subset, using the k-NN algorithm with different values of k. (a) For the

Forest data and (b) for the Arrhythmia data.



[8]. The mechanism of the FOS-MOD algorithm, however, is quite

easy and the implementation of this algorithm only involves the

calculation of the squared-correlation matrix and the maximization

of the overall dependency. The results of the analysis of these data

sets using several methods are already given in [8]. Comparing the

results of the FOS-MOD algorithm with those in [8] therefore

provides a full comparison of the various methods.

4 CONCLUSIONS

A new unsupervised learning algorithm has been proposed for

feature selection and dimensionality reduction. The main advan-

tage of the new algorithm is that the implementation only involves

the calculation of the designed correlation matrix and the forward

orthogonalization procedure. The new algorithm, which combines

good effectiveness with high efficiency, often produces efficient

feature subsets and, thus, provides an effective solution to the

dimensionality reduction problem. The algorithm assumes that a

linear relationship exists between sample features. In many cases,

where features are linked by some nonlinear relationship, this

assumption may become unreasonable. In such cases, more

variables may need to be included in the final subset to achieve

a satisfactory recognition result. This is a disadvantage of this type

of approach. Future work will involve adapting the present

method to accommodate nonlinear relationships and to seek more

powerful dependence measurement criteria.
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