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ABSTRACT. We describe an exact conditional approach to test for certain forms of positive association
between two ordinal variables. The approach is based on maximizing a conditional version of the multi-
nomial likelihood for the observed table given the row and column margins. This allows us to remove
the uncertainty that typically arises in testing hypotheses on the association between two categorical
variables due to the presence of nuisance parameters corresponding to the marginal distributions of
the two variables. Conditional maximum likelihood estimates of the parameters are obtained through
Markov chain Monte Carlo methods. The Pearson’s chi-squared is used as test statistic. A p-value for
this statistic is computed by simulation, when data are sparse, or by exploiting the asymptotic theory.

1 INTRODUCTION

In a recent paper, Bartolucci et al. (2001) proposed a general framework for fitting models
for bivariate ordinal data incorporating certain forms of positive association, such as Positive
quadrant dependence (PQD) and Total positivity of order 2 (TP2). They also showed that the
deviance of any of these models with respect to the saturated model has null asymptotic dis-
tribution which belongs to the chi-bar squared family (Shapiro, 1988). This distribution may
be used to perform a statistical test for the form of positive association of interest. A difficulty
in performing this kind of test is that such a distribution depends on the marginal distribu-
tions of the two variables and this gives uncertainty to the result of the testing procedure.
The problem may be overcome by conditioning the inference on the observed margins which
represent sufficient statistics for the nuisance parameters describing the two marginal distri-
butions. This approach is well-known in categorical data analysis and goes back to Fisher
(1934, 1935).

A first attempt to implement a conditional approach to test for a certain form of posi-
tive association was already made by Bartolucci et al. (2001). However, they noticed that
the distribution resulting from conditioning on the observed margins, known as multivariate
generalized hypergeometric, is intractable whenever the sample size or the dimension of the
table are moderately large. This is because computing the probability of a certain table re-
quires enumerating all the possible tables with the same margins. Thus, they suggested an
approximation based on maximizing the product multinomial likelihood, that derives from
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conditioning only on the row margin, under the constraint that the marginal distribution of
the column variable is equal to the observed one. Another solution, which may be used re-
gardless of the sample size and the dimension of the table, was proposed by Bartolucci and
Scaccia (2004). In this paper we summarize this approach giving result to its main aspects.

In the approach of Bartolucci and Scaccia (2004), the parameters of the model incorporat-
ing a certain form of positive association are estimated by means of a Monte Carlo Maximum
Likelihood algorithm (Geyer, 1991). In summary, this algorithm consists of maximizing a
likelihood ratio, with respect to a fixed point of the parameter space, through the joint use of
the importance sampling (Hammersley and Handscomb, 1964) and the Metropolis-Hastings
algorithm (Metropolis et al., 1953; Hastings, 1970). The maximization is performed by a
constrained Fisher-scoring algorithm similar to that described in Bartolucci et al. (2001). The
Pearson’s chi-squared is used as discrepancy measure between nested models since, in this
context, has proved to perform better than the likelihood ratio test. A p-value for this statis-
tic is computed through Monte Carlo simulations, when the observed table is sparse, or by
exploiting the asymptotic theory.

The paper is organized as follows. In Section 2 we describe a class of models for testing
positive association between two ordinal variables. Conditional inference for these models is
described in Sections 3 and 4. Finally, an application is illustrated in Section 5.

2 MODELS OF POSITIVE ASSOCIATION

Let A and B be two categorical variables with I and J categories, respectively; let pi j be the
joint probability of the ith category of A and the jth category of B and p be the IJ-dimensional
column vector with elements pi j arranged in appropriate order. Douglas et al. (1991) showed
that 16 different types of log-odds ratio may be used to describe the association between A
and B. These correspond to the logits used for the marginal distribution of A and those used
for the marginal distribution of B which may be of type: local (l), continuation (c), reverse
continuation (r) or global (g); see Bartolucci et al. (2001) for further details. For example,
when local logits are used for A and global logits are used for B, local-global log-odds ratios
result; these are defined as

ηi j = log
(∑k≤ j pik)(∑k> j pi+1,k)
(∑k> j pik)(∑k≤ j pi+1,k)

, i = 1, . . . , I−1, j = 1, . . . ,J−1.

Different types of log-odds ratio determine different forms of positive association expressed
through the constraint ηi j ≥ 0 ∀i, j. For instance, TP2 may be expressed by using local log-
odds ratios, while global log-odds ratios determine PQD, which is less stringent. Regardless
of the type of log-odds ratios, independence corresponds to the constraint ηi j = 0, ∀i, j.

An interesting feature is that the vector ηηη with elements ηi j arranged in appropriate order
may be simply expressed as

ηηη = K log(Mp), (1)

where K is a matrix of contrasts and M is a marginalization matrix; for a detailed description
see Bartolucci et al. (2001). Then, positive association may be expressed as ηηη≥ 0. However,
further linear equality and/or inequality constraints on the log-odds ratios may be of interest.
Therefore, we deal with a general class of models expressed as Cηηη = 0, Dηηη≥ 0.



3 CONDITIONAL MAXIMUM LIKELIHOOD ESTIMATION

For an observed I × J contingency table, let xi j be the frequency in the (i j)th cell, x be
the IJ-dimensional column vector with elements xi j arranged as in p and n = ∑i ∑ j xi j be
the sample size. If we assume that the (unconditional) distribution of x is multinomial, the
conditional distribution of x, given the row and column margins, is multivariate generalized
hypergeometric. Under this distribution, the probability of a table with frequencies x is

π(y;θθθ) = m(y)exp(y′θθθ)/c(θθθ),

where the vector y is obtained by removing from x the elements corresponding to the last
row and the last column of the contingency table, θθθ is the vector of canonical parameters
θi j = log [pi j pIJ/(piJ pI j)], i = 1, . . . , I−1, j = 1, . . . ,J−1, and m(y)is the multinomial factor.
Finally, c(θθθ) is the normalizing constant given by the sum of m(y)exp(y′θθθ) over the set Y
of all the possible frequency vectors y corresponding to tables with row and column margins
equal to those of the observed one.

In most cases, we cannot compute exactly c(θθθ) and, therefore, the maximum likelihood
estimate (MLE) of θθθ under the constraint ηηη∈H , with H = {ηηη : Cηηη = 0,Dηηη≥ 0}, where ηηη is
a vector of generalized log-odds ratios defined as in (1). However, we can compute this MLE
by maximizing a suitable estimate of the likelihood ratio λ(θθθ;y) = log

[
π(y;θθθ)/π(y; θ̃θθ)

]
, were

θ̃θθ is a fixed parameter vector appropriately chosen (Gelman and Meng, 1998). This estimate
is obtained by a Monte Carlo technique known as importance sampling (Hammersley and
Handscomb, 1964). In fact, λ(θθθ;y) = y′(θθθ− θ̃θθ)− log[c(θθθ)/c(θ̃θθ)], where c(θθθ)/c(θ̃θθ) is equal
to the expected value, with respect to π(y; θ̃θθ), of exp[y′(θθθ− θ̃θθ)]. Then, this ratio may be
estimated as 1

T ∑T
t=1 ut , where ut = exp[y′t(θθθ− θ̃θθ)] and y1, . . . ,yT are T frequency vectors

drawn from π(y; θ̃θθ) by using the Markov chain Monte Carlo (MCMC) algorithm of Diaconis
and Sturmfels (1998). Then, λ(θθθ;y) may be estimated as

λ̃(θθθ;y) = y′(θθθ− θ̃θθ)− log
1
T

T

∑
t=1

ut ,

and maximized, under the constraint ηηη ∈H , by means of a constrained version of the Fisher-
scoring algorithm. At the (s+1)th step, this algorithm solves the problem

min
ηηη∈H

(ṽs−ηηη)′F̃(ηηηs)(ṽs−ηηη),

where ṽs = ηηηs + F̃(ηηηs)−1s̃(ηηηs), with ηηηs denoting the estimate obtained at the end of the
sth step, s̃(ηηη) denoting the estimated score vector and F̃(ηηη) denoting the estimated infor-
mation matrix with respect to ηηη. These are given by s̃(ηηη) = J(ηηη)′[y− µ̃µµ(θθθ)] and F̃(ηηη) =
J(ηηη)′Ṽ(θθθ)J(ηηη), with J(ηηη) being the Jacobian of the transformation from ηηη to θθθ and

µ̃µµ(θθθ) =
T

∑
t=1

wtyt and Ṽ(θθθ) =
T

∑
t=1

wtyty′t − µ̃µµ(θθθ)µ̃µµ(θθθ)′,

where wt = ut/∑t ut , being the estimates of, respectively, the conditional expected value and
the variance of y based on the same MCMC algorithm mentioned above. Note that under



independence, i.e. when θθθ = 0, we may exactly compute the probability of a certain table and
the moments of the hypergeometric distribution.

The above algorithm requires a preliminary choice of θ̃θθ. A sensible strategy is to set θ̃θθ
equal to the canonical parameter vector corresponding to η̃ηη, the unconditional estimate of
ηηη under the constraint ηηη ∈ H and the further constraint that the marginal probabilities are
equal to the observed relative frequencies; η̃ηη may again be computed by using a constrained
Fisher-scoring algorithm. We also use η̃ηη as starting value for ηηη in the maximization algorithm.

Finally, note that the algorithm may become unstable when the observed table contains
null frequencies. We suggest replacing these frequencies with a negligible value (e.g. 10−6),
but using a larger value in computing η̃ηη. This allows us to reduce the risk that the correspond-
ing cells of the tables sampled from π(y; θ̃θθ) are always null.

4 HYPOTHESIS TESTING

Let S denote the saturated model, H the model formulated by ηηη ∈H and H0 that formulated
by ηηη∈H 0 = {ηηη : Cηηη = 0,Dηηη = 0}, i.e. by turning all the inequality into equality constraints.
Obviously, H0 is nested in H, which, in turn, is nested in S. Let η̇ηη, η̂ηη and η̄ηη be the MLE
computed by using the algorithm in Section 3 under the models S, H and H0, respectively,
and θ̇θθ, θ̂θθ and θ̄θθ be the corresponding values of the canonical parameter vector. For measuring
the discrepancy between nested models, we make use of the Pearson’s chi-squared statistic,
X2, which, in the present context, is more reliable than the likelihood ratio statistic; see the
discussion in Bartolucci and Scaccia (2004). When referred to models S and H0, this statistic
may be expressed as

X2 = (x− ν̄νν)′diag(ν̄νν)−1(x− ν̄νν),

where ν̄νν is the conditional expected value of x corresponding to η̄ηη. Note that X2 may be
expressed as the sum of two components. The first one, X2

1 = (x− ν̂νν)′diag(ν̂νν)−1(x− ν̂νν), where
ν̂νν denotes the expected value of x corresponding to η̂ηη, measures the discrepancy between S
and H. The second one, X2

2 = X2 − X2
1 , measures that between H and H0. Although the

difference between X2 and X2
1 might be negative, the chance of this is very small, especially

if an adequate number of MCMC samples is used for the parameter estimation.
We can associate p-values to X2

1 and X2
2 to decide weather to reject H in favor of S,

implying that the positive association of interest does not hold, or H0 in favor of H, having
in this way a directed test for independence which has more power against a narrower set of
alternatives. As usual, these p-values are computed under H0 that, in our context, normally
corresponds to the independence model; see Dardanoni and Forcina (1998) and Bartolucci et
al. (2001). Under independence, we have that ηηη = 0 and, given the row and column margins,
this uniquely determines the distributions of X2

1 and X2
2 . This is the major advantage of the

conditional approach with respect to the unconditional one where such distributions depend
on the nuisance parameters.

In case of small samples, we compute p-values by a standard Monte Carlo simulation: we
draw a certain number of tables under H0 and then compute the p-values for X2

1 and X2
2 as the

proportions of tables with larger values of the two statistics than the observed table. When
H0 corresponds to the independence model, we draw the tables using an exact Monte Carlo



algorithm described in Diaconis and Sturmfels (1998). In the presence of large samples, in-
stead, we can rely on the asymptotic theory. Under H0, the asymptotic distribution of X2

1 is
χ̄2(F−1

0 ,H o) and that of X2
2 is χ̄2(F−1

0 ,H ), where χ̄2(ΣΣΣ,C ) denotes the chi-bar squared distri-
bution with parameters ΣΣΣ (a variance-covariance matrix) and C (a convex cone); see Shapiro
(1988). Moreover, FFF0 is the information matrix under H0 and C o denotes the dual of the cone
C . The survival function of χ̄2(ΣΣΣ,C ) is given by Pr(χ̄2(ΣΣΣ,C )≥ z) = ∑m

i=0 wi(ΣΣΣ,C )Pr(χ2
i ≥ z),

where χ2
i is a chi-squared random variable with i degrees of freedom, wi(ΣΣΣ,C ), i = 0,1, . . . ,m,

are weights depending on ΣΣΣ and C , and m is the size of the squared matrix ΣΣΣ. Computation
of the weights wi(ΣΣΣ,C ) is a difficult numerical problem, unless m is less than 4; however,
accurate estimates can be easily obtained by simulation (Dardanoni and Forcina, 1998).

As shown by Bartolucci and Scaccia (2004), the framework described above may also be
used for the analysis of bivariate tables stratified according to one or more discrete explana-
tory variables, such as gender or educational level.

5 AN APPLICATION

The data in Table 1 are taken from a survey conducted by the Department of Energy; for a
detailed description see Simonoff (1987). These data concern a sample of 147 female employ-
ees having the Bachelor (but not higher) degree who are cross-classified by monthly salary
and years since degree. The table is quite sparse, with an average cell frequency equal to 2.70
and 28% of the cells having null frequencies.

Years Since Degree
Salary 0–2 3–5 6–8 9–11 12–14 15–17 18–23 24–29 30+

950–1350 7 1 1 0 0 0 0 2 0
1351–1750 10 6 5 3 0 1 1 1 0
1751–2150 12 14 7 1 4 2 2 1 2
2151–2550 0 1 8 3 3 3 5 0 4
2551–2950 0 0 3 2 0 6 5 2 7
2951–3750 1 0 1 0 1 1 6 0 2

Table 1. Salary and years since degree for a sample of 147 female employees.

We fitted two models of positive association, based on log-odds ratios of type l and c, re-
spectively, obtaining the results reported in Table 2. We can conclude that the data conform to
the form of positive association expressed through log-odds ratios of type cc (corresponding
to logits of type continuation for both variables): the Pearson’s chi-squared statistic between
the saturated and the constrained model is X2

1 = 17.415 with a simulated p-value of 0.6240.
This implies that also PQD holds for these data. On the other hand, TP2 has to be rejected
since X2

1 = 68.542 with a simulated p-value equal to 0.0020. Also, the independence model
has to be rejected with a p-value for X2

2 smaller than 10−4. In conclusion, a certain degree of
positive association exists between the variables, i.e. females with more years since degree
have a better chance of getting higher salary. However, having rejected TP2, the association



is not so strong as expected. This is a more precise conclusion than that of Simonoff (1987),
who simply recognized the existence of positive association, without specifying its strength.

Type of Monte Carlo Asym. Monte Carlo Asym.
log-odds ratios X2

1 p-value p-value X2
2 p-value p-value

cc 17.415 0.6240 0.6000 94.920 0.0000 0.0000
ll 68.542 0.0020 0.0007 43.792 0.0000 0.0000

Table 2. Pearson’s chi-squared statistic for positive association (X2
1 ) and independence model (X2

2 ).

Finally, the simulated p-values are always very close to the asymptotic ones and then the
asymptotic theory seems to provide a reasonable approximation even for sparse tables.
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