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A B S T R A C T

Music transcription, which deals with the conversion of music sources into a structured digital format, is a key
problem for Music Information Retrieval (MIR). When addressing this challenge in computational terms, the
MIR community follows two lines of research: music documents, which is the case of Optical Music Recognition
(OMR), or audio recordings, which is the case of Automatic Music Transcription (AMT). The different nature of
the aforementioned input data has conditioned these fields to develop modality-specific frameworks. However,
their recent definition in terms of sequence labeling tasks leads to a common output representation, which
enables research on a combined paradigm. In this respect, multimodal image and audio music transcription
comprises the challenge of effectively combining the information conveyed by image and audio modalities. In
this work, we explore this question at a late-fusion level: we study four combination approaches in order to
merge, for the first time, the hypotheses regarding end-to-end OMR and AMT systems in a lattice-based search
space. The results obtained for a series of performance scenarios–in which the corresponding single-modality
models yield different error rates–showed interesting benefits of these approaches. In addition, two of the four
strategies considered significantly improve the corresponding unimodal standard recognition frameworks.
1. Introduction

A long-standing research problem in Music Information Retrieval
(MIR) is that of attaining structured digital representations from mu-
sic sources, typically known as (music) transcription (Serra et al.,
2013). The MIR community follows two main research lines that
study how to computationally solve this problem when targeting either
music documents–known as Optical Music Recognition (OMR) (Calvo-
Zaragoza, Hajič, & Pacha, 2020)–or acoustic music signals–namely,
Automatic Music Transcription (AMT) (Benetos, Dixon, Duan, & Ewert,
2018). Despite having a similar purpose, these two fields have his-
torically evolved in separate ways owing to differences in the nature
of the data, which has resulted in specific task-oriented recognition
frameworks that are most typically based on multi-stage procedures (de
la Fuente, Valero-Mas, Castellanos, & Calvo-Zaragoza, 2021).

However, some recent proposals in MIR literature frame transcrip-
tion problems in a sequence labeling formulation that approaches the
task in a holistic or end-to-end manner (Calvo-Zaragoza & Rizo, 2018;
Liu, Morfi, & Benetos, 2021): the input data–either scores or acoustic
pieces–are directly decoded into a series of music-notation symbols.
This makes it possible to address OMR and AMT tasks with similar
recognition models that differ only as regards the input data used to
train the system. A graphic illustration of these recognition approaches
is provided in Fig. 1.
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The common formulation makes it possible to explore possible
synergies that may exist between image and audio sources. Some of
the possible research avenues yet to be explored by the community
are: developing common language models, devising multi-task neural
architectures capable of dealing with both tasks independently in a sin-
gle model, using pre-trained models with one modality and fine-tuning
with the other, or multimodal image and audio transcription (Alfaro-
Contreras, Valero-Mas, Iñesta, & Calvo-Zaragoza, 2022). The last case
is the main focus of this work.

The use of multimodal recognition frameworks, which refer to those
that contemplate multiple modalities or representations of the same
datum as input, has led to advances in a variety of fields (Pitsikalis,
Katsamanis, Theodorakis, & Maragos, 2017; Singh, Sangwan, & Hansen,
2012; Toselli, Vidal, & Casacuberta, 2011). The different modalities
in these schemes are expected to provide complementary informa-
tion to the system, eventually resulting in an overall improvement in
performance. These approaches are generally classified according to
the following taxonomy (Dumas, Signer, & Lalanne, 2012): (i) feature
or early-based methods that directly merge the individual features of
the modalities; and (ii) decision or late-fusion methods that combine
the different hypothesis retrieved for each input representation. Note
that the latter family of approaches allows model flexibility, since it
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Fig. 1. End-to-end music transcription framework. OMR techniques deal with images and AMT techniques deal with audio signals; however, both tasks have to provide a result
in a symbolic format that represents a piece of music.
requires only the individual hypotheses for the different modalities for
the combination.

In the context of music transcription, while this might not be en-
tirely true, both a recording and a score image can be considered as two
complementary modalities of the same piece of music. On the one hand,
the image provides all the information that was intended to be stored,
but is in a graphic domain that must be decoded in order to interpret
it as music. On the other, the audio contains information about the
musical performance, but certain aspects are difficult to retrieve owing
to human interpretation or certain unavoidable ambiguities (such as
the clef or the meter). If the original composition were in the form
of both an image and a recording, the two could consequently be
combined in a synergistic manner so as to leverage the transcription
advantages depicted by each modality. A promising task that has, with
a few exceptions (de la Fuente et al., 2021), barely been explored in
literature, is, therefore, that of developing approaches that are capable
of efficiently combining the information conveyed by the image and
the audio of the same piece of music for their joint transcription.

In this work, we explore multimodality in image and audio music
transcription by combining each individual transcription hypothesis
yielded by OMR and AMT models, respectively. More precisely, our
contributions are: (i) a thorough revision and first-time application of
four existing late-fusion recognition approaches to multimodal image
and audio music transcription; (ii) comprehensive experimentation
with nine different performance scenarios, involving cases in which
OMR and AMT depict different base errors–high, medium, and low
performance levels are considered–; and (iii) the demonstration of
a significant improvement to the error rate with respect to existing
unimodal approaches.

The remainder of the paper is organized as follows: Section 2
provides the background to this work, while Section 3 introduces the
proposed approach for unimodal recognition. Section 4 thoroughly
develops the multimodal image and audio transcription framework
considered, and Section 5 describes the experimental setup. Section 6
presents and analyses the results, and finally, Section 7 concludes the
work and discusses possible ideas for future research.
2

2. Related work

Traditional attempts to carry out OMR and AMT have been framed
within a pipeline that divides the process into a series of independent
phases (Liu & Benetos, 2021; Rebelo et al., 2012). These approaches
have been highly conditioned by the nature of their input, thus result-
ing in incompatible individual (or unimodal) recognition frameworks.
However, recent developments have formulated both tasks as sequence
labeling (Graves, Fernández, Gomez, & Schmidhuber, 2006): the input
data (either image or audio) is directly decoded into a series of music
notation symbols. This is generally accomplished by employing neural
end-to-end systems, and specifically Convolutional Recurrent Neural
Network (CRNN) architectures owing to their competitive results. In
the aforementioned approach, the convolutional stage extracts the most
appropriate features for the case in hand, while the recurrent part mod-
els the temporal (or spatial) dependencies of these symbols. Given the
advantage of being trained using unsegmented sequential data without
any input–output alignment, the CRNN scheme introduced is usually
considered together with the Connectionist Temporal Classification
(CTC) loss function (Graves et al., 2006). This particular framework
currently constitutes one of the state-of-the-art end-to-end approaches
for both OMR and AMT tasks (Benetos et al., 2018; Calvo-Zaragoza
et al., 2020). This common formulation has naturally triggered an
interest in discovering intersections between these research lines, which
have previously been addressed separately. Multimodality is, therefore,
a suitable avenue of research by which to further study and exploit the
synergies between these individual recognition schemes.

Multimodal frameworks seek to leverage the information depicted
by each input modality in a synergistic manner (Simonetta, Ntalam-
piras, & Avanzini, 2019). This combination can be performed at two
levels: at the feature or early-fusion level or at the decision or late-
fusion level. The former fuses the data ‘‘as is’’—the different input
modalities undergo a pre-processing phase in order to extract their
corresponding features, which are later merged and passed through a
single processing algorithm. The latter approach, however, combines
the outputs of several ad-hoc algorithms, one for each modality. In this
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respect, late-fusion multimodality allows more flexibility—particularly
when the data sources are significantly different from each other.

Scientific literature comprises a large number of works that consider
recognition tasks within a multimodal framework. A first example is
that by Singh et al. (2012), which proposes the late fusion of individ-
ual Text Recognition (TR) and Automatic Speech Recognition (ASR)
systems for postal code recognition using a heuristic approach based
on the edit distance. In the context of handwritten manuscripts, re-
cent proposals rely on probabilistic frameworks to integrate individual
estimations using word-graph hypothesis spaces (Granell, Martínez-
Hinarejos, & Romero, 2018) or a compact version of them, namely
confusion networks (CN) (Granell & Martínez-Hinarejos, 2015).

Multimodality has also benefited Gesture Recognition. For instance,
Pitsikalis et al. (2017) boost the performance by re-scoring its differ-
ent hypotheses using information from an ASR system. Other works
have considered the use of dynamic programming techniques (Miki,
Kitaoka, Miyajima, Nishino, & Takeda, 2014) or the aforementioned CN
paradigm (Kristensson & Vertanen, 2011) to align different hypotheses.

With regard to the MIR field, recent studies exploit different modal-
ities that capture complementary aspects of the same piece of music.
In this respect, there are multimodal approaches for different tasks,
such as artist identification, music recommendation, or instrument clas-
sification, amid others (Simonetta et al., 2019). These techniques are
well known in the field of music transcription, and multimodality has
been used as a means to break through certain glass-ceiling scenarios
attained by single-modality approaches. For instance, research on AMT
has contemplated the use of supplementary sources of information,
such as harmonic information, timbre, or onset events (Benetos, Dixon,
Giannoulis, Kirchhoff, & Klapuri, 2013). More recently, the work by de
la Fuente et al. (2021) considered that a given score image and its
acoustic performance are two different modalities of the same piece
to be transcribed. These authors show that transcription results can be
enhanced with respect to single-modality systems when their individual
performances do not greatly differ.

This work aims to further research the aforementioned avenue of
multimodal OMR-AMT transcription. We assume that the score image
and the recording of the same piece of music are, in some respects,
two complementary sources of information. We follow a late-fusion ap-
proach to merge these two modalities, as it allows the more adjustable
processing of each of them and does not require multimodal training
data for the underlying models. More precisely, we study the existing
solutions in related areas in order to then adapt them to the focus of
the work: image and audio music transcription.

3. Unimodal neural end-to-end transcription

This section formally presents the neural end-to-end recognition
framework for the stand-alone OMR and AMT processes. Considering
the aforementioned sequence labeling formulation, our goal is to retrieve
the most likely series of symbols from the input data—either a score
image or an audio recording, as appropriate. Some notations will now
be introduced to properly describe these design principles.

Let  =
{(

𝑥𝑚, 𝐳𝑚
)

∶ 𝑥𝑚 ∈  , 𝐳𝑚 ∈ 
}

| |

𝑚=1 denote a data collec-
ion in which element 𝑥𝑚 ∈  corresponds to the sequence 𝐳𝑚 =
𝑧𝑚1, 𝑧𝑚2,… , 𝑧𝑚𝑁

)

∈ , related by function 𝑔 ∶  → . Note that the
atter space is defined as  = 𝛴∗, where 𝛴 stands for the vocabulary
f possible music symbols.

We have considered a CRNN scheme with the CTC training algo-
ithm in order to approximate function 𝑔 owing to its aforementioned
ompetitive performance in the related literature. The CTC method
akes it possible to train the CRNN using unsegmented sequential data,

.e., it only requires the different input signals and their associated
equences of symbols from 𝛴 as its expected output, disregarding any
nput–output alignment. It is important to mention that CTC requires
n additional ‘‘blank’’ token within the set of symbols, i.e., 𝛴′ = 𝛴 ∪
𝑏𝑙𝑎𝑛𝑘 , to enable the detection of consecutive repeated elements.
3

} i
During the inference phase, CTC assumes that the architecture
ontains a fully-connected network of |𝛴′

| neurons with a softmax
ctivation. Although this inference phase can be performed in several
ays (Zenkel et al., 2017), the so-called greedy decoding is usually

onsidered. In this respect, assuming sequences of length 𝐾 with |𝛴′
|

cores at the output of the recurrent layer–namely posteriorgram–this
rocess retrieves the most probable symbol per step, following:

̂ = arg max
𝝅∈𝛴′𝐾

𝐾
∏

𝑘=1
𝑦𝑘𝜋𝑘 (1)

here 𝑦𝑘𝜋𝑘 denotes the activation probability of symbol 𝜋𝑘 ∈ 𝛴′ at
time-step 𝑘 and 𝝅̂ is the retrieved sequence of length 𝐾.

A  (⋅) mapping function that merges consecutive repeated symbols
and removes the blank label must eventually be applied to 𝝅̂. The
redicted sequence is, therefore, obtained as 𝐳̂ =  (𝝅̂), where |𝐳̂| ≤ 𝐾.

.1. Word graphs

While greedy decoding may be sufficient for unimodal recognition,
policy of this nature may be unsuitable for multimodal transcription
ased on late-fusion approaches. In this case, it would be appropri-
te to maintain as much information as possible from the original
earch space–i.e., the collection of possible output sequences from the
tand-alone recognition models–for the appropriate integration of the
ifferent modalities. In this work, we employ lattice-based Word Graph
WG) representations owing to their flexibility and successful use in the
elated literature (Calvo-Zaragoza, Toselli, Vidal, & Sánchez, 2019; Li,
ess, Ragni, & Gales, 2019; Toselli, Vidal, Romero, & Frinken, 2016).

efinition. A WG is a weighted directed acyclic graph, represented as
he 5-tuple 𝑤 =

(

𝛴, 𝑉 , 𝑣𝑖, 𝐹 , 𝐸
)

, where:

• 𝛴 represents the symbol vocabulary related to the recognition
task;

• 𝑉 is a finite set of vertices or nodes, of which 𝑣𝑖 ∈ 𝑉 represents
the initial vertex of the graph;

• 𝐹 ⊆
(

𝑉 − 𝑣𝑖
)

describes the possible final nodes of the structure;
and,

• 𝐸 ⊂ (𝑉 − 𝐹 ) ×
(

𝑉 − 𝑣𝑖
)

denotes the finite set of edges, in which
each element 𝑒𝐴,𝐵 ∈ 𝐸–edge between vertices 𝑣𝐴 and 𝑣𝐵–is
labeled with the symbol 𝑙(𝑒𝐴,𝐵) ∈ 𝛴 and is weighted with a score
𝑠(𝑒𝐴,𝐵) ∈ R. Note that this latter value represents the likelihood
of symbol 𝑙(𝑒𝐴,𝐵) appearing between nodes 𝑣𝐴 and 𝑣𝐵 .

Using the above as a basis, let 𝐭 =
(

𝑣1,… , 𝑣
|𝐭|
)

s.t. 𝑣1 = 𝑣𝑖 and 𝑣
|𝐭| ∈

denote a complete path within 𝑤 and 𝑇 =
{

𝐭𝑗
}

|𝑇 |
𝑗=1 be the set of

omplete paths in it. Additionally, let 𝐥𝐭 =
(

𝑙
(

𝑒𝑛,𝑛+1
)

|

|𝐭|−1
𝑛=1

)

be the
equence of symbols in 𝐭 and 𝑠𝐭 =

∏

|𝐭|−1
𝑛=1 𝑠(𝑒𝑛,𝑛+1) be its corresponding

ikelihood.
When considering WG representations, the decoding process selects

he most appropriate 𝐭 ∈ 𝑇 on the basis of certain criteria. This process
s usually carried out by considering a best path strategy: selecting the
equence that maximizes the likelihood, i.e., 𝐭∗ = argmax𝐭∈𝑇 𝑠𝐭 .

In this work, WG representations are obtained by applying a decod-
ng strategy to the posteriorgram output of the aforementioned CRNN
odel. This decoding is based on Weighted Finite-State Transducers

WFST) and follows the procedure explained in the Kaldi toolkit (Povey
t al., 2011).

. Late multimodal fusion

Late multimodal fusion has principally been considered in the con-
ext of recognition systems owing to its reported benefits in terms of
erformance improvement. In a broad sense, such approaches typically
ntegrate a group of hypotheses into a consensus hypothesis. This work



Expert Systems With Applications 216 (2023) 119491M. Alfaro-Contreras et al.
Fig. 2. Graphical example of the proposed late multimodal fusion framework: the hypotheses, 𝑤𝑖 and 𝑤𝑎, depicted by the CRNN𝑖 image and the CRNN𝑎 audio transcription models,
respectively, are combined according to a certain combination function (⋅, ⋅). This combination results in the symbol sequence eventually predicted: 𝐳̂.
explores the use of decision-level fusion for multimodal neural end-to-
end music transcription involving image scores and audio recordings
given that the objective in both domains is to retrieve the same sym-
bolic representation. More precisely, we assess the multimodality by
combining two respective WG related to an image and an audio record-
ing of the same piece of music. We shall now introduce some notations
in order to then formally define this recognition scenario.

Let superscripts 𝑖 and 𝑎 identify the image and audio domains, re-
spectively. There are consequently two different representation spaces,
 𝑖 and 𝑎, which are related to the image scores and audio signals, re-
spectively, with a single output vocabulary 𝛴. Furthermore, let CRNN𝑖

and CRNN𝑎 denote the two CRNN transcription models introduced in
Section 3 that deal with the source domain of the image and audio data,
respectively.

Given an input pair
(

𝑥𝑖, 𝑥𝑎
)

representing a score image and an audio
signal of the same piece of music, we obtain their respective 𝑤𝑖 and 𝑤𝑎

WG structures by employing the aforementioned CRNN𝑖 and CRNN𝑎

unimodal recognition methods. Function (⋅, ⋅), which combines two
WG and decodes the resulting structure, is then applied to

(

𝑤𝑖, 𝑤𝑎),
and the predicted sequence is obtained as 𝐳̂ = 

(

𝑤𝑖, 𝑤𝑎). A graphic
illustration of this process is provided in Fig. 2.

In this work, we consider and assess four different 𝐶(⋅, ⋅) combi-
nation approaches: (i) one that addresses the fusion carried out by
employing the Minimum Bayes Risk criterion (Xu, Povey, Mangu,
& Zhu, 2011), (ii) a second case that addresses the task from a
lightly-supervised learning perspective (Fainberg, Klejch, Renals, &
Bell, 2019), (iii) a third approach that follows a global alignment
strategy (Granell & Martínez-Hinarejos, 2015), and (iv) a last procedure
based on local alignment (de la Fuente et al., 2021). Their adapta-
tion and first-time application to multimodal image and audio music
transcription are described in the following sections.

4.1. Minimum Bayes risk approach

The work of Xu et al. (2011) presents a lattice combination method
for speech recognition based on Minimum Bayes Risk (MBR) decoding.
More specifically, the authors propose the combination of individual
hypotheses from different systems addressing the same task to improve
the stand-alone recognition rate. In this respect, we can adapt this late
combination strategy to image and audio music transcription, since
CRNN𝑖 and CRNN𝑎 share a common representation for their outputs.

In WG representations, the objective of MBR decoding is to find the
4

sequence that minimizes the expected risk for a given loss function.
In our case, the loss function is the string edit distance, and MBR,
therefore, seeks the set median string of the distribution provided
by the WG. In late-fusion combination scenarios, MBR performs this
search by considering the weighted distributions of the WG being fused.
In mathematical terms, for the 𝑚th sample in set  , this process is
expressed as:

𝐳̂𝑚 = argmin
𝐥𝐭∗𝑚∈

{

𝐥𝐭𝑖𝑚
∪ 𝐥𝐭𝑎𝑚

}

⎛

⎜

⎜

⎝

𝛼
∑

𝐥𝐭𝑖𝑚∈𝑇 𝑖𝑚

𝑃 (𝐥𝐭𝑖𝑚 |𝑥
𝑖
𝑚)ED(𝐥𝐭∗𝑚 , 𝐥𝐭𝑖𝑚 ) +

+ (1 − 𝛼)
∑

𝐥𝐭𝑎𝑚∈𝑇 𝑎𝑚

𝑃 (𝐥𝐭𝑎𝑚 |𝑥
𝑎
𝑚)ED(𝐥𝐭∗𝑚 , 𝐥𝐭𝑎𝑚 )

⎞

⎟

⎟

⎠

(2)

where 𝛼 ∈ (0, 1) and (1 − 𝛼) describe the weights given to the image and
audio transcription systems, respectively; sets 𝑇 𝑖

𝑚 and 𝑇 𝑎
𝑚 denote the

sets of complete paths for the image and audio recognition methods,
respectively; ED (⋅, ⋅) represents the string edit distance (Levenshtein,
1966); and 𝑃 (𝐥𝐭𝑖𝑚 |𝑥

𝑖
𝑚) and 𝑃 (𝐥𝐭𝑎𝑚 |𝑥

𝑎
𝑚) denote the respective posterior

probabilities of 𝐥𝐭𝑖𝑚 and 𝐥𝐭𝑎𝑚 given the corresponding score image 𝑥𝑖𝑚 and
audio recording 𝑥𝑎𝑚 samples, which can be approximately computed by
following the work of Toselli et al. (2016) as:

𝑃 (𝐥𝐭𝑚 |𝑥𝑚) =
𝑠𝐭𝑚

∑

𝐭∈𝑇 𝑠𝐭
(3)

In order to study the goodness of this multimodal fusion strategy,
we consider different weights in order to assess the balance between
image and audio domains in the range of the combination parameter
𝛼 ∈ (0, 1).

4.2. Lightly-supervised approach

The second late multimodal fusion technique considered was pro-
posed by Fainberg et al. (2019). These authors devised a method
to correct inaccurate transcriptions by combining them with lattices
depicted by a seed recognition model, namely lightly-supervised training.
In this framework, a transcribed symbol is considered to be correctly es-
timated if, and only if, it is also present in the lattice of the recognition
model.

The method fundamentally depends on a function 𝑓collapse (⋅, ⋅) that
collapses a WG–the compact representation of the hypothesis space–
into a sequence of symbols (the transcription) when the aforementioned
assumption is met. This results in a new WG with a reduced number of
vertices/edges in the matching areas, and remains unaltered otherwise.
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We present the adaptation of this decision level multimodal policy
o image and audio music transcription in Algorithm 1. Given an input
air,

(

𝑥(1), 𝑥(2)
)

, describing two modality-specific representations of the
ame source sample, we consider the greedy-decoded hypothesis, 𝐭(1),
epicted by CRNN(1), as the transcription to be corrected using the
ypothesis, 𝑤(2), which is yielded by the domain-counterpart model,
RNN(2). In this work, the two modalities correspond to the image and
udio domains. We, therefore, evaluate the technique presented when
ssuming model correctness in (i) the image domain, i.e., 𝑤(2) = 𝑤𝑖,
nd (ii) the audio domain, 𝑤(2) = 𝑤𝑎.

Algorithm 1: Lightly-supervised late multimodal fusion.
Input : 𝑤(1) ← First WG

𝑤(2) ← Second WG
Output: 𝐳̂ =

(

𝑧̂1,… , 𝑧̂
|𝐳̂|
)

← Retrieved sequence
𝐥𝐭∗(1) ← 𝑙(𝑡) ∀𝑡 ∈ argmax𝐭∈𝑇 (1) 𝑠𝐭 ⊳ Best path of 𝑤(1)

𝑤′(2) ← 𝑓collapse
(

𝐥𝐭∗(1) , 𝑤(2))

𝐳̂ ← 𝑙(𝑡) ∀𝑡 ∈ argmax𝐭∈𝑇 ′(2) 𝑠𝐭 ⊳ Best path of 𝑤′(2)

4.3. Global alignment approach

The work of Granell and Martínez-Hinarejos (2015) presents a late
multimodal fusion approach based on CN with which to combine the
outputs of Handwritten Text Recognition (HTR) and ASR systems so
as to transcribe handwritten documents. This method can be directly
adapted to the image and audio music transcription task by making
HTR correspond with OMR and ASR correspond with AMT.

CN is a different topology with which to represent lattice-type
spaces. Given 𝑤, we obtain its corresponding CN, denoted as 𝑐, by
following a clustering process that identifies mutually supporting and
competing hypotheses in 𝑤, and establishing a total order for all of
them (Mangu, Brill, & Stolcke, 1999). The resulting 𝑐 is also a weighted
directed acyclic graph with three particularities: (i) every path 𝐭 ∈ 𝑇
rom 𝑣𝑖 to 𝑣𝑓 passes through all the nodes, i.e., |𝐭| = |𝑉 | − 1 ∀𝐭 ∈ 𝑇 ,
here 𝑣𝑓 is the final vertex of 𝑐; (ii) a subnetwork, denoted as 𝑁 =
𝑒𝐴,𝐵

}

⊆ 𝐸, where |𝐴 − 𝐵| = 1, is the set of all the edges between
wo consecutive nodes, and (iii) ∑

𝑛∈𝑁 𝑠(𝑛) = 1, i.e., the total score of
he edges contained in 𝑁 adds up to 1. Meeting the first particularity
mplies dealing with hypotheses of different lengths from 𝑇 . In this
espect, one edge (at most), labeled with a special symbol <eps>, can be
nserted into 𝑁 . The inclusion of this symbol results in 𝑐 adding paths
hat are not present in 𝑤. Fig. 3 provides a graphical representation of
5

WG together with its associated CN.
Given 𝑐𝑖 and 𝑐𝑎, the CN-based combination technique seeks to create
new 𝑐 in which the error level is reduced. In a first step, 𝑐𝑖 and 𝑐𝑎 are
ligned by means of similarity on the basis of a matching error using
he Dynamic Time Warping global alignment algorithm (Müller, 2007),
here the cost function is the normalized string edit distance between

he given the symbols of 𝑁 𝑖 and 𝑁𝑎. In a second and final step, a new 𝑐
s created by merging subnetworks from the aligned 𝑐𝑖 and 𝑐𝑎 following:

(𝑛) = 𝑠smoothed
(

𝑛𝑖
)𝛼 𝑠smoothed (𝑛𝑎)

1−𝛼 (4)

here 𝛼 ∈ (0, 1) and (1 − 𝛼) respectively describe the weights of the im-
ge and audio transcription systems; and 𝑠smoothed

(

𝑛𝑖
)

and 𝑠smoothed (𝑛𝑎)
enote the Laplacian smoothed (Zhai & Lafferty, 2004) score of edges
𝑖 ∈ 𝑁 𝑖 and 𝑛𝑎 ∈ 𝑁𝑎, respectively.

Note that if, and only if, the normalized string edit distance equals
–the given symbols of 𝑁 𝑖 and 𝑁𝑎 are completely different–𝑁 𝑖 and 𝑁𝑎

re, respectively, combined with a special subnetwork, 𝑁̄ , that contains
nly one unit-weighted edge labeled with <eps>. When this condition is
ot met, 𝑁 𝑖 and 𝑁𝑎 are combined with each other. The final estimation,

̂ , is obtained by retrieving the best path, 𝐭∗, from 𝑐.
In order to study the balance between the relative reliability of OMR

nd AMT, we assess the goodness of the late multimodal technique
resented when 𝛼 ∈ (0, 1).

.4. Local alignment approach

The last decision level multimodal policy considered in the present
ork was proposed by de la Fuente et al. (2021). These authors

ombined the predictions provided by end-to-end AMT and OMR sys-
ems by considering the Smith–Waterman (SW) local alignment algo-
ithm (Smith & Waterman, 1981).

This method is presented in Algorithm 2. The inputs of the method
ere originally the hypotheses depicted by each single-modality model
ecoded by means of Eq. (1). However, in order to maintain consistency
ith the methodology presented in the current work, we consider

he corresponding best paths 𝐭∗𝑖 and 𝐭∗𝑎 to be analogous instances
f the former greedy-decoded hypotheses. In preliminary experiments
arried out for the current work, no differences were found in the
ecognition results when assuming that this was the case. Given that
he 𝐭∗𝑖 and 𝐭∗𝑎 may depict different lengths, the Smith–Waterman (SW)
ocal alignment algorithm (Smith & Waterman, 1981) is, therefore, used
o align both estimations by searching for the most similar regions
etween them. The final estimation is eventually obtained from these
wo aligned sequences, 𝐭̄∗𝑖 and 𝐭̄∗𝑎, by following these premises: (i)
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if both sequences match a symbol, it is included in the resulting
estimation; (ii) if they disagree, the symbol with the highest score is
included in the estimation, and (iii) if one of the sequences lacks a
symbol, that of the other sequence is included in the estimation.

Algorithm 2: Local alignment late multimodal fusion.
Input : 𝑤𝑖 ← Image WG

𝑤𝑎 ← Audio WG
Output: 𝐳̂ ←

(

𝑧̂1,… , 𝑧̂
|𝐳̂|
)

⊳ Retrieved sequence
1 𝐭∗𝑖 ← argmax𝐭∈𝑇 𝑖 𝑠𝐭 ⊳ Best path of 𝑤𝑖

2 𝐭∗𝑎 ← argmax𝐭∈𝑇 𝑎 𝑠𝐭 ⊳ Best path of 𝑤𝑎

3 𝐭̄∗𝑖, 𝐭̄∗𝑎 ← SW(𝐭∗𝑖, 𝐭∗𝑎) ⊳ SW local alignment
4 𝐾 ← |𝐭̄∗𝑖| ⊳ Sequence length: |𝐳̂| = |𝐭̄∗𝑖| = |𝐭̄∗𝑎|
5 for 𝑘 ∈ [1,… , 𝐾] do
6 if 𝑙

(

𝑡∗𝑖𝑘
)

= ‘‘’’ ∨ 𝑙
(

𝑡∗𝑖𝑘
)

= ‘‘’’ then
7 𝑧̂𝑘 ← 𝑙

(

𝑡∗𝑖𝑘
)

+ 𝑙
(

𝑡∗𝑎𝑘
)

⊳ No symbol
8 else if 𝑙

(

𝑡∗𝑖𝑘
)

= 𝑙
(

𝑡∗𝑎𝑘
)

then
9 𝑧̂𝑘 ← 𝑙

(

𝑡∗𝑖𝑘
)

⊳ Same symbol
10 else

11 𝑧̂𝑘 ← 𝑙
(

argmax
𝑡∗𝑘=

{

𝑡∗𝑖𝑘 ,𝑡∗𝑎𝑘
} 𝑠

(

𝑡∗𝑘
)

)

12 end if
13 end for

The same alignment parameters as those employed in the reference
ork (de la Fuente et al., 2021) have been used for the SW algorithm

or comparative purposes.

. Experimental setup

This section presents the definition of the different layers of the
eural models, the evaluation protocol used, and the precise evaluation
cenarios and corpus considered.

.1. Neural network configuration

The choice of the CRNN topologies for image and audio music
ranscription systems is generally conditioned to the particular cor-
us considered, the amount of accessible data, or the computational
esources available, among others. Nevertheless, these configurations
sually contain a set of convolutional layers for the feature extraction
rocess, followed by recurrent units for the dependency modeling,
ith a last dense unit with |𝛴′

| output units. In this work, the actual
composition of each layer, depicted in Table 1, is based on that used in
recent works tackling the individual OMR and AMT tasks by framing
them in a sequence labeling scenario (Calvo-Zaragoza & Rizo, 2018; Liu
& Benetos, 2021).

All the models were trained using the backpropagation method
provided by CTC for 150 epochs using the ADAM optimizer (Kingma
& Ba, 2015) with a fixed learning rate of 0.001. The batch size was
fixed to 16 for the OMR system, while in the case of the AMT it was set
to 4 because it is more memory-intensive.

5.2. Performance metrics

The performance of the recognition schemes presented is assessed
by considering the Symbol Error Rate (SER), as occurred in previ-
ous works addressing end-to-end transcription tasks (Calvo-Zaragoza
& Rizo, 2018; Román, Pertusa, & Calvo-Zaragoza, 2019). This figure
of merit is computed as the average number of elementary editing
operations (insertions, deletions, or substitutions) required in order to
6

match the sequence predicted by the model with that in the ground i
truth, normalized by the length of the latter. In mathematical terms,
this is expressed as:

SER (%) =
∑

||
𝑚=1 ED

(

𝐳̂𝑚, 𝐳𝑚
)

∑

||
𝑚=1 |𝐳𝑚|

(5)

where  ⊂ × is a set of test data–from either the image or the audio
domains–, ED ∶  ×  → N0 denotes the string edit distance, and 𝐳̂𝑚
and 𝐳𝑚 respectively represent the estimated and target sequences.

5.3. Evaluation scenarios

We aim to provide insights into how the differences among the per-
formances of the stand-alone transcription models affect the outcome
of the combined paradigm. The definition of the evaluation scenarios is
set according to different ranges of SER. We specifically consider three
possible levels:

• High, which refers to a SER of approximately 30%. We consider
this performance threshold since ineffective configurations in the
related literature report error values similar to this figure. Cases
above this level are, therefore, of no interest.

• Low, which denotes a SER of around 10%. As with the previ-
ous case, state-of-the-art transcription methods report error rates
within this range, and figures lower than this threshold are,
therefore, omitted from this study.

• Medium, which stands for an approximate SER of 20%. This in-
termediate error level has, therefore, been considered for reasons
of the completeness of the results.

In this respect, we have considered the Camera-based Printed Im-
ages of Music Staves (Camera-PrIMuS) database (Calvo-Zaragoza &
Rizo, 2018). This corpus contains 87,678 real music staves of mono-
phonic incipits1 extracted from the Répertoire International des Sources
Musicales (RISM).2 Different representations are provided for each in-
cipit: an image with the rendered score (both plain and with artificial
distortions), several encoding formats, and a MIDI file.

Each transcription architecture considers a particular type of data:
on the one hand, the OMR model takes the artificially distorted staff
image of the incipit as input, and on the other, each MIDI file in the
AMT case is synthesized using the FluidSynth software3 and a piano
timbre, considering a sampling rate of 22,050 Hz. A time-frequency
representation based on the Constant-Q Transform was obtained, with
a hop length of 512 samples, 120 bins, and 24 bins per octave, which is
eventually embedded as an image that serves as the input. The height
of the input considered is scaled to 64 pixels for image data, or to
256 pixels for audio data, maintaining the aspect ratio (signifying that
each sample might differ in width) and converted to grayscale, with no
further preprocessing.

Since this corpus was originally devised for OMR tasks, a data
cleansing process was carried out to adapt it to the multimodal tran-
scription framework presented, resulting in 22,285 incipits.4 We derive
three non-overlapping partitions–train, validation, and test–
corresponding to 60%, 20%, and 20% of the data, respectively, follow-
ing a 5-fold cross-validation scheme. Note that, since the same corpus
is considered for both image and audio data, both recognition tasks
depict the same label space of |𝛴𝑖

| = |𝛴𝑎
| = 1166 tokens.

When preliminary assessing OMR and AMT models for the original
partitions, the resulting error levels are framed within the High and

1 Short sequences of notes, typically the first measures of the piece, used
o index and identify a melody or musical work.

2 https://rism.info/
3 https://www.fluidsynth.org/
4 Mainly, samples containing long multi-rests were removed as they barely

xtend the length of the score image but may span for large number of frames

n the audio signal.

https://rism.info/
https://www.fluidsynth.org/


Expert Systems With Applications 216 (2023) 119491M. Alfaro-Contreras et al.

d

r
g

Table 1
Layer-wise description of the CRNN models considered. Notation: Conv(𝑓,𝑤×ℎ) represents a convolution layer of 𝑓 filters of size 𝑤×ℎ pixels, BatchNorm performs the normalization
of the batch, LeakyReLU(𝛼) represents a Leaky Rectified Linear Unit activation with a negative slope of value 𝛼, MaxPool(𝑤 × ℎ) represents the max-pooling operator of 𝑤 × ℎ
imensions and striding factors, BLSTM(𝑛, 𝑑) denotes a bidirectional Long Short-Term Memory unit with 𝑛 neurons and 𝑑 dropout value parameters, Dense(𝑛) is a fully-connected

layer of 𝑛 neurons, and Softmax(⋅) represents the softmax activation. 𝛴′ denotes the alphabet considered, including the CTC-blank symbol.
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

OMR Conv(64, 5 × 5)
BatchNorm
LeakyReLU(0.20)
MaxPool(2 × 2)

Conv(64, 5 × 5)
BatchNorm
LeakyReLU(0.20)
MaxPool(1 × 2)

Conv(128, 3 × 3)
BatchNorm
LeakyReLU(0.20)
MaxPool(1 × 2)

Conv(128, 3 × 3)
BatchNorm
LeakyReLU(0.20)
MaxPool(1 × 2)

BLSTM(256)
Dropout(0.50)

BLSTM(256)
Dropout(0.50)

Dense(|𝛴′
|)

Softmax(⋅)

AMT Conv(8, 2 × 10)
BatchNorm
LeakyReLU(0.20)
MaxPool(2 × 2)

Conv(8, 5 × 8)
BatchNorm
LeakyReLU(0.20)
MaxPool(1 × 2)

BLSTM(256)
Dropout(0.50)

BLSTM(256)
Dropout(0.50)

Dense(|𝛴′
|)

Softmax(⋅)
a
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Low levels, respectively. To obtain the other cases, it is necessary to
modify the data partitions used in each transcription model. Broadly
speaking, since OMR has a base performance framed in the Low level,
it is possible to obtain the other two cases by simply reducing the
train partition; in the case of AMT, however, it is necessary to remove
certain incipits from the test partition–those that greatly hinder the
performance–as regards achieving the remaining cases. Please note
that, since the late-fusion framework addressed in the work requires
the same test set for both modalities, the test partition is constrained
by AMT.

Considering the design principles presented, the approximate result-
ing SER rates for the different individual cases are a SER of 27% for the
High level, a SER of 17% for the Medium level, and a SER of 7% for the
Low level. The combination of those performance standards results in
the nine controlled evaluation scenarios used in this work.

6. Results

This section presents the results obtained for the proposed exper-
imental scheme. To aid in their evaluation, the following notation is
introduced for the four late multimodal fusion methods and the nine
scenarios considered. On the one hand, MBR is used for the MBR-
decoding approach (Section 4.1); Lightly𝐼𝐴 and Lightly𝐴𝐼 correspond
to the lightly-supervised scenario, when assuming model correctness
from the audio domain, i.e., the to-be-corrected transcriptions origi-
nate from image one and vice versa, respectively (Section 4.2); Global
is employed for the global alignment strategy based on CN (Sec-
tion 4.3), and finally, Local corresponds to the SW local alignment
procedure (Section 4.4). On the other hand, each scenario is denoted as
Scenario N(OMR Level Performance - AMT Level Performance), where 𝑁 denotes
the number of the given scenario out of the nine that are possible and
OMR Level Performance and AMT Level Performance refer to the three
possible levels of error rate considered–High (H), Medium (M), and Low
(L)–for each unimodal model, respectively.5

The results obtained in terms of the SER metric for the contemplated
scenarios are presented in Fig. 4 and Table 2. Since the experiments
have been performed in a cross-validation scheme, the results presented
for each of the cases considered correspond to the average values
for the test partition in which the validation data achieved the best
performance.

With regard to the aforementioned results, it is first necessary to
state that the image and audio music transcription task can be success-
fully solved by using a late multimodal fusion approach, as some of the
proposed methods employed in the present work achieved lower error
rates than their corresponding unimodal baselines for all scenarios.
This outcome supports the initial premise that both a recording and an
image score can act as two complementary modalities of the same piece

5 The code developed in the work is publicly available for reproducible
esearch at: https://github.com/mariaalfaroc/late-fusion-music-transcription.
it.
7

s

Table 2
Best results obtained by the proposed unimodal and multimodal frameworks in terms
of the Symbol Error Rate (SER) for each scenario considered. For a given scenario,
underlining indicates that the corresponding late multimodal fusion approach improves
both unimodal baselines and the boldface denotes that it achieves the lowest SER of
all the other multimodal methods that also improve the unimodal methods.

Scenario

1(H-H) 2(H-M) 3(H-L) 4(M-H) 5(M-M) 6(M-L) 7(L-H) 8(L-M) 9(L-L)

OMR 26.8 27.3 26.2 18.4 17.3 16.9 8.1 7.4 7.5
AMT 26.3 16.9 7.2 26.3 16.9 7.2 26.3 16.9 7.2

MBR 23.3 16.8 7.2 17.4 14.4 7.1 8.0 7.2 5.8
LightlyIA 25.8 17.1 9.1 25.4 16.8 8.9 24.9 16.5 9.1
LightlyAI 28.5 28.4 28.0 20.7 19.3 19.6 10.9 10.3 11.4
Global 24.6 15.9 6.3 18.2 15.0 5.8 8.1 7.3 5.5
Local 20.8 13.8 6.1 18.2 11.1 4.5 14.5 8.1 3.0

of music, since its multimodal combination yields better recognition
rates than if performed in an isolated manner. We shall now examine
each method in detail.

As will be noted in both Fig. 4 and Table 2, MBR is capable of
retrieving improved transcription results while disregarding the ac-
tual scenario considered. In relation to the combination coefficient, 𝛼,
there are three distinct situations that are consistent with the differ-
ences in the error rate of the models: (i) if both transcription systems
are at the same performance level–Scenarios 1, 5, and 9–, there is
an almost equal distribution of the weight, slightly shifted towards
AMT; (ii) if the image system depicts considerably lower error rates
than its audio counterpart–Scenarios 4 and 8–, then the inflection
point of the previous weight distribution is now shifted towards the
former model, especially when they are at opposite performance levels–
Scenario 7–; and finally, (iii) if the audio system is that which works
better–Scenarios 2, 3, and 6–, the information provided by that model
has a high weight, of at least 80%, in the combination.

The Lightly method combines an inaccurate transcription–the best-
path decoded hypothesis of one modality–with the WG depicted by
the seed model–from the other modality. Not surprisingly, the best
results provided by this approach are obtained when the corrector is the
modality model with the lowest error rate: if the CRNN𝑖 image model
performs better than its audio counterpart, CRNN𝑎, LightlyAI should be
used rather than LightlyIA, and vice versa. However, both approaches
ppear to be unsuitable for the image and audio music transcription
ask as they are generally able only to improve the recognition rate of
ne of the domain-specific models. On the one hand, LightlyIA is able
o enhance transcription results if, and only if, both unimodal baselines
epict either a High or a Medium error level. When this condition is
ot met, it is able only to improve the recognition rate of the worst-
erforming single-modality transcription system. On the other hand,
ightlyAI boosts the audio domain results, at best, when CRNN𝑖 is at
lower error rate level than CRNN𝑎.

The late multimodal fusion policy proposed by Global behaves
n a synergistic manner, as it yields higher performance rates in all

cenarios than its corresponding unimodal frameworks. Fig. 4 shows

https://github.com/mariaalfaroc/late-fusion-music-transcription.git
https://github.com/mariaalfaroc/late-fusion-music-transcription.git
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Fig. 4. Results obtained by the proposed unimodal and multimodal frameworks in terms of the Symbol Error Rate (SER) for each scenario considered when 𝛼 ∈ (0, 1). Please
ote that 𝛼 is the combination coefficient that allows the weight of each of the unimodal systems involved in the late multimodal fusion to be balanced. 𝛼 and (1 − 𝛼) specifically
escribe the weights given to the image and audio transcription systems. 𝛼 = 1 and 𝛼 = 0 are, therefore, considered to represent the SER figures corresponding to the image and

audio domains, respectively.
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two clear situations related to the balance between the reliability of
the image and audio domains, controlled by the 𝛼 coefficient. In this
respect, when either both unimodal transcription systems are at the
same performance level or the audio one has a lower error rate, 70% of
the weight is given to the aforementioned modality. This distribution
is reversed when the CRNN𝑖 image recognition system outperforms its
domain counterpart model, CRNN𝑎.

Finally, with regard to Local, the results indicate that the actual
mprovement achieved by this method depends on the scenario consid-
red. In this respect, this method is not the best multimodal framework
hen the image system is at a Low error rate level and the audio

ystem is at one of the other two levels (Scenarios 7 and 8). In these
ases, it manages only to reduce the error rate of CRNN𝑎. However,
t is necessary to state that when Local does improve the unimodal
ecognition rates, it is the best method 90% of the time, obtaining
mprovements ranging from 14% to 58% with respect to the lowest
nimodal error rate. Please note that this upper bound of improvement
s obtained when both music transcription systems are at the same
erformance level. This suggests some sort of synergistic behavior in
he fusion policy as the resulting sequence takes the most accurate
stimations of the OMR and AMT transcription methods.

.1. Statistical significance analysis

The analysis shown above can be summarized in the following
onclusions:

• MBR and Global provide a general improvement with respect
to the standard unimodal framework. When confronting both
methods, the former is a better approach than the latter: it yields
higher recognition rates in more than half of the scenarios, and
is the best performing late multimodal policy in a third of them.
However, the differences between them are not remarkable.
8

s

Table 3
Statistical significance analysis of the base neural unimodal models of the multimodal
fusion schemes for the Wilcoxon signed-rank test when considering a significance value
of 𝑝 < 0.05 for the Symbol Error Rate metric. Symbols ✓, ×, and = represent that the
rror of the method in the row is significantly lower than, greater than, or no different
o that in the column, respectively.

MBR LightlyIA LightlyAI Global Local

OMR × = ✓ × =
AMT × = = × ×

• LightlyIA improves both unimodal music transcription systems if,
and only if, both of them are at the same error level and that level
is not Low. However, LightlyAI fails to decrease the error rate of
both single-modality models in any scenario.

• The Local method improves both domain-specific baselines when-
ever CRNN𝑖 is not at a Low level, because if this is the case, it
requires CRNN𝑎 to also be at this error level in order to do so.
Note that, when possible, it provides the greatest improvement
of all the multimodal decision level strategies 90% of the time.

In order to support the relevance of the statements above, we shall
ow statistically assess the results obtained. This will be done using
he non-parametric Wilcoxon signed-rank test (Demšar, 2006). This
nalysis states that each result obtained for each scenario forms a
ample of the distributions to be compared. The results obtained are
hown in Tables 3 and 4.

The results obtained with a significance value of 𝑝 < 0.05 provide
response to two main questions: (i) is the use of late multimodal

usion frameworks worthwhile?, and (ii) if so, which approach per-
orms best? On the one hand, it is possible to respond to the first by

tudying Table 3, which shows that both MBR and Global significantly
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Table 4
Statistical significance analysis of the late multimodal fusion schemes considering the
Wilcoxon signed-rank test with a significance value of 𝑝 < 0.05 for the Symbol Error
Rate metric. Symbols ✓, ×, and = represent that the error of the method in the row is
significantly lower than, greater than, or no different to that in the column, respectively

MBR LightlyIA LightlyAI Global Local

MBR – ✓ ✓ = =
LightlyIA × – = × ×
LightlyAI × = – × ×
Global = ✓ ✓ – =
Local = ✓ ✓ = –

outperform both image and audio music transcription systems. It also
shows that, while LightlyIA depicts results that are statistically equal to
hose of both unimodal frameworks, LightlyAI worsens this situation by

yielding considerably higher error rates than the OMR model. Finally,
Local considerably improves the audio transcription system without
hindering the image system. On the other hand, the second question
can be answered by studying the results depicted in Table 4, which
shows that there are no meaningful differences among MBR, Global,
and Local, but there are with respect to Lightly, in any of its forms,
since the three former methods significantly outperform the latter.

Overall, it is now possible to state that the use of late multimodal
fusion frameworks is worthwhile for image and audio music tran-
scription, since three out of the four proposed approaches statistically
improve at least one of the domain-specific recognition systems without
a decline in the performance of the other.

7. Conclusions

The transcription of music sources into a structured digital format
is one of the key challenges in the Music Information Retrieval (MIR)
field. This problem is typically divided into two lines of research: Opti-
cal Music Recognition (OMR), when considering visual input data such
as scores, and Automatic Music Transcription (AMT), when considering
acoustic input data such as audio signals. While these fields have his-
torically evolved separately, their recent definition within a sequence
labeling formulation results in a common representation for their ex-
pected outputs, hence enabling being addressed within a multimodal
recognition framework.

In this work, we present the first application of diverse existing
late multimodal fusion approaches to related areas so as to solve
the multimodal image and audio music transcription task. We specif-
ically consider four combination functions in order to merge the hy-
potheses, which are formatted as word graphs, depicted by individual
OMR and AMT systems. The results obtained with monophonic music
data in a series of performance scenarios–in which the corresponding
single-modality models yield different error rates–provided statisti-
cal evidence for the benefits of these approaches, since two of the
four strategies considered significantly improved the corresponding
unimodal standard recognition frameworks.

As future work, we plan to follow different research avenues. For
instance, while the approaches described in this paper work at the
decision level, it would be interesting to additionally explore early
fusion. Experimentation may also be extended to more challenging
data, such as addressing other instrument timbres, handwritten scores,
or homophonic and polyphonic music.
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