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1. Introduction

The quantitative and formal development of the personal or size distribution of income
and the measurement of income inequality was first introduced by the Italian economist
Vilfredo Pareto. He specified his type I model early in 1895 [2], and in 1896 and 1897
his types II and III [3]–[5], and made an inequality interpretation of his shape parameter.
Based on Pareto’s economic foundations, and on the stochastic foundations afterward
developed by other authors [6, 7], the Pareto law (Pareto type I) is now overwhelmingly
considered as the income distribution model of high income groups.

Since Pareto’s seminal contribution, many probability density functions have been
proposed in the literature that are suitable for describing the size distribution of income
amongst the population as a whole—see, e.g., the comprehensive survey contained in [8].
Fitting of parametric functional forms has also been common for the distribution of
wealth4. However, the problem for the wealth researcher is that virtually all of the

4 Income and wealth are commonly used to assess the economic well-being of individuals, families or households.
Although some correlation exists between them, the relationship is not perfect: greater income is likely to mean
greater wealth, but not always. The two measures, in fact, are not synonymous. Income is a flow, since it is
meaningful only when defined in relation to a period of time (hourly, weekly, monthly or annual income). Wealth
is a stock, increasing as new assets are acquired or savings accumulated, and the only time information required is
when the stock was measured (no periodicity is necessary). The link between the flow from income and the stock
of wealth is obvious: the greater the former, the more rapidly the latter will increase. Accordingly, a high income
may be associated with low wealth—this is the case, for example, with young people starting their careers; on
the other hand, a low income could accompany high wealth—this is the case with some retirees who have little
income but who have accumulated and paid for substantial assets. At a practical level, wealth is distributed much
more unequally than income because of life cycle savings and bequest motives [9]. Data on stocks of wealth also
present distinctive features in comparison with income data that make empirical analysis non-standard in several
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models suggested within the context of the income distribution literature are defined for
variables taking only strictly positive values, although published statistical data of wealth
distributions give clear evidence of presenting highly significant frequencies of households
or individuals with null and/or negative wealth. The early contributions systematically
dismissed these frequencies and fitted their respective proposed models to the positive
observations only, thus omitting a significant part of the story5.

To the best of our knowledge, Dagum [15, 16] was the first and only one to specify
and test a four-parameter model for wealth distributions (Dagum type II). The fourth
parameter in the Dagum model is an estimate of the frequency of economic units with
wealth equal to zero. This model is highly relevant to describe total (gross) wealth
distribution because of the always large observed percentage of economic units with null
total wealth. Dagum [17]–[20] made further developments of his type II model to analyze
the distribution of net wealth, which is equal to gross wealth minus total debt. The support
of the Dagum model of net wealth is the real line R = (−∞,∞), thus allowing us to fit
the subset of economic units with null and negative wealth. Furthermore, it contains as
particular cases both the Dagum types I and II distributions [15].

In more detail, the Dagum general model of net wealth distribution is a mixture
(or a convex combination) of an atomic and two continuous distributions. The atomic
distribution concentrates its unit mass of economic agents at zero, and therefore accounts
for the economic units with null net wealth. The continuous distribution accounting for
the negative net wealth observations is given by a Weibull function. It has a fast left tail
convergence to zero, and therefore it has finite moments of all orders. The other continuous
distribution, specified as the Dagum type I model, accounts for the positive values of net
wealth and presents a heavy right tail, thus having a small number of finite moments of
positive order. This different behavior at the two tails of the distribution stems from the
fact that, unlike the right tail of income and (gross or net) wealth distributions, which tend
slowly to zero when income and wealth tend to infinity, the distribution of the negative
values (left tail) of net wealth tends very fast to zero when the variable tends to minus
infinity, since economic units face a short term challenge of either moving out of the
negative range of net wealth or bankruptcy.

The purpose of the present work is to provide estimates for the 1984–2009 US net
wealth distributions of this Dagum general model, partly motivated by the fact that
there are no applications other than Dagum’s ones [17]–[20] that we are aware of—the
only notable exception being represented by [21], who fitted the model to Finnish net
wealth data in 1984 and 1989. Furthermore, since other approaches can be entertained
and comparative study of their relative merits performed, we also explore the possibility
of using alternative distributions to characterize positive net wealth values. That is, we
formalize, analyze and fit to our US net wealth data finite mixture models based upon the
Singh–Maddala and κ-generalized distributions as specifications for the positive values.
The Singh–Maddala distribution [22] is known to be very successful in fitting the empirical

ways (see the ongoing discussion above for details). However, as far as the shape of the particular distribution is
concerned, income and wealth share qualitatively the same characteristics: many empirical wealth distributions
are indeed positively skewed with ‘fat’ and long right-hand tails, as are income distributions.
5 In the 1950s, [10] and [11] proposed the Pareto type I model and the lognormal distribution, respectively.
Afterward, other models were proposed: in 1969 the Pareto types I and II by [12]; in 1975, the log–logistic by [13]
and the Pearson type V by [14]. All of these models are restricted to describe only the positive range of wealth,
since they are not defined for zero and/or negative values.
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income distributions. The κ-generalized distribution was proposed in previous works of
ours [1], [23]–[26] to describe the distribution of personal income in some developed
economies for different years. Positive conclusions were drawn about its ability to provide
an accurate description of the observed distributions, ranging from the low to the middle
region, and up to the right tail. The empirical success of the κ-generalized distribution
was complemented by goodness-of-fit comparisons showing that fitting the distribution to
available income data offers superior performance over other existing models (including
the Singh–Maddala and Dagum type I) in a significant number of cases.

The content of the paper is organized as follows: section 2 recalls some basic properties
of the κ-generalized statistical distribution; section 3 presents the main analytical
properties of the net wealth distribution models; section 4 deduces their corresponding
moments; section 5 derives the parametric forms of the Lorenz curve and Gini ratio for the
distribution of net wealth; section 6 fits the specified models to the US data on household
net wealth covering the years 1984–2009 and section 7 presents the conclusions.

2. The κ-generalized statistical distribution and its properties

After 2001, a physical mechanism emerging in the context of special relativity was
proposed by one of us [27]–[30], predicting a deformation of the exponential function.
According to this mechanism, the classical exponential distribution transforms into a
new distribution, which at high energies presents a Pareto fat tail. More precisely,
this mechanism deforms the ordinary exponential function exp (x) into the generalized
exponential function expκ (x) given by

expκ (x) =
(√

1 + κ2x2 + κx
)1/κ

. (1)

The above deformation is generated by the fact that the propagation of the information
has a finite speed, and the deformation parameter κ is proportional to the reciprocal of
this speed. The κ-generalized exponential has the important properties

expκ (x) ∼
x→±∞

|2κx|±1/|κ| , (2a)

expκ (x) ∼
x→ 0

exp (x) . (2b)

It is remarkable that for classical systems where the information propagates
instantaneously κ = 0 results, so the ordinary exponential emerges naturally after
noting that exp0 (x) = exp (x). Moreover, in the low energy region x → 0, according to
equation (2b), the exponential distribution emerges again, because the system behaves
classically. In contrast, in systems where the information propagates with a finite speed—
these systems are intrinsically relativistic—κ 6= 0 results, so the exponential tails become
fat according to equation (2a) and the Pareto law emerges.

The generalized exponential represents a very useful and powerful tool to formulate a
new statistical theory able to treat systems described by distribution functions exhibiting
power-law tails and admitting a stable entropy [31, 32]. Furthermore, non-linear evolution
models already known in statistical physics [33]–[35] can be easily adapted or generalized
within the new theory.
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The function expκ (x) was also adopted successfully in the analysis of various
nonphysical systems [36]–[38]. In [1], [23]–[26] we used the function expκ (x) to model
the personal income distribution by defining the cumulative distribution function through

F (x) = 1− expκ [− (x/β)α] , x ≥ 0, α, β > 0, κ ∈ [0, 1). (3)

The corresponding probability density function reads

f (x) =
α

β

(
x

β

)α−1 expκ [− (x/β)α]√
1 + κ2 (x/β)2α

. (4)

It follows immediately that for low incomes the distribution function behaves similarly to
the Weibull model F (x) = 1− exp [− (x/β)α], whereas for large x it approaches a Pareto

distribution with scale β (2κ)−1/α and shape α/κ, i.e. F (x) ∼
x→+∞1−

[
(β (2κ)−1/α)/x

]α/κ
.

Similarly, the density function for x → 0+ behaves as a Weibull distribution f (x) =
(α/β)(x/β)α−1 exp [− (x/β)α], while for x → +∞ it reduces to the Pareto law f (x) =

((α/κ)
[
β (2κ)−1/α

]α/κ
)/x(α/κ)+1.

3. Specification of finite mixture models for net wealth distribution

The general model of net wealth distribution as a mixture of an atomic and two continuous
distributions takes the form

f (w) =
3∑
i=1

θifi (w) , −∞ < w <∞, θi ≥ 0,
∑
i

θi = 1, (5)

where w denotes the wealth variable and {θi}i=1,...,3 are the mixture proportions. The
two-parameter Weibull density

f1 (w) =
s

λ

(
|w|
λ

)s−1

exp

[
−
(
|w|
λ

)s]
, w < 0, (s, λ) > 0 (6)

describes the distribution of economic units with negative net wealth, while the null net
wealth observations are accounted for by a distribution that concentrates its unit mass at
w = 0, i.e.

f2 (0) = 1. (7)

The other continuous distribution, f3 (w), accounts for the positive values of net wealth,
and is alternatively specified by the following three-parameter densities:

(1) the Singh–Maddala

fSM
3 (w) =

aqwa−1

ba [1 + (w/b)a]
1+q , w > 0, (a, b, q) > 0; (8)

(2) the Dagum type I

fD
3 (w) =

apwap−1

bap [1 + (w/b)a]
p+1 , w > 0, (a, b, p) > 0; (9)
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(3) the κ generalized given by equation (4).

The corresponding cumulative distribution function reads

F (w) = θ1F1 (w) + θ2F2 (w) + θ3F3 (w) , θ1 + θ2 = ρ, θ3 = 1− ρ, (10)

where

F1 (w) =

exp

[
−
(
|w|
λ

)s]
, w < 0;

1, w ≥ 0;
(11a)

F2 (w) =

{
0, w < 0;

1, w ≥ 0;
(11b)

F3 (w) =

{
0, w ≤ 0;

F3 (w) , w > 0.
(11c)

Hence

F (w) =


θ1 exp

[
−
(
|w|
λ

)s]
, w < 0;

ρ, w = 0;

ρ+ (1− ρ)F3 (w) , w > 0,

(12)

with F3 (w) having the following alternative mathematical specifications:

F SM
3 (w) = 1−

[
1 +

(w
b

)a]−q
; (13a)

FD
3 (w) =

[
1 +

(w
b

)−a]−p
; (13b)

F κ−gen
3 (w) = 1− expκ

[
−
(
w

β

)α]
. (13c)

4. Moments of finite mixture models for net wealth distribution

It follows from model (5) that the rth-order moment about the origin is6

µr = E (W r) =

∫ ∞
−∞

wrf (w) dw = θ1E1 (W r) + θ2E2 (W r) + θ3E3 (W r) , (14)

where

E1 (W r) = (−1)rλrΓ
(

1 +
r

s

)
(15)

and E2 (W r) = 0.

6 In what follows, Γ (·) stands for the Euler gamma function.
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As for E3 (W r) in the last member of equation (14), according to the alternative
distributions considered to characterize positive net wealth values one gets7

ESM
3 (W r) =

brΓ (1 + r/a) Γ (q − r/a)

Γ (q)
; (16a)

ED
3 (W r) =

brΓ (p+ r/a) Γ (1− r/a)

Γ (p)
; (16b)

Eκ−gen
3 (W r) = βr (2κ)−r/α

Γ (1 + r/α)

1 + (r/α)κ

Γ (1/2κ− r/2α)

Γ (1/2κ+ r/2α)
. (16c)

The mean net wealth equals

µ1 = E (W ) = −θ1λΓ

(
1 +

1

s

)
+ θ3E3 (W ) , (17)

where E3 (W ) is alternatively given by equations (16) with r = 1.

5. The Lorenz curve and the Gini ratio of the net wealth distribution models

By definition, the Lorenz curve [39] describes a relation between the cumulative distri-
bution function, F (w), and the first cumulative moment distribution function, given by

L (u) =
1

µ1

∫ w

0

w′f (w′) dw′ =
1

µ1

∫ u

0

w (u′) du′, u ∈ [0, 1] , (18)

where u = F (w) and w (u) = F−1 (u) denotes the quantile function. Given the
mathematical structure of the general net wealth distribution model (5) and (10), we have

LSM (u) =



−λθ1

µ1

Γ

(
1 +

1

s
, log

θ1

u

)
, 0 ≤ u < θ1;

−λθ1

µ1

Γ

(
1 +

1

s

)
, θ1 ≤ u ≤ ρ;

1

µ1

{
(1− ρ) bq

[
B

(
q − 1

a
, 1 +

1

a

)
−B

([
1− u
1− ρ

]1/q

; q − 1

a
, 1 +

1

a

)]

−λθ1Γ

(
1 +

1

s

)}
, u > ρ;

(19a)

LD (u) =

−λθ1

µ1

Γ

(
1 +

1

s
, log

θ1

u

)
, 0 ≤ u < θ1;

−λθ1

µ1

Γ

(
1 +

1

s

)
, θ1 ≤ u ≤ ρ;

1

µ1

{
(1− ρ) bpB

([
u− ρ
1− ρ

]1/p

; p+
1

a
, 1− 1

a

)
− λθ1Γ

(
1 +

1

s

)}
, u > ρ;

(19b)

7 See [8] for relevant expressions. Formulas for the moments of the κ-generalized distribution are given in [1],
[24]–[26].
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Lκ−gen (u) =

−λθ1

µ1

Γ

(
1 +

1

s
, log

θ1

u

)
, 0 ≤ u < θ1;

−λθ1

µ1

Γ

(
1 +

1

s

)
, θ1 ≤ u ≤ ρ;

1

µ1

{
(1− ρ) β

(2κ)1+1/α

[
B

(
1

2κ
− 1

2α
, 1 +

1

α

)
−B

([
1− u
1− ρ

]2κ

;
1

2κ
− 1

2α
, 1 +

1

α

)]
−λθ1Γ

(
1 +

1

s

)}
, u > ρ,

(19c)

where B (·, ·) and B (·; ·, ·) denote, respectively, the complete and incomplete Euler beta
functions. Equations (19) determine the path of the net wealth Lorenz curve L (u) over
the closed interval [0, 1] for the different specifications of the net wealth finite mixture
model. It follows that, for u = 1, L (1) = 1.

Since the net wealth Lorenz curve presents negative values for all u < ρ, it can be
proved that the Gini inequality ratio takes the form [19, 20]

G =

{
2

∫ 1

0

[u− L (u)] du

}/
[1 + ρ |L (θ1)|] =

[
1− 2

∫ 1

0

L (u) du

]/
[1− ρL (θ1)] , (20)

where ∫ 1

0

L (u) du =

∫ θ1

0

L (u) du+

∫ ρ

θ1

L (u) du+

∫ 1

ρ

L (u) du. (21)

Using equations (19), the Gini ratio becomes

GSM =
µ1 − 2[(1− ρ)2bqB(2q − 1/a, 1 + 1/a)− λθ1(1− θ12

−1−1/s)Γ(1 + 1/s)]

µ1 + ρλθ1Γ(1 + 1/s)
; (22a)

GD =

µ1 − 2{(1− ρ)2bp[B(p+ 1
a
, 1− 1

a
)−B(2p+ 1

a
, 1− 1

a
)]− λθ1(1− θ12

−1− 1
s )Γ(1 + 1

s
)}

µ1 + ρλθ1Γ(1 + 1
s
)

;

(22b)

Gκ−gen =
µ1 − 2[ (1−ρ)2β

(2κ)1+1/αB(1/κ− 1/2α, 1 + 1/α)− λθ1(1− θ12
−1−1/s)Γ(1 + 1/s)]

µ1 + ρλθ1Γ(1 + 1/s)
. (22c)

6. Application

6.1. The US data on household net wealth

The empirical analysis is based on data drawn from the Panel Study of Income
Dynamics (PSID), a nationally representative household survey collected by the Survey
Research Center at the University of Michigan since 1968. The PSID provides detailed
information about economic, demographic, sociological and psychological aspects of many
US households. Since the focus is on the distribution of wealth, we use all (nine) waves
currently available of the special PSID supplement asking information on household wealth
holdings. This supplement was added in 1984 and was conducted on a periodic basis prior
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to 1999 (in 1984, 1989 and 1994). After 1997 the basic PSID survey switched to biennial
data collection, and starting with 1999 the wealth questions have been included in each
wave (1999, 2001, 2003, 2005, 2007 and 2009).

As shown in table 1, the number of households participating in the various waves varies
between 6 000 and 9 000, providing samples for analysis that are reasonably representative
of the ‘true’ wealth distribution in the US8. In particular, we are concerned with the
distribution of net wealth, which is constructed as the sum of values of several asset
types net of debt held by each household9. Since net wealth is expressed in nominal local
currency units, all figures have been deflated to allow for meaningful comparisons over
the period covered by the data. To do so, we have employed the Consumer Price Index
deflator (yearly series based on year 2005) provided by the OECD10. Furthermore, after a
simple adjustment for differences in relative needs of households according to their size11,
net wealth values have been weighted by using appropriate sampling weights provided by
the PSID staff in order to produce representative estimates for all households in the target
population.

Table 1 also provides a number of summary statistics. Consider first the prevalence of
zero and negative values. On the basis of the PSID data, the proportion of households with
negative net wealth rose steadily between 1984 and 2009 (from less than 7% to over 14%)
whilst the proportion of households with zero net wealth increased somewhat between
1984 and 1994 (from slightly more than 4% to about 5%), followed by a decline toward
3% until 2001. By 2003, the percentage of these households started increasing again to
almost 4% and stayed nearly the same in the following two waves (2005 and 2007) before
reaching, in 2009, about the same level of as in 1984. Notwithstanding these differences in
the proportions of negatives and zeros with regard to time trends and levels, when their
joint prevalence is taken into account we find it to be relatively high on average (around

8 For more on this issue, see for instance [40] and [41]. In particular, measured against the standards set by
two prominent American household wealth surveys—the Survey of Consumer Finances (SCF) and the Survey of
Income and Program Participation (SIPP)—the PSID does not differ substantially from them when it comes to
measuring total wealth and its distribution among the great bulk of the US population. Moreover, its measurement
error characteristics look to be consistently better than are those of the SCF and the SIPP: the PSID has indeed a
lower item nonresponse rate than these alternative data sets and thus less need to construct imputed values [42].
9 The PSID asks about eight broad wealth categories: (1) value of farm or business assets; (2) value of checking and
savings accounts, money market funds, certificates of deposit, savings bonds, Treasury bills and other individual
retirement accounts (IRAs); (3) value of real estate other than main home; (4) value of shares of stock in publicly
held corporations, mutual funds or investment trusts, including stocks in IRAs; (5) value of vehicles or other
assets ‘on wheels’; (6) value of other investments in trusts or estates, bond funds, life insurance policies, special
collections; (7) value of private annuities or IRAs; (8) value of home equity (calculated as home value minus
remaining mortgage). More complete definitions of the asset and debt categories are available at the PSID web
site: http://psidonline.isr.umich.edu/.
10 Available at http://stats.oecd.org/.
11 When the distribution of wealth is defined over households and not over individuals, a problem arises with
regard to the possibility of comparing wealth holdings of different units. The reason is that households vary in
size and thus wealth levels are not a good indicator of their well-being, as households with different numbers of
members may have different needs in the use of wealth even when this is of the same order of magnitude across
them. In this case, a correction should be made to meaningfully compare different situations. This correction is
called an equivalence scale. There is a wide range of equivalence scales in use in different countries and by different
organizations. All take account of household size: in many scales this is the only factor, whilst in those taking into
account other considerations it is the factor with greatest weight. Choices of equivalence scale in recent wealth
studies are reviewed in [43]. Here we adopt a simple equivalence scale that is most commonly used in international
studies [44] where net household wealth is divided by the square root of the number of household members.
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Table 1. Summary statistics for US household net wealth, 1984–2009.

Stats
Wave

1984 1989 1994 1999 2001 2003 2005 2007 2009

Obs. 6 918 7 113 7 415 6 851 7 195 7 565 8 002 8 289 8 690
Mean 121 613 135 095 135 885 185 055 189 139 201 991 223 506 256 281 248 753
Median 36 940 38 988 42 390 45 958 50 735 50 295 53 276 56 744 39 143
Skewness 18.340 15.592 13.821 18.234 19.673 15.079 17.883 26.006 31.766
Kurtosis 410.821 364.775 302.102 454.349 598.511 317.070 513.130 909.552 1 193.073
Gini 0.758 0.759 0.751 0.789 0.774 0.788 0.782 0.803 0.850
% withW < 0 6.807 8.096 8.636 9.363 9.409 9.439 10.240 11.137 14.385
% withW = 0 4.285 4.554 4.751 3.557 3.428 3.872 3.715 3.725 4.484
% withW > 0 88.908 87.350 86.614 87.080 87.163 86.689 86.045 85.138 81.130

14% of the sample size). This situation is quite different from that generally faced in the
case of income data, where it is often assumed that income can only take on positive
values—in practice, there may be non-positive incomes but usually the number of these
is so small that one can just ignore them. By contrast, in the case of net wealth data the
assumption of dealing with a positive quantity cannot be justified, since it is a matter of
fact that many people enter a period of indebtedness at some point in their life. Therefore,
net wealth may legitimately take on negative and zero values, and the proportion of such
observations could be non-negligible (as in our case) in representative samples of the target
population12.

Results on the time trend in real mean household net wealth show that it rose
continuously by some 111% from 1984 to 2007 and then fell by almost 3% between 2007
and 2009, for an overall annual growth rate of about 3% over the entire period. The time
trend (although not the magnitude of level changes) in median net wealth appears to
mirror that of the mean. Indeed, the PSID data show median net wealth rising in real
terms by some 54% from 1984 to 2007—save for a temporary slight decrease by less than
1% between 2001 and 2003—and then quickly reaching the same level as in 1989 by a
sharp fall-off of around 31% between 2007 and 2009, for an overall annual growth rate of
about 0.2% over the 25 years.

The change over time in the relationship between the mean and median is shown in
figure 1. To provide an indication of how the distribution of wealth across households
has changed, the evolution of the relative positions of households at the two ends of the
distribution (i.e. the bottom and top quintile groups or bottom and top 20%) is also
displayed13. As noted above, both mean and median net wealth increased from 1984 to
2007, with the mean typically increasing to a greater extent than the median. This suggests
that in recent decades wealth became more concentrated among households at the upper
end of the distribution, and indeed in those years where the divergence between the mean

12 For further discussion on this issue, we refer the reader to [21] and [45].
13 Changes in the aggregates of figure 1 over the 25 year span are measured by index numbers. An index number
is calculated by dividing the value in the year of interest by the value in the base year—1984 in our case—and
then multiplying the result by 100. The base year index is always 100 and the index for each subsequent year will
be above or below 100, depending on whether there has been an increase or decrease in the data compared with
the base year.
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Figure 1. Statistics of US household net wealth distribution, 1984–2009.

and the median became wider—i.e. between 1994 and 2007—the largest changes in net
wealth holdings of households in the top of the real distribution were also observed. By
contrast, both measures fell during the 2007–09 recession. The relatively greater decline
in the median than in the mean suggests that the recession more adversely affected the
households at the bottom of the wealth distribution than those further up, as shown by
the worsening relative position for the bottom 20% of them.

One might suspect that the differences in the pace of real growth between the mean
and median net wealth are partly caused by the presence of long and heavy tails in
the distribution of US household net wealth, particularly at the top of the data range.
Indeed, the positive skewness values listed in the fourth row of table 1 suggest that the
distribution of net wealth in any one year has a long tail toward the upper end, thus
indicating a non-trivial prevalence of values that are ‘extremes’ in relation to the rest of
the data. Furthermore, in each of the wave years the level of kurtosis is huge as compared
to the normal distribution (fifth row of table 1), meaning that the upper tail of net wealth
distribution is inevitably ‘fat’—i.e. declines to zero more slowly than exponentially. As
the median would not be affected by the extreme values, this results in average net wealth
holdings that are consistently larger than median ones in all cases.

Additional information about the fatness of the upper tail of the US net wealth
distribution can be obtained from visual examination of the sample mean excess plot
shown in figure 214. For a sequence of threshold values {wi}i=1,...,N , the mean excess plot
reports the mean of exceedances over wi against wi itself. Putting it differently, this is a plot
of the set of pairs (wi, en (wi))i=1,...,N−1, where en (wi) = (1/

∑N
j=i+1πj)

∑N
j=i+1πj (wj − wi)

is the sample mean excess function (weighted by household weights {πi}i=1,...,N) and

{wi}i=1,...,N are the sample observations ranked from least to greatest. If the points in
the plot show an upward trend, then this is a sign of heavy-tailed behavior. Exponentially

14 Properties of the mean excess plot are reviewed, for instance, in [46]. We do not report plots for each year but
they are available upon request. Since we are interested here in the upper tail behavior of the distribution, the
plot has been drawn only for the positive values of net wealth.
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Figure 2. Mean excess plot for the positive values of US household net wealth in
2003.

distributed data would give an approximately horizontal line and data from a short-tailed
distribution would show a downward trend. In particular, if the empirical mean excess
plot seems to follow a reasonably straight line with positive slope above a certain net
wealth value, then this is an indication of Pareto (power-law) behavior in the tail. This
is precisely the kind of behavior we observe in the 2003 PSID data. In fact, apart from
some noisiness by the most extreme observations, there is evidence for consistent upward
trends of the data and straightening out of the plots above some points onwards, hence
providing a statistical justification for the emergence of power laws as limiting behavior
for the very wealthy.

Does this finding matter when it comes to inequality judgments? Figure 3 displays
the pattern of Gini coefficient for the distribution of US household net wealth over the
period 1984–2009 (the corresponding values are reported in the fourth-last row of table 1).
At least three different sub-periods are shown: from the second half of the 1980s to the
first half of the 1990s, from the late 1990s to the first half of the 2000s, and the last
time interval (2007–09). According to the PSID, net wealth inequality remained virtually
unchanged during the first sub-period. Indeed, the Gini coefficient rose slightly between
1984 and 1989 (from 0.758 to 0.759) and then fell in 1994 to a level below that of 1984
(0.751). By contrast, inequality increased sharply between 1994 and 1999, with the Gini
coefficient of net wealth climbing to 0.789. The following years still show almost the same
degree of inequality: the Gini coefficient was estimated at 0.788 in 2003 and 0.782 in 2005,
except for a temporary decrease to a value of 0.774 in 2001. Finally, between 2007 and
2009 net wealth inequality was up steeply, with the Gini coefficient advancing from 0.803
to 0.850.

Figure 3 also displays the evolution between 1984 and 2009 of the share of total net
wealth held by the richest 20% of households, which amounted on average to around 80%
of the whole over the period. A noteworthy result is that the observed time pattern of
inequality seems to have been driven by the conspicuous wealth holdings at the very top
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Figure 3. Gini coefficient and net wealth share of top 20% across years.

end of the distribution. Indeed, as can be seen from the figure, the time profile of net
wealth share of the wealthiest 20% is analogous to that of the Gini coefficient: after rising
to a peak in 1999, it went down and then started to increase again until 200915.

To sum up the above, wealth in the US has become more concentrated in recent
decades. Net wealth inequality increased by the mid-1990s, and the increase was not
interrupted during the 2007–09 recession. The share of total net wealth held by the top
wealth owners has also grown during the same period, whereas at the other end of the
wealth distribution there was a sharp increase in the number of households with zero or
negative net wealth. Needless to say, this has resulted in a widening gap between the rich
and the poor that advocates more attention be paid to the implementation of appropriate
and practical policies aimed at reducing inequalities, limiting their negative effects on the
socio-economic system and reversing the mechanisms producing them [47].

6.2. Estimation and comparison of finite mixture models for net wealth distribution

Table 2 presents the parameter estimates and other relevant statistics arising from the
fitting of the net wealth distribution models previously discussed to the PSID data from
1984 to 2009. The parameters were estimated in all cases by minimizing the negative of
the log-likelihood function via a modified Newton–Raphson procedure implemented in
Stata’s ml command [48], with the parameter covariance matrix estimates based on the
negative inverse Hessian. Convergence was achieved easily within a few iterations.

The small value of the errors indicates that all the parameters were very precisely
estimated. The mixture proportions (the θ) correspond exactly to the sample estimates
shown in table 1, and the scale parameters (the b, β and λ) reflect the changes over the
period in both the median and the mean among the positive and negative values of real

15 The correlation coefficient between the two series of Gini coefficient and the net wealth share received by the
top 20% is 0.998, which is highly significant (p-value < 0.001).
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Figure 4. Observed and predicted values for the mean and Gini coefficient of US
household net wealth, 1984–2009. The vertical bars denote the symmetric 95%
normal-approximation confidence intervals for the empirical values calculated via
the bootstrap resampling method based on 100 replications. Percent error is
calculated as follows: percent error = (|predicted− observed| /observed) × 100.
(a) Mean and (b) Gini.

net wealth16. The other parameters (the a, α, p, κ, q and s), characterizing distributional
shape, are easiest to interpret by comparing predicted values for key distributional
summary measures with their sample counterparts, as the effect of changing one of them
is contingent on the value of the other parameters. For example, figure 4 shows that
the overall mean net wealth and Gini coefficient as estimated from the mixture models
are very close to their sample estimates17. However, the agreement (in both magnitude
and temporal behavior) between the implied and sample estimates of the mean and Gini
coefficient is much closer for the Singh–Maddala and κ-generalized mixture models than
for the Dagum one. The mean and Gini coefficient associated with the latter model are in
fact above the 95% upper confidence limit of their corresponding sample estimates in six
(from 1989 to 2005) and three (1994, 2003 and 2005) cases out of nine, respectively, and
their percent error turns out to be relatively large compared to the other models—save
for 1994, where both the mean and Gini predictions exhibited the lowest error, and 2009
with respect to the Gini coefficient implied by the Singh–Maddala mixture model. Overall,
judging by the percent error of the mean and Gini coefficient of the net wealth distributions
estimated from the three mixture models, the performance of the κ-generalized mixture
model is appreciably superior to the other ones over most of the time span investigated.

The results summarized in table 2 allow us to emphasize a distinctive feature of wealth
distributions, i.e. the concentration of density mass at zero. There is often a marked spike

16 The correlation coefficients between the Weibull scale parameters (λ) and the two series of the median and mean
net wealth values among the negatives are close to unity (0.982 and 0.955, respectively) and highly significant
(p-value < 0.001 in both cases). Similarly, the correlation coefficients between the values of the scale parameter of
the Singh–Maddala (b), Dagum type I (b) and κ-generalized (β) distributions and the two series of the median and
mean net wealth levels among the positives are all significant at the 1% confidence level and equal, respectively,
to 0.931, 0.983 and 0.998 for the median and 0.812, 0.925 and 0.935 for the mean.
17 The analytic values for the mean and Gini coefficients, also reported in the last two columns of table 2, were
obtained by substituting the estimated parameters into the relevant expressions given by equations (16) and (17)
with r = 1 for the mean and equations (22) for the Gini.
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Figure 5. Observed and calculated Lorenz curves for the US household net wealth
in 2003.

at zero because a relatively large fraction of the population has no wealth. Similar spikes
do not occur with income distributions, where it is often the case that the density mass
vanishes when income goes to zero. As the Weibull, Singh–Maddala, Dagum type I and
κ-generalized distributions are zero modal with a pole at the origin if, respectively, s < 1,
a ≤ 1, ap ≤ 1 and α ≤ 1, it is easily verified from the estimates of these parameters that
the probability density functions of the three mixture models inevitably transfer some
density mass from the neighboring values to the cited spike at zero—i.e. they diverge,
rather than vanish, when the argument goes to zero from both the negative and positive
ends of the wealth range18. This finding of a divergent probability density in the limit of
zero wealth is also shared by other studies on the distribution of wealth (e.g. [49]).

The parameter estimates reported in table 2 were also used to build estimated Lorenz
curves by applying equations (19). The curves for 2003 are presented in figure 5 together
with the empirical Lorenz curve estimate. Even if it is small, one can see a difference
between the three predictions, in that the Lorenz curve estimated from the Dagum
mixture model lies below the empirical one for approximately the top 30% of the wealthiest
households, while the Singh–Maddala and κ-generalized mixture models lead to estimated
Lorenz curves exhibiting a degree of inequality that is much more in line with the observed
one. In particular, the mean absolute difference between the empirical Lorenz data and
the predicted values (averaged from all the survey years) amounts to 0.004, 0.007 and
0.002, respectively, for the Dagum, Singh–Maddala and κ-generalized mixture models,
thus indicating once again that the latter model gives a better match to the observed
data than the other two.

It is interesting to note that the κ-generalized mixture model provides a better fit to
most of the data than any of the alternative models regardless of the criterion used for
comparison. For instance, by inspection of AIC and BIC values reported in the fourth-

18 The behavior around the mode of Weibull, Singh–Maddala and Dagum type I distributions is reviewed,
e.g., in [8]. For the κ-generalized distribution see [1], [24]–[26].
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Table 3. Vuong test for model selection, 1984–2009. (SM, Singh–Maddala
mixture model; D, Dagum mixture model; κ-gen, κ-generalized mixture model.
The null hypothesis is that the competing models are equally close to the ‘true’
data generating process.)

Wave
SM versus κ-gen D versus κ-gen

Statistic p-value Statistic p-value

1984 −3.917 9× 10−5a −0.159 0.874
1989 −2.085 0.037a −2.771 0.006a

1994 −1.176 0.240 −2.966 0.003a

1999 −1.741 0.082 −3.674 2× 10−4a

2001 −2.665 0.008a −2.481 0.013a

2003 −2.486 0.013a −2.529 0.011a

2005 −2.121 0.034a −2.336 0.019a

2007 −2.434 0.015a −2.462 0.014a

2009 −1.964 0.050a −2.675 0.007a

a Significant at the 5% level.

and third-last columns of table 2, it emerges that the two selection criteria agree on the
κ-generalized mixture model as the preferred one for all of the survey waves19. To see
if these differences in the performance of the alternative specifications are statistically
significant, we adopt the Vuong approach to model selection [52]. This approach sets the
model selection criterion in a hypothesis testing framework. More specifically, it tests
the null hypothesis that the models under consideration are equidistant from a unknown
‘true’ model against the alternative hypothesis that one model is closer. The test statistic is
asymptotically normal under the null hypothesis and is quite straightforward to compute.
Table 3 shows the results of the comparisons for the three mixture models. As can be seen,
if one takes 5% as the relevant significance level only in three cases (i.e. when comparing
to the Singh–Maddala mixture model in the survey years 1994 and 1999 and to the Dagum
one in 1984), the test concludes that the κ-generalized mixture model is observationally
equivalent to its competitors, while in all the other cases (more than 83% of all cases) its
superiority as a descriptive model is found to be statistically significant.

The above evidence holds vis-à-vis a further check involving goodness-of-fit indicators
such as the root mean squared error, defined as the square root of the average squared
error between the observed and predicted values of the cumulative distribution function.
In mathematical terms this is expressed as

RMSE =

√√√√ 1

N

N∑
i=1

[
F∗ (wi)− F̂N (wi)

]2
, (23)

where F∗ (w) is the distribution function deduced from the fitted mixture models and

F̂N (w) =
∑N

i=1πi1A (w) /
∑N

i=1πi denotes the empirical distribution function of the N

19 Model selection criteria such as the Akaike [50] and Bayesian [51] information criteria (AIC and BIC) will select,
when comparing models with the same number of parameters, the model with the smallest log-likelihood value
according to the formula (2 × logLik) + (d × npar), where npar represents the number of parameters in the fitted
model, and d = 2 for the usual AIC or d = lnN (N being the number of observations) for the so-called BIC.
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Table 4. Goodness-of-fit comparisons for estimated mixture models of US
household net wealth, 1984–2009. (Source: authors’ own calculations using the
PSID supplemental wealth files.)

Wave Model RMSE (×102) Rank A2 (×102) p-valuea Rank

1984 SM 1.192 3 0.088 0.594 3
D 0.986 1 0.054 0.743 1
κ-gen 1.022 2 0.063 0.673 2

1989 SM 0.981 2 0.057 0.644 2
D 1.118 3 0.064 0.594 3
κ-gen 0.911 1 0.045 0.693 1

1994 SM 0.997 2 0.049 0.703 2
D 1.080 3 0.056 0.693 3
κ-gen 0.936 1 0.042 0.812 1

1999 SM 0.924 2 0.049 0.713 2
D 1.058 3 0.055 0.614 3
κ-gen 0.812 1 0.036 0.782 1

2001 SM 0.916 2 0.053 0.663 3
D 1.008 3 0.050 0.733 2
κ-gen 0.798 1 0.038 0.782 1

2003 SM 0.823 2 0.047 0.703 2
D 0.947 3 0.050 0.673 3
κ-gen 0.716 1 0.035 0.812 1

2005 SM 0.740 2 0.035 0.703 2
D 0.882 3 0.041 0.653 3
κ-gen 0.639 1 0.026 0.802 1

2007 SM 0.871 2 0.046 0.624 2
D 0.923 3 0.047 0.713 3
κ-gen 0.747 1 0.034 0.822 1

2009 SM 0.907 2 0.046 0.634 2
D 0.992 3 0.048 0.663 3
κ-gen 0.822 1 0.035 0.792 1

a Upper tail p-value obtained by 100 bootstrap replications. The null hypothesis
is that data come from the fitted Singh–Maddala (SM), Dagum (D) or κ-
generalized (κ-gen) mixture model.

sample data ordered from lowest to highest carrying the πi along (1A is the indicator
function of the set A = {w|wi ≤ w} and πi refers to the sampling weight of the ith
observation). Clearly, lower values of RMSE indicate a better fit. The comparison results
between the competing models based on the above criterion are shown in table 4. As can
be seen, the κ-generalized mixture model of net wealth ranks first for all years but 1984,
where it is outperformed by the Dagum mixture model.

Similar results are obtained by additionally performing an Anderson–Darling
goodness-of-fit test that data come from the fitted Singh–Maddala, Dagum or κ-
generalized mixture model. This test is known to be more powerful than other tests based
on the empirical distribution function, since it provides equal sensitivity at the tails and
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Figure 6. Zipf plot for the positive values of US household net wealth in 2003.

at the median of the distribution [53]20. The last three columns of table 4 report the test
results for the nine sets of data. p-values are always larger than 0.05, meaning that (if
one takes 5% as the relevant significance level) in all cases the data can be statistically
described by the three models. However, except for 1984, fitting the κ-generalized mixture
model results in both lower values of the test statistic and higher p-values, thus offering
superior performance over the Singh–Maddala and Dagum mixture models.

Can these findings be ultimately ascribed to the different performances of the
alternative densities used to characterize positive net wealth values? Figure 6 presents
for the 2003 PSID wave the relationship between log rank and log size along the positive
support of the net wealth distribution. This double-logarithmic framework, known as the
Zipf plot, is natural to use when focusing on the top part of the distribution because
it accentuates the upper tail, making it easier to detect deviations in that part of the
distribution from the theoretical prediction of a particular model21. The lines show the
predicted Zipf plots obtained from the fit of the models considered. As the figure reveals,
all of them are in good agreement with the actual data in the low–middle range of the
positive support of net wealth distribution. However, at the top tail there is a systematic
departure of empirical observations from the theoretical predictions of the mixtures using
the Singh–Maddala and Dagum type I specifications as descriptions of the positive net

20 The formula used for the test statistic is the one reported by [54], which allows for weighted observations. Since
the distribution of the Anderson–Darling test statistic is only known for data sets truly drawn from any given
distribution [55], while in our case the underlying distribution is itself determined by fitting to the data and hence
varies from one data set to the next, the p-values for the test have been derived by making use of a nonparametric
bootstrap method [56]. That is, given our N -vector of net wealth data, we generated 100 synthetic data sets
by drawing new sequences of N observations uniformly at random from the original data. We then fitted each
synthetic data set individually to the three mixture models and calculated the test statistics for each one relative
to its own models. Then we simply counted what fraction of the time each resulting statistic was larger than the
value for the empirical data. This fraction is the p-value for each fit, and can be interpreted in the standard way:
if it is larger than the chosen significance level, then the difference between the empirical data and the model can
be attributed to statistical fluctuations alone; if it is smaller, the model is not a plausible fit to the data.
21 For an illustration of basic properties of the Zipf plot, see, e.g., [57].
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wealth values, while in the same part of the distributions the theoretical Zipf plot for the
κ-generalized mixture model lies much closer to the empirical one.

This point is of particular relevance in the current context, for both the documented
presence of long and fat tails toward the upper end of the US net wealth distribution and
the fact that all of the three densities accounting for the positive range of wealth obey
the weak Pareto law [6]. The weak version of the Pareto law states that the right-hand
tail of a distribution behaves in the limit as a simple Pareto model, with an exponent
that is a function of the parameters governing the shape of the distribution (see e.g. [58]
for an overview). The values of the Pareto index derived from parameter estimates of the
Singh–Maddala, Dagum and κ-generalized mixture models are given in the sixth column
of table 222. Remarkably, according to the κ-generalized mixture model, the set of values
for the index of the Pareto tail is closely in the narrow range (1, 2] that is generally
found in empirical studies on the US wealth distribution ([62]–[64], for instance), whereas
for the other two models the Paretian upper tail index oscillates systematically above
(Singh–Maddala) and below (Dagum) the limits of this range.

7. Summary and conclusions

This paper mainly deals with the specification, analysis and application of models for
net wealth distribution with support in the interval (−∞,∞). These are mixtures—
or, equivalently, convex representations—of three distributions with non-overlapping
intervals, which have the advantage of providing a relatively flexible functional form and
at the same time retain the advantages of parametric forms that are amenable to inference.
The first distribution is a two-parameter Weibull model that describes the distribution
of economic units with negative net wealth, i.e. covering the open interval (−∞, 0); the
second is a degenerate distribution with its unit mass concentrated at w = 0; and the
third is, alternatively, the three-parameter Singh–Maddala, Dagum type I or κ-generalized
model that accounts for the distribution of economic units with positive net wealth, hence
defined in the open interval (0,∞).

We have obtained closed formulas for the different probability functions, moments and
standard tools for inequality measurement (i.e. the Lorenz curve and Gini concentration
ratio). Except for the Dagum general model of net wealth [17]–[20], to the best of our
knowledge this is the first time that the analytical properties of finite mixture models
for net wealth based on alternative distributions to characterize positive values are fully
derived.

The performance of the three mixture models has been checked against real data on
US household net wealth for different years. Goodness-of-fit comparisons reveal that all
three models are in good agreement with actual data, but the departure of empirical
observations from the predictions of the Singh–Maddala and Dagum mixture models is
always larger than in the case of the κ-generalized model. In particular, the latter model
suggests a superior fit in the right tail of data with respect to the others in many instances.

Finite mixture models deserve further attention in future. A feature of these models is
that each of the parameters may be made a function of covariates summarizing household

22 See table footnote (c) for formulas used to analytically derive the Pareto tail exponent in the three cases. For
more details on the upper tail behavior of the κ-generalized distribution, we refer the reader to [1, 25, 26]. For
the Singh–Maddala and Dagum distributions see instead [59] and [60, 61].
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characteristics. Estimation of ‘heterogeneous’ wealth distributions such as these, with
distributional shape allowed to vary with personal characteristics, provides a route to
decomposition analysis of the sources of differences in wealth inequality across years or
countries23. This could be a good starting point for future research.
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