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SUMMARY

Situation-awareness applications require low-latency response and high network band-

width, hence benefiting from geo-distributed Edge infrastructures. The developers of these

applications typically rely on several platform services, such as Kubernetes, Apache Cas-

sandra and Pulsar, for managing their compute and data components across the geo-distributed

Edge infrastructure. Situation-awareness applications impose peculiar requirements on the

compute and data placement policies of the platform services. Firstly, the processing logic

of these applications is closely tied to the physical environment that it is interacting with.

Hence, the access pattern to compute and data exhibits strong spatial affinity. Secondly, the

network topology of Edge infrastructure is heterogeneous, wherein communication latency

forms a significant portion of the end-to-end compute and data access latency. Therefore,

the placement of compute and data components has to be cognizant of the spatial affin-

ity and latency requirements of the applications. However, clients of situation-awareness

applications, such as vehicles and drones, are typically mobile – making the compute and

data access pattern dynamic and complicating the management of data and compute com-

ponents. Constant changes in the network connectivity and spatial locality of clients due

to client mobility results in making the current placement of compute and data components

unsuitable for meeting the latency and spatial affinity requirements of the application. Con-

stant client mobility necessitates that client location and latency offered by the platform

services be continuously monitored to detect when application requirements are violated

and to adapt the compute and data placement. The control and monitoring modules of

off-the-shelf platform services do not have the necessary primitives to incorporate spatial

affinity and network topology awareness into their compute and data placement policies.

The spatial location of clients is not considered as an input for decision-making in their

control modules. Furthermore, they do not perform fine-grained end-to-end monitoring of

observed latency to detect and adapt to performance degradations due to client mobility.
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This dissertation presents three mechanisms that inform the compute and data placement

policies of platform services, so that application requirements can be met.

• M1: Dynamic Spatial Context Management for system entities – clients and data and

compute components – to ensure spatial affinity requirements are satisfied.

• M2: Network Proximity Estimation to provide topology-awareness to the data and

compute placement policies of platform services.

• M3: End-to-End Latency Monitoring to enable collection, aggregation and analysis

of per-application metrics in a geo-distributed manner to provide end-to-end insights

into application performance.

The thesis of our work is that the aforementioned mechanisms are fundamental building

blocks for the compute and data management policies of platform services, and that by

incorporating them, platform services can meet application requirements at the Edge. Fur-

thermore, the proposed mechanisms can be implemented in a way that offers high scalabil-

ity to handle high levels of client activity. We demonstrate by construction the efficacy and

scalability of the proposed mechanisms for building dynamic compute and data orchestra-

tion policies by incorporating them in the control and monitoring modules of three differ-

ent platform services. Specifically, we incorporate these mechanisms into a topic-based

publish-subscribe system (ePulsar), an application orchestration platform (OneEdge), and

a key-value store (FogStore). We conduct extensive performance evaluation of these en-

hanced platform services to showcase how the new mechanisms aid in dynamically adapt-

ing the compute/data orchestration decisions to satisfy performance requirements of appli-

cations.
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CHAPTER 1
INTRODUCTION

Situation-awareness applications sense the physical environment, extract actionable infor-

mation from it, and perform actions based on the extracted information. They perform crit-

ical tasks such as navigation control for Unmanned Aerial Vehicles (UAVs), autonomous

vehicle control, and Pan-Tilt-Zoom (PTZ) tuning for connected cameras, where response

time of the application as perceived by the end-client (UAV or connected camera) should

be low for ensuring correct functionality. Besides, sensors such as cameras and Light De-

tection and Rangings (LiDARs) generate streams with a high data rate, due to which these

applications require high network bandwidth. Hence, instances of such applications need

to be deployed in close network proximity from end-clients instead of Cloud datacenters

to ensure that network traversal through the wide-area network (WAN) does not adversely

impact response time or impose limits on available bandwidth. Edge computing has gained

prominence as a computing paradigm that utilizes computational and storage resources at

the edge of the network, thereby allowing application instances to be deployed across a

continuum of resources ranging from access networks to datacenters [1]. Utilizing Edge

infrastructure for hosting situation-awareness applications would allow them to achieve

predictable and low response times.

Managing situation-awareness applications requires deployment and scaling of applica-

tion instances based on client demand, necessitating the use of an application orchestrator

such as Kubernetes. These applications possess a number of communicating entities which

exchange information that is integral to their functionality, naturally lending itself to us-

ing a publish-subscribe system, such as Apache Pulsar, to enable efficient communication.

These applications also need to store state that is used to guide their future actions. They

need access to a database, such as Apache Cassandra, to store and query application state.

Access to platform services is in the critical path of the application logic of our target appli-

cations. Hence, platform service instances need to be deployed on Edge resources to avoid

high communication overhead when accessing them. Situation-awareness applications re-

quire that access to platform services does not introduce significant overhead such that the

application’s response time is affected. Furthermore, these applications have a strong de-

pendence on spatial location for mapping end-devices to application instances and defining

communication and data access patterns.
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1.1 Problem Statement

Although the data-plane of contemporary platform services offer intuitive semantics and

high performance, their control policies for managing compute and data components are

designed and optimized for operation in datacenters. The latency and spatial affinity re-

quirements of situation-awareness applications make these policies unsuitable for the Edge

infrastructure. Firstly, the network topology of Edge infrastructure is heterogeneous, with

high variability in network latency between Edge sites unlike datacenters, where nodes

are connected together by a fast and low-latency interconnect. Hence, network latency be-

tween clients and platform service nodes, and between platform service nodes is assumed to

be negligible in cloud-based platform service deployments. Using such network-latency-

agnostic control policies in platform services deployed at the Edge would result in high

overheads due to network latency in the critical path of applications. Secondly, contem-

porary platform services do not consider client location as a first-class citizen for making

control decisions. Therefore, it becomes the application developer’s burden to ensure that

client-to-application mapping and communication between system components are done

in a location-aware manner. Therefore, platform services should perform data and com-

pute placement by taking into account the latency and spatial affinity requirements of the

applications, so that application requirements can be met and developer burden can be min-

imized.

However, clients of situation-awareness applications, such as autonomous vehicles and

drones, are inherently mobile, which further complicates the decision-making of compute

and data components. Client mobility creates significant dynamism in the input workload.

The network connectivity of clients changes as a result of mobility, which frequently results

in the application instance currently serving a given client unsuitable for meeting its low

latency requirement. Similarly, a change in client location results in the client interacting

with a different set of clients or access data corresponding to the new spatial locality it is

in. Therefore the compute and data placement decisions need to be dynamically made and

updated commensurate with client mobility. Furthermore, client mobility also results in the

occurrence of skews in workload distribution which could create performance hotspots in

specific platform service nodes resulting in higher latency overhead. To account for these

sources of dynamism, the platform services need to monitor client location and all latency

overheads and make reconfiguration decisions in the case of violation of spatial affinity or

response time requirements. The dynamic management of data and compute components

should be scalable to support the large number of clients and the high frequency of such
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adaptations due to mobility.

1.2 Thesis Statement

In order to solve the challenges faced when designing control policies for Edge-based plat-

form services, this dissertation proposes three mechanisms that provide relevant informa-

tion to the control and monitoring components of a platform service, such that it can take

actions and continuously satisfy client’s performance requirements.

• M1: Dynamic Spatial Context Management for system entities – clients and data and

compute components – to ensure spatial affinity requirements are satisfied. Our pro-

posed mechanism uses the spatial context of clients, data and compute components

as a new form of input to manage access to application instances and data items.

• M2: Network Proximity Estimation to provide topology-awareness to the data and

compute placement policies of platform services.

• M3: End-to-End Latency Monitoring to enable collection, aggregation and analysis

of per-application metrics in a geo-distributed manner to provide end-to-end insights

into application performance. End-to-end analysis of application latency enables

platform services to detect and ascertain the cause of a violation of performance

requirements.

Thesis Statement: The proposed mechanisms working in tandem are the fundamental

building blocks for the control and monitoring components of platform services, catering

to the high efficiency, scalability, and resource frugality needs of these services on Edge

infrastructures enabling the realization of geo-distributed and mobile situation-awareness

applications.

1.3 Contributions

This dissertation presents three novel mechanisms that aid the decision-making of compute

and data components on geo-distributed Edge infrastructure1. To this end, we make the

following contributions.

1The mechanisms M1 and M3 were co-invented by myself and my colleague Enrique Saurez [2] from the
School of Computer Science at Georgia Institute of Technology. However, the formalization and design-space
exploration of M1 and M3 are solely the contribution of my research.
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• We formalize the proposed mechanisms by defining the interface exposed to the plat-

form services. For each proposed mechanism, we highlight its necessity and demon-

strate the utility of the interface in the context of an example control policy of a

platform service.

• We perform a design-space exploration of the proposed mechanisms with respect to

their application in a geo-distributed platform service. The candidate design choices

are evaluated in terms of their efficiency, scalability and resource frugality. For each

mechanism, we pick the design choice that outperforms the others in meeting the

above objectives.

The applicability of the proposed mechanisms is then demonstrated by using them to

build control policies for three edge-centric platform services and evaluating the observed

performance of typical situation awareness applications. These platform services are de-

scribed as follows.

• OneEdge, an application orchestration platform that performs placement of applica-

tion components using the Network Proximity Estimation mechanism to meet the ap-

plication’s response time requirements. Clients are mapped to application instances

based on their spatial affinity requirements using the Dynamic Spatial Context Man-

agement mechanism. OneEdge leverages the End-to-End Latency Monitoring mech-

anism for continuous monitoring of observed response times with custom policies

detects violations of application requirements and triggers migration of client to a

different application instance. 2

• ePulsar , a topic-based publish-subscribe system that performs topic (data) place-

ment among brokers on Edge sites using the Network Proximity Estimation mech-

anism to satisfy end-to-end message delivery latency requirements. ePulsar uses

the End-to-End Latency Monitoring mechanism to record the end-to-end message

delivery latency of each topic. When the latency threshold for a topic is violated, a

migration of that topic to a different broker is triggered.

• FogStore, a key-value store, that meets a developer-specified tradeoff between la-

tency, consistency and fault tolerance. Developers specify the spatio-temporal con-

text of data items, and FogStore uses the Dynamic Spatial Context Management
2The implementation of OneEdge, along with the integration of mechanisms M1 and M3 was done jointly

by myself and my colleague Enrique Saurez. The integration of mechanism M2 in OneEdge is solely my
work, along with the experimental studies presented in this dissertation.
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mechanism to determine the optimal data placement and consistency level for clients

based on the data-item’s context. FogStore is able to provide consistent access with

low latency by exploiting the spatial-locality in data access patterns of applications.

1.4 Roadmap

The remainder of this document is structured as follows. Chapter 2 discusses the target

application space, i.e., situation-awareness applications, including their general character-

istics, specific examples and the requirements they pose on the platform services. The

chapter also covers how these requirements can only be fulfilled by the introduction of new

mechanisms into the control and monitoring modules of platform services. Next, Chapter

3 describes these mechanisms concretely, including the abstractions that they expose to

control policies, and results from a set of experimental evaluations that quantify the pos-

sible improvement in control decisions if these mechanisms are used. Chapter 4 presents

a design-space exploration of each of the mechanisms, wherein it quantitatively compares

multiple designs for each mechanism in terms of efficiency and scalability. Chapters 5, 6

and 7 demonstrate the use of the proposed mechanisms in the control policies of ePulsar,

OneEdge and FogStore respectively, as mentioned above. Chapter 8 presents the related

work and their connection with this dissertation. Chapter 9 discusses the ideas and lessons

learned by carrying out the research presented in this dissertation. Finally, Chapter 10

concludes the dissertation and presents directions for future research.
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CHAPTER 2
SITUATION-AWARENESS APPLICATIONS

The proliferation of high-fidelity sensors such as cameras, LiDAR, etc., and the increas-

ing access to sophisticated data analysis and machine learning models have enabled the

emergence of novel situation-awareness applications. These applications interact with the

physical environment by sensing and extracting relevant information and performing ac-

tions based on the extracted information. Examples of such applications include collabo-

rative sensing for autonomous driving (that fuses the data perceived by sensors on multiple

cars to improve driving) and collaborative PTZ tuning for a distributed camera network for

tracking multiple targets simultaneously. These applications form the target use-cases for

this dissertation’s research. This chapter discusses the characteristics of these applications,

the platform services that typical implementations of such applications would rely on, and

the specific requirements that they impose on these platform services.

2.1 General Characteristics

Situation-awareness applications possess common characteristics which are highlighted be-

low:

• Sense-process-actuate control loop. The applications of interest in this dissertation

possess a sense-process-actuate control loop, wherein, applications sense the physi-

cal environment (e.g., through cameras or LiDAR sensors), extract information from

the sensed data (e.g., the presence of a suspicious vehicle in a camera’s view), and

perform actions in response to events in the environment (e.g., moving the camera to

better capture the target). This control loop functions at machine-perception speeds

and does not involve human intervention in the critical path.

• Interaction with physical world in proximity. Situation-awareness applications

function by sensing and acting upon the physical environment that is in close physical

proximity to the end-clients, because the range of sensor and actuator devices is lim-

ited. Similarly, an instance of a situation-awareness application serving a particular

end-client would only be interested in information about a subset of the environment

in the vicinity of the client. Applications exhibit such spatial affinity to their physical
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environment because they respond to changes in the environment and a particular

application instance does not respond to changes happening very far away from the

clients it is serving due to physical constraints. An example of an application with

functionality tied to the physical environment is navigation for autonomous vehicles.

The application uses camera or LiDAR sensor data to know about the immediate

surroundings of the vehicle it is serving for collision avoidance and maneuvering,

as well as data about traffic congestion in roads around the given vehicle to make

routing decisions. This subset of the environment around the client forms its spatial

context. Conversely, each data source (e.g., traffic congestion at a particular road

segment) is also associated with a spatial context, which denotes the geographical

area whose data would be of interest to a subset of the clients in that area.

• Inter-client collaboration. Multiple clients of the same application, such as au-

tonomous cars, are expected to be operating in the same physical space. Clients that

are in close proximity (and hence interacting with an overlapping geographical re-

gion) share spatial context and would benefit from sharing data among each other.

Inter-client data sharing is also necessary for the correct functionality of the appli-

cation, such as in the case of collaborative PTZ tuning of cameras. It is also useful

for improving each client’s perception of the environment by augmenting the sensing

range of each client and alleviating occlusion, such as in the collaborative sensing for

autonomous driving application. As described earlier, the set of clients that a given

client interacts with depends on their spatial context, which is defined by the nature

of the application, with some applications having a large and some having a small set

of coordinating clients.

• Client mobility. Client devices in our target applications (such as drones and cars)

are, by their very nature, mobile which leads to the environment that they are inter-

acting with dynamic - thereby generating multiple types of dynamism in the system.

Firstly, the workload characteristics vary over time, wherein the compute and net-

work cost of processing a given client’s sensor data changes temporally. An example

of such a dynamism is when a vehicle running an obstacle detection application client

moves from a rarely populated part of the city to a densely populated one, and the

number of objects-of-interest in its sensor input increases substantially. An increase

in the amount of useful data sensed by the vehicle increases the compute and network

bandwidth requirements of processing and communicating data. Secondly, mobility

changes the spatial context of the client, which then changes the set of clients it would
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coordinate with, as well as the set of data sources it would consume. For instance, in

a collaborative perception application for driving assistance, the set of vehicles that

a given vehicle collaborates with keeps changing continuously.

• Temporal variation in workload. Given that the target applications sense the phys-

ical environment, the workload served depends on the amount of activity (e.g., num-

ber of cars in view of camera) in the sensing range of the client. However, in a

typical environment (e.g., an urban area) the amount of activity varies temporally

and spatially. Hence, both static and mobile clients would sense different levels of

activity over time, and generate variable levels of workload. This type of variation is

distinct from the one discussed earlier (caused by client mobility), because this spe-

cific variation is present in the environment regardless of whether clients are static or

mobile.

2.2 Exemplar Situation-Awareness Applications

We now present concrete examples of situation-awareness applications that possess the

characteristics discussed in Section 2.1. For each application, we first discuss its high-

level functionality, and then present a candidate architecture along with the interactions of

various components of the application.

2.2.1 Cooperative Sensing for Autonomous Driving

Autonomous driving vehicles are reliant on local on-board sensors such as LiDAR and

stereo cameras for detecting objects on and around the street such as other vehicles or

a pedestrian crossing the street. The control application of autonomous vehicles is re-

sponsible for taking an immediate action (such as braking or lane change) in response to

unexpected and potentially dangerous events such as a jaywalking pedestrian or a vehicle

jumping a red light. However, due to the inherent complexity of driving contexts in busy

streets, it is possible that either the sensors are occluded by other objects in their field of

view (Fig. 2.1a), or the sensing range of individual vehicles is not enough to capture the

event (Fig. 2.1b) [3]. To better cope with the above scenarios, the fusion of sensed data

from multiple nearby vehicles along with road-side infrastructure (such as CCTV cameras)

can alleviate the issues of limited sensing range and occlusion. For instance, as shown in

Fig. 2.1a and Fig. 2.1b, the sensor data from nearby vehicles and CCTV cameras are used

to augment the local sensors on-board each vehicle. Receiving fused sensor data from mul-
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Figure 2.1: Use-cases of cooperative sensing for Autonomous driving.

tiple vehicles enables each vehicle to gain a wider view of the current traffic situation and

become aware of the traffic event sooner.

The fundamental components of the collaborative perception application and their func-

tionality has been discussed and evaluated thoroughly by previous work[4, 3, 5]. We base

the application design presented here on the F-Cooper [4] work done by Chen et al. Each

vehicle is associated with a per-vehicle application component that processes raw sensor

data perceived by local on-board sensors of that vehicle and extracts features about detected

objects and their location with respect to the global coordinate space. The per-vehicle com-

ponents corresponding to the set of physically close-by vehicles send streams of detected

features to a fusion component. The fusion component performs feature matching among

the objects reported by each per-vehicle component and de-duplicates multiple views of the

same object. Through this de-duplication process, the fusion component merges the views

of multiple close-by vehicles. Each vehicle is only interested in fused data corresponding

to an area within roughly 600 meters from the vehicle’s current location [6]. Thus a subset

of the fused view is then sent back to each per-vehicle component, which relays it back

to the vehicle – either to be displayed through a Heads-up Display (HUD) or for making

navigation decision (in the case of autonomous vehicles).

The compute requirements of the fusion component is non-trivial [3], which necessi-

tates multiple instances of the sensor fusion component serving vehicles distributed through-

out a city. Boehme et al. [6] propose such a distributed architecture of the collaborative

perception application, wherein the geographical space that the application serves is par-

titioned into several “regions” and all vehicles present in a specific region are served by

the same fusion component. The division of a geographical space (e.g., a city) into regions

is done so as to ensure uniform load distribution across the fusion components, however,

that is out of the scope of this thesis.1 In addition to the per-vehicle object features from

1Such a division can be done by taking into account historical levels of vehicular activity across space and
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Figure 2.2: An illustration of the components of the Collaborative Sensing for Autonomous
Driving application.

the vehicles present in its region, each fusion component also receives fused data from

geographically neighboring regions. The data from neighboring regions allows the fusion

component to serve vehicles that are close to the periphery of its region, since the 600 meter

area-of-interest of those vehicles might extend beyond the region’s area.

The collaborative perception application continuously ingests data perceived about the

physical environment in proximity to the vehicle client, processes it and returns the result

back to the client at machine-perception speed. The response-time of this sense-process-

actuate control loop needs to be very small ( 100ms [3]) so that the driver or autonomous

driving agent can react to obstacles in real-time. The application involves collaboration

between multiple clients, that are necessarily located in physical proximity to one another.

The application also requires coordination between fusion components that serve neigh-

boring regions because the area-of-interest of multiple clients that are close to each other

overlap. Vehicles are inherently mobile, which creates dynamism in the compute and net-

work requirements of the application, as well as the set of clients that are served by a given

fusion component.

2.2.2 Collaborative Navigation Control in UAV Swarm

Applications such as large-scale road traffic monitoring or search-and-rescue are good can-

didates to apply UAVs given their flexible mobility and sensing capability. However the

sensing range of cameras on an individual UAV makes it cumbersome to perform large-

scale jobs such as traffic monitoring or search and rescue. Recently, the cost of UAVs

has been declining and the communication infrastructure is becoming more omnipresent.

Swarms of UAVs have been proposed to be used for road traffic monitoring [7], search and

ensuring that each region manager serves roughly uniform number of vehicles.
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rescue [8] and surveillance [9]. The drones that are a part of the swarm need to navigate

together in order to perform a task. For instance, in the case of road traffic monitoring,

drones need to coordinate among themselves to cover the entire road segment monitored

by them, while also avoiding collisions with obstacles such as poles or bridges, and other

drones. In the following discussion, we will take up the use-case of road traffic monitoring

to describe the application. However, the concepts generalize to other use-cases.

Road 
detection

Vehicle 
detection

Vehicle 
counting

Navigation 
control

Navigation 
planning

Navigation commands

Per-drone components

Location exchange with 
other drones

To other 
drones

Figure 2.3: Schematic of the Collaborative UAV Navigation application.

Each drone is associated with a per-drone application component, which processes the

sensor data from the drone’s onboard sensors in real-time. The per-drone component ex-

tracts relevant information from the sensor stream, such as vehicle counts. The extracted

information is communicated to the navigation planning component, which determines

whether the drone should remain in the current region of the road segment, or start mon-

itoring another region. Drones also communicate among themselves by sharing location

updates and information about detected obstacles so that they can perform fine-grained

navigation control.

2.2.3 Collaborative PTZ Tuning in a Distributed Camera Network

Smart cities are seeing CCTV cameras installed at a large number of locations to record

and analyze unexpected events such as accidents and crimes. However, surveillance using

CCTV cameras is largely done after an incident has occurred and the static deployment of

cameras makes it difficult to fully capture the target objects. Online multi-camera object

tracking has emerged as a recent development due to the proliferation of efficient machine

learning models for computer vision [10]. Contemporary cameras are often equipped with

Pan-Tilt-Zoom tuning capabilities which allow them to better track target objects. Further-

more, due to the high density of cameras, they can also work collaboratively in tracking

multiple target objects [11].
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Figure 2.4: Schematic of Collaborative PTZ Tuning application for a Distributed Camera
Network.

In order to achieve this goal, the cooperative vision application groups cameras into

multiple regions and splits the application logic between a per-camera component and a

per-region Region Manager (see Section 2.2.3). The per-camera processing component

performs object detection and tracking and informs the region manager about the features

of newly detected target objects and the current location of tracked target objects. It con-

tinuously tracks target objects by adjusting the PTZ parameters. The Region Manager

consumes the current location of each target object and determines the assignment of cam-

eras to target objects. In case a target object is about to leave the given region, the region

manager informs the neighboring region(s) of the impending arrival of the target object.

The collaborative PTZ tuning application requires the processing of incoming video

streams in real-time to determine PTZ tuning actions. It also experiences temporal fluc-

tuations in workload depending on the density of vehicles in each camera’s field of view,

which varies significantly during the day. Furthermore, multiple region-level components

coordinate among each other to perform vehicle tracking over large geographical areas.

2.3 Application Model

Having described the exemplar situation-awareness applications, we now abstract out the

details of each application and try to model this class of applications. We characterize

the applications in terms of their compute architecture, communication patterns, storage

behavior and their functionality being tied to spatial context. We discuss each of these

concepts in this section.
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2.3.1 Computation Model

The compute model of our target applications comprises two main components:

• Per-client component for client-specific computation. This component is responsi-

ble for processing information generated by each client (e.g., an autonomous car or

UAV) and providing input to higher layers of the application. The per-client compo-

nent is specific to each application client and maintains the client’s state.

• Region-level component for combining information extracted from multiple clients.

Each region-level component is assigned a number of clients based on their geo-

graphical location. A given region-level component hosts coordination and collab-

oration tasks between all the clients mapped to it. In the event that coordination

between two clients belonging to two different regions is required, their two corre-

sponding region-level components communicate between each other and share infor-

mation.

2.3.2 Communication Pattern

Communication among application entities in our target applications follow two primary

patterns:

• Communication between the per-client component and region-level component.
Clients share data with the corresponding region-level component for inter-client co-

ordination and data-sharing within the region. Clients receive region-level informa-

tion extracted from multiple clients. For example, in the collaborative PTZ tuning

application, the per-camera component shares the current position of target objects

currently assigned to it with the region manager, while receiving the locations of

newly assigned target objects for it to track.

• AoI based communication from a region-level component to per-client instances
or other region-level components. A particular data-item is expected to be received

by an application component if the data-item represents an object or event that falls

within the receiver’s spatial context. This communication pattern can manifest itself

in three ways: (1) region-level component to per-client component, as in the coop-

erative sensing application for autonomous driving, wherein a given vehicle receives

the fused worldview not only from the region manager of the current region, but also

from regions that overlap with the vehicle’s AoI; (2) across clients which fall in each
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other’s AoI, as in the collaborative collision avoidance module of the UAV swarm

application, which requires that UAVs share their current location among each other

so that they can be aware of other UAVs in their vicinity; (3) communication between

region-level components for sharing information at the region level. For instance, in

the collaborative PTZ tuning application, region managers share details about a target

object that is about to leave one region toward the other.

2.3.3 Storage Requirements

Applications generate state about application execution and information sensed from the

environment that need to be persisted to enable future queries. Examples of such state

include the assignment of target objects to PTZ cameras, semi-permanent road closures or

traffic incidents in the collaborative driving application. Situation-awareness applications

typically execute range-queries on this state to select data-items that fall within a certain

geographical area. Hence, these data-items are tagged with the geo-location of the entity

they are describing. Data items in application’s state are often read/updated by multiple

entities. Applications expect a diverse set of consistency guarantees on data access based

on their application logic and reliance on most recent version of data.

2.3.4 Spatial Affinity

Since the target applications interact with the physical environment, actions taken by the

application logic are often dependent on events and information from the immediate phys-

ical proximity. Hence, both computation and communication patterns of the target applica-

tions exhibit spatial affinity. Spatial affinity is defined by the AoI of application clients and

components, which represents the spatial area wherein other entities that the given entity

directly interacts with are present. For instance, in the collaborative driving application,

the AoI of a car contains all other objects in vicinity of the car whose position information

is needed in real-time to avoid potential collisions. Spatial affinity plays an important role

in all facets of the application.

• Computation. Clients in physical proximity to each other are likely within each

other’s AoI, and hence are grouped together and served by the same region-level

application component.

• Communication. Communication patterns of the target applications are guided by
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spatial affinity of clients. Each client communicates with other clients and region-

managers that fall within or overlap with the given client’s AoI.

• Storage. The state maintained and accessed by an application component pertains

to objects and events in the subset of the physical environment that the application

interacts with, and hence in physical proximity.

2.4 Functional Requirements

The target applications present a set of functional requirements on the underlying infras-

tructure.

• Low latency requirement. The sense-process-actuate control loop of situation-

awareness applications needs to be processed with end-to-end latency under the ap-

plication’s predefined threshold. This requirement ensures that the clients are able to

respond in real-time to changes in the physical environment.

• Mobility-driven reconfiguration to maintain spatial affinity. Clients are contin-

uously mobile, and so the mapping of per-client to region-level components needs to

be reconfigured based on the current location of clients, so that inter-client coordina-

tion and data-sharing is done only between clients that are in geographical proximity

of each other.

2.5 Platform Services needed and Functional Requirements

The aforementioned target applications can be implemented using a combination of plat-

form services. Platform services provide the necessary systems support with powerful

semantics for the applications, so that the developers can focus on the core application

logic.

2.5.1 Compute Orchestration

The target applications comprise of multiple distributed components, each with a specific

functionality. These application components require appropriate resource allocation to

cater to their specific computational requirements such that a low sense-process-actuate

control-loop latency can be ensured. For the application’s correctness, per-client com-

ponents should be mapped to the right region-level component based on client’s current

location. This problem is further complicated by the mobility of clients. Client mobility
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necessitates the dynamic reassignment of per-client components to region-level compo-

nents because the set of clients present in a given region keeps changing over time. Fur-

thermore, the spatial distribution of clients varies with time, and therefore the workload at

each application component. This necessitates dynamic updates to the resource allocation

of application components to avoid under-utilization or over-utilization of resources.

Compute orchestration platform service handles all the above issues without requiring

the developer’s intervention. Given the latency and spatial affinity requirements of applica-

tions, the platform service will automatically deploy and reconfigure the resource allocation

and connectivity of application components.

2.5.2 Publish-Subscribe Communication

The communication patterns in the target situation-awareness applications ranges from

one-to-many (region-level component to per-client component) to many-to-one (per-client

component to region-level component), to many-to-many patterns (among clients). Fur-

thermore, given the continuous mobility of clients and the dependence of communication

pattern on spatial affinity, the set of entities communicating with a given client changes over

time. Implementing the communication subsystem for a given application would require

maintaining a dynamically updated list of receivers for each data sender, ensuring reliable

message delivery to all receivers, etc., which are challenging for application developers.

Publish-subscribe is a useful communication model, which uses the abstraction of “top-

ics” to define interaction between entities. Doing so decouples the producers from the con-

sumers of data and simplifies application logic. Special nodes called “brokers” host topics

and perform message transfer from producers to consumers of each topic. The use of inter-

mediary broker nodes allows the producers and consumers to be decoupled from each other.

Data producers can send messages to a topic without waiting for it to be received by con-

sumers, and consumers are notified asynchronously for each message. Publish-subscribe

systems also maintain a persistent log of messages for each topic, which allows them to

ensure strong data-delivery semantics, such as atleast-once delivery of messages to each

consumer.

2.5.3 Key-Value Storage

The processing logic of our target applications depend on their state, hence it should be

stored in a way that facilitates easy and efficient access. Key-value stores offer a conve-

nient data model, wherein each data-item can be referenced using a unique key for reading
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and writing. Typically, key-value stores maintain multiple replicas of each data-item to en-

sure tolerance from failures. The network connectivity of data replicas and the number of

replicas chosen for performing a read or write operation determines the operation latency

and the consistency.

2.6 Timing considerations for situation-awareness applications

2.6.1 Why cloud-based solutions fall short?

A number of platform services offering compute orchestration (e.g., Kubernetes), publish-

subscribe communication (e.g., Apache Pulsar) and key-value storage (Apache Cassandra)

are available for the cloud computing ecosystem. These services are widely used since

they provide strong data-plane semantics (such as Cassandra’s tunable consistency levels

and Pulsar’s at-least-once message delivery guarantee). In addition to useful semantics, the

data-plane of these systems have been tuned for providing high throughput and low latency.

However, relying on cloud-based solutions necessitates communicating with a remote

datacenter location through the WAN, and sending all of the data from client’s sensors to

the datacenter. Traversal through the WAN incurs high and unpredictable communication

latency, and the large volume of high-fidelity sensor data (e.g., stereo cameras, LiDAR,

etc.) causes high backhaul bandwidth consumption. High latency in the sense-process-

actuate control loop of the applications results in their functionality being impaired. On

the other hand, high backhaul bandwidth consumption limits the scale at which a particular

application can be deployed.

2.6.2 Need to move to the network edge

Edge computing [1] presents a viable deployment alternative for the aforementioned plat-

form services. The presence of computation and storage resources in proximity to the

clients make it possible reduce the network latency between the clients and application

components. Edge infrastructure is a continuum of geo-distributed sites hosted by multi-

ple providers, such as telecommunication network providers, co-location providers (e.g.,

Vapor IO [12]), etc. An edge site typically comprises of a rack of server-grade machines,

equipped with storage and networking infrastructure. Based on the dataset [13] released by

Alibaba Edge Node Service, which is the only publicly available dataset about a real-world

Edge infrastructure deployment, Table 2.1 shows the size of each Edge site. Edge sites

are much more resource-constrained than a typical datacenter, because of space and power
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limitations.

Table 2.1: Distribution of Edge site capacity in the Alibaba Edge Node Service dataset.

Minimum Maximum Median Average

CPU cores 96 4337 1158 1367
Memory (GB) 240 20745 4766 5116
Server Count 2 45 14 15

Because of the smaller resource footprint, infrastructure providers deploy a large num-

ber of geo-distributed Edge sites so that a large number of users can be supported. However,

the geo-distributed nature of Edge site deployment implies that the network connectivity

of Edge sites to the Internet is heterogeneous, meaning that they connect to the Internet

through different peering points. Due to such a heterogeneity, the network latency from

a client varies significantly across different Edge sites. This behavior is also significantly

different from the Cloud, where the latency between multiple nodes is almost negligible

because the nodes are hosted within the same datacenter.

2.6.3 New mechanisms are needed at the edge

The cloud-based platform services do not offer the same performance when deployed as-is

on edge infrastructure because their control-plane policies are not optimized for an edge

setting. These systems have been designed for operating in a datacenter setting, wherein

machines are connected to each other via a high-throughput low-latency network. Clients,

compute and data entities are co-located in the same datacenter, making the network la-

tencies between these components negligible as compared to the compute and data access

latencies. Hence, in these systems, the key to ensuring bounded end-to-end latency is uni-

form load balancing that prevents the formation of workload hotspots and therefore latency

inflation. Using such systems as-is in an edge computing environment would result in the

placement of compute and data entities on edge sites in a way that is agnostic to network

latencies among clients and edge sites - making the satisfaction of end-to-end latency re-

quirements difficult. Furthermore, cloud-based platform services do not monitor observed

end-to-end latencies to detect a violation and trigger a reconfiguration to alleviate the vio-

lation.

In order to better serve the target applications, we need to introduce new edge-specific

mechanisms into the control-plane of the platform services. Doing so will allow them to

operate effectively in an edge setting and meet the requirements of applications.
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CHAPTER 3
FUNDAMENTAL MECHANISMS FOR GEO-DISTRIBUTED OPERATION OF

PLATFORM SERVICES

The challenges imposed by the peculiar characteristics of a geo-distributed Edge infras-

tructure and situation-awareness applications on the design of control plane policies for

platform services necessitate the introduction of novel mechanisms to address them. This

dissertation proposes three key mechanisms to address these challenges - Dynamic Spatial

Context Management, Network Proximity Estimation and End-to-End Application Moni-

toring.

The Dynamic Spatial Context Management mechanism allows the control plane of plat-

form services to maintain a frequently updated view of the spatial context of system entities

such as application instances, data-items and end-clients. This spatial context information

is used to make control plane policy decisions, such as mapping a client to an application

instance and determining the set of clients that need to share data for inter-client coordi-

nation. The objectives of these control plane policies is to ensure that the spatial affinity

requirement of an application is fulfilled, as described in Section 2.3.4.

While the Dynamic Spatial Context Management mechanism is used to establish logical

connectivity between system entities based on spatial proximity, it is not responsible for

mapping those system entities on to the physical infrastructure - a problem that requires

taking into account the heterogeneity in infrastructure topology and latency requirements of

applications. The Network Proximity Estimation mechanism allows control plane policies

to estimate the network latency between physical nodes in the infrastructure that can be

used for the placement of system entities such that applications’ latency requirements are

satisfied.

Finally, the continuous execution of applications requires the control planes of platform

services to monitor the end-to-end latency experienced by each application instance, that

includes queuing and computation delays as well as communication delays between dif-

ferent entities. The End-to-End Monitoring mechanisms allows the control plane policies

to obtain an aggregated view of the various component latencies making up the end-to-

end observed latency so that a violation of the application’s requirements can be detected.

The end-to-end view of observed latencies also enables root-cause analysis techniques to

identify the source of the performance violation and trigger the appropriate reconfiguration
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action to alleviate it.

In this chapter, we will discuss the three mechanisms proposed in this dissertation in

detail. We first present the infrastructure and workload scenario that has been considered to

motivate the problems solved by these mechanisms and to design the experimental settings.

Then, for each mechanism, we will first describe the objective of the mechanism, enumerate

examples of control plane policies that will benefit from it, present the abstractions exposed

to the control plane policies, and why previous approaches at attaining this objective are not

sufficient. Finally, we demonstrate the use of these abstractions for building useful control

plane policies that can support the efficient operation of platform services on a realistic

Edge infrastructure against a workload of situation-awareness applications.

3.1 Infrastructure Topology and Client Workload considered

To make the case for the mechanisms proposed in this dissertation, we utilize the dataset

[13] characterizing the Edge cloud service of Alibaba Cloud, both at the infrastructure

and workload level. At the infrastructure level, it provides detailed information about the

number of Edge sites in each city of China and the network provider owning them, the

number and size of physical machines in each Edge site and the network RTT between

sites. At the workload level, the dataset contains information about the number and size of

Virtual Machines (VMs) hosted by each physical machine at different sites and the CPU

utilization of each VM. For evaluations in this chapter, we choose the city of Shanghai as

the one offering situation-awareness applications to its residents (which is just for clarity

of exposition as the evaluation methodology can easily be extended to include applica-

tion clients in other cities). We simulate client activity (including mobility) in the city of

Shanghai ourselves, since the Edge dataset [13] does not provide client activity informa-

tion. The network connectivity between a client and an Edge site is determined by the

location of the client and the geographical areas covered by each Edge site in Shanghai.

To estimate the geographical coverage of each Edge site, the precise geographical loca-

tion of Edge sites and their connectivity with cell towers are needed. However, the dataset

only provides a city-level granularity of Edge site locations. Hence, to estimate their pre-

cise geo-locations, we gather the locations of cell towers owned by the different network

providers from CellMapper [14], perform k-means clustering on them and obtain the likely

locations of the Edge sites. The number of k-means clusters for each network provider’s

cell tower clustering is made equal to the number of Edge sites owned by that provider in

Shanghai (from the dataset). Upon obtaining the locations of Edge sites using clustering,
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Figure 3.1: Edge infrastructure of the city of Shanghai that is under consideration in this
chapter. The crosses denote Edge site locations, while the dots denote cell tower locations.
The different colors represent the three telecom providers in Shanghai, namely CMCC,
China Telecom and Unicom.

we need to assign resource capacity to each site for which we again use the Alibaba Edge

Node Service dataset, specifically the information about resource capacity of each Edge

site. To map the resource capacity from the dataset to an Edge site location extracted via

clustering, we assign the most resource-rich site’s resource capacity in the dataset to the

Edge site location that has the maximum number of cell towers in its cluster, and so on.

Fig. 3.1 illustrates the infrastructure topology, with the locations of cell towers and Edge

sites marked. In addition to Edge sites within Shanghai with precise locations, the physical

infrastructure considered in our evaluations also consists of Edge sites in other cities of

China. Each Edge site outside Shanghai is significantly farther away from any client con-

sidered in the workload (compared to sites within Shanghai), and therefore the city-level

coarse-grained location provided by the dataset works for such a site.

3.2 Dynamic Spatial Management Mechanism

Situation-awareness applications, such as collaborative autonomous driving and UAV swarm

navigation, interact with the physical environment, by sensing data and performing actions

on it. Typically, there are many clients of the same application operating in a common ge-

ographical space. In such a setting, a client’s processing logic can benefit by incorporating

information extracted from other clients’ sensed data. For a given client, the set of other

clients from which it needs sensor data depends on the location of clients, the size of their

sensor range and the area of interest of the given client. The AoI of a client is defined

as the geographical region whose data it is interested in receiving. The sensing range of

a client depends on the sensor hardware used, e.g., LiDAR, camera, etc. The size of the
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Figure 3.2: An exemplary spatial distribution of situation-awareness application clients
overlaid on two-dimensional space. The sensing range of clients is shown as a red dashed
rectangle around the client’s location. In addition, the Area-of-Interest of client C1 is
shown.

Area-of-Interest depends on the nature of the application. For instance, since vehicles in a

city are not expected to move at speeds higher than, say, 25 miles per hour (in urban cities

in USA), the size of AoI of vehicular clients for the collaborative perception application is

bounded (e.g., 150 meters x 150 meters in the TalkyCars system [6]). There exists only a

finite region around a given vehicle that would contain any interesting event for that vehi-

cle. Fig. 3.2 shows a typical arrangement of clients in geographical space with the sensing

range of each client marked in red and the AoI of one of the clients (C1) marked in blue.

Each client senses data from the environment within its range and the application instance

serving it generates actionable information from the sensed data. The application instance

serving client C1 is interested in receiving all actionable information about the geographi-

cal region within the bounding-box of C1’s AoI. Hence, the application instance serving C1

needs to receive processed information from all other application instances that are serving

those clients whose range overlaps with the AoI of C1.

An intuitive way of modeling these applications was discussed earlier in Section 2.3.1,

wherein a region-level component is responsible for fusing the information extracted from

multiple clients to realize inter-client coordination. However, in a large-scale geo-distributed

deployment of such applications, a single region-level component would be insufficient to

serve all the clients - because of scalability limitations in its implementation, resource con-

straints on the Edge site hosting it, or both [6]. Hence, to support a large number of clients,

multiple instances of the region-level component are maintained as shown in Fig. 3.3, with

each instance serving a distinct partition of the entire geographical area. All clients within
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(a) An example partitioning of geographical
space. Each partition is to be managed by a
distinct application component. The impor-
tant point to note is that each partition is not
self-sufficient, but rather relies on informa-
tion from other partitions as well. The data-
dependence between partitions results from
the fact that the AoI of clients inside a given
partition overlaps with the range of clients in
other partitions.
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(b) Clients in each spatial partition are
mapped to a unique region-level component
that is responsible for fusing the information
extracted from each individual client.

Figure 3.3: Illustration of partitioning of geographical space to support large-scale deploy-
ment of situation-awareness applications that require coordination among clients.

a given spatial partition should be served by the same region-level instance, thus enabling

inter-client coordination among all clients within that partition. Due to the inherent mo-

bility of clients and the fact that the spatial partitioning is not necessarily aligned with the

sensing range of each client, a client’s AoI can overlap with another client’s range that is

located in a different partition. For example, in Fig. 3.3a client C1’s AoI overlaps with

the range of client C4, however C1 and C4 belong to partitions P2 and P1 respectively. To

make sure that information from client C4 is taken into account while processing the sensor

data of client C1, the region-level component instance serving client C1 receives a stream

of fused information from the instance serving client C4, as shown in Fig. 3.3b.

For situation-awareness applications that require inter-client coordination, mapping

clients to region-level component instances needs to be done by taking into account the

spatial context of clients (denoted by their location) and that of the region-level application

component instances (denoted by spatial partition they are meant to serve). Information

sharing between region-level instances is also dictated by the spatial context of the dif-

ferent instances and the range and AoI of clients served by those instances, as shown in

Fig. 3.4.

Thus, to ensure that each client is served by an application instance specific to its spatial

context and that application instances are able to share relevant data among each other, it is
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(a) An illustration of the information
generated by a given region-level com-
ponent instance that needs to be shared
with other instances.

A

R

(b) An illustration of the information
needed by a region-level application
component from other application in-
stances.

Figure 3.4: The shaded regions in both images show the data that needs to be shared with
other region-level instances (Section 3.2) and that needs to be received from other instances
(Fig. 3.4b). The R denotes the size of sensing range, while A represents the size of AoI
of each client. The shaded area represents the maximum extent of information that needs
to be shared/received for any possible client location. In Section 3.2, it is assumed that
the recipient clients are located just outside the green region, while sending clients are
located just inside the green region. Similarly, in Fig. 3.4b, it is assumed that the recipient
clients within the green region are present right at the boundary, while the source clients
are located just outside of the green region.
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imperative to treat the spatial context of clients, application components and data-items as

first-class attributes.

The main challenge in doing so is to handle continuous client mobility, that results in

the AoI and spatial context of each client to change continuously. Hence, a static mapping

of clients to application instances would result in frequent violations of the spatial affin-

ity requirement, wherein a client would be communicating with application instances that

serve a different spatial region than the one in which the client is located. Similarly, the

set of data-items that a client’s application instance is interested in also changes along with

client mobility. Furthermore, given the continuous mobility of clients, workload skews are

common - caused due to a large number of clients accumulating in a particular spatial par-

tition, e.g., in the event of a surge in vehicular traffic in a city’s downtown area due to a

concert. Due to limited resource capacity of edge resources, such a workload skew can re-

sult in a performance degradation on the application instance serving that spatial partition.

Therefore, spatial workload skews necessitate the monitoring and remapping of geograph-

ical regions to applications instances and data-items, so that the skews can be minimized

and performance degradations can be avoided.

3.2.1 Control plane actions that need this mechanism

There are two main actions taken by the control planes of platform services that require

spatial context information of clients and compute and data components:

Dynamic Client-to-Application Mapping. Situation-awareness applications require that

a client be connected to a region-level application component instance that is assigned to

the spatial partition within which the client is currently located. A metric that quantifies the

goodness of this mapping is Spatial Alignment, that measures how many of the expected

clients that should have been mapped to an application component are actually mapped.

The Spatial Alignment metric for spatial partition A is quantified in Eq. (3.1).

SA (A) =
max. clients in A served by the same app instance

number of clients in A
(3.1)

The control plane policy for client-to-application mapping would ideally ensure the spatial

alignment metric for all spatial partitions to be 1.0, meaning that all clients that are currently

located in a given spatial partition A are mapped to the same application instance.

Area-of-Interest Queries. Clients and application components need to query data-items

whose spatial context overlaps with the querying entity’s AoI. This query is served by the
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control plane that evaluates the spatial context overlap with the querying entity’s AoI and

returns a list of satisfying data-items. We use a metric called AoI Satisfaction Rate to

quantify the goodness of the query result, as shown in Eq. (3.2).

AoI Satisfaction Rate =
|{e : e is returned by query and e ∈ AoI}|

|{e : e ∈ AoI}|
(3.2)

Ideally the control plane policy for evaluating these queries should be able to achieve an

AoI Satisfaction Rate of 1.0.

3.2.2 Limitations of previous work in implementing policies

Contemporary Edge computing solutions do not allow coordination among application

components that are deployed across multiple Edge sites [15, 16]. Hence, a client c that is

mapped to an Edge site E can only coordinate with other clients that are also mapped to

the site E. Similarly, c can only discover other system entities (data-items and application

instances) on the site E. We consider 2 high-level approaches in previous work to map

clients to Edge sites - mapping each client to the geographically closest site (GeoDist) (as

in Lähderanta et al. [17]) and to the site with smallest RTT from the client (RTT) (as in

Saurez et al. [18]). In the following evaluations, we show how both these approaches are

deficient in satisfying the spatial alignment requirement of client-to-application mapping

as well as serving Area-of-Interest based queries.

Spatial Alignment Evaluation. To evaluate the above client-to-application mapping base-

line heuristics in terms of spatial alignment, we first consider the area of the city under

evaluation and divide it into a number of spatial partitions, within which we ideally expect

clients to be mapped to the same application instance (thereby creating a perfect spatial

alignment). The size of spatial partitions is varied in the experiment to represent a diverse

set of applications. We create 1000 clients (with equal number of clients connected to

each network provider) and place each one of them at a cell tower location. The place-

ment of clients at cell tower locations is justified by the fact that the spatial distribution

of cell towers follows that of client activity. This client placement is randomized and the

experiment is repeated 100 times. For each experiment run, we compute the average spatial

alignment over all spatial partitions in the scenario. Fig. 3.5 shows the distribution of the

average spatial alignment that results from mapping clients to application instances using

greedy heuristics that aim at minimizing geographical distance and network RTT between

the client and Edge site. The metric shown is average spatial alignment, that is the average
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Figure 3.5: Distribution of Average Spatial Alignment observed for different sizes of each
spatial partition. Closest RTT based mapping of clients to Edge sites results in worse spatial
alignment compared to Closest Geo Distance based mapping.
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Figure 3.6: Distribution of the AoI Satisfaction Rate achieved when using two baseline
client-to-site mapping approaches - Closest GeoDist and Closest RTT. Both approaches
fail to achieve perfect AoI Satisfaction Rate especially at higher AoI Sizes.

of the spatial alignment of all the spatial partitions in that experiment run. Although the

baseline policy GeoDist, that selects the geographically closest Edge site, is able to attain

a high enough average spatial alignment, it does not attain the perfect 1.0 value because

not all clients in a given spatial partition always have the same Edge site as the closest.

Furthermore, the Closest RTT approach offers even worse spatial alignment because often

within a given spatial partition, clients that belong to two different network providers may

be bound to different Edge sites.

AoI Satisfaction Evaluation. Next, Fig. 3.6 shows the distribution of AoI query satisfac-

tion rates offered by the Closest GeoDist and Closest RTT baseline policies for retrieving

the data-items with spatial context overlapping with the AoI of the querying client. For

this evaluation, we consider the scenario wherein each client is associated with one data

stream, that contains the sensor data collected by the client. Each client has a dedicated

application instance that processes its sensor data, while also consuming the data stream of

other clients in its AoI. We create one client at every cell tower location, and each client’s

application instance submits an AoI query to find which other clients are in its AoI. De-

pending on the client-to-site mapping, a variable number of AoI members are returned,

that is compared with the ground-truth set of clients within the AoI to compute the query

satisfaction rate. The size of AoI query is varied to represent a diverse set of applications

and their satisfaction rate distributions are shown. Both client-to-site mapping approaches

28



perform poorly and fall significantly short of the expected AoI Query Satisfaction Rate of

1.

Both of the above approaches fall short in terms of providing high Spatial Alignment

for client-to-application mapping and AoI Query Satisfaction Rate for serving AoI-based

queries. The evaluated approaches fall short because they do not incorporate the spatial

context of application instance and data-items nor the AoI of clients. Instead they rely

solely on the client-to-Edge-site mapping, wherein the Closest GeoDist approach is based

on the locations of clients and Edge sites, while the Closest RTT approach is based on the

network infrastructure topology serving clients and Edge sites. Therefore, we need a new

mechanism that takes into account the spatial context and AoI specified by the application

to perform client-to-application mapping and serving range queries. The mechanism should

be able to associate unique spatial contexts to application instances and map clients to these

instances based on client location. It should also maintain a spatial index of data-items and

filter out the result of an AoI-based query by determining which data-items fall within the

AoI.

3.2.3 A New Mechanism for Spatial Context Management

The Dynamic Spatial Context Management mechanism is utilized by both the control

plane’s compute and data placement policy of platform services as well as the client li-

brary of the platform service running on the client application. The control policy interacts

with this mechanism to maintain the spatial context of the system entities (data and com-

pute) while the client library uses this mechanism to keep track of the spatial context of

clients. Both these types of spatial contexts are useful in determining which compute/data

entities a given client should access.

Interface exposed to the control plane

The mechanism divides the geographical space into rectangular regions called Tiles, that are

of arbitrary size. We choose rectangular tiles so that they can best approximate the spatial

partitions expected by collaborative situation-awareness applications. An example parti-

tioning is shown in Fig. 3.3a. Each Tile has a unique Tile ID, that can be used to directly

reference the Tile. Each tile contains a number of entities, such as clients or data-items

within it. In the following list, we enumerate the various functions that the mechanism

exposes to the control plane for accessing and updating the spatial partitioning.

• GetTileID. This function is used to convert a location to the ID of the tile that it
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belongs to. The function is used by the control plane policy to perform client-to-

application mapping.

Input: Location of the client

Returns: ID of the tile within which the client location exists.

• GetTileCoverage. This function determines the bounding box of the spatial area

covered by a given tile. This function is used by the control plane policy to perform

client-to-application mapping as well as by the libraries on the client and application

components to detect if a change of mapping is needed in the event of significant

client mobility.

Input: ID of the tile.

Returns: Bounding box that represents the spatial area covered by the tile.

• UpdateEntityLocation. This function is used to update the location of an entity, that

could be a client or a data-item. In addition, if the new location of the entity is in

a different tile than its previous location, this function would move the entity from

previous tile to the new tile.

Input: ID of the entity and its current location.

• GetIntersectingTiles. This function is used by the client and application compo-

nent library to perform range queries to find out which entities are within a given

geographical range.

Input: Bounding box of the area within which to query for intersecting tiles.

Returns: A set of tiles that intersect with the provided bounding box.

• SplitTile. This function call is used by the control plane to split a tile into two. The

split is carried out in a way to ensure that the number of entities in the two resultant

tiles is (almost) equal. This function is used to alleviate load on a tile that is going

through a workload surge.

Input: ID of the tile to be split.

Returns: IDs of the children tiles created by splitting input tile.

• MergeTiles. This function allows the control plane to trigger a merging of two ad-

jacent tiles. This function is called when the tiles being merged are experiencing

workload under-utilization, and their total workload can be handled by one tile along.
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Input: IDs of the tiles to merge.

Returns: ID of the tile created as a result of merging input tiles.

Demonstration of using the mechanism for implementing a control plane policy

We now demonstrate how the proposed mechanism and the associated API are useful in

implementing control plane policies for platform services. For this mechanism, we use an

application orchestrator as the driving example. Algorithm 1 shows the pseudocode of the

control plane policy for finding a suitable application instance for mapping a client based

on its geographical location and the spatial contexts of various region-level application in-

stances. The control plane maintains a mapping APPS between an application instance

and the Tile that represents the geographical area served by the application instance. The

policy first determines the Tile in which the client is currently located. If the client’s tile

already has an application instance associated with it, the policy returns connection infor-

mation about that instance. Otherwise the policy deploys a new application instance for

the client’s tile, maps the application instance to the tile and returns its information to the

client. The policy also adds the client to the tile to update the occupancy information, that

can be used to detect overload and trigger re-partitioning.

Algorithm 1 Handling Deploy Request from Client
Require: client c
Require: client’s location loc
t← GetT ileID (loc)
if APPS [t] exists then

A← APPS [t]
else

Deploy app component A for tile t
APPS [t]← A

UpdateEntityLocation (t, c)
SendConnectionInfo (c, A) . Send info to client for connecting to app component

Algorithm 2 describes the control plane policy for handling an overloaded region-level

component due to workload skew. This policy is triggered by the control plane when it

identifies that a given application instance is overloaded by the compute requirement of

serving all the clients that are currently present in the tile its is mapped to. Hence, the

tile needs to be split and workload divided among two application instances. The policy

takes as input the tile associated with the overloaded application instance. The policy uses

the SplitTile function to create two new tiles. It reuses the application instance for the

31



old tile for one of the new ones, and deploys another instance for the second new tile.

Each client that belonged to the old tile is now a part of one of the two new tiles. The

policy sends the connectivity information of the new application instances to the respective

clients. Although not shown, the MergeTiles functionality provided by the mechanism can

be similarly used to merge two tiles together if the two application instances serving these

two tiles are sufficiently underutilized.

Algorithm 2 Handling an Overloaded Tile
Require: overloaded tile t
t1, t2← SplitT ile (t)
APPS [t1]← APPS [t]
Deploy app component A for tile t
APPS [t2]← A
for client c ∈ GetEntities (t1) do

SendConnectionInfo (c, APPS [t1])

for client c ∈ GetEntities (t2) do
SendConnectionInfo (c, APPS [t2])

Improvement over Previous Approaches

In Section 3.2.2, we have shown how the previous work in mapping clients to applica-

tion instances and serving Area-of-Interest-based queries fall short in terms of meeting the

spatial affinity requirements of situation-awareness applications. Here we briefly show the

benefit of using a mechanism for maintaining client-to-application mapping based on the

spatial context of application instances and location of clients. The details of the mech-

anism are presented in Section 4.1. We simulate the mobility of 200 clients and use the

spatial context management mechanism to map clients to application instances. We mea-

sure the spatial alignment over time and plot it in Fig. 3.7. The spatial alignment offered by

the proposed mechanism remains close to 1.0 for most of the time, with the exception of

some dips which are caused either due to dynamic updates to the spatial partitioning by the

mechanism or due to the control plane taking some time to update the client-to-application

mapping when clients move to different spatial partitions. Fig. 3.8 shows the behavior of

spatial alignment metric more clearly, wherein we can see that for the vast majority of time

instants the spatial alignment value is a perfect 1.0. Therefore, the use of a mechanism

that explicitly maintains the spatial context of application instances and uses the geograph-

ical location of clients to map them to application instances can satisfy the spatial affinity

requirements of applications.
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Figure 3.7: Spatial Alignment over time. The dips in spatial alignment are due to updates
to the spatial partitioning as well as clients moving from one spatial partition to the other
and the control plane taking some time to update the client-to-application mapping.

Figure 3.8: CDF of Spatial Alignment values over all time instants. Each data point in the
CDF corresponds to a point in Fig. 3.7.
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3.3 Network Proximity Estimation

The critical path of applications’ control-loop contains system entities (e.g., clients and

application components) communicating with one another and accessing data-items. In

a densely geo-distributed and heterogeneous infrastructure such as the Edge, the network

latency between a client and an Edge site varies significantly depending on which site the

client is communicating with. Similarly, the network latency between different Edge sites

is also heterogeneous (as discussed in Section 3.3.2). Hence the choice of Edge site for

hosting compute or data components of an application instance has a significant effect on

the perceived end-to-end latency of the application, be it the sense-process-actuate control-

loop’s latency or the latency of accessing data from other clients for inter-client coordina-

tion [19, 20, 21, 22]. Therefore, placement policies in the control plane of platform services

need to be aware of the topology of the underlying infrastructure to make decisions. For in-

stance, in the case of the collaborative perception application, the placement of application

components should be such that the end-to-end processing latency is bounded under the

application’s threshold. Similarly, in the case of the drone swarm coordination application,

the publish-subscribe topic should be placed on a suitable broker node to ensure that the

end-to-end message delivery latency is bounded under the application’s threshold.

Therefore, the platform services require a mechanism that enables their control plane

to estimate the network latency between the end-clients and Edge sites as well as across

Edge sites. Such a mechanism would be able to estimate the network latency between a

pair of entities quickly and with low overhead, making it suitable to be used as a part of the

placement policies of these platforms that evaluate a number of Edge sites as candidates

for compute or data placement. Given the dynamic nature of the Edge infrastructure and

client mobility, the network proximity estimation should also be able to adapt to dynamic

changes in network latency between system entities.

3.3.1 Control plane policies that need this mechanism

Network proximity estimation is useful for control plane policies that map logical system

entities, such as application instances or publish-subscribe topics, to physical nodes in a

way that the end-to-end latency requirements of applications are met. Previous works in

this space [20, 21, 22] rely on inter-node communication latency estimates for making these

decisions. However they do not go into detail about how these estimates are obtained,

assuming instead that they are readily available for use by the policy. In the case of the
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application orchestrator platform service, that manages situation-awareness applications

that consist of a pipeline of multiple components [23, 24], the end-to-end latency is the sum

of the processing latency at each application component and the communication latency

between each upstream-downstream pair of components. Similarly, in the case of a publish-

subscribe system, the end-to-end messaging latency for a given topic is the sum of the

communication latency from the publisher clients to the broker, the processing latency on

the broker and the communication latency from the broker to the subscriber clients. In

the above two systems, estimating the processing latency of application components and

publish-subscribe broker can be done using previous works in the cloud computing realm

as well [25]. However, estimating the communication latency between a pair of nodes

requires rethinking and potentially coming up with a new mechanism. Both the resource

allocation policy for the application orchestrator and topic placement policy for publish-

subscribe system would benefit from such a new mechanism.

3.3.2 Limitations of previous work in proximity-aware compute/data placement

Control plane policies for ensuring that compute and data entities accessed by a given set of

clients is placed in their proximity have been one of the main directions of previous research

in Edge computing. The use of geographical distance as a proxy for network latency has

been commonly used, given the simplicity of the scheduling logic once the geo-locations of

system entities (e.g., clients and edge sites) are known. Sarkar and Misra [19] propose the

transformation of geographical distance between a client and candidate Edge site into the

network latency between them using a linear transformation rtt (ms) = dist (km)∗0.02+5

[26]. Other works do not rely on the use of such a transformation, but rather perform greedy

placement on the geographically closest site to ensure low-latency access to the data or

compute entity [17]. Geographical location has also been used in a more coarse-grained

manner, in that the placement of compute/data entities is specified to be within a large

location, e.g., within a city [27]. The selection of the specific Edge site is done on the basis

of a second order policy logic that aims to ensure even load distribution among the various

Edge sites in that particular coarse-grained geographical area.

The above approaches fail to work in realistic edge settings because they assume that

geographical proximity is correlated with network proximity, which is not true because

of lack of uniformity in the way in which different network providers are peered with

each other. Two systems entities (a client and an Edge site, or two Edge sites) in close

physical proximity might have to communicate through extended routing paths because
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(a) Variation of network RTT with geograph-
ical distance between Edge Sites.

(b) Client-Site RTT for sites selected by
transforming the geographical distance into
network RTT and uniformly choosing one
among the set of sites satisfying the latency
constraint.

Figure 3.9: Variation of network RTT between edge sites with respect to geographical
distance.

of the peering between the network providers serving the two entities. In Fig. 3.9a, we

present the variation of network round-trip times between an Edge site located in Shanghai

to other Edge sites throughout China. It shows that although network latencies are loosely

correlated with geographical distance, there is a significant amount of variance, that will

result in placement policies choosing an incorrect Edge site for hosting a compute or data

entity. In Fig. 3.9b, we specifically measure the network round-trip times between sites

that are located in the same city, but are served by different network providers. The high

round-trip times implies that the high variation in Fig. 3.9a is due to the expensive peering

between different network providers hosting Edge sites.

We evaluate the efficacy of the aforementioned baseline proximity estimation tech-

niques - the greedy distance-minimization approach and the one that transforms geograph-

ical distance to network RTT. For this experiment, we consider the infrastructure topology

of the city of Shanghai as described in Section 3.1. We simulate clients at randomly (uni-

formly) chosen cell tower locations and aim to find an Edge site to host its application

instance using one of the above two policies. The goodness of an Edge site selection is

quantified by the observed RTT between the client and chosen Edge site.

The Greedy policy always selects the closest Edge site in terms of geographical distance

between the client and the site. In case the chosen Edge site is undergoing compute over-

load, the policy selects the next closest site, and so on. The other site selection policy that

we evaluate is one that transforms the geographical distance between client and Edge site

to network round-trip time and uses this estimate to filter out those sites that can meet the

latency bound imposed by the application. Among the filtered sites, the policy uniformly
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(a) Client-Site RTT for sites selected by
Greedy approaches. In the case that the clos-
est site is overloaded, the next closest site is
considered and so on.

(b) Client-Site RTT for sites selected by
transforming the geographical distance into
network RTT and uniformly choosing one
among the set of sites satisfying the latency
constraint.

Figure 3.10: Performance of Edge Site selection approaches that rely on geographical dis-
tance as a proxy for network proximity.

selects one so as to minimize workload skews.

Fig. 3.10a shows the observed RTT when selecting a site using the greedy approach.

For more than 50 percent of the clients, the geographically closest site is not the one that it

is directly connected to over the network, and hence, traffic needs to go through the network

provider’s core, or through the Internet to get to it. Since there is no strict correlation be-

tween geographical distance and network RTT, this behavior is similar for second and third

closest sites as well. For the distance-RTT transformation based approach, we compare the

site selection with an application-imposed RTT bound of 10, 20 and 40 milliseconds. We

see however, that the transformation does not sufficiently filter out infeasible sites and a

large majority of clients have the latency bound violated.

The key takeaway from the above experiments is that both the above approaches that

use geographical distance between system components to estimate network proximity fail

to fulfill their objective of selecting an Edge site that has low communication latency from

the client. The fundamental flaw with them is that they overlooks a key property of real-

world network topologies, in that the network route taken by packets seldom aligns with

the geographically shortest path between the source and destination entities. Furthermore,

there are additional delays caused at the various intermediate hops. Hence, we need a new

mechanism for network proximity estimation that derives the proximity information from

actual measurement of the network latency between system entities.
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3.3.3 A New Mechanism for Network Proximity Estimation

We propose a new mechanism for network proximity estimation that computes the prox-

imity estimation based on actual network round-trip time measurements between system

entities.

Interface exposed to the control plane

All system components of the platform service (clients, worker nodes, data nodes, etc.) are

assigned a unique network proximity identifier. The network proximity mechanism then

provides the platform service a function NetworkRTT that takes as input the IDs of two

system components and returns the estimated network round-trip time between the two

components.

Using network proximity mechanism for compute/data placement

We now demonstrate the use of the proposed Network Proximity Estimation mechanism for

implementing a control plane policy, specifically the broker selection policy for a publish-

subscribe system (Section 3.3.3). This control plane policy selects the broker to host a

given topic such that the end-to-end message delivery latency for all publisher-subscriber

pairs is under the latency threshold for the topic, as shown in Section 3.3.3. As described

in Algorithm 3, it iterates over all the potential candidate brokers and computes the worst-

case communication latency if the topic is hosted on each of those brokers. The worst-case

communication latency is the sum of the maximum publisher-broker network latency and

the maximum broker-subscriber network latency. The sum of worst-case communication

latency and processing latency on the broker gives the worst-case end-to-end latency for

that topic. All the brokers that have the worst-case end-to-end latency under the topic-

specific threshold are selected as candidates. The policy finally selects the candidate broker

currently serving the lowest message rate among all candidates to ensure load balancing

among brokers.

Improvement over Previous Approaches

We evaluate the performance of the proposed Network Proximity Estimation mechanism

by performing an experiment similar to the one described in Section 3.3.2. We place clients

randomly at cell tower locations and aim to find Edge sites within different RTT thresholds.

In this experiment, the Edge site selection policy utilizes the network proximity between
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Figure 3.11: An instance of publish-subscribe service as an exemplary platform-service
that requires information about network communication latency to compute the end-to-
end latency experienced by the application. In this example, the end-to-end latency is the
message delivery latency from any producer to all consumers for a given topic. The end-
to-end latency is given by the sum of the maximum network latency from any producer to
the broker, the processing latency on the broker, and the maximum network latency from
the broker to any consumer.

Algorithm 3 Broker selection policy for topic T with end-to-end message delivery latency
threshold Lth

Require: topic T
Require: latency threshold Lth

prod← set of producers for T
cons← set of consumers for T
candidates← {}
for each broker b do

nw lat← maxp∈prod
1

2
·NetworkRTT (p, b) +maxc∈cons

1

2
·NetworkRTT (c, b)

e2e← nw lat+ proc latency (b)
if e2e ≤ Lth then

candidates← candidates ∪ {b}
return broker in candidates with lowest msg rate
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Figure 3.12: Distribution of client-Edge-site RTT for different RTT constraints when site
selection is done by using the Network Proximity Estimation mechanism. The proposed
mechanism ensures that the selected Edge sites satisfy the RTT constraint.

clients and Edge sites to estimate the network RTT between them and uses it to filter the

suitable sites. Fig. 3.12 shows the distribution of the RTTs observed from the Edge site

chosen for clients. The Edge site selection policy is able to satisfy all the constraints on RTT

and outperform the geographical distance based approaches. The design-space exploration

of the network proximity estimation mechanism has been discussed in detail in Section 4.2.

3.4 End-to-End Monitoring Mechanism

Thorough monitoring of applications running atop platform services is a non-trivial task

because there can be multiple sources of performance violation. For instance, as shown in

Fig. 3.13, the observed end-to-end latency of the application instance is a sum of the queu-

ing, execution and downstream communication latencies of each operator in the pipeline.

Thus, detecting a violation of the end-to-end latency requirement and identifying the root-

cause requires monitoring measurements of all the component latency metrics as indepen-

dent streams and their aggregation and analysis. Each platform service has a notion of an

application unit, that represents an independent set of system entities that do not affect the

performance of entities not within the given unit. An example of an application unit is a

publish-subscribe topic, that consists of all the producers, consumers and broker hosting

that topic. Furthermore, each platform service has its own set of metric streams that need

to be monitored for each application unit. The measurements from these metric streams

then need to be aggregated and analyzed in way that is specific to the platform service for
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Figure 3.13: A breakdown of the end-to-end processing latency of an application pipeline
into its constituent latencies.

detecting violations. The monitoring mechanism needs to scale with an increasing number

of application instances being monitored and impose low overhead on the applications and

infrastructure.

3.4.1 Control plane policies that need this mechanism

Situation-awareness applications require that the end-to-end latency requirement is satis-

fied for the entire lifetime of the application, so that correct functionality can be guaranteed.

However, given the constant mobility of end-clients and the stringent latency requirements,

their requirements are likely to be violated repeatedly and frequently. For instance, a car

moving away for the Edge Site currently serving the vehicle-local processing component

would incur higher end-to-end processing latency due to higher communication delays.

Hence, the control plane of the platform services are required to constantly monitor the

running applications for such violations, perform root-cause analysis for determining the

cause of the violation, and take appropriate reconfiguration action(s) to resolve the viola-

tion. In the above example, a reconfiguration would involve the migration of the application

component to an Edge Site that is closer (in terms of network proximity) to the end-client

to ensure end-to-end latency satisfaction.

3.4.2 Shortcomings of previous work

Application monitoring has been an active area of work in the cloud computing space

with a number of research projects and commercial offerings available. In the context of

cloud computing, applications typically do not possess end-to-end latency requirements

and the goal of monitoring is to ensure that the tail latency of a given service (that could

consist of multiple application components) does not increase significantly. Prior art such
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Figure 3.14: Number of migrations triggered by the Greedy monitoring approach along
with the actual number violations faced by clients. The end-to-end latency threshold is
varied along the x-axis.

as Prometheus [28] and Monasca [29] do not support the aggregation of multiple metric

streams to study the behavior of end-to-end latency. Furthermore, their architecture is a

fully centralized one, resulting in the use of network bandwidth to send the monitoring

data to one specific location (e.g., the Cloud).

Monitoring systems designed for Edge computing environments also suffer from lim-

itations, wherein they aggregate measurements from metric streams over geographical re-

gions instead of aggregating multiple metric streams pertaining to the same application in-

stance [30, 31]. Such systems are not capable of detecting violations of end-to-end latency

constraints. Previous contributions to building systems services such as publish-subscribe

systems [32] and distributed application runtimes [18] consist of monitoring subsystems

that only monitor the the network connectivity between a client and the Edge site that it

is connected directly to. Since these solutions do not consider end-to-end latency as the

primary metric, they result in triggering more reconfigurations to keep clients connected to

the closest Edge site than needed.

We show an evaluation of a greedy monitoring approach that aims to minimize the

last-mile network latency between the client and the Edge site it directly connects to. The

metric of interest is the number of migrations triggered by such a policy, which should

be compared to the number of times that the application’s latency threshold is actually vio-

lated - where a migration is indeed necessary. We simulate the mobility of 200 independent

clients in the city of Shanghai using the Random Waypoint mobility model and track the

number of migrations triggered by the greedy policy. In Fig. 3.14, we present the migra-

tions triggered by the greedy policy and the number of latency violations for each client
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with increasing end-to-end latency bound. We see that as the end-to-end latency bound in-

creases, the number of latency violations decreases, but the number of migrations triggered

by the greedy policy remains the same. This behavior is explained by the fact that although

the greedy policy triggers the same number of migrations as it is independent of the end-to-

end latency constraint, the number of latency violations decreases with an increase in the

threshold.

The limitations of an approach that considers only a component of the end-to-end la-

tency necessitates that we come up with a mechanism for monitoring the end-to-end latency

by analyzing all the component latencies within it. Violation detection needs to be per-

formed for each application-level unit, or application instance, such as a publish-subscribe

topic, or one instance of an application pipeline (as shown in Fig. 3.13). Hence, measure-

ments from metric streams that belong to the same application unit should be aggregated

together for violation detection and root-cause analysis to identify the source of the viola-

tion.

3.4.3 A New Mechanism for End to End Latency Monitoring

We now present a mechanism for end-to-end latency monitoring that aggregates and ana-

lyzes metric streams for multiple components of the end-to-end latency.

Interface exposed to the control plane

The following abstractions are provided to the control plane of a platform service for using

the end-to-end monitoring mechanism.

• RegisterAppUnit. Registration of an Application Unit when it is created. For in-

stance, when a new topic is created in a publish-subscribe system, the topic should

be registered as a new Application Unit. The Monitoring mechanism uses the identi-

fier of the application unit to identify the metric streams that pertain to it, and perform

end-to-end aggregation on them.

Inputs:

– AppUnitId: The ID of the application unit being registered.

• RegisterMetricStream. System components can register custom metric streams and

publish their measurements. The metric streams are annotated with the application

unit that they correspond do, as well as custom platform-specific tags.
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Inputs:

– EntityID: The ID of the entity that this metric stream pertains to.

– MetricType: A string value denoting the type of metric stream, that is used for

querying them.

– AppUnitId: The ID of the application unit that this metric stream belongs to.

– Labels: A dictionary containing a set of key-value pairs, each containing a

platform-specific information about the metric stream.

– ValueSchema: A schema in YAML format that defines the data-structure of

measurements for this metric stream. It is particularly useful for defining com-

plex metric streams. Primitive datatypes can be represented by a string (e.g., int

or str).

– BucketSize: The size of the bucket for data aggregation.

– AggregationFunction: The function to use for aggregation. The mechanism

should support basic functions such as Mean, Median, Min, Max and percentile

values.

Returns: A unique identifier for the metric stream, that can be used to record

measurements and query measurements.

The following snippet shows an example, that measures the network latency of an

instance of the pipeline stage shown in Fig. 3.16 to its downstream component. In

the given platform service, the application unit that a metric stream belongs to is the

downstream-most application component, or the root component. In this example,

the application unit is the application component instance L0.

- entity_id : "L10"

entity_type: "APP"

app_unit: "L0"

metric: "net_latency"

labels:

level: 0

value_schema: float

bucket_size: 5 secs

aggr_fn: AVG
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Each metric stream is represented as an ordered sequence of measurements along

with their timestamps as shown in Eq. (3.3).

M = [· · · , (t, v) , · · · ] where 0 < t <∞ (3.3)

The mechanism time-aligns the measurements for a specific metric stream into well-

defined buckets, that is necessary as a pre-processing step before multiple metric

streams can be aggregated together. Since measurements from different metric streams

are likely to be recorded at different instants in time, aligning them in time allows

measurements from different metric streams to be processed together, such that two

measurements from different metric streams that were collected at roughly the same

time can be processed together1. This bucket-based time-alignment approach is an

approximation of an ideal end-to-end aggregation of component latencies by record-

ing measurements to every data-item generated by the data-plane. Such an ideal

approach is infeasible for two reasons: (a) it behooves instrumenting the application

components to record latency incurred by data plane actions which is neither desir-

able nor possible since the application logic is in the purview of the developer; and

(b) it will vastly increase the amount of communication incurred by the system for

monitoring the end-to-end latency. Therefore, we choose the aforementioned bucket-

based approach. Fig. 3.15 illustrates the time alignment of a metric stream for a fixed

size time bucket, and all measurements within a given bucket are aggregated by tak-

ing an average over them. The platform service is supposed to provide the bucket

size B (in units of time) and the aggregation function func for aggregating a metric

stream M . As described in Eq. (3.4), the alignment of a metric stream involves ag-

gregating all the measurements within a particular bucket interval using the provided

aggregation function to form one measurement.

ALIGN func
B (M) = [· · · , (t, v) , · · · ] where t = n ·B and 0 < n <∞

and v = func ({v′ : (t′, v′) ∈M and B · (n− 1) < t′ ≤ n ·B}) (3.4)

• RecordMeasurement. Platform service components can record measurements for a

specific metric stream using the ID of the entity and the metric stream type.

1We assume that clock skew between the entities recording measurements is significantly less than the
bucket size. This is a reasonable assumption because typical clock skews are not expected to be more than a
few 10s of milliseconds
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Figure 3.15: Illustration of time alignment of metric streams. The individual measure-
ments (denoted by green arrows) within each time bucket are aggregated using the average
function to generate the measurement for that bucket (shown by red arrows). The dotted
vertical lines indicate the boundaries of buckets. The time alignment function takes as input
a metric stream and time bucket size and returns another stream.

Inputs:

– MetricID: The ID of the metric stream that this measurement pertains to.

– Measurement: A YAML document containing measurement. It can be a nested

YAML document in case the metric stream records complex values.

The parameters for an example call to the record measurement function are shown

below.

- metric_id: "net_latency_L0"

value: 10.0

• OnNewBucket. This is a callback function that is called when time-aligned measure-

ments of all the metric streams belonging to a particular application unit are ready for

a given bucket. The receiver of this callback is supposed to be an entity in the control

plane of the platform service, that receives the end-to-end aggregated view of all the

metric streams associated with a particular application unit. The control plane entity

uses these metric streams to make violation detection and reconfiguration decisions.

Inputs:

– AppUnitID: ID of the application unit that this set of metric streams belongs to.

– Bucket. The timestamp of the bucket that is being reported.

– Values. A collection of metric streams with their metadata and aggregated val-

ues for this bucket.
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• QueryMetrics. The logic provided to the end-to-end monitoring mechanism via the

ProcessMetrics interface should be able to query metric streams using their labels.

Inputs:

– MetricID: ID of the metric stream being queried.

– AppUnitID: ID of the application unit being queried.

– BucketTimeRange: A range of time within which all buckets for the given met-

ric stream or application unit need to be returned.

Returns: A list of buckets, each containing the timestamp of the respective bucket

and a set of values for all the queried metric streams for that bucket.

Demonstration of using end-to-end monitoring for control plane policy of a platform ser-

vice

In this section, we show how the end-to-end monitoring mechanism will be used for imple-

menting a policy for detecting violations of end-to-end processing latency for application

instances running on a geo-distributed Edge infrastructure, as part of the control plane of

an application orchestrator. For this example, we restrict the discussion to clients and ap-

plication instances for a single application unit, but the approach generalizes to multiple

application units.

1. The library of the platform service running alongside each client and backend ap-

plication instance generates two metric streams - namely the processing latency and

network latency to the immediately downstream application component instance. For

an application component e we denote them as proce and nete.

- entity_id : "L20"

entity_type: "CLIENT"

app_unit: "L0"

metric: "proc_latency"

bucket_size: 5 secs

aggr_fn: AVG

- entity_id : "L10"

entity_type: "APP"

app_unit: "L0"

metric: "net_latency"

bucket_size: 5 secs

aggr_fn: AVG

The above listings show definitions of metric streams corresponding to the process-

ing and network latency of the application component instance L20 and L10 respec-

tively in the application instance shown in Fig. 3.16. Both these component latencies
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Figure 3.16: Schematic of a typical situation-awareness application. The application model
resembles a tree, with the leaf vertices corresponding to clients. Each vertex that is not a
leaf is an application instance running on the backend infrastructure (Edge-Cloud contin-
uum). Each vertex processes data generated by the upstream vertices and sends its output
data to the downstream vertex (if any).

pertain to the application unit that is associated with the “root” application compo-

nent instance L0. The platform service requests for time-alignment of all the metric

streams using the function ALIGNAV G
5secs .

2. The control plane policy for detecting violations of end-to-end processing latency

receives the callback OnNewBucket for the application unit L0 as soon as a new

bucket for all metric streams belonging to it are available.

SELECT METRICS WITH

entity_type="CLIENT" AND app_unit="L0"

3. The above set of metric streams are then grouped by the field entity ID because

they contain measurements for both processing latency and network latency for each

client. Grouping them by entity ID allows the policy to separate the metric streams

of a specific entity from other entities.

4. For each client component c, the policy computes the set of application components

Sc that process data generated by c. The following pseudocode illustrates this com-

putation.

n← c

Sc ← {}
while n 6= φ do

Sc ← Sc ∪ {n}
n←M [n]
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We use the notation M [n] to denote the downstream application component reading

the output of n. The downstream application component for the root component

L0 is designated to be null (φ). This information is obtained from the application

orchestrator platform service’s control plane metadata about application mapping.

5. For each client c, now it is possible to compute a time-aligned metric stream that

records the end-to-end processing latency for c.

E2E∗c =
∑
e∈Sc

proc∗e + net∗e (3.5)

For those clients whose end-to-end latency estimation exceeds the application’s thresh-

old, a reconfiguration action is triggered. The objective of the reconfiguration action

is determined by root-cause analysis, that is performed by the platform service’s con-

trol plane policy itself (described in more detail in Section 6.5.4).

Briefly, the root-cause analysis analyzes the historical trend of each component la-

tency that makes up the end-to-end latency (i.e., processing and communication la-

tency of each component). It determines the relative contribution of each of the

component latencies toward the end-to-end latency violation. In case the violation

is most significantly caused by an increase in communication latency between an

upstream-downstream application component pair (l1, l2) then l1 is re-mapped to an-

other downstream component instance that offers better network latency. Similarly,

if the root-cause is an increase in processing latency at a certain component instance

l, then its resource allocation is increased to bring down the processing latency. If

resource allocation cannot be increased due to capacity constraints, a fraction of its

immediately upstream component instances are mapped to another instance so as to

reduce the workload on l.

Improvement over Previous Approaches

We evaluate the improvements brought about by incorporating the end-to-end latency mon-

itoring mechanism into the monitoring policy. We perform the same experiment as in Sec-

tion 3.4.2, with the difference being that the monitoring policy now uses the end-to-end

latency estimate from the monitoring mechanism to detect violations. Fig. 3.17 shows the

variation of number of migrations and number of violations experienced by each client

during the experiment. Both these metrics are identical because the end-to-end monitoring
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Figure 3.17: Number of migrations triggered by a monitoring approach that utilizes the
end-to-end monitoring mechanism for detecting violations. Also shown are the actual num-
ber violations faced by clients. The end-to-end latency threshold is varied along the x-axis.

mechanism triggers a migration only when the end-to-end latency constraint is violated.

Therefore no unnecessary migrations are triggered by the monitoring policy. A detailed

design space exploration of the end-to-end monitoring mechanism will be discussed in

Section 4.3.

Summary. This chapter presented three mechanisms that are needed by the control plane

of platform services to efficiently operate on the Edge. The previous approaches of pro-

viding the functionality of these mechanisms are deficient, because of which we propose

to design new mechanisms for the same. We propose the following new mechanism: (1)

a dynamic spatial context management mechanism; (2) a network proximity estimation

mechanism; and (3) an end-to-end latency monitoring mechanism. This chapter introduces

the mechanisms, the interface they offer to the control plane policies and a summary of the

improvements they can have on the functionality of control plane policies. We will discuss

detailed design-space exploration for all three mechanisms in the next chapter.
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CHAPTER 4
DESIGN SPACE EXPLORATION FOR IMPLEMENTATION OF PROPOSED

MECHANISMS

In this chapter, we consider multiple design choices for implementing the mechanisms

proposed in this dissertation. The aim of the design space exploration is to come up with

the best design for each mechanism in the context of operation in a geo-distributed setting.

The chosen design should be scalable with respect to the number of clients and Edge sites,

should perform the desired functionality expected from the mechanism effectively and not

result in high resource overhead on the scarce Edge resources.

4.1 Dynamic Spatial Context Management

We divide the design space exploration of the dynamic spatial context management mech-

anism into two parts. We first explore the appropriate choice of the spatial partitioning

technique, that divides a geographical space into multiple tiles, and assigns spatial con-

text to clients, application components and data-items. The second exploration we carry

out is the system architecture for continuously monitoring client location and triggering a

migration to a new tile when the client enters the new tile. We define the requirements

expected from both these components of the architecture, enumerate the metrics of interest

and carry out evaluations to quantify the performance of candidate design choices. Based

on the results of the evaluations, we choose the design choice that performs best to build

the dynamic spatial context management mechanism.

4.1.1 Client Workload assumed

The behavior of spatial context management is dependent on the locations of clients within

the geographical space in question. We assume that an application would define a large

geographical area (typically the size of a city) wherein its clients would be located, and the

spatial context of a client would be a subset of the entire geographical area. For this design

space exploration, we consider the area of downtown Shanghai where clients are spawned

at random locations following a uniform probability distribution. We generate trajecto-

ries of 1000 clients that move in the geographical space following the random waypoint

mobility model.
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4.1.2 Maintaining Spatial Partitioning

The objective of a spatial partitioning technique in the context of the dynamic spatial con-

text management mechanism is to be able to associate multiple clients that belong to the

same spatial context together. Each of the regions (that we call tiles) created out of spatial

partitioning could be mapped to an application instance, in which case each application

instance would serve the clients that belong to that tile. In another scenario, the spatial

partitioning could serve as a range query lookup tool for spatially distributed data, and a

tile could form the unit of data-sharing. We denote the number of entities (clients or data-

items) mapped to a tile as the occupancy of that tile. In both these scenarios, a tile that

has a very high occupancy would result in compute overload at the associated application

instance or high latency overhead for executing range queries on the mapped data-items.

Hence, the requirement is that the occupancy of each tile should be low enough so as to not

cause performance degradation due to overload.

Metrics of Interest

Considering a static scenario, with no mobility of clients, as an example, a trivial mapping

that uses a very fine-grained spatial partitioning to map each entity to a distinct tile would

result in the occupancy of each tile being minimal, because each tile would be associated

with either exactly 0 or exactly 1 entity. However, this would also result in the existence

of a large number of tiles, which is unnecessary and even counter-productive, because, for

instance, applications do require that multiple clients be mapped to the same tile so that

inter-client coordination can be possible. Furthermore, continuous client mobility would

trigger very frequent requests for re-mapping clients to different tiles. Hence, we identify

two metrics for quantifying the goodness of a spatial partitioning scheme.

• Maximum Tile Occupancy. We measure the maximum occupancy at any tile at

any point of time, that would quantify the workload experienced by the associated

application component or data-storage node.

• Number of Active Tiles. We measure the number of tiles being used at any given

point of time, i.e., those tiles to which at least one entity has been mapped. Ideally,

this number should be as low as possible, so that we do not have a large number of

application instances or data nodes, that consume resources on the Edge.

For this evaluation, we are interested in evaluating spatial partitioning techniques using

the aforementioned metrics, while assuming that the spatial context management mecha-

52



Number of tiles per side

N
um

be
r o

f t
ile

s 
pe

r s
id

e

(a) Illustration of partitioning
geographical space using the
static partitioning technique.

c d e

ba f g
1

2 3

4 5 6

a b c d e f g

(b) Illustration of partitioning geographical space using the
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Figure 4.1: Illustration of the candidate spatial partitioning approaches evaluated in the de-
sign space exploration. In both the figures, the rectangular area represents the application’s
geographical coverage and each rectangle inside it represents a tile to which entities are
mapped.

nism has accurate and real-time information about the location of each client. Following

the Random Waypoint Mobility model as described earlier, the location of each client is

updated every millisecond. The updated locations are fed to the spatial partitioning unit,

that updates the client-to-tile mapping. At every time instant we calculate the two metrics

of interest, hence generating a time-series for each of the spatial partitioning configurations

evaluated. We later average these measurements across time and present a scalar value that

represents the performance of the given spatial partitioning technique.

Candidate Design Choices Evaluated

We evaluate two spatial partitioning techniques that are common in the literature [33, 6].

• Static Partitioning. Similar to GeoHash, this geo-indexing technique statically di-

vides the geographical space into a number of tiles. Since we are not interested in

the numeric value of the tile’s identifier (unlike typical use-cases of geo-indexing ap-

proaches such as GeoHash), we simplify the partitioning by assuming that geograph-

ical space is partitioned into a grid of squares, and the side length of each square is

configurable. Each tile can then be represented by a tuple (row, col), where row and

col represent the position of the tile in the grid. Given the location of a client, it is

straightforward to map it to a tile based on the size of each tile and the size of the

total geographical area.
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(a) Variation of metrics of interest for the
static partitioning technique with varying
size of each partition.

(b) Variation of metrics of interest for the
KD-Tree based dynamic spatial partitioning
technique with changing occupancy thresh-
old per tile.

• KD-Tree based Partitioning uses a two-dimensional KD-tree to partition geograph-

ical space. The vertices in the KD-tree represent geographical areas, with the root

vertex representing the entire geographical space in question, while the leaf vertices

represent the tiles. The spatial bounds of a vertex are fixed and decided when creat-

ing the vertex. Looking up the tile that a given client belongs to requires performing

a traversal starting from the root vertex down to the leaf vertex that represents the

actual tile. At each step in this traversal, the bounds of the child nodes and the given

client’s location are used to decide which of the child nodes to move to next. The

size of each tile is not fixed, rather it changes dynamically as the tree is updated. The

only constraint that is enforced by the tree is that the number of clients mapped to a

specific tile should not exceed an occupancy threshold. If the occupancy of a partic-

ular tile becomes higher than the threshold, the tile is split and two children tiles are

created. Furthermore, if the total occupancy of two tiles that have the same parent

tile is less than the occupancy threshold, the two child tiles are merged.

We first evaluate the performance of the Static Partitioning technique against the afore-

mentioned client workload. We evaluate the two metrics of interest - namely Maximum

Occupancy and Number of Active Tiles. The evaluation is done with several different con-

figurations of each partitioning technique. Fig. 4.2a shows the variation of the maximum

occupancy and the number of active tiles as a function of the side-length of each geograph-

ical partition. As the size of the grid partition increases, the maximum occupancy grows,

along with a decrease in the number of active tiles. This tradeoff is shown in Fig. 4.3 as

well.

Next we perform the same experiment with the KD-Tree based spatial partitioning tech-

nique, wherein we configure the Occupancy Threshold for each tile. We vary the occupancy

threshold from 8 to 32 and plot the metrics of interest in Fig. 4.2b. The metrics show a sim-
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Figure 4.3: Tradeoff between the two metrics of interest - Maximum Occupancy and Num-
ber of Active Tiles - for the two types of partitioning techniques evaluated. We changed the
configuration of each partitioning technique and repeated the experiment to obtain a range
of performance output, that shows the tradeoff between the two metrics.

ilar behavior as in Fig. 4.2a. As the occupancy threshold increases, the number of active

tiles that exist in the system decreases, because each tile can hold more clients. In addi-

tion, the increase of occupancy threshold also results in higher maximum occupancy in the

system.

Fig. 4.3 shows the tradeoff between the two metrics of interest for the two spatial parti-

tioning techniques that we evaluate. Both the partitioning techniques show similar behavior

in the tradeoff curve, where an increase in maximum occupancy results in a decrease in the

number of active tiles, and vice versa. However, the absolute values of both the metrics are

much lower for the KD-Tree based partitioning than the Static partitioning. The KD-Tree

partitioning outperforms Static partitioning because it builds tiles based on the physical

distribution of clients, instead of being predefined as in the case of Static partitioning. Be-

cause of the adaptive nature of the KD-Tree partitioning, a smaller number of tiles are able

to uniformly divide the clients.

The dynamically splitting and merging spatial partitions in the KD-Tree based spatial

partitioning does not take place in the critical path of control plane operations. It is triggered

asynchronously by the control plane policy when an opportunity to split or merge a tile is

identified. When splitting and merging, the cache on the client side is invalidated and they

connect to a new application instance that is created at the time of triggering the split or

merge. The clients that connect to the new application instance would experience some

downtime, because the new instance would take some time to initialize. However, such an
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Figure 4.4: CDF of total downtime experienced by clients due to dynamic splitting and
merging of spatial partitions by the KD-Tree based approach.

event does not occur frequently because split/merge operations are called in the event of

spatial skews, which are infrequent. Fig. 4.4 shows the distribution of client downtimes

experienced in one of the scenarios from the experiment performed to evaluate the KD-

Tree candidate design, where the occupancy threshold was set to 32. Hence, we choose

KD-Tree based dynamic spatial partitioning technique for building the dynamic spatial

context mechanism.

4.1.3 Monitoring Client Location

Monitoring the current location of clients is necessary for maintaining the KD-Tree based

spatial partitioning because of two main reasons: (1) it provides the information necessary

for maintaining the occupancy of entities in different tiles, and trigger the remapping of an

entity to another tile when it leaves the current one; and (2) when partitioning a tile, updated

entity locations provide hints about how to partition the tile so that a roughly equal number

of entities are present in both the children tiles. The metadata associated with the spatial

partitioning is maintained in a centralized location that serves as the authoritative copy.

Sending location updates from all clients to the centralized location consumes network

bandwidth as well as creates a large number of occupancy updates that do not necessarily

result in a change in the current tile. Hence, we conduct a design space exploration of the

location monitoring module of this mechanism to find a design that lowers these overheads.
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Metrics of Interest

We choose two metrics of interest for evaluating the candidate designs for the location

monitoring module of the dynamic spatial context management mechanism.

• Messaging Overhead. We measure the number of location monitoring messages

that need to be sent to the centralized location that maintains the authoritative copy

of the spatial partitioning metadata. This metric should be minimized to improve

system scalability.

• Total Occupancy Violation Time. We measure the sum of all the time durations

for which some tile’s occupancy threshold is violated. Since the occupancy threshold

is set by the application, violating it would result in a workload surge leading to

performance degradation.

Candidate Approaches Evaluated

• Centralized Approach. A straightforward design for maintaining updated client

locations is to send all location updates from clients to the centralized location hold-

ing the authoritative copy of the spatial partitioning. Clients receive the identifier of

the current tile based on their current location, and if the received tile identifier is

different from the current tile, they would connect to the application instance corre-

sponding to the new tile. The centralized spatial partitioning unit would transparently

handle scenarios when the partitioning is updated due to tile merging or splitting op-

erations. Although this approach is very straightforward to design and implement, it

suffers from high overhead of constantly monitoring the locations of all clients at all

times.

• Distributed Approach. Unlike the centralized approach, where the client simply

reports the current location to the spatial partitioning module and receives the iden-

tifier of the current tile, the distributed approach maintains a cache of the spatial

partitioning locally in the client library. The local cache is invalidated and updated

every time the currently cached tile in the centralized authoritative copy is updated

due to tile merging or splitting operations. The cache is then used by the client to

keep track of its location with respect to the current tile, and when its location leaves

the current tile, it triggers a migration to connect to the new tile. The cache also pe-

riodically reports its location to the authoritative copy so that tile split operations can
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Figure 4.5: Effect of location update period on the duration of occupancy violation faced
by tiles and the amount of location monitoring messages that need to be sent to the control
plane.

effectively partition clients into the child tiles equally. The periodicity of reporting

location to the control-plane is configurable, and it affects how uniformly clients are

split among child tiles. We expect that with infrequent location updates from clients,

the number of clients in child tiles as a result of a split operations would not be uni-

form, thereby increasing the likelihood of another occupancy threshold violation in

the future.

Fig. 4.5 shows the variation of duration of occupancy violation and total number of

location monitoring messages sent with increasing location update period. The increase

in location update period does not have any noticeable impact on the violation duration,

however it results in a significant drop in the number of messages for monitoring location

of clients. Since the client immediately sends a location update when it leaves the current

tile irrespective of the location update period, the violation duration is not dependent on

location update period. In fact, for an occupancy threshold of 200, the violation duration

is 0, that shows that there are no occupancy violations. Hence, choosing a high location

update period does not significantly impact the total violation duration, but significantly

reduces location monitoring traffic.

4.2 Network Proximity Estimation

Control-plane policies of platform services need to make data and compute placement deci-

sions so as to satisfy data processing latency constraints. In an Edge setting, network com-

munication latency forms a significant portion of the end-to-end latency. Previous works in
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the cloud computing domain have come up with accurate techniques for estimating compu-

tation latency, but did not consider communication latency due to the rather homogeneous

and well connected nature of datacenter network topologies. In an Edge infrastructure, it

is important to be able to accurately estimate the network latency between a pair of sys-

tem entities, so that the control plane policy can take a data/compute placement decision to

satisfy end-to-end latency.

Network proximity estimation cannot be done using active measurements at the time

of execution of the control plane policy logic, because a typical policy evaluates several

candidate nodes (such as selecting the best candidate for application placement) and there-

fore requires pairwise network latency between several pairs of nodes to take its decision.

Waiting for the measurements to complete in the critical path of policy execution would

severely impact the responsiveness of the control plane. Hence, the network proximity es-

timation mechanism needs to continuously maintain network proximity metadata for each

node in the infrastructure. The size of the metadata needs to be tractable so that it can be

efficiently queried to estimate pairwise network latency.

The mechanism should estimate pair-wise network latency with high accuracy. Fur-

thermore, it should be able to quickly adapt to changes in network topology due to client

mobility or link failures. Both the accuracy and recovery-time of the mechanism to topol-

ogy dynamism should not deteriorate with increasing number of nodes, meaning that the

mechanism should be scalable.

4.2.1 Metrics of Interest

We consider the following metrics of interest when evaluating the candidate design choices

for network proximity estimation mechanism.

• Latency Estimation Error. We measure the root-mean squared error between the

estimated and the actual (ground-truth) network latency. For a pair of nodes i and

j, the estimated and actual network latencies for the pair (i, j) is denoted by N(i,j)

and N̂(i,j), respectively. The root-mean squared error (RMSE) in latency estimation

is then calculated as shown in Eq. (4.1).

RMSE =

√ ∑
∀(i,j)i 6=j

(
N(i,j) − N̂(i,j)

)2
(4.1)

• Number of Messages Exchanged. We measure the number of messages exchanged
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Figure 4.6: Basic components in the system architecture of the network proximity estima-
tion mechanism. Multiple participating agents communicate among each other to perform
actual RTT measurements and compute network proximity, and share the proximity infor-
mation with one another. The network proximity information is uploaded to a repository in
the control plane from where this information is supplied to control plane policies.

between the various nodes in the system before the error in latency estimation drops

below the maximum threshold.

• Amount of Metadata needed by control-plane policies. We analytically calculate

the amount of information that would need to be stored at the control plane in order

to support a typical compute/data placement policy.

4.2.2 Candidate Design Choices Evaluated

Fig. 4.6 shows the basic architecture that the various design choices of the network prox-

imity estimation mechanism have. It is composed of a number of agents, with one agent

co-located with every system entity with which network proximity needs to be measured.

Each agent computes its network proximity to the other agents, and communicates the

proximity information to a central repository, that is queried by control-plane policies for

estimating network round-trip time (RTT) between any two system entities. The design

choices that we explore in this section follow the agent-based architecture, and differ in the

kind of communication protocol that each agent follows and the kind of metadata stored

by the mechanism that allows it to answer network proximity queries. We evaluate the

following design choices for the network proximity estimation mechanism.
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Pair-wise Measurements based Approach

In this approach, representation of network proximity is in the form of a 2-dimensional

array A, where A[i, j] represents the network latency between agent i and j. Each partici-

pating agent periodically performs a network round-trip time (RTT) measurement between

itself and another agent. Each agent uses a round-robin policy to select which other agent it

is going to probe to measure the RTT. After each measurement, the agent provides the RTT

information between itself and the other agent with which the measurement was performed

to the centralized repository of network proximity.

Network Coordinates

Network coordinate (NC) systems are distributed protocols to scalably determine the net-

work proximity between a pair of nodes in a distributed system without performing direct

measurements [34] between all pairs of nodes. Such systems embed nodes in a geometric

space such that the network latency between any two nodes can be estimated by calculat-

ing the Euclidean distance between their positions (coordinates) in this space. Previous

work on analysis of latencies in the Internet has shown that nodes can be embedded in a 3-

dimensional or higher space with relatively high accuracy of network proximity estimation

[35].

Embedding in d-dimensional space. Each agent i maintains a network coordinate xi
that is an d-dimensional vector. Each agent i periodically performs an RTT measurement

with another agent j and also fetches the current network coordinate of agent j, that we

denote as xj . By using the measured actual RTT rtti,j between itself and the other agent

j, the given agent i updates its own network coordinate so as to reduce the error of latency

estimation. To do so, agent i first calculates the error in latency estimation, as shown in

Eq. (4.2).

e = rtti,j − ||xi − xj|| (4.2)

Each iteration of this coordinate update process at agent i aims at applying a force on xi so

as to move it toward its correct position in the d-dimensional space with respect to agent

j’s coordinate. In other words, if the error calculated in Eq. (4.2) is positive, xi would be

pushed away from xj , otherwise it will be pulled closer to xj . This notion is captured in

Eq. (4.3), that computes the unit vector of the force to be applied to xi.

dir = u (xi − xj) (4.3)
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The force that needs to be applied to coordinate xi is in the direction of the unit vector in

Eq. (4.3) and has the magnitude proportional to the error in Eq. (4.2). xi is then updated in

the direction of the force by a small and configurable amount.

xi = xi + δ · e · dir (4.4)

Capturing Access Link Delays. A number of hosts connected to the Internet today do so

behind access links. While the d-dimensional Euclidean space is good at modeling laten-

cies in the Internet core, incorporating a scalar height component in the network coordinate

significantly improves the network RTT estimation error [36]. The height component repre-

sents the network latency incurred to traverse the access link beyond which latencies can be

estimated using the Euclidean coordinate system. The estimated RTT between two agents

i and j with combined network coordinates (xi, heighti) and (xj, heightj) respectively is

given by ||xi−xj||+heighti+heightj . This equation captures the fact that for packets to

travel from agent i to j, they first have to traverse the access link of agent i, travel through

the Internet core toward agent j (that can be modeled using Euclidean distance), and then

traverse the access link of agent j.

Reducing Errors due to Triangle Inequality Violations. Internet topologies frequently

violate the triangle inequality that should ideally hold in a Euclidean space. The triangle

inequality requires that the sum of the RTT between agents i and j and that between agents

j and k should be greater than the RTT between agents i and k. This inequality is violated

in real-world network topologies because of heterogeneous routing policies [37]. However,

Lee et al. [35] found that such violations occur more frequently among nodes that are at

closer network distances from one another. Hence, they introduce a scalar adjustment

term in the network coordinate to account for the non-Euclidean effect due to triangle-

inequality violations. The adjustment term is calculated as shown in Eq. (4.5), where n

represents the number of measurements taken.

adji =
1

2
·
∑

j rtti,j − ||xi − xj||
n

(4.5)

We employ a popular decentralized network coordinate protocol, Vivaldi [36] with

some enhancements proposed by Ledlie, et al. [38] and Lee, et al. [35]. Prior art has shown

that network coordinate protocols provide efficient, accurate, and stable latency estimates

in the wild [38].
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4.2.3 Evaluations of Candidate Design Choices

We evaluate the performance of the candidate design choices for implementing the network

proximity estimation mechanism and present the results in this section.

Accuracy of Network RTT Estimation

The network proximity estimation mechanism is expected to accurately estimate network

RTT between agents in a real-world geo-distributed infrastructure topology. We use the

topology of Edge sites belonging to Alibaba Edge Node Service [13], that has sites de-

ployed all across mainland China. The dataset provides city-level location of Edge sites

along with the actual network RTT between them. In this experiment, in addition to evalu-

ating the error of RTT estimation, we also intend to study how the scale of the infrastructure

topology affects the error. We build infrastructure topologies of increasing scale by select-

ing the top-k cities with the most edge sites and only considering the sites in those cities.

Each site runs an agent of the network proximity mechanism, and communicates with po-

tentially every other Edge site to collect RTT and update its network proximity model.

Fig. 4.7 shows the evolution of the error in RTT estimation over time for network

topologies of increasing scale. The root-mean squared error of latency estimation does

increase with an increase in the scale of the network topology, but it converges at around

4.5ms in RTT estimation, which is a reasonable error rate given the variance in ground-

truth latency measurements. We do not evaluate accuracy of the pairwise measurements

based approach, because the RTT estimates are simply an aggregation of the previously

measured RTT values, and hence it would always result in very low error.

Communication Overhead

We now evaluate the amount of communication that needs to happen between the agents

of the network proximity estimation mechanism in order to build a reasonably accurate

inter-agent network RTT estimation model. We compare the number of messages that need

to be communicated between the agents for both the pairwise measurement and network

coordinates based designs of the mechanism.

For this experiment, we intend to evaluate network topologies of much larger scale

than the Alibaba Edge Node Service topology used in Section 4.2.3. We adopt a hub-

and-spoke model for generating a synthetic topology for this experiment, with each spoke

having a network latency uniformly sampled between 10 and 60 ms. We choose such a
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Figure 4.7: Evolution of error in RTT estimation for the network coordinate-based design.
The figure shows the RTT estimation error for network topologies of increasing scale.

model for building the topology because it offers a simple way to model random network

characteristics between different pairs of nodes. Each node in the topology runs an agent

of the network proximity estimation mechanism. The number of nodes in the topology is

varied to evaluate the design choices at different scales.

Fig. 4.8 shows the number of communication rounds that need to take place (combined

over all nodes) before the network proximity estimation mechanism’s error falls below a

threshold of 8 milliseconds. The pairwise measurement approach needs to measure the

network latency between all pairs of nodes, meaning that it requires N (N − 1) rounds

of communications, that grows quadratically with increasing number of nodes. On the

other hand, the network coordinates approach grows almost linearly, because it only tries

to embed nodes in a high-dimensional space based on a small set of measurements. Hence,

the network coordinates based approach is a more scalable design for network proximity

estimation.

Size of Network Proximity Repository

Control-plane policies would frequently query the centralized repository of network prox-

imity estimation to obtain the RTT between a pair of agents. A large metadata would mean

that the query would take longer to execute, hence, reducing the speed of control-plane

policy execution. We compare the amount of metadata to be stored for the two design

choices.

Fig. 4.9 shows how the metadata size grows with increasing number of agents. Since

the pairwise measurements based design would need to store the network latency between
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Figure 4.8: Communication overhead of the two design choices for network proximity
estimation mechanism. The pairwise measurement based design requires O (n2) commu-
nication rounds, whereas the communication rounds needed by the network coordinates
based approach scales almost linearly.
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Figure 4.9: Comparison of the size of network-proximity metadata that needs to be stored
at the control-plane.
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each pair of agents, the size of the metadata grows quadratically. However, the metadata for

the network coordinates based approach consists of one coordinate per agent, that amounts

to 44 bytes and grows linearly.

As we show in Chapter 5 and Chapter 6, each client device and Edge site run a network

proximity agent. Therefore under typical Edge computing scenarios, we expect the number

of agents deployed atop Edge sites and clients to range in the thousands. At such a scale,

the network coordinates based approach significantly outperforms the pairwise measure-

ments based approach in terms of number of messages exchanged and amount of network

proximity metadata to be stored in the entity that manages the control policy.

4.2.4 Running Network Coordinate Agents on Mobile Clients

Client mobility results in the change of network routing between client and the Edge in-

frastructure, since the network access point to which the client is connected changes. The

change of network access points results in a change in network latencies to reach the Edge

sites, that affects the ground-truth on which the network coordinates protocol relies for

converging to stable coordinates. The end result of these perturbations is a deterioration

of the RMSE of network latency estimation, that is shown in Fig. 4.10. To evaluate the

performance of the network coordinates protocol used in the Network Proximity Estima-

tion mechanism, we evaluate the protocol with varying degrees of client mobility. Client

mobility affects network coordinates protocol primarily by continuously changing the net-

work access point used by clients to connect to the Edge infrastructure. Hence, we emulate

different speeds of client mobility by controlling the average time between network access

point changes for each client. The time between two consecutive access point changes

for a client is sampled from an exponential distribution with the mean of the distribution

set as mentioned above. For all scenarios with different number of clients, the RMSE in

network latency estimation is the lowest for the case without mobility and increases pro-

gressively with more frequent mobility events per client. Hence, we conclude that the

frequent changes in network connectivity for clients results in deterioration of RMSE of

network latency estimation. Therefore, we propose an approach to eliminate this error in

the following subsection.

Network Coordinate Proxy running on Edge Gateway

Mobile devices invariably connect to the Internet via a nearby gateway node that runs on

the Edge of the network e.g., local breakout [39] for clients running on a 4G/LTE network.
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(a) 64 Clients. (b) 256 Clients.

(c) 512 Clients.

Figure 4.10: Variation of RMSE over time for varying number of clients and varying de-
grees of client mobility.

We assume the presence of a lightweight network coordinate proxy (NC Proxy) running on

such a gateway node, serving as the source of network coordinate information for the mo-

bile clients connected to that gateway node. For a client that is connected to the Internet via

a particular Edge gateway, all uplink and downlink traffic flows through that gateway, and

it is located at a fixed access network latency from the client. Hence, the network latency

between the client and an Edge site can be calculated by computing the sum of the network

latency between the site and the Edge gateway and the access latency between the client

and the gateway. Therefore, the network coordinate agent on the mobile client computes its

current coordinate by using the vector and adjustment fields of the gateway’s coordinate,

and adding the access latency to the height component of the gateway’s coordinate. The

access latency is monitored by periodic measurement from the gateway. It is noteworthy

that the number of such network coordinate proxies is going to be much smaller than the

number of clients – because each proxy serves a large number of clients. Hence aforemen-

tioned strategy for calculating network proximity is not only more stable for mobile clients,

but also more scalable.

In this dissertation, we assume that the accurate discovery of the network coordinate

agent running on the current serving Edge gateway can be facilitated by a DNS-based
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Figure 4.11: Logical components in the end-to-end monitoring mechanism and their inter-
actions.

mechanism. Such a mechanism for application-level resolution at the Edge has been al-

ready presented in the context of content-delivery networks [40].

4.3 Distributed End-to-End Monitoring

The data-plane of applications using a platform service usually comprises multiple com-

ponents, with each component performing a specific action, and incurring latency. The

latency incurred by each such component adds toward the end-to-end latency of the appli-

cation, that is expected to be lower than a certain threshold by the developer. Hence, the

end-to-end monitoring mechanism aims to provide the ability to monitor the end-to-end la-

tency of the data-plane for a variety of applications running on different platform services.

We propose to do so by measuring all individual component latencies independently. The

collected measurements of these metrics streams are then aligned with respect to time us-

ing their timestamps and summed up to compute the end-to-end latency. The end-to-end

latency estimate can then be used to check whether the constraints specified by developer

have been violated. In the case of detecting a violation, the measurements of individual

component latencies are used for performing a root-cause analysis to detect the component

latency that is the source of the violation.

4.3.1 Logical Components in the Monitoring Mechanism

Fig. 4.11 shows the logical functions that we propose as a part of the end-to-end monitoring

mechanism. These functions perform all the necessary actions that are needed by typical

platform services in order to continuously serve applications’ desired quality of service.

Metric Stream Emitter

The Metric Stream Emitter component represents the platform service component generat-

ing measurements for a metric. The Metric Stream Emitter could be the client library on a

certain client device, an application instance or a platform service component running on
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an Edge site.

Per-Stream Aggregation

The Metric Stream Emitter generates raw measurements that are processed by the Per-

Stream Aggregation function, that time-aligns the metric measurements while performing

an aggregation as well to reduce the data volume. The output of the per-metric aggrega-

tion component is a stream of time-aligned measurement values that are emitted at regular

intervals. The time interval between two consecutive measurements emitted by the per-

metric aggregation component is equal to the bucket-size parameter of the time-alignment

process. The timestamp associated with each aggregated time-aligned measurement values

in the output stream is the start timestamp of the bucket.

Cross-Stream Aggregation

The Cross-Stream Aggregation function takes multiple time-aligned metric streams at a

particular timestamp as input and runs a platform-specific function to generate an aggre-

gated value for that timestamp.

Policy Execution

The control-plane policies then read the aggregated statistics generated by cross-stream ag-

gregation as well as the time-aligned metric streams to make decisions such as whether a

certain application instance is undergoing performance violation and subsequently deter-

mining the root-cause of the violation.

4.3.2 Design of the core components of end-to-end monitoring mechanism

Metrics Agent

The Metrics Agent component is the one that is deployed alongside application and plat-

form service components that need to be monitored, and acts as the interface between the

system components and the monitoring system. It is deployed as part of the client library

or the application runtime or as a side-car of the platform service components. It provides

interfaces for application and platform service components to register metric streams and

record measurements for those metrics.
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Metrics Server

The Metrics Server is the component that holds the metric streams reported by the various

Metric Agents. The Metric Server serves two main functions - (i) it acts as a store for time-

series measurement values, and (ii) an execution runtime for the aggregation and policy

functions as discussed in Section 4.3.1.

The Metrics Server provides an interface similar to a Time-Series Data Base (TSDB).

The Metrics Server provides a relational schema for defining metric streams and their as-

sociated metadata. Having a relational schema also allows aggregation and policy logic

to express queries based on metadata fields. The Metrics Server supports high-velocity

ingestion of measurements, and efficient support for querying historical metric values.

The Metrics Server supports platform-specific functions to be executed over the moni-

toring data that is stored in its data store. It allows the aggregation and policy functions to

query metric streams using their metadata fields. Once the identifier for a particular metric

stream is known, the Metrics Server allows queries to fetch most recent as well as historical

measurements recorded for that metric stream.

4.3.3 Metrics of Interest

We consider the following metrics of interest for quantifying the goodness of the various

design choices for implementing the end-to-end monitoring mechanism.

• Monitoring Traffic through WAN. The large number of application and platform-

service entities continuously processing data and generating performance metrics

would present a large volume of data to be fed into the monitoring system. The

amount of traffic sent through the WAN needs to be minimized for the mechanism to

be scalable.

• Elapsed Time for Detecting Violation. The time taken by the monitoring subsystem

(including the Policy) to detect a significant change in the measurements of a metric

stream defines the responsiveness of the platform service to alleviate a potential vi-

olation. Hence, we intend to minimize the time taken by the monitoring mechanism

to detect a violation.

4.3.4 Design Choices

We explore two design choices for organizing the logical functions discussed in Sec-

tion 4.3.1 over a geo-distributed infrastructure. We consider two design choices.
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Fully Centralized Approach

In the fully centralized approach, all of the monitoring functionalities, ranging from the

Per-Stream Aggregation to the Policy Execution are hosted in the Cloud. In this approach,

the measurements of metric streams are emitted by Metric Emitters located at the Edge

within Metrics Agents, and the raw measurements traverse through the WAN to get to the

downstream functions.

Distributed Approach

In this approach, the Metric Emitters are located within Metrics Agents, that is same as

the centralized approach. In addition to that, the Per-Stream Aggregation function for a

given metric stream is co-located with the Emitter for that metric stream. In this way, raw

measurements are not sent through the WAN, rather it is the time-aligned metric stream

that is sent to the Cross-Stream Aggregation function. Since the bucket-size configuration

parameter of a Per-Stream Aggregation instance does not change frequently, it is possi-

ble to maintain several geo-distributed instances at a large scale without the overhead of

reconfiguring them frequently.

4.3.5 Evaluation of Candidate Design Choices

We evaluate the aforementioned candidate design choices for implementing the end-to-end

monitoring mechanism and present results in this section. In our evaluations, we consider

one application unit that has a number of distributed system entities associated with it. Each

of these system entities generate measurements to one metric stream at a certain measure-

ment frequency. Each metric stream is time-aligned using a specific bucket-size wherein

the measurements falling inside a bucket are summarized by taking an average. The time-

aligned summaries of each metric stream are sent to the Multi-Stream Aggregation that

checks if the measurement summaries of all the metric streams for the current bucket have

been received, and if so, passes them to the policy execution component.

In our experiments, the Metric Emitters are located on the Edge, while the Cross-Stream

Aggregation is deployed in the Cloud. Per-Stream Aggregation can run either on the Edge

alongside Metric Emitters or in the Cloud based on the design choice being evaluated.

Fig. 4.12 shows the network bandwidth usage by the two design choices we evaluate for

the end-to-end monitoring mechanism. We perform the evaluation for two bucket sizes - 1

second and 4 seconds - and two per-stream measurement rates - 2.5 and 10 measurements
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Figure 4.12: Network bandwidth usage of the design choices for end-to-end monitoring
mechanism.

per second. For all four of these configurations, we see that the Distributed design choice

incurs less network traffic between the Edge and the Cloud as compared to the Central-

ized design choice. Furthermore, the traffic consumed by Distributed approach does not

change with different per-stream measurement rates because it only sends a summary of

measurements (average) at an interval of 1 bucket size. This result quantitatively affirms

our intuition that the Distributed design would be more scalable in terms of network band-

width usage. We demonstrate the utility of the end-to-end monitoring mechanism in the

context of a publish-subscribe system in Chapter 5. For the UAV swarm coordination ap-

plication, each UAV creates a distinct metric stream. Similarly in Chapter 6, we present the

use of the proposed monitoring mechanism in the context of an application orchestrator.

In the case of the collaborative perception application, each client device as well as each

instance of an application component generates one metric stream. Therefore, in typical

application scenarios with thousands of clients in a city, we expect to see several thousand

metric streams being processed by the monitoring mechanism for that city alone – leading

to a significant difference in the network traffic usage between the two design choices.

Fig. 4.13 shows the variation of the elapsed time for detecting a violation with the two

evaluated design choices, with the per-metric-stream measurement rate of 10 measurements

per second. The results show that both Centralized and Distributed Approaches have a sim-

ilar behavior in terms of the violation detection latency, with the latency being dependent

only on the bucket size.

Hence, we conclude that the Distributed Design choice is not only more scalable in

terms of network usage, but it also provides the same violation detection latency as the

Centralized approach. Hence, we use the Distributed design choice for implementing the

end-to-end monitoring mechanism.
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(a) Elapsed time for detecting violations with a
per-stream alignment bucket size of 1 second.

(b) Elapsed time for detecting violations with a
per-stream alignment bucket size of 4 seconds.

Figure 4.13: Variation of the elapsed time for detecting a violation with increasing number
of metric streams to be aggregated. The Centralized and Distributed approaches incur
similar time to detect a violation, which remains relatively constant with increasing number
of streams and only depends on the bucket size.

Summary

So far in this dissertation, we have determined the three mechanisms which are its main

contributions. We have identified the right abstractions that they should offer to the control

plane policies and performed a design-space exploration to identify the best design for

each mechanism for an Edge infrastructure. The next step is to demonstrate the utility of

the proposed mechanisms in constructing platform services that will be used by application

developers in constructing platform services to serve situation-awareness applications. We

do so through three platform services, that are enumerated as follows:

• OneEdge is an application orchestrator, specifically designed for situation-awareness

application to operate on Edge infrastructure. Chapter 6 describes OneEdge and

its use of the three mechanisms for placement of applications on the infrastructure,

mapping clients to application instances and monitoring the performance of deployed

application instances.

• ePulsar is a topic-based publish-subscribe system that provides guarantees on end-

to-end message delivery latency. It is presented in Chapter 5. It leverages the network

proximity estimation mechanism to place topics on brokers nodes to ensure latency

constraint satisfaction. It uses the end-to-end monitoring mechanism to detect when

a certain topic’s latency threshold is violated.

• FogStore is a key-value store that provides a tradeoff between latency and consis-

tency while ensuring tolerance from geographically correlated failures (which are

more likely in an Edge infrastructure). It is presented in Chapter 7, wherein we show
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how FogStore leverages the Dynamic Spatial Context Management mechanism for

placement of data replicas among the data nodes and choosing the right consistency

level for serving clients to provide the right tradeoff between latency and consistency.
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CHAPTER 5
EPULSAR: TOPIC-BASED PUBLISH-SUBSCRIBE SYSTEM WITH

END-TO-END LATENCY GUARANTEES

Applications such as navigation control of Unmanned Aerial Vehicles (UAVs) and collab-

orative perception for autonomous driving need to support a large number of clients, re-

taining high throughput and low latency communication. The synchronization decoupling

provided by publish-subscribe (pub-sub) systems [41, 42] makes them an ideal messaging

middleware for supporting these applications. Typically, pub-sub systems consist of “bro-

ker” middleware nodes that are responsible for message exchange between “producers”

and “consumers” of data in the system. Brokers manage “topics”, where a topic acts like

a message queue to which producers publish messages, and consumers receive messages

from it. Popular pub-sub systems such as Apache Kafka and Pulsar are commonly used

for supporting low latency and high throughput messaging for cloud applications. Pub-

sub systems have been shown to be suitable for sharing game state updates in MMOGs

[42], swarm synchronization for autonomous robots (drones) [43], and data distribution

for large-scale stream processing [44]. However, contemporary applications such as large

scale IoT, and Unmanned Aerial Vehicle (UAV) coordination pose latency constraints that

make cloud-based publish-subscribe system deployments unsuitable due to the high WAN

latency between clients (producers and consumers) and middleware (broker) nodes. Given

the proximal nature of Edge resources, they can be utilized for hosting pub-sub middleware

nodes close to clients and thereby provide low end-to-end message delivery latency.

However, adapting state-of-the-art cloud-based pub-sub systems like Kafka and Pulsar

to a geo-distributed Edge infrastructure poses peculiar challenges. Such systems typically

are topic-based and they partition topics among brokers by computing a consistent-hash of

the topic name. Consistent hashing ensures even distribution of load among brokers - that

is key to manageable end-to-end latency in datacenters where the network topology is more

or less homogeneous. However, in Edge infrastructure, the physical location and network

connectivity of a client have a significant impact on the client-broker network latency, and

latency-agnostic consistent hashing does not account for network proximity. In addition,

client mobility requires constant adaptation of the broker hosting a given topic so as to con-

tinuously provide low end-to-end latency for that topic. The network infrastructure itself

could experience changes (e.g., increased latency between servers) that might affect end-
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to-end latency. Finally, due to the capacity constraints and limited statistical multiplexing

at Edge sites, load-aware topic partitioning is important to avoid workload hotspots and

minimize end-to-end latency [25].

To address the above challenges, we design a novel edge-centric control plane architec-

ture for pub-sub systems. The elements of this architecture include the following features:

1. ePulsar leverages the Network Proximity Estimation mechanism for its latency and

load-aware broker selection policy that assigns topics to brokers to ensure that end-

to-end message delivery constraint of each topic is satisfied.

2. ePulsar leverages the End-to-End Monitoring mechanism to monitor client and bro-

ker network proximity metrics as well as per-topic traffic characteristics and aggre-

gates that information for each topic. The per-topic aggregates of monitoring data are

then processed by control plane policies for detecting if a topic needs to be migrated

away from the current hosting broker to alleviate latency violation.

The roadmap of this chapter is as follows. Section 5.1 presents the necessary background

for this chapter. Section 5.2 presents the architecture of ePulsar . Section 5.3 describes

how ePulsar uses the Network Proximity Estimation mechanism for estimating the end-

to-end message delivery latency for broker selection. Section 5.4 presents ePulsar ’s use

of the End-to-End Monitoring mechanism for detecting and alleviating violations of end-

to-end message delivery latency constraint. Section 5.5 presents implementation details in

ePulsar and Section 5.6 presents results of experimental evaluation of ePulsar . Finally,

Section 5.8 presents concluding remarks.

5.1 Basics of Publish-Subscribe

5.1.1 Publish-Subscribe Communication Model

The publish-subscribe communication pattern is used widely across the current software

ecosystem [41], especially when there are going to be a large number of communicating

entities. In the publish-subscribe pattern, there are two classes of communicating entities

for a given type of data - publishers and subscribers. As their name indicates, publishers

generate data that is consumed by subscribers. The main motivation for using a publish-

subscribe system is that it does not require the publishers to know who the subscribers are

so that the data can be sent to them. Instead, a typical publish-subscribe system allows

the subscribers to express their interest in a certain type of data, and whenever a publisher
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generates a data-item that matches a subscriber’s interest the subscriber is notified. This

data exchange is done by using a set of middleware nodes that form the core of the publish-

subscribe system, and are typically called brokers. A publisher sends each data-item that it

generates to a broker, that then determines the set of subscribers who should be notified of

this data-item, and sends the data-item to them. By relying on brokers, a publish-subscribe

system decouples the data producers and consumers. This decoupling can be categorized

into three classes:

• Space decoupling: The communicating entities do not need to know about each

other. In other words, the publishers do not need to hold a reference of the subscribers

and similarly, subscribers do not need to hold a reference of the publishers. They

simply connect to the broker and send/receive messages from it.

• Time decoupling: For a specific message, the publisher generating it and the sub-

scribers consuming it do not need to be active at the same time. Subscribers are

notified of a messages that matches its interest even though it was published when

the subscriber was not connected to the publish-subscribe system.

• Synchronization decoupling: Publishers are not blocked for producing messages

by the subscribers consuming them. Subscribers can keep performing other tasks in

parallel while they are asynchronously notified of incoming messages from publish-

ers.

There are three broad categories of publish-subscribe systems [45]:

• Topic-based publish-subscribe: In topic-based publish-subscribe systems, all com-

munication between entities is done through “topics”, that is an abstraction similar

to a message queue or a channel. Publishers using the “publish()” function to send a

message to a given topic, while subscribes used the “subscribe()” function to receive

messages from the topic.

• Content-based publish-subscribe. These systems allow more expressiveness than

topic-based systems by allowing subscribers to express interest in the messages they

will receive based on the actual content of messages. Subscribers provide predicates

to filter the messages that they are interested in receiving.

• Type-based publish-subscribe. Type-based publish-subscribe systems allow sub-

scribers to specify which messages they want to receive based on the “type” of the

message.
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In this project, we are going to be considering a topic-based publish-subscribe system be-

cause a significant portion of popular and commercially available publish-subscribe sys-

tems are topic-based. Due to their simplicity of interest matching, they are easier to imple-

ment and are generally more efficient than the other categories.

5.1.2 Data Delivery Guarantees

Applications using publish-subscribe systems typically expect certain functional guaran-

tees on data delivery from publishers to subscribers. The two most common properties

that applications require are exactly-once message delivery and message persistence. This

subsection discusses these guarantees, that ePulsar aims to provide as well.

Exactly-once Message Delivery

Each data subscriber expects every message that was successfully published (and acknowl-

edged) to be received only once. A message can neither be dropped nor delivered more

than once. This approach requires that (1) each message has a unique identifier that distin-

guishes it from other messages; (2) publishers are able to re-send messages that were not

successfully published; (3) brokers are able to perform de-duplication of the same message

that was published multiple times; and (4) subscribers track the last message that they re-

ceived, and can query the broker for any newer messages that it might have for the given

subscriber.

Message Persistence

A typical distributed system has several communicating entities, all of which cannot be

online at the same time. A publish-subscribe system should be able to tolerate the discon-

nection of subscribers at a time when publishers are publishing messages. A subscriber

client should be able to reconnect at a later point in time and be able to receive the pending

messages, which requires that the publish-subscribe middleware not only maintains a log

of the messages that were published, but also keeps track of which messages have been suc-

cessfully delivered to each subscriber so that a subscriber is only sent the unread messages

when it reconnects.
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5.1.3 Message Delivery Latency Guarantee

In addition to the correctness of sending and receiving messages that are provided by

data delivery guarantees, emerging applications, such as drone-swarm coordination and

autonomous or assisted driving, require that the time spent from the generation of the mes-

sage, to it being received by the publish-subscribe middleware, till the time when it is

received by all the relevant subscribers should be low and bounded. The message deliv-

ery latency is composed of (1) communication latency from the publisher to the publish-

subscribe middleware; (2) latency incurred in processing and persisting the message on the

middleware; and (3) communication latency from the middleware to the subscribers. In

a typical scenario, multiple publishers communicate with multiple subscribers, hence the

message delivery latency guarantee has to be satisfied for all possible pairs of publishers

and subscribers.

5.2 Architectural Components of ePulsar

5.2.1 Data Plane Components

Clients

Clients are geo-distributed and each client is a publisher or a subscriber of a topic. A pub-

lisher sends messages to the broker hosting its topic, while a subscriber receives messages

published to its topic as notifications.

Brokers

Brokers are the components of any publish-subscribe system responsible for message ex-

change between producers and consumers. In ePulsar , brokers are deployed on geo-

distributed Edge sites. Brokers are also associated with another software component called

BookKeeper, that acts as the high-performance storage layer. BookKeeper nodes, called

bookies, persist messages for each topic so that older messages can be retrieved in the

event of a broker failure or broker migration.

5.2.2 Control Plane Components

Metrics Store

The Metrics Store receives monitoring metrics from clients and brokers pertaining to re-

source consumption of brokers, message rates on topics and network proximity between
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clients and brokers. This monitoring data is accessed by the control-plane for making

dynamic topic placement decisions through the broker selection and violation detection

policies, that are described next.

Broker Selection Policy

The broker selection policy of ePulsar assigns topics to brokers in a latency-aware manner

such that the end-to-end latency of data delivery from the producer to broker and finally

to the consumer is bounded by the latency threshold provided for the topic. As shown in

Figure 5.1: Breakdown of end-to-end message delivery latency for a producer-consumer
pair.

Section 5.2.2, the end-to-end message delivery latency is made up of the communication

latency between the producer and serving broker, the latency of handling the message on

the broker (potentially persisting it on durable storage in the case of a persistence topic),

and the communication latency from the broker to the consumer. The sum of all these

component latencies needs to be below the latency threshold. This constraint needs to

be satisfied for each producer-consumer pair of the given topic, that may have disparate

connectivity to the serving broker compared to other producer-consumer pairs. Hence the

broker selection policy needs to select a broker for hosting a topic that is (1) in network

proximity to the clients of the topic to ensure low communication latency; and (2) is not

overloaded to ensure low processing latency.

Violation Detection Policy

The violation Detection Policy of ePulsar is used to check whether an existing topic in the

publish-subscribe system has its end-to-end message delivery latency constraint violated.

This computation is done for each topic independently. Since publisher and subscriber

clients of a topic can be connected at different points in the network topology, the worst-

case message delivery latency is incurred for the publisher-subscriber pair that are the fur-

thest from the broker. Thus, all possible publisher-subscriber pairs have to be analyzed to

check for violations.
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The worst-case message delivery latency for a topic is the sum of the maximum network

latency from any publisher to the broker, the maximum network latency from the broker

to any subscriber, and the per-message processing latency on the broker. The worst-case

message delivery latency of a topic is compared against the topic-specific threshold, and if

the observed latency exceeds the threshold, a violation is detected, and the control-plane

triggers the migration of the topic to another broker that can satisfy the latency constraint.

5.2.3 Use of Proposed Mechanisms in Control Plane

ePulsar ’s control plane utilizes the Network Proximity Estimation mechanism to estimate

the worst-case message delivery latency for a given topic. This mechanism is able to esti-

mate the communication component of the message delivery latency, while ePulsar relies

on an offline profile of its broker’s data plane for estimating the processing latency. This

mechanism is used both for (1) determining whether a particular candidate broker will be

able to satisfy the worst-case message delivery latency constraint, given the network prox-

imity information between the clients and the candidate broker, and (2) detecting a violation

of the worst-case message delivery latency constraint. The clients’ network proximity to

the current serving broker is used to compute the observed worst-case message delivery

latency, that is then compared against the topic-specific threshold.

5.3 End-to-End Latency Estimation using Network Proximity Mechanism

5.3.1 Deployment of Network Coordinate Agents

Estimating the network latency between every client and broker pair requires that all of

those entities have an associated network coordinate, such that by computing the Euclidean

distance between the coordinates of two nodes, one can compute the communication la-

tency between them. ePulsar co-locates one instance of the Network Coordinate Agent

with each broker, such that the network coordinate of the agent represents the network

proximity information of the broker. Clients that are not mobile (e.g., connected to a wired

network) also run a Network Coordinate Agent instance and use the agent’s coordinate

as their own. To handle mobile clients, ePulsar relies on a network of Edge Gateways

that each run a Network Coordinate Agent. Each client discovers the current serving Edge

Gateway using a DNS-like discovery mechanism, records the network round-trip time to

the Gateway and computes its own network coordinate from the network coordinate of the

Gateway and the measured RTT to Gateway. The deployment is illustrated in Section 5.3.1.
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Figure 5.2: Illustration of the use of network coordinates for computing the worst-case mes-
sage delivery latency for a given topic. Network coordinates can be used to compute the
communication component of the message delivery latency. Since all publisher-subscriber
pairs communicate via the broker, computing the maximum network latency from the pub-
lishers to the broker and that from the broker to the subscribers suffices to compute the
worst-case communication latency across all publisher-subscribe pairs.

The network coordinates of all these system entities is utilized by the broker selection and

violation detection policies for estimating the communication component of the end-to-end

message delivery latency.

5.3.2 Broker Selection Policy

The set of publishers and subscribers for a topic t are denoted by P (t) and C (t) respec-

tively. The worst-case message delivery latency for topic t when served by broker b is

represented as shown in Eq. (5.1).

W (t, b) = max
p∈P (t)

d (NC (p) , NC (b)) /2 + max
c∈C(t)

d (NC (c) , NC (b)) /2 + PROC (t)

(5.1)

Eq. (5.1) is used by the broker selection policy to estimate the worse-case message delivery

latency that a given broker can provide for a given topic. The broker selection policy is

shown in Algorithm 4. For each topic that needs to be placed on a broker, the policy

finds the set of candidate brokers that can satisfy the message delivery latency constraint

(line 3-4). Next, the policy ranks the topics in increasing order of the number of possible

candidates for each topic and starts broker selection in that order (lines 5-6). The aim of

the policy is to successfully place as many topics as possible. Next, if a particular broker
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Figure 5.3: Illustration of the deployment of network coordinate agents in ePulsar .

can host a given topic without being overloaded, the topic is assigned to that broker (lines

7-9).

5.3.3 Violation Detection Policy

The Violation Detection Policy is invoked periodically, that iterates over all the topics cur-

rently in the system and checks if any one of them is undergoing latency violation (lines

4-5). If a topic is experiencing end-to-end latency violation, it is added to the set of topics

that need to be migrated to a better broker (line 6). Next the policy checks if any broker

is overloaded due to too many topics (line 7). In case there is a broker that is overloaded,

the policy fetches the topics that are best candidates for migrating out of the overloaded

broker (line 9), and adds it to the set of topics to be migrated. Then the policy calls the

topic-placement module that uses Algorithm 4 for selecting the target broker for hosting

each topic (line 11). If the chosen target broker is not the same as the current broker, a topic

migration is triggered (lines 14-16).
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Algorithm 4 Broker selection policy algorithm. Inputs are T (set of topics to place on
brokers), current topic-to-broker mapping B, and M (monitoring data)

1: procedure SELECTBROKER(T,B,M )
2: F ← dict ()
3: for t ∈ T do
4: F [t]← get feasible brokers by latency (t,M)

5: sort T by increasing |F [t] |
6: for t ∈ T do
7: for bcand ∈ F [t] do
8: if can host (bcand, t, B,M) then . no broker overload
9: B [t]← bcand

10: break
11: return P

Algorithm 5 Violation Detection Policy algorithm. Inputs areB0 (initial topic partitioning)
and M (monitoring data)

1: procedure PERFORMREPARTITIONING(B0, M )
2: R← {} . set of migration commands
3: Tmigr ← {} . topics to migrate from curr broker
4: for t ∈ B0.topics do
5: if latency violated (t) then
6: Tmigr ← Tmigr ∪ {t}
7: Boverload ← get overloaded brokers (B0,M)
8: for b ∈ Boverload do . resource-based detection
9: Tb ← get topics to migrate (b, B0,M)

10: Tmigr ← Tmigr ∪ Tb
11: B ← PlaceTopics (Tmigr, B0,M)
12: R← {} . set of re-partitioning commands
13: for t ∈ B0.topics do
14: if B [t] 6= B0 [t] then
15: R← R ∪ {(t, B0 [t] , B [t])} . add previous broker and new broker
16: execute reconfigs (R)
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Table 5.1: Notations used.

Notation Definition
t topic

P (t) producers of topic t
C (t) consumers of topic t
Lth (t) end-to-end latency constraint for topic t
B [t] broker hosting topic t
NC (i) network coordinate of entity i
NC (I) centroid network coordinate of entities in I

d (nc1, nc2) distance between network coordinates
W (t) Deviation of client NC from centroids of topic t
W (t) Deviation of client NC from centroids of topic t
E (t) Worst-case end-to-end latency for topic t

PROC (t) Processing latency at broker for topic t

5.4 Distributed Monitoring in ePulsar

5.4.1 Distribution of Monitoring Components over Infrastructure

Each client in ePulsar hosts a Metric Agent that monitors the client’s network coordinate.

Each broker hosts a Metric Agent that monitors its network coordinate and the message

rate for each topic. These metrics agents perform Per-Metric Aggregation of each metric

with a bucket size of 5 seconds, computing the average over all the measurements in each

bucket.

Each broker hosts the Metrics Server along with it. For each topic that is hosted on a

given broker, all clients of that topic report their metric aggregates to the Metrics Server

hosted on that broker, that performs an aggregation of the network coordinates as discussed

in Section 5.4.2. The aggregated metrics are then reported to the control plane’s Metric

Store to be used by violation detection and broker selection policies.

5.4.2 Monitoring Data Aggregation Logic

ePulsar reduces the amount of per-topic monitoring data sent to the Metric Store by ag-

gregating the network coordinates of multiple clients of each topic. For each topic t that is

hosted on broker b, ePulsar reports the following aggregate statistics to the Metric Store.

Table 5.1 provides a summary of notations used.

• Producer and Consumer Centroid. The centroids of producers’ and consumers’

network coordinates provide an approximate network location of a topic’s clients.
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We compute the centroid producer coordinate NCP (t) and centroid consumer coor-

dinate NCC (t) as follows.

NCP (t) = NC ({i : i ∈ P (t)})

NCC (t) = NC ({i : i ∈ C (t)})

• Maximum Deviation from Centroids. To account for the loss of fine-grained net-

work coordinate information due to aggregating them as centroids, ePulsar sends

the maximum deviation of the clients’ coordinates from their corresponding centroid.

We denote this as W (t) and it is computed as shown below.

W (t) = max
p∈P (t)

d
(
NC (p) , NCP (t)

)
/2 + max

c∈C(t)
d
(
NC (c) , NCC (t)

)
/2

• Worst-case Communication Latency. For each topic t, we compute the worst-case

communication latency across all producer-consumer pairs. We denote this as E (t)

and it is computed as follows.

E (t) = max
p∈P (t)

d (NC (p) , NC (B [t])) /2 + max
c∈C(t)

d (NC (c) , NC (B [t])) /2

This information is used to determine whether the current broker, denoted by B [t] is

meeting the topic’s end-to-end pub-sub latency threshold.

One key point to take note of is that the volume of per-topic monitoring data generated

is independent of the number of clients using that topic. Given the high heterogeneity

of broker and client network locations in a geo-distributed setting, the above aggregation

technique significantly reduces monitoring data traffic. By contrast, a naive approach that

records the network coordinates of all clients would incur network traffic proportional to

the number of clients of each topic. However, the monitoring data used by ePulsar ’s

broker selection policy does not contain individual client network coordinates, but rather

the centroids of producer and consumer clients’ network coordinates. Hence, Eq. (5.1) in

the Broker Selection Policy needs to be updated to use centroid coordinates as shown in

Eq. (5.2).

W (t, b) = d
(
NCP (t) , NC (b)

)
+ d

(
NCC (t) , NC (b)

)
+W (t) + PROC (t) (5.2)
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5.5 Implementation of ePulsar

ePulsar is implemented by extending Apache Pulsar v2.2.1. We chose Pulsar as the base

system because of the strong data-plane semantics that it offers and also because topic mi-

grations in Pulsar are much more agile than in Apache Kafka. However, Pulsar, like Kafka,

is designed for datacenters and bundles topics together for monitoring and placement on

brokers. This bundling is done for reducing the amount of metadata that it has to maintain.

ePulsar needs to independently manage each topic, and hence, we restrict the maximum

number of topics in a bundle to be 1. When more than one topics are mapped to a bundle,

it results in the bundle being split into two new bundles, each with one topic. By inheriting

the concept of bundles from Pulsar, ePulsar is able to re-use the bundle-centric monitoring

and broker selection in Pulsar, while being able to manage each topic independently.

The control plane policies of broker selection and violation detection are implemented

in the Load Manager module of Pulsar. We replace the off-the-shelf Load Manager of

Pulsar, that aims at even distribution of workload and prevention of hotspots, with an edge-

centric implementation that takes communication latency into account as well. ePulsar
inherits from Pulsar the use of a ZooKeeper instance as the Metrics Store, that is also

used for storing configuration information about the system, e.g., topic ownership of each

broker, cluster membership, etc. The monitoring data is queried by the Load Manager

module periodically every 5 seconds to detect violations and compute better brokers for

topics that are undergoing latency constraint violation.

Brokers in ePulsar run on Edge sites along with cloud datacenters. The control plane

component of Pulsar, i.e., Load Manager, runs on one of the brokers at a time, that serves

as the Leader broker of the cluster. In ePulsar the Leader broker is forced to be one

that is deployed in a datacenter for better availability. Hence, ePulsar has a centralized

control-plane located in a cloud datacenter. The ZooKeeper instance that serves as the

Metrics Store is co-located in the same datacenter as the Leader broker running the Load

Manager module. Clients connect to the publish-subscribe infrastructure via various access

media, e.g., cellular (4G LTE), WiFi or wired networks. All entities in the publish-subscribe

system, including brokers and clients periodically (every 5 seconds) query their network

coordinate, either from the Network Coordinate Agent co-located with them (in the case of

brokers and static clients) or from the serving Edge Gateway (in the case of mobile clients)

and report it to the monitoring mechanism.
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5.6 Evaluations

In this section, we present a set of evaluations to demonstrate the efficacy of the proposed

mechanisms in enabling an edge-centric latency-aware control plane for a geo-distributed

publish-subscribe system ePulsar . Specifically, we aim to prove the following hypotheses

through experimentation.

1. Incorporating network proximity information in the broker selection policy allows

the satisfaction of per-topic latency constraints. Aggregation of client network coor-

dinates does not impair the quality of the broker selection decision.

2. Distributed monitoring results in monitoring overhead reduction.

3. ePulsar is able to meet the end-to-end latency constraints for exemplar applications.

We verify the above hypotheses using two main methods: (1) microbenchmarks that ana-

lyze different components of ePulsar ’s architecture in isolation; (2) end-to-end evaluations

of the UAV Swarm application scenario consisting of realistic infrastructure topology and

client workload.

5.6.1 Evaluation Scenario

We evaluate ePulsar under realistic infrastructure and subscription patterns. We consider

the following evaluation scenario from which we design microbenchmarks and end-to-end

experiments.

A UAV swarm consists of multiple drones that move together to accomplish a given

task. The swarm contains a leader UAV and the rest of the UAVs are followers. Each

swarm follows a Random Waypoint mobility model [46].

Subscription Pattern. The leader UAV sends movement commands to the followers

through a topic called follow leader. The followers communicate information extracted

from onboard sensors to the leader via a topic sensor data. The E2E pub-sub latency

constraint is set at 40 ms.

Infrastructure. We consider a city-wide cellular network equipped with Edge resources,

where UAVs use 4G-LTE as the communication medium. We assume that the city is divided

into multiple Mobile Edge Computing (MEC) zones, each with a single edge site. The

locations of the edge sites is determined via k-means clustering of the cell tower locations

[47] of Atlanta [14]. The Edge sites communicate with each other via a city-level switch,

with inter-site RTT of 30 ms. Each Edge site hosts a broker and an Edge Gateway. Each

88



client is directly connected to the Edge site corresponding to its current location based on

k-means clustering. Since clients are mobile, they query NC from the Gateway running on

the respective sites they are directly connected to. The broker running the Load Manager

component and the ZooKeeper instance is hosted in the cloud with a one-way latency of 40

ms to any Edge site.

5.6.2 Evaluation Platform

The evaluation scenario described in Section 5.6.1 poses the following requirements to

be satisfied by the evaluation platform: (1) support a heterogeneous network topology;

(2) allow emulation of unmodified software components (ePulsar entities and clients);

and (3) emulate device mobility. To satisfy these requirements, we use the Containernet

[48] evaluation platform, that has also been used by previous Edge computing research

[49, 50]. Containernet uses Docker containers as hosts (allowing the use of unmodified

software entities) in network topologies emulated using Open vSwitch. We set custom

latencies on the network links using the Linux tool tc (to support heterogeneous topologies),

and remove/create network links on the fly (to emulate device mobility). The emulated

infrastructure is deployed on an Ubuntu 16.04 VM with 48 CPU cores and 64 GB RAM.

We use Docker’s resource reservation to allocate dedicated resources to each container and

minimize performance interference.

5.6.3 Evaluation of Broker Selection Policy

In this section, we evaluate the effectiveness of ePulsar ’s broker selection policy to meet

E2E message delivery latency guarantees for realistic infrastructure topologies and client

subscription patterns. We compare the proposed policy against the following two baselines:

• AllPairs. Same as ePulsar , but instead of clients’ NC centroids, AllPairs uses the

NC of each individual client to compute the expected E2E latency for each producer-

consumer pair. A broker is chosen only if the worst-case E2E latency falls below the

threshold.

• Pulsar. Apache Pulsar offers well-developed data-plane semantics that are appropri-

ate for the target applications for the edge. Therefore, we choose Pulsar as the other

baseline. Pulsar uses consistent hashing to compute the hash for a topic name. The

output space of the hash function is divided among all brokers uniformly. The topic

is assigned to the broker whose hash-space partition contains the topic’s hash.
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For the representative application scenario mentioned in Section 5.6.1, we generate

infrastructure topologies with varying degrees of geo-distribution by varying the number

of MEC zones in the metropolitan area. For each such topology, we first emulate the

infrastructure of the given topology using Containernet. After allowing the NC agents in

brokers and clients to stabilize for 10 minutes, we query each agent’s coordinate. The

querying is done once per topology. Using the coordinates of all nodes in the topology,

we can then estimate the E2E delay for any producer-consumer pair of a topic given the

location of the clients and the broker hosting that topic. Based on the application scenario’s

subscription pattern, we determine the clients for each topic and place them on the nodes

of the generated topology.

The network coordinates of the producers and consumers for each topic serve as the

input to the broker selection policy. We analyze the result of the policy in terms of the E2E

latency and violation ratio. Violation ratio represents the fraction of producer-consumer

pairs for whom the latency threshold is violated. In the experiments, we consider 1000

different random permutations of client placement and topic subscriptions. The intent is

to have a large coverage of possibilities wherein clients could be located in different geo-

graphical areas and/or could be subscribing to different sets of topics.

We vary the number of MEC zones in the simulated metro area and distribute 16 UAV

swarms in the city. Each swarm comprises 8 UAVs, with one of them serving as the leader.

UAVs follow the subscription pattern described in Section 5.6.1. Figs. 5.4a and 5.4b show
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Figure 5.4: Analysis of broker selection policy for UAV swarm application scenario.

the worst-case E2E latency and violation ratio over all producer-consumer pairs. Since

ePulsar performs latency-aware broker selection, the worst-case latency remains under
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the threshold, resulting in no violations even when the number of MEC zones is increased.

The results in this subsection validate the first hypothesis that the incorporation of network

coordinates information in the broker selection policy improves the satisfaction of end-to-

end message delivery latency constraint. Furthermore, the comparison with the AllPairs

policy shows that the aggregation of clients’ network coordinates as centroids does not

result in poor broker selection with respect to meeting E2E latency constraints.

5.6.4 Evaluation of Distributed Monitoring

We evaluate the savings in monitoring traffic by aggregating per-topic client NCs at the

serving broker before reporting them to the Metrics Store. This traffic is sent continuously

through the WAN and impacts the scalability of the system, hence we consider aggregate

monitoring traffic rate as the metric-of-interest. We focus our evaluation on a single broker

hosting topics with multiple clients - as the behavior is independent of other brokers. We

vary the number of topics hosted on the broker and the number of clients connected to each

topic.
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Figure 5.5: Monitoring traffic rate under varying number of topics and clients per topic.
ePulsar ’s NC aggregation results in considerable savings over naive AllPairs.

Fig. 5.5 shows the data rate of monitoring traffic sent to the Metrics Store. An increasing

number of topics results in higher data rate. The rate of increase is higher without centroid

aggregation (AllPairs policy) and also with more clients per topic. ePulsar ’s aggregation,

however, causes data rate to be independent of the number of clients - since a constant
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Figure 5.6: E2E latencies experienced by the 8 independent drone swarms for their respec-
tive representative topic over time. Latency violations (transient spikes) are observed when
a swarm moves from one MEC zone to another. For a brief period, the latency remains
higher than the threshold due to network traversal through the city-level switch. ePulsar ’s
topic migration brings the latency back under the threshold.

amount of data is sent to the Metrics Store per topic. These results validate the second

hypothesis that aggregating clients’ network coordinates as centroids results in reducing

the monitoring overhead.

5.6.5 End-to-End Evaluation

In this section, we evaluate ePulsar ’s ability to respect E2E latency constraints of the

exemplar UAV Swarm application, and validate the third hypothesis. The metric we use

for the evaluation is E2E message delivery latency – i.e., the elapsed time between a client

publishing a message to a topic and the receipt of the published message by all the clients

subscribing to that topic.

We consider the infrastructure topology described in Section 5.6.1 with 4 MEC zones

and emulate it using Containernet. We emulate each UAV swarm as an independent con-

tainer where the mobility of all the members of the swarm are identical. In the emulated

network topology, each zone consists of a network switch to which the broker and the Edge

Gateway connect. We create a link between the swarm’s container and the switch corre-

sponding to the swarm’s current MEC zone. When a swarm moves into a new zone, the

link to the previous zone’s switch is removed and a link to the new zone’s switch is created.

We emulate 8 independent swarms, each with 8 UAVs, following the Random Waypoint

mobility model in the city at a relatively high speed of 50 meters/sec1. Both leader and

followers generate 200 msgs/sec each of size 1 KB [51]. We perform this experiment for

10 minutes.

We show the E2E latency of a single representative topic from each swarm in Fig. 5.62.

1We use such a high speed to trigger several mobility-driven topic migrations during the experiment.
2To avoid cluttering the figure, we do not show all the topics of each swarm since their behavior is

identical.
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For each swarm. the E2E latency remains under the latency threshold (40 ms) for most

of the experiment duration. Transient violations of latency threshold occur when a swarm

moves into a different MEC zone than the one currently hosting the swarm’s topics. ePul-
sar ’s monitoring module detects such violations and triggers migration of the swarm’s

topics to the broker at the new MEC zone, after which the E2E latency returns back under

the latency threshold.

5.7 Related Work

There has been prior work in building edge-centric pub-sub systems, which include EMMA

[32], FogMQ [52], and MutiPub [53]. However, these systems do not meet the data com-

munication and/or the scalability needs of the aforementioned applications. EMMA does

not handle message reliability guarantees or at-least-once/exactly-once semantics that are

typically offered by commercial pub-sub systems. FogMQ relies on creating a clone in the

proximity of each device to handle communication on behalf of that device. With a large

number of participating clients, this design decision will be a huge resource burden on the

already scarce edge resources making the system non-scalable. MultiPub aims to provide

latency guarantees for multi-region pub-sub systems by relying on having detailed infor-

mation of inter-region latencies, as well as the network latency between every client-broker

pair. Although this might be tractable for deployments with a handful of cloud regions, the

much denser distribution of edge sites makes monitoring and maintaining such fine-grained

latency information infeasible.

5.8 Conclusion

In conclusion, ePulsar is an Edge-centric publish-subscribe system with a control-plane

designed to ensure satisfaction of end-to-end message delivery latency constraints for each

topic. The key control plane policy of ePulsar is selecting a broker for topic placement

from a set of geo-distributed brokers. ePulsar leverages the network proximity estimation

mechanism to select the broker that can satisfy message delivery latency requirement for

each topic. It uses the distributed end-to-end monitoring mechanism to detect when a

topic’s latency threshold is violated and accordingly triggers topic migration. Through

evaluations we show that ePulsar is able to satisfy the requirements of realistic situation-

awareness applications on a realistic Edge infrastructure topology.
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CHAPTER 6
ONEEDGE: APPLICATION ORCHESTRATION OVER GEO-DISTRIBUTED

EDGE INFRASTRUCTURE

Situation-awareness applications consist of multiple components that need to be deployed

on Edge sites to be able to serve clients. The Edge infrastructure is heterogeneous both in

terms of network topology and site capacity. Situation-awareness applications require that

clients are served by application components that are deployed in network proximity from

them so that the response-time requirement of the sense-process-actuate control-loops can

be met. Secondly, applications that involve collaboration between multiple clients require

that the clients close to each other are served by the same application instance. Finally,

continuous client mobility necessitates this mapping from client to application instances

to be dynamic, because mobility causes the location and network connectivity of clients to

change. Thus having developers be responsible for selecting the right Edge sites for hosting

application components and adapting the placement due to client mobility is a non-trivial

burden on the developers. Instead, developers expect an application orchestration service

to manage applications, such as Kubernetes.

However, the control-plane policies in cloud-based orchestrators such as Kubernetes are

insufficient to cater to these requirements. For one, Kubernetes uses a tag-matching based

approach for selecting candidate nodes for hosting an application, that is insufficient for

capturing the heterogeneity in network latency in Edge infrastructure or for location-aware

placement. Secondly, Kubernetes does not monitor observed latencies in the application or

the client location and therefore cannot detect the need to dynamically change the applica-

tion instance serving the client.

To overcome these limitations, we propose OneEdge – an application orchestrator de-

signed for serving situation-awareness applications on Edge infrastructure. OneEdge per-

forms latency-sensitive placement of application components so that the latency require-

ments of applications are met. It also performs mapping of clients to application instances

in a way that satisfies both latency and spatial affinity. Furthermore, it continuously moni-

tors observed latencies and client location to detect any latency or spatial affinity violations

and triggers an update in the client to application instance mapping if necessary. More

concretely, OneEdge makes the following contributions:

• OneEdge leverages the Network Proximity Estimation mechanism for performing
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latency-sensitive application placement over Edge infrastructure.

• OneEdge leverages the Dynamic Spatial Context Management mechanism for per-

forming location-aware mapping of clients to application instances.

• It uses the End-to-End Monitoring mechanism to detect if the response-time require-

ment of an application instance is violated and determines the root-cause of the vi-

olation. If the violation is caused by client mobility, it triggers the migration of that

particular client to a better application instance. If the violation is caused due to

compute overload at a particular application component instance, it triggers a parti-

tioning of the clients served by that instance and moves a subset of clients to another

instance. If the application component is one involving inter-client coordination, the

client partitioning is done in a location-aware manner by using the Dynamic Spatial

Context Management mechanism.

The roadmap of this chapter is as follows. Section 6.1 provides a background of application

orchestration on an Edge infrastructure and the application model. It also discusses in detail

the requirements of situation-awareness applications and the challenges of meeting those

requirements in an Edge setting. Section 6.2 presents the architecture of OneEdge. Sec-

tion 6.3 describes how OneEdge utilizes the network proximity estimation mechanism for

performing latency-sensitive application placement. Section 6.4 discusses how OneEdge
uses the Dynamic Spatial Context Management mechanism for location-aware application

placement. Section 6.5 describes how OneEdge uses the Distributed End-to-End Mon-

itoring mechanism to implement its violation detection and root-cause analysis policies.

Section 6.6 presents implementation details and Section 6.7 presents results of experimen-

tal evaluation of OneEdge. Section 6.9 concludes the chapter.

6.1 Basics of Application Orchestration in Edge Computing

In this section, we will set the stage for the discussion of how OneEdge leverages the

mechanisms proposed in this dissertation to implement control-plane policies for appli-

cation orchestration. We first present the application model that OneEdge supports, the

application requirements for which control-plane policies need to be designed, and the

challenges faced by in an Edge setting due to the dynamism in workload.
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6.1.1 Application Model

Situation-awareness applications process data incoming from sensors through a series of

functions, each extracting out certain information from the input data or performing a cer-

tain operation. This can be naturally modeled as a Data Flow Graph (DFG) [54]. Each node

in a DFG represents a processing function and each directed edge represents a data depen-

dency between the upstream and downstream node. In OneEdge, we assume a special case

of the more general DFG model, that is a pipeline of functions. As shown in Fig. 6.1a, each

DFG node, or application component, is an independent actor, and is represented by a level.

Level 0 is assigned to the most downstream component, and the level number increases as

we go upstream toward the client. Each component reads from a queue of input events that

is populated by the upstream component and sends output events to the downstream com-

ponent. An application component is also able to send messages to an upstream component

(including the client).
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(b) Actual deployment of a pipeline-based ap-
plication model resembles a forest with multiple
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Figure 6.1: Description of the application model.

Although applications are modeled and specified as a linear pipeline, upon deployment

for multiple clients, the set of application components and the data dependencies among

them resemble a forest, as shown in Fig. 6.1b. This is because in order to serve many

geo-distributed clients, the same application component needs to have several instances,

which we call workers, deployed in network proximity of clients so that communication

latency to the application instance can be minimized and real-time response made possi-

ble. However, not all pipeline components have stringent latency requirements, and thus

can serve multiple clients. Each tree in the forest has the most downstream application
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component (with level 0) as the root node and clients as leaf nodes. Each root-to-leaf path

in a tree is a complete application pipeline, and we call each such path except the leaf

node an application instance. An application component that serves more than one up-

stream components is essentially processing information gathered from multiple clients,

and therefore is able to enable state sharing among clients. However, even for applica-

tions that don’t share state among clients in their logic, sharing one or more components

in the application pipeline among multiple clients can be beneficial. The benefit of shar-

ing pipeline components comes from the lower memory footprint of sharing an application

component compared to running multiple independent application components to serve the

same number of clients.

Filter FusionObject 
Detection

Fused World View
From Neighboring 

Region

Fused World View

Fused World View
From Neighboring 

Region

Figure 6.2: The collaborative driving assistance application modeled as a pipeline of com-
ponents.

For example, the Collaborative Driving Assistance application can be modeled as a

pipeline of application components as shown in Fig. 6.2. The Client component performs

object detection on an input LiDAR sensor stream to generate a list of objects that it can

see in its immediate field of view. The detected object features are first filtered by a Filter

component and then fused with features from other cars in the same region by the Fusion

component. The Fusion process aggregates the individual views from multiple vehicles that

are in close spatial proximity of one another to create a composite view. This composite

view is fed back to the vehicles so that they can improve their lane control and collision

avoidance decisions. Each Fusion component instance receives the fused world view from

instances responsible for the neighboring regions to incorporate into its own processing.

This information is needed to serve clients that are located at region boundaries.
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6.1.2 Decisions taken by an Application Orchestrator

Effective orchestration of situation-awareness applications on Edge infrastructure requires

two main decisions that need to be taken by the control-plane. These two decisions are

(1) mapping clients to application instances; and (2) deploying and managing resources for

application instances on Edge sites.

Mapping Clients to Application Instances

We now formally describe the decision concerning mapping clients to application instances

for a specific application. Let C denote the set of clients for the given application and I
denote the set of running instances of all the components of this application. As mentioned

before, each application component in I as well as each client in C has an associated level,

that indicates the stage number in the pipelined application model. The mapping of clients

and upstream application components to downstream components is defined by a function

M, defined in Eq. (6.1) and Eq. (6.2).

M : (C ∪ I)× Z+ → I (6.1)

M (c, l) = App Component of level l serving c (6.2)

The control-plane needs to compute such a mapping to ensure that the application require-

ments discussed in Section 6.1.3 are satisfied.

Deployment of Application Instances on Edge Sites

Each application instance, comprising all the components in the application’s pipeline

model, needs to be deployed on a set of compute resources. The placement of application

components (I) on the set of compute resources (R) can be represented by the function P ,

as described in Eq. (6.3) and Eq. (6.4).

P : I → R (6.3)

P (a) = Compute resource hosting a (6.4)
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Figure 6.3: A generic pipeline that shows the response time constraints that applications
are allowed to specify. The response time of a given application component is the time
duration between the client generating a message to the given component processing the
message and the result arriving at the client.

The placement of application components is computed in a manner that meets the response

time requirements of the application, as described in Section 6.1.3.

6.1.3 Application Requirements

We now discuss the requirements that OneEdge allows application developers to specify

for an application.

Response Time of Application Component

Application developers are able to specify the response time requirement for each compo-

nent in the application pipeline model. Response time for an application component is the

time elapsed between when a specific data-item/event is generated by the client to when

it is processed by the application component and the result is received by the client. This

includes the network transmission latency and processing time of all the upstream com-

ponents and the final network latency between the given component and the client. Let

us assume an application with the application model being a pipeline with L stages. The

response time constraint for each application component should be satisfied for each client

of the given application. The response time for client c from a worker with level l is cal-

culated using total processing latency (defined in Eq. (6.5)), that is calculated recursively

using the value for the upstream component. The base case is when the level l corresponds

to the level of the client itself, in which case, the total processing latency is equal to the

processing latency on the client.

total proc (l) = total proc (l + 1) +N(l+1,l) + Cl (6.5)
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response time (l) = total proc (l) +N(L−1,l) (6.6)

Spatial Affinity

Several situation-awareness applications such as the collaborative driving assistance appli-

cation (Fig. 6.2) consist of components that are tied to a specific geographical area, and

are meant to serve clients located in that geographical area only. This is meant to enable

information sharing between clients that are in close spatial proximity to one another. We

denote the geographical area served by an application component as its spatial context. The

partitioning of the geographical space into spatial contexts is application-specific. More

precisely, the application developer would specify a function S that maps a geographical

location (x, y) to a unique spatial context sz (identified by a positive integer z) (Eq. (6.7)).

S : X × Y → {s0, s1, · · · } (6.7)

X = {x ∈ R | − π < x < π} (6.8)

Y = {y ∈ R | −π
2

< y <
π

2
} (6.9)

For an application component of level l that needs to facilitate inter-client information

sharing, the control-plane assigns each spatial context sz with an application component

and map all clients located within that spatial context to that instance. Multiple spatial con-

texts can also be mapped to the same application instance. However, the main requirement

is that all clients within given spatial context should be served by the same application

instance so that they can effectively share state with other clients in the same spatial con-

text. The quality of this client-application-instance mapping is quantified using the Spatial

Alignment metric, as shown in Eq. (6.10). The Spatial Alignment metric is defined for each

spatial context sz that is served by the application component instance az at level l. Ideally,

the spatial alignment metric should be equal to 1 for all spatial contexts.

SA (az) =
|{c ∈ C : c.loc ∈ sz :M (c, l) = az}|

|{c ∈ C : c.loc ∈ sz}|
(6.10)
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6.1.4 Application Abstract: Specifications provided by the Developer

OneEdge expects the developer to provide specifications for each application, that should

contain information that will be used by the control-plane for making policy decisions.

The application abstract should contain the number of levels in the application pipeline, the

expected inter-arrival time of sensor data at each client and the following fields for each

level of the pipeline.

• The response time constraint for that level, that is used by the application scheduling

policy in the control-plane to ensure that the response time observed by all workers

that belong to this particular application and level satisfy the constraint. This infor-

mation is also used by the violation detection policy to detect a violation in response

time and trigger a reconfiguration.

• The number of CPU cores and memory (in KB) required by a worker of that level.

These are denoted by CPUreq and MEMreq respectively.

• The expected processing latency of the worker for different number of clients con-

nected to it. This information is obtained by offline-profiling of the application com-

ponent by the developer. This information is used by the application scheduling

policy to estimate the processing latency of a worker.

• Maximum number of clients that can be connected to a worker of that level. This in-

formation is obtained by offline profiling of the application component and determin-

ing when the worker cannot handle any more clients without a significant increase in

processing latency. It is used by the application scheduling policy to select candidate

workers for reuse.

6.1.5 Challenges in Achieving Application Objectives

We now discuss the challenges that a system like OneEdge would encounter when orches-

trating situation-awareness applications on Edge infrastructure.

Heterogeneity in Edge Infrastructure Topology

The network connectivity between Edge Sites that belong to the same geographical area

is heterogeneous. Communication latencies between Edge Sites and between clients and

Edge Sites depends on how the Edge Sites and clients connect to the network and the
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peering between the different providers serving these entities. For a particular instance of

an application, not all Edge Sites are equally suitable for hosting the different application

components. Therefore when selecting the Edge sites for hosting application components,

it is necessary that the response-time of all the relevant application components are under

their respective thresholds.

Client Mobility

Typical situation-awareness applications have clients that are inherently mobile, for exam-

ple, vehicles, pedestrians, UAVs, etc. The mobility of clients creates two main challenges.

For applications involving inter-client coordination, the mapping of a client to an applica-

tion component instance is based on the spatial context of that instance and the location of

the client. Due to client mobility, the client’s location might change so much that it exits the

spatial context of the current application component instance, and thus is not able to coordi-

nate with the correct subset of other clients that are in its physical proximity. This requires

that the client be migrated to the application component instance that has the correct spatial

context that corresponds to the current location of the client. Secondly, client mobility can

result in a change in the network routing and hence communication latency to and from the

application instance. This change in communication latency affects the response time for

that client by the current application instance. This necessitates that the client be migrated

to an application instance that can satisfy the response time requirements.

Changes in Processing Requirements of Applications

The frequency of events generated by different application components in an application

pipeline changes over time. This is either due to the mobility of clients that changes the

properties of the environment sensed by the clients. For instance, in the Collaborative Per-

ception application, the number of neighboring vehicles output by the Detection component

(in the client) is a function of the density of neighboring traffic, that changes with time as

the ego vehicle moves. The change in processing requirements of applications can also

happen for static sensors, such as CCTV cameras, when the environment they are sensing

undergoes changes. For instance, in the View-Fuse application, the frequency of events

generated by the Detection component depends on the number of cars in the field-of-view

of a camera, that changes over time.
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6.1.6 Edge-centric Policies for Application Orchestration

The control plane of OneEdge contains several edge-centric policies for application or-

chestration that can satisfy application requirements under the aforementioned challenges.

Firstly, OneEdge’s application placement policy takes into account response time thresh-

old of application components as well as spatial affinity requirements. Secondly, OneEdge
performs continuous monitoring of application instances to detect violation of response-

time or spatial affinity requirements. In the case of a violation, it performs a root-cause

analysis to detect the root-cause of the violation and triggers an appropriate reconfiguration

action. The reconfiguration action depends on the nature of the violation. If the violation

is due to communication latency increase between an upstream and downstream compo-

nent, the downstream component instance is mapped to a different instance of the upstream

instance so that the latency requirements can be satisfied. If the violation is due to com-

pute overload, a portion of the clients served by the overloaded instance are migrated to a

different application instance. If the overloaded instance is spatially constrained, then the

partitioning of clients is done so as to ensure that the resulting mapping of clients satisfies

spatial affinity requirements.

6.2 Architectural Components of OneEdge

Now we present the system architecture of OneEdge, covering the design choices and

deployment characteristics of each component of the system. We will first provide a high-

level overview of the system, with an emphasis on describing how OneEdge operates and

the typical operations of each component. Then we will discuss the functions of each

component in more detail.

6.2.1 High-level System Architecture

Fig. 6.4 shows the high-level system architecture of OneEdge. There are three top-level

entities Clients, Edge Sites and the Controller. Client entities represent all client devices,

such as autonomous vehicles, drones, etc. that run the client component of situation-

awareness applications. Clients are inherently mobile and geo-distributed. The client mod-

ule of situation-awareness applications hosted by them require connection to an application

pipeline that can carry out the rest of the functionality of the application. Each client is also

equipped with sensor and actuator devices. Sensors on the client act as the source of data

for the application pipeline.
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Figure 6.4: OneEdge’s System Architecture. A central controller contains the Sched-
uler, which receives requests either directly from clients or from the monitoring subsys-
tem through violation detection. The Scheduler makes decisions by reading the Aggregate
State. Decisions made by the Scheduler are executed on the Edge sites by the Transaction
Executor component.

Edge Sites are geo-distributed entities with compute and storage resources that are able

to run instances of application components and serve clients. The Controller is a logically-

centralized entity that is responsible for performing the main decisions of an application

orchestrator, i.e., mapping upstream application workers to downstream workers, and de-

ploying and managing workers (Section 6.1.2). It does so by maintaining the state of the

entire infrastructure, including clients, Edge sites and the workers running on Edge sites.

The controller receives requests from clients for connection to an application pipeline and it

uses the application scheduling policies against the aggregate state to make this decision. In

addition, the controller also hosts the policies for detecting violation of application require-

ments and triggering reconfiguration actions by invoking the aforementioned application

scheduling policies.

6.2.2 Client

In the OneEdge application orchestration system, a Client consists of three key components

- the Client Worker that hosts the client application module, Worker Agent that acts as the

interface between the application module and the rest of the system and the Sensor and

Actuator devices, that are the source and sink of data.
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Client Worker

The Client Worker hosts the application logic that needs to run on client devices. It is

responsible for communication with the sensor and actuator devices present on the client.

The Client Worker processes data from the sensor and sends the extracted information to

the downstream application component. The Client Worker also receives information from

the downstream component that it processes to generate commands for the actuator devices.

Client Worker Agent

The Client Worker Agent is an instance of OneEdge’s Worker Agent, that acts as the in-

terface between the application logic and the rest of the system. Firstly, the worker agent

calls the on message arrival handler in the client worker whenever a message is received

from the sensor. Second, the worker agent is responsible for communicating with the con-

troller to establish a connection with a downstream application component. When the client

worker generates a message that needs to be sent to the downstream worker, the worker

agent is responsible for sending it to the worker agent of the downstream worker, that then

passes it to the corresponding application module. Furthermore, it also serves as a part of

the monitoring subsystem, whereby it collects metrics related to the execution of the client

worker and forwards them for further processing.

6.2.3 Edge Site

An Edge site consists of three main components, as shown in the right blow-up in Fig. 6.4

- the Site Agent, Container Runtime and Worker Agent.

Site Agent

The Site Agent component is responsible for managing the resources on the site, along with

the application component instances running on the site. It interfaces with the central Con-

troller for the scheduling of applications on that Edge site. The Site Agent is responsible

for launching application component instances on the Edge Site and allocating resources to

those instances on behalf of the controller.

Container Runtime

The Container Runtime is the software platform upon which the various application com-

ponent instances run as containers. The container runtime provides primitives for launching
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containers based on an application-specific image, allocation a specific amount of compute

and memory resources to containers to ensure predictable performance and isolation, ac-

cess to a filesystem for storing ephemeral state and communication with other entities in

the system.

Worker Agent

The Worker Agent is a software agent that is deployed alongside the application logic

within each application component instance’s container. It acts as the interface of the ap-

plication logic for that specific application component with the rest of the components and

the outside world. It does so by implementing the various interfaces provided to the appli-

cation developer. The worker agent facilitates communication between various application

instances by allowing upstream and downstream components to send messages to each

other, as well as trigger callback functions in the application logic upon message arrival.

Furthermore, it also serves as a part of the monitoring subsystem, whereby it collects met-

rics related to the execution of the application component and forwards them for further

processing.

6.2.4 Controller

The Controller is responsible for application scheduling and management at a global-scale

across Edge sites. It receives requests for application deployment and reconfiguration from

clients and the monitoring subsystem respectively. These requests are processed by the

Scheduler, that turns these requests into a transaction (set of actions) to be executed on one

or more Edge sites. The transactions are executed on the Edge sites by the Transaction

Executor component. We will discuss each of the components in greater detail next.

Scheduler

The Scheduler picks up one request at a time from the Controller’s request queue and

computes a scheduling decision for the request. The scheduling decision is computed by

executing the placement algorithm for mapping the requesting client to a suitable appli-

cation instance that can satisfy the response time and spatial affinity requirements. If no

such application instance exists, a new instance is instantiated and suitable Edge sites for

hosting the application components are selected. In the case of a reconfiguration request

for updating allocation of an application instance, the scheduler computes the final resource

allocation for the components of that application instance.
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The Scheduler reads the Aggregate Resource State to check the current available re-

source capacity on each Edge site, and updates the state with changes to the resource al-

location. Hence, the Aggregate State is optimistically updated even before the scheduling

decision has actually been applied on the specific Edge sites. By doing so, the process

of compute application scheduling decisions is decoupled from the actual enforcement of

those decisions on the Edge sites. The scheduling decision is in the form of a Transaction,

that is a collection of the actions that need to be taken to execute the scheduling decision.

The constituent actions of a transaction need to executed on one or more Edge sites.

Aggregate State

The Aggregate State contains information about the Edge Sites, application clients and

workers, that is used by the application scheduling policy for making decisions. The Ag-

gregate State contains the following data structures.

• sites. The Aggregate State maintains a dictionary containing all the Edge Sites’ in-

formation. The key of the dictionary is the ID of the Edge site, while the value is an

EdgeSiteMetadata data structure that contains the following fields.

– The total CPU and memory capacity of the Edge site CPUtotal,MEMtotal.

CPUtotal is expressed in number of CPU cores, while MEMtotal is expressed

in kilobytes (KB).

– The network coordinate of the Edge site, denoted by NCsite id.

• clients. The Aggregate State maintains a dictionary containing information of all the

clients present in the system. The clients dictionary maps the ID of a client to an

instance of the ClientMetadata data structure, that contains the following fields.

– The application ID of the client, denoted by app id.

– The network coordinate of the client, denoted by NCclient id.

• workers. The Aggregate State maintains information about the application workers

currently hosted on edge sites in the workers dictionary. The key of the workers

dictionary is the ID of an Edge site, and the value is a lower-level dictionary specific

to that Edge site. The lower-level dictionary maps the ID of a worker to an instance

of the WorkerMetadata data structure, that contains the following fields describing

a particular worker.
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– The ID of the Edge site on which the worker is hosted, denoted by site id.

– The number of CPU cores and memory (in KB) allocated to the worker, denoted

by CPUalloc and MEMalloc respectively.

– The application ID and level of the worker, denoted by app id and level respec-

tively.

– The number of clients connected to this application worker, denoted by curr clients.

• parent map. As discussed in Section 6.1.1, clients and application workers have

a parent-child relationship, wherein the parent worker for a child client or worker

represents the downstream worker that receives output data from the child client

or worker. A worker can have one or more children, but at most one parent. The

aggregate state stores this parent child relationship in the form of a dictionary, that

maps the ID of the child worker or client to the ID of the parent worker and the ID

of the site on which the parent worker is hosted.

As described in Section 6.2.4, the Aggregate State is used by the Scheduler to make ap-

plication scheduling decisions. For subsequent requests’ processing to be aware of the

decisions made for the current request, the Aggregate State is updated with the current

request’s decisions.

Transaction Executor

The Transaction Executor module is responsible for executing the decisions taken by the

Scheduler on the Edge Sites. It sends commands to the Site Agents for instantiating workers

and allocating resources to them on the target Edge sites.

6.3 Latency-aware Application Scheduling using Network Proximity Estimation

6.3.1 Deployment of Network Coordinate Agents

Network Coordinate agents are deployed on all Edge Sites’s Site Manager modules, Edge

Gateways and Clients. The agents on the clients don’t participate in the decentralized net-

work coordinates protocol, but rather compute their own network coordinate by using the

coordinate of their current Edge Gateway. All agents periodically send their current net-

work coordinate to the controller, that maintains them in its aggregate state can be queried

by the application scheduling policy.
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6.3.2 Estimating Response Time from an Application Worker

Estimating the response time observed from a worker (instance of an application pipeline

stage) is equal to the sum of the processing and communication latencies of all the upstream

workers including itself and the communication latency from the given worker back to the

client.

Estimating the communication latency is done by using the Network Proximity Estima-

tion mechanism. The network latency between the client and its parent worker is computed

by using the network coordinate of the client and the network coordinate of the Edge Site

hosting the worker. Similarly the network latency between a parent and a child worker is

computed using the network coordinates of the two Edge Sites hosting those workers.

The processing latency of a worker is derived from the developer’s specification, pro-

vided as part of the application abstract. In the context of OneEdge, queuing latency at a

worker is also included in processing latency. The processing latency of a worker depends

on the number of clients it is serving. The developer is expected to perform offline profiling

of each application component to generate the distribution of expected processing latencies

for a given number of clients served by a worker.

6.3.3 Control-Plane Policy for Latency-aware Application Scheduling

The Latency-aware Application Scheduling policy aims to place applications components

on the geo-distributed Edge infrastructure such that response time requirements of each

application component is met as well as scarce Edge resources are used only for latency-

sensitive application components. A greedy placement policy would place all components

of the application on the Edge, that would result in scarcity of resources to support new

clients.

OneEdge’s latency-sensitive application scheduling policy is illustrated in Algorithm 6.

The algorithm jointly performs the mapping of upstream application workers to down-

stream ones along with the creation of new workers if they don’t exist. The algorithm starts

with the client worker, and tries to map it to an existing downstream worker or create a

new downstream worker, and so on. This process is executed in the find pipeline func-

tion, that performs a backtracking search to find the right downstream worker to map the

current worker to, assuming that rest of the downstream workers will also find a suitable

mapping. In every step of this process, the algorithm maintains the total processing latency

that has been consumed up to and including the current worker. Line 3 shows that when

mapping the client worker to a downstream component, the current cumulative total pro-
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cessing latency is assigned a value equal to the processing latency of the client worker. The

function find pipeline recursively computes the optimal workers for each component of

the application pipeline. The result of the find pipeline function contains a list of work-

ers for each downstream application component along with information about whether that

worker already existed in the system or if it needs to be created (line 7). The metadata of

those workers that need to be created is passed to the Transaction Executor module (line

13).

Algorithm 6 Latency-aware Application Scheduling Policy
Require: Client c
Require: Aggregate State A
Require: Application Abstract A

1: appid← A.app id
2: Lclient ← A.num levels− 1 . Pipeline level of the client
3: lattotalproc ← c.proc latency() . Total processing latency consumed so far
4: P ← find pipeline

(
c, c, Lclient − 1, lattotalproc , A, null

)
5: W ← [] . Worker launch actions
6: child← c.id
7: for (w, create) ∈ P do . Establishing parent-child relationship in aggregate state
8: A.parent map[child]← (w.worker id, w.site id)
9: A.workers[w.site id][w.worker id].curr clients++

10: child← w.worker id
11: if create == True then
12: W+ = (w) . If w is a new worker, it is scheduled to be launched
13: launch workers (W )
14: return P

The find pipeline function is the central piece of the application scheduling policy.

It takes a particular worker as input and the cumulative total processing latency up to that

worker and tries to find a mapping for the rest of the downstream application components.

It does so recursively by trying to map the input worker to an immediately downstream

worker, and then calls the function for this downstream worker. If it cannot find a mapping,

it backtracks and tries another downstream worker.

First, the function tries to reuse existing application workers, since each application

component can serve more than one client. It gathers the candidates for worker reuse

in line 5 (pseudocode for this function is shown in Algorithm 8). For each such reuse

candidate, if it can serve an additional client (lines 8-9) and if the response time will be

less than the threshold (line 10), this candidate is considered, and a recursive call is made

to find a mapping for the remaining components. If the recursive call returns a successful
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result, then the search is complete and the result is returned, along with the chosen worker

(lines 11-13).

If no reuse candidates work, the policy will need to create a new worker. To do so,

it selects the site that should hold this worker such that the response time constraint is

satisfied. It computes the maximum network latency that can exist between the current

worker and the candidate site and from the candidate site back to the client (line 16), that is

the difference between the latency threshold of the application component to be created and

the sum of the total latency spent so far along with the expected processing latency of the

application worker to be created. Any Edge site within this latency from the current worker

and client can host the downstream worker. The pseudocode of finding candidate sites is

presented in Algorithm 9. If the candidate site has enough free resources and it can satisfy

latency requirements, then a new worker is added on the site (line 19) in the aggregate state

and a recursive call to the algorithm is made (line 21). If the recursive call fails to find a

solution, the newly created worker is deleted and the next candidate site is tried (line 23).

6.4 Spatial-Affinity-aware Application Scheduling using Dynamic Spatial Context
Management

An application can have multiple components that are tied to their specific spatial contexts.

The constraint imposed by OneEdge is that the spatial context of an upstream component

should be completely present inside the spatial context of the downstream component. This

is done to ensure that the each instance of the downstream component has only one parent

instance.

6.4.1 Flexible Partitioning of Geographical Space

For each of the application components that are spatially constrained, the control-plane

maintains a KD-Tree based spatial partitioning, as discussed in Section 3.2. The definition

of the application abstract is updated so as to include information about which components

of an application are spatially constrained. The specification of an application component

has a boolean attribute isSpatiallyConstrained, that is set to True for components that

have a spatial context. OneEdge uses the Aggregate State to store the spatial partitioning

for components belonging to different applications. It does so by maintaining a dictio-

nary spatial partitionings, for which the key is a pair of application ID and application

component level, and the value is the spatial partitioning for that level of the application

pipeline.
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Algorithm 7 find pipeline
Require: Child worker/client child
Require: Client client
Require: Worker level to start search Lw

Require: Application abstract A
Require: Cumulative processing latency spent so far lattotalproc

Require: Worker to select forcefully force worker
1: if Lw < 0 then . Search is complete
2: return []
3: L← A.level cfgs[Lw]
4: appid← A.app id
5: M←A.client mapping . Mapping of clients to workers
6: reuse candidates← get reuse candidates (appid, Lw, force worker)
7: for c ∈ reuse candidates do
8: if c.curr clients < L.max clients then
9: latproc ← lattotalproc + NetworkRTT (c, child) /2 +
proc latency (L, c.curr clients+ 1)

10: latresponse ← latproc +NetworkRTT (c, client) /2
11: if latresponse < L.response time threshold then
12: P ← find pipeline (c, client, Lw − 1, latproc, A,M (c, Lw − 1))
13: if P 6= null then
14: return [c.id, c.site id, False] + P

15: if force worker 6= null then
16: return null
17: e2e slack ← L.response time threshold− lattotalproc − proc latency (L, 1)
18: C ← get candidate sites (child, client, e2e slack, L.CPUreq, L.MEMreq)
19: for site ∈ C do
20: w ← A.create worker (site, L)
21: latproc ← lattotalproc +NetworkRTT (site, child) /2 + proc latency (L, 1)
22: P ← find pipeline (w, client, Lw − 1, latproc, A, null)
23: if P == null then
24: A.delete worker (w)
25: else
26: return [w.id, site, T rue] + P

27: return null
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Algorithm 8 get reuse candidates
Require: Application ID appid
Require: Worker Level worker level
Require: Candidate to be forced force candidate

1: C ← {}
2: if force candidate 6= null then
3: C ← C ∪ {force candidate}
4: else
5: for site id ∈ A.workers do
6: for worker id ∈ A.workers[site id] do
7: w ← A.workers[site id][worker id]
8: if w.appid == appid and w.level == worker level then
9: C ← C ∪ {w}

10: return C

Algorithm 9 get candidate sites
Require: Child worker/client c
Require: Client client
Require: Max network latency from c to candidate site and back to client nw latmax

Require: Free CPU and memory needed on the candidate site CPUavail and MEMavail

1: C ← []
2: for site id ∈ A.sites do
3: (CPUavail,MEMavail)← A.get free resources (site id)
4: nw lat← NetworkRTT (c, site id) /2 +NetworkRTT (client, site id) /2
5: if nw lat ≤ nw latmax and CPUreq ≤ CPUavail and MEMreq ≤ MEMavail

then
6: C ← C ∪ {(site id, nw lat)}
7: sort C by nw lat in descending order
8: return C
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The KDTree leaf node associated with a given spatially constrained application com-

ponent instance is split under two scenarios: (i) when the number of clients mapped to that

instance exceeds the maximum number of clients specified by the application developer,

and (ii) when OneEdge’s Monitoring Subsystem detects a violation of response time for

a client mapped to the given instance and the root-cause of the violation is the processing

latency on the instance.

6.4.2 System Components for Monitoring Spatial Context

The controller’s aggregate state maintains the spatial partitioning information for each ap-

plication component that is spatially constrained. Each tile in the spatial partitioning can be

mapped to a worker, that is intended to serve clients in the geographical area corresponding

to the tile. Application scheduling decisions are taken by using the spatial partitioning in-

formation to ensure that clients inside a given tile are served by the worker corresponding

to that tile only.

Each client’s worker agent maintains a cache of the current tile of the spatial partition

in which it belongs, along with periodically monitoring its current location. If the current

location leaves the geographical area of the tile, the worker agent triggers a migration

request to the controller, that then maps the client to a worker that corresponds to the new

location. The connection information about the new worker is sent to the client’s worker

agent, along with the bounding-box of the new tile. The client worker agent replaces the

tile in its cache with the new tile. In the event of a tile invalidation due to split or merge

operation by the controller, all the worker agents that maintain a cache of the tile that was

invalidated are notified of the change, and they refresh their cache.

6.4.3 Control-Plane Policy for Spatial-Affinity-aware Application Scheduling

Application scheduling in a spatial-affinity aware manner is an extension of the latency-

sensitive application scheduling presented in Section 6.3.3, by making the following addi-

tions. Firstly, when creating a worker on a candidate Edge site, we perform the steps as

outlined in Algorithm 10.

Second, the function get reuse candidates is modified to return the worker corre-

sponding to the tile in which the client is currently located as the only possible candidate.

Third, when the application placement policy makes a deployment decision, it checks

the number of clients that are mapped to each instance in the application pipeline. In case

for some spatially-constrained worker, the number of clients connected to it exceeds the
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Algorithm 10 Creating a Spatially Constrained Worker on a Candidate Edge Site

1: w ← A.create worker (site, L)
2: if L.isSpatiallyConstrained then
3: P ← A.spatial partitionings[(appid, worker level)]
4: P .tiles[tile id]← w
5: P .workers[w.id]← tile id

6: P ← find pipeline (w,worker level − 1, e2e, app abstract, null)
7: if P == null then
8: A.delete worker (w)
9: delete P .tiles[tile id]

10: delete P .workers[w.id]
11: else
12: return [w.id, site, T rue] + P

Algorithm 11 get reuse candidates: With spatial context included
Require: Application ID appid
Require: Worker Level worker level
Require: Level specifications L
Require: Client loc loc
Require: Candidate to be forced force candidate

1: C ← {}
2: if L.isSpatiallyConstrained then
3: P ← A.spatial partitionings[(appid, worker level)]
4: tile id← P .get tile id (loc)
5: if tile id ∈ P .tiles then
6: if force candidate == null or force worker.id == P .tiles[tile id].id then
7: C ← C ∪ {P .tiles[tile id]}
8: else
9: Perform regular functionality of get reuse candidates as in Algorithm 8

10: return C
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maximum number specified in the application abstract, a trigger for splitting the tile is

raised. Fourth, the control-plane handles the event of invalidation of a tile by using the

algorithm described in Algorithm 12. This event happens whenever a tile is split or merged

with a sibling.

Algorithm 12 Handling tile invalidation
Require: Spatial Partitioning for that worker’s level P
Require: ID of the tile that is to be invalidated tile id

1: w ← P .tiles[tile id]
2: delete P .tiles[tile id]
3: delete P .workers[w.id]
4: C ← A.get clients (w) . Get all clients served by w
5: disconnect subtree (w) . Disconnect all workers from parent in subtree rooted at w
6: for c ∈ C do
7: Submit deployment request for c

6.5 Distributed Monitoring in OneEdge

The goal of monitoring in OneEdge is to detect violations of performance SLO, that in this

case is application response time. The response-time constraint is specified for one or more

components of the application pipeline. The objective of OneEdge is to detect when any

constraint on response-time in an application instance is violated, identify the root-cause

of the violation and trigger an appropriate reconfiguration action to alleviate the violation.

In this section, we will discuss how OneEdge uses the distributed monitoring mechanism

proposed in Section 3.4 to achieve the aforementioned objectives.

6.5.1 Definition of Metrics used by OneEdge

Each application component instance registers the processing latency metrics with the mon-

itoring subsystem. The processing latency at the given application component instance is

measured by the worker agent by monitoring the amount of time taken to process each

data-item at the corresponding worker.

- entity_id : <ID of application component instance>

level : <level in application pipeline of component>

app_unit: <ID of root worker in the application tree>

metric: "proc_latency"
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Each client reports a metric that captures its current network coordinate.

- entity_id : <ID of Client>

level : <level of client in application pipeline>

app_unit: <ID of root worker in the application tree>

metric: "nw_coordinate"

Each Edge site also reports a metric to capture its network coordinate.

- entity_id : <ID of Edge Site>

app_unit: <ID of Edge Site>

metric: "nw_coordinate"

In order to meet the aforementioned objectives of detecting violations of latency re-

quirements and identify root-cause of the violation, it is only necessary to process the

metrics belonging to a specific application unit together. In OneEdge the application unit

is identifier of the root worker, because it is common among the application instances of all

the clients connected to it, as shown in Fig. 6.1b.

6.5.2 Deployment of Distributed Monitoring Components

Each worker agent collects measurements of processing latency and network coordinate

and records them to a locally running Metrics Agent. Each Site Agent also runs a Metric

Agent to record measurements of its network coordinate. The Multi-Metric Aggregation is

carried out in a centralized manner, and is co-located with the controller.

6.5.3 Violation Detection Policy

Algorithm 13 presents the violation detection policy used in OneEdge to detect the viola-

tion of latency SLO for an instance of an application component. The algorithm is invoked

periodically at the end of every bucket for every application unit in the system. The ID

of the application unit, the abstract of the application and the current bucket are provided

as inputs to the algorithm. The algorithm first filters the metrics from the metrics reposi-

tory that correspond to the given application unit (line 1) and then extract the set of clients

among those metrics (line 2). In lines 3-7, the algorithm creates a dictionary called entities

that stores the processing latency for each worker that belongs to the given application unit.

The rest of the algorithm iterates over the set of clients connected to the given application

unit, and checks if any client is facing SLO violation at any downstream worker. For each
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client, the algorithm iterates through all levels of the application pipeline, while maintain-

ing the cumulative processing latency time (line 18). If the response time at a given level

exceeds the threshold, the client is marked as violated along with the level whose latency

threshold was exceeded.

It is important to note that for a given client, there could be multiple workers down-

stream from that client that could be facing SLO violation, however, the given violation

detection algorithm only reports the upstream-most worker as violated. This is because fix-

ing the violation of the upstream-most worker will also result in reconfiguring the workers

downstream from it.

Algorithm 13 End-to-End Processing Latency Violation Detection policy
Require: ID of root worker IDroot

Require: Application abstract APP
Require: Current bucket bcurr

1: MD ← Fetch metrics where AppUnit == A00

2: C ← {m.entity id∀m ∈MD : m.level == APP.num levels− 1}
3: E ← {} . Dictionary to hold processing latencies for each worker
4: for m ∈MD do
5: if m /∈ E then
6: E[m.entity id]← {}
7: E[m.entity id][m.metric]← m

8: violators← {}
9: for c ∈ clients do

10: child← c
11: lattotalproc ← E[child][proc latency][bcurr]
12: level← APP.num levels− 2 . Starting from parent of client
13: while level ≥ 0 do . Iterating over all downstream levels of app pipeline
14: w ←M (child)
15: L← A.level cfgs[Lw]
16: NCchild ← Network coordinate of child
17: NCw ← Network coordinate of w
18: lattotalproc ← lattotalproc + dist (NCchild[bcurr], NCw[bcurr]) /2 +

E[w][proc latency][bcurr]
19: latresponse ← lattotalproc + dist (NCc[bcurr], NCw[bcurr]) /2
20: if latresponse ≥ L.response time threshold then
21: violators← violators ∪ {(c, level)}
22: break
23: level← level − 1

return violators
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6.5.4 Violation Root-Cause Analysis Policy

For each client undergoing latency SLO violation, as detected by the violation detection

policy in Algorithm 13, OneEdge used the violation root-cause analysis policy (Algo-

rithm 14) to identify the source of performance violation. The algorithm first extracts the

component latencies that resulted in the violation for the given client c (lines 4-9). Using

the component latencies, it computes the response time observed in the current monitoring

window (line 10) - that would be over the latency threshold for level lviol. To determine the

root cause of this violation, the rest of the algorithm determines which component latency

deviated the most from pre-violation levels to the current window. To do so, it first finds

the monitoring window (bucket) in which the client did not face SLO violation (line 12),

and computes the response time at that time (line 13). Then it computes the relative change

in each component latency with respect to the change in observed response time (lines 14-

16). Finally, the component that underwent the most change is returned as the source of the

violation.

Once the culprit causing violation for a given client is identified, an appropriate recon-

figuration action needs to be triggered. In the following, we discuss the reconfiguration

action triggered by OneEdge in three types of culprits.

• If the violation is due to communication latency of worker w to its downstream com-

ponent, then a migration request for w is sent to the control-plane. In response to

this request, the control-plane would use the application scheduling policy to place

all the clients connected to w to a pipeline instance that can satisfy the latency SLOs.

• If the violation is due to processing latency of worker w that is not spatially con-

strained, then OneEdge tries to migrate a portion of the clients connected to w to

another pipeline instance so as to reduce the compute workload on w.

• If the violation is due to processing latency on a spatially constrained worker w, then

OneEdge triggers a split operation for the tile corresponding to w, resulting in a

division of clients connected to w into two different pipeline instances.

6.6 Implementation

All the system components of OneEdge have been implemented using C++ and tested on

Ubuntu 18.04. The communication between the system components has been implemented

using ZMQ, while the serialization and deserialization of messages has been done using
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Algorithm 14 Violation Root-Cause Analysis
Require: Client undergoing latency SLO violation c
Require: Application level with latency SLO violated lviol
Require: response time SLO for level response time threshold
Require: Current bucket bcurr
Require: Bucket size B
Require: Entities in client c’s application unit E

1: Ec ← {} . Component latencies in client c’s data-path
2: level← c.level
3: w ← c
4: while level ≥ lviol do . Collect all component latencies through level lviol
5: Ec[(w, proc)]← E[w][proc]
6: if level > 0 then
7: Ec[(w, parent)]← dist

(
NCw, NCM(w)

)
/2

8: w ←M (w)

9: level← level − 1

10: Ec[(c, feedback)]← (NCw[bcurr], NCc[bcurr]) /2 . NW latency of feedback from
violated level

11: latcurrresponse ←
∑

(w,l)∈Ec
Ec[(w, l)][bcurr] . Current response time at lviol

12: bpre ← find pre violation bucket (Ec, lviol, response time threshold, bcurr, B)
13: latpreresponse ←

∑
(w,l)∈Ec

Ec[(w, l)][bpre] . response time at lviol before violation
14: change← {} . Dict to store relative change in component latency wrt change in

response time
15: for (w, l) ∈ Ec do

16: change[(w, l)]← Ec[(w, l)][bcurr]− Ec[(w, l)][bpre]

latcurrresponse − lat
pre
response

17: culprit← argmax(w,l) change[(w, l)]
18: return culprit

Algorithm 15 Finding most recent bucket before violation of latency SLO
Require: Entities in violated client c’s application unit E
Require: Application level with response time SLO violated lviol
Require: Response time SLO for level response time threshold
Require: Current bucket bcurr
Require: Bucket size B

1: b← bcurr
2: latresponse ←

∑
(w,l)∈Ec

Ec[(w, l)][b]
3: while latresponse > response time threshold do
4: b← b−B . Go to previous bucket
5: latresponse ←

∑
(w,l)∈Ec

Ec[(w, l)][b]

6: return b
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Google Protobuf library. The Container Runtime used on the Edge sites is Docker. All

application workers are instantiated on Edge sites as a Docker container running with an

application-specific image. The application-specific image is built on top of a base worker

image that packages the Container Agent and its dependencies, such as ZMQ and Proto-

buf. The application-specific image contains the specific binary of the application logic,

that is dynamically linked into the Container Agent. The Controller is implemented as a

centralized entity, that maintains aggregate state in a Mongo DB database.

6.7 Evaluations

We evaluate OneEdge to test the following hypotheses.

• OneEdge is able to use the network proximity estimation mechanism to perform

latency-sensitive application placement. The placement done by OneEdge is cog-

nizant of scarce Edge resources as well and only places the latency-sensitive compo-

nents on the Edge.

• OneEdge effectively uses distributed monitoring mechanism to detect violations of

response-time constraint due to client mobility in a timely manner. OneEdge’s root-

cause analysis policy is able to identify the source of violation and trigger a migration

to alleviate it.

• OneEdge uses the dynamic spatial context management mechanism to perform ap-

plication placement ensuring perfect spatial alignment. In the event of workload

surge at a particular application worker, the monitoring mechanism is able to detect

the violation of response-time constraint and trigger workload partitioning.

6.7.1 Evaluation Scenario

Application Workload

We use two situation-awareness applications as the driving workload for evaluations.

• Drone: This application performs collaborative mapping of 3D space by a swarm of

UAVs. The application contains logic for immediate-term control of the movement

of each UAV (that is latency-sensitive), along with the stitching together of maps

from individual UAVs (that is latency-tolerant). It is based on the work of Samira

Haya et al. [55] and Alex Zihao Zhu et al. [56]. It uses inputs from a camera and
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an inertial measurement unit (IMU) to determine the pose and location of the drone,

using a type of extended Kalman-filter algorithm. The drone application’s pipeline

comprises three stages:

1. Feature tracking and detection from the IMU and cameras inputs.

2. Pose state estimation from the features extracted (update).

3. Updating the global map created by merging information from multiple drones

in the swarm.

For our evaluations, we use a dataset generated using the ROS [57] framework for

both the inputs of the camera and IMU [58]. To model the mobility of the drones

(each drone operates independently), we use the Luxembourg City vehicle mobility

dataset [59], associating individual car mobility with that of a drone.

• View-Fuse. This is the collaborative perception application for autonomous driving,

based on Zijian Zhang et al. [60]. This application fuses the objects detected by mul-

tiple autonomous vehicles from their respective fields of view to create an expanded

world sub-regional view, that is then sent back to the vehicles in the same geographi-

cal locale to improve collision avoidance decisions. To create a mockup of this appli-

cation for our evaluation purposes, we first created a dataset using Carla [61]. Specif-

ically, we used 80+ cars driving through the most complex map directly available in

Carla (called Town3). A 15-minute Carla simulation produces a spatio-temporal

dataset consisting of object detections by individual vehicles.

We run both the applications against the input dataset and profile the execution time of each

component. Table 6.1 and Table 6.2 show the compute profile of different components the

Drone and View-Fuse application respectively that we will be using for this evaluation

study.

Edge Infrastructure considered

The infrastructure considered for this evaluation study is based on the metropolitan area of

Luxembourg City. We assume 6 Edge site locations in the city, with site capacities derived

from Alibaba Edge Node Service dataset. The locations of Edge sites is derived by k-means

clustering on the cell tower locations in the city, and therefore, each cell tower is mapped to

a unique Edge site. Each client is directly connected to the Edge site to which its currently

serving cell tower is mapped to, that we refer to as the client’s home site. The network RTT
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Table 6.1: Drone application’s compute profile.

Component Max Mean Processing CPU Memory Latency
Clients Latency Req. Req. Threshold

Global Map 8 50 ms 4 2 GB -
Update
Pose 8 35 ms 3 1.5 GB 50 ms

Estimation
Feature Tracking 8 2 ms 1 512 MB -

& Detection
Client - 1 ms - - -

Component

Table 6.2: MapFusion application’s compute profile.

Component Maximum Mean Processing CPU Memory Latency
Clients Latency Req. Req. Threshold

Fusion 16 60 ms 4 2 GB 100 ms
Filter 1 5 ms 2 1 GB -

Detection - 20 ms - - -
(on Client)

between the client and the home Edge site is 5 ms. The RTT between two different Edge

sites is 50 ms, while the RTT between an Edge site and the Cloud datacenter is 60 ms. The

Cloud datacenter contains virtually infinite amount of resources.

6.7.2 Evaluation Platform

In this dissertation, we are concerned about the quality of control-plane decisions taken by

OneEdge with the aid of the proposed mechanisms. In order to perform large-scale evalu-

ations of the control-plane decisions, we rely on discrete-event simulation of the OneEdge
platform, the clients and Edge infrastructure. The simulation has been created using SimPy

[62]. All delays in the system, such as network traversal latency, computation latency,

control-plane decision-making latency, etc. have been profiled from the implementation of

OneEdge and plugged into the simulated environment so that it faithfully represents the

real-world.

6.7.3 Evaluation Results

We evaluate the control-plane of OneEdge with a workload that contains a variable number

of clients of the two applications.
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Application Placement Policy Evaluation. We first compare the goodness of its latency-

sensitive application placement approach against a greedy placement approach. The greedy

baseline places all the application components – latency sensitive or not – on Edge re-

sources, that would deplete them in the event of increasing client activity. We perform

this experiment under stringent Edge capacity scenarios, with each Edge site having a ca-

pacity of 64, 128 and 256 cores respectively. For this evaluation, we restrict the client

workload to include only clients of the Drone application, because it is the only application

with a latency-tolerant component. The number of clients is varied from 16 to 512, and

we monitor the observed response time at the Pose Estimation component (see Table 6.1).

Fig. 6.5 shows the fraction of clients that face SLO violations due to the depletion of Edge

Figure 6.5: The fraction of total clients facing latency violations due to depletion of Edge
resources for different placement policies and Edge site capacities.

resources for the two evaluated placement policies. For each Edge site CPU capacity, the

Greedy placement policy results in client violation with fewer number of clients than the

SLO-Aware placement policy. Scenarios with non-zero fraction of clients with SLO vio-

lations are those in which the capacity at the Edge sites has been depleted and subsequent

application instances are deployed in the Cloud datacenter. Furthermore, intuitively, this

depletion of Edge site capacity occurs with a higher number of clients as the Edge site

capacity is increased. Therefore, we can prove evaluation hypothesis 1, that states that the

placement policy of OneEdge is able to perform SLO-aware application placement, while

also judiciously using scarce Edge resources only for latency-sensitive components.

Alleviating Client-mobility-driven Violations. We now show the behavior of observed

124



response time from the Pose Estimation application component of the drone application in

Fig. 6.6. The initial placement of the application components by OneEdge’s placement

algorithm is such that the latency constraint of the Pose Estimation component is satis-

fied. However, over time as the drones move in the city, they enter the coverage area of a

different Edge site than the one currently serving it. This results in an increase in the com-

munication latency to the running application component instances, resulting in a violation

of the latency constraint.

Figure 6.6: Variation of the observed data staleness at the Pose Estimation component of
the Drone application over time. Only a few representative clients, that undergo mobility-
driven violation have been shown for clarity. The latency threshold for the Pose Estimation
component has been marked by the horizontal dashed line.

OneEdge’s violation detection policy is able to utilize the end-to-end monitoring mech-

anism to detect that the Pose Estimation component’s latency constraint has been violated

for a given client. The root-cause analysis policy isolates the source of the violation to be

the network latency between the Client Component and the Feature Tracking and Detection

Component. It then triggers a client migration, that maps the violated client to an applica-

tion pipeline instance that can meet the latency constraint.

Continuous Spatial Alignment. We now show how OneEdge is able to manage in-

stances of spatially constrained applications while continuously providing near-perfect spa-

tial alignment. Firstly, OneEdge performs application placement in a spatial-affinity-aware

manner, mapping clients located in the same KD-Tree tile to the same application instance.

This results in high spatial alignment values as shown in Fig. 6.7. Due to the natural mo-

bility of vehicles, there are times when a large number of cars congregate in a small area,

that results in more clients being served by the same Fusion component instance than ex-

pected. This causes an increase in the end-to-end processing latency at that component,
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Figure 6.7: Spatial Alignment provided by OneEdge’s placement policy over time. The
average spatial alignment is calculated every second by taking the average of the spatial
alignment of each tile during that 1 second interval.

resulting in a violation, as shown in Fig. 6.8. Just as for the Drone application, the viola-

tion detection policy and the root-cause analysis policy utilize the end-to-end monitoring

mechanism to determine that the root-cause of the violation is compute overload on the

Fusion component. OneEdge triggers a partitioning of the set of clients served by the

overloaded component in a way that spatial alignment is maintained. The tile mapped to

the overloaded Fusion component instance is split and a new instance is created. This leads

to the observed latency return to being under the threshold. All points of time when such a

split is carried out have been marked by vertical dashed lines in Fig. 6.8.

Figure 6.8: Response time from the Fusion component over time.
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6.8 Related Work

There are a large number of research papers that propose latency-aware application place-

ment policies on Edge infrastructure. Lera et al. [63] propose an availability-aware appli-

cation policy and utilize network latency estimates between Edge sites. Naas et al. [64]

propose a graph partitioning-based heuristic for data placement strategies to serve IoT ap-

plications. Deng et al.[65] propose a workload allocation policy that aims to attain a trade-

off between power consumption and application delay on Edge infrastructure. Although

these works show an improvement over the state-of-the-art in terms of achieving the appli-

cations’ latency requirements, they do not cover how the network latency estimates were

obtained, which are of central importance to their policies.

There have also been previous work on building full-blown application orchestrators for

an Edge infrastructure. The Polaris Scheduler [66] has a control-plane design that is similar

to OneEdge. It contains a central controller which maintains the infrastructure state as a

graph data structure, using which it performs the placement of applications with complex

end-to-end latency requirements. Application developers are allowed to specify arbitrary

latency requirements between application components, which is a generalized version of

the kind of constraints supported by OneEdge. The control-plane contains plugins that

provide, among other things, network proximity information to the application placement

policy. However, the work only qualitatively describes the information exposed by the

plugins and does not discuss the interface between them and the control plane in detail. It

also does not discuss the implementation of these plugins and their overhead on the system.

Rausch et al. [67] present a container scheduling approach for serverless Edge comput-

ing. The proposed system aims to schedule containers on Edge sites that are in proximity

to the container registry as well as in proximity to the nodes that store data needed by

these containers. This system has certain drawbacks in the context of serving situation-

awareness applications. Firstly, the system does not take into account the latency of the

data-plane. Proximity to container registry and data nodes only ensures that the container

startup and application initialization are fast, but does not ensure that applications’ latency

requirements are satisfied. In addition, since the system is designed for short-lived server-

less containers, it does not contain the relevant mechanisms for continuous management of

deployed containers.

The Hetero-Edge system [68] is designed to perform orchestration of real-time vision

applications on an Edge infrastructure. It targets infrastructure that can be heterogeneously

endowed with computing resources ranging from CPUs to GPUs. Hetero-Edge uses the
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programming model of Apache Storm to break down an Edge application into multiple

smaller tasks. It performs latency-aware scheduling of tasks on Edge nodes by offline

profiling of the compute latency of tasks at different CPU utilizations and the bandwidth

usage of each task. This step is similar to the application placement policy in OneEdge.

The latency of a task on a node is the sum of processing latency and network transmission

latency. Another control decision taken by Hetero-Edge is stream grouping, i.e., choosing

which downstream application worker is to be chosen for the output stream. However,

Hetero-Edge does not consider propagation latency, which is the most important difference

between system entities in Edge infrastructure. They don’t support client mobility and their

evaluation scenario is not geo-distributed at all.

6.9 Conclusion

In summary, OneEdge is an application orchestator for situation-awareness applications

on Edge infrastructure that is able to satisfy their response-time and spatial affinity require-

ments. It utilizes the network proximity estimation mechanism to perform latency-sensitive

placement of application components on the infrastructure and the dynamic spatial context

management mechanism for mapping clients to application instances while satisfying spa-

tial affinity requirements. It leverages the end-to-end monitoring mechanism for detecting

violations of response-time requirement, identifying the root-cause of the violation and

triggering the right reconfiguration action. Through end-to-end evaluations of realistic ap-

plication workload on a realistic infrastructure topology, we have shown that OneEdge is

able to meet the requirements of situation-awareness applications.
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CHAPTER 7
FOGSTORE: A GEO-DISTRIBUTED KEY-VALUE STORE GUARANTEEING

LOW LATENCY FOR STRONGLY CONSISTENT ACCESS

Situation-awareness applications maintain state, that guides the action of the application

in the future. Application state consists of recently generated events (such as a vehicle

detection) and location-tagged data-items (such as the state of a traffic light). Hence, sys-

tem support primitives for saving and retrieving events that constitute the application state

are critical in a service platform meant for geo-distributed situation-awareness applications.

Contemporary stream processing platforms like Foglets [18], Apache Flink [69] and Samza

[70] provide primitives for accessing and modifying application state. Quite often, multi-

ple application components on different Edge sites may want to share application state –

e.g., situation-awareness applications may have multiple processes working on events per-

taining to the same geographical area; this would require moving the state out of memory

into an out-of-core external store [71] - a design choice that is also supported by Apache

Flink. Keeping such application state information on Cloud-based data stores would defeat

the purpose of placing the application components on geo-distributed Edge sites since sav-

ing/retrieving state is in the critical path of the application execution and should incur as

little latency as possible. Hence, the application state needs to be stored in a geo-distributed

manner as well [72], leveraging the same Edge sites as those used for placing the compu-

tational components.

Situation-awareness applications have stringent timing requirements on the sense-process-

actuate control loop, which involves accessing application state in the critical path. To

ensure that the application’s control loop can operate at the desired speed, access to appli-

cation state needs to be possible with low latency. Situation-awareness applications require

strong consistency guarantees on the application state [73]. In fact, researchers at Google

observe that coping with eventual consistency in the application layer requires significant

development time and often leads to complicated and error-prone mechanisms [74]. Hence

strong consistency should be provided by the datastore layer itself. Furthermore, the appli-

cation state should remain available in spite of failures of data store nodes.

Cloud-based data stores such as Cassandra, DynamoDB, etc. have a performant data-

plane which offers low latency of data access. They also offer strong consistency guarantees

along with fault-tolerance. However, Edge infrastructure poses peculiar challenges which
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are not present in Cloud datacenters, for which these systems are designed. Firstly, the

network topology of the Edge infrastructure is highly heterogeneous, and low latency data

access is only possible if the data replicas are located close to the client. Ensuring strong

query consistency demands that the data replicas on which query is executed are located in

proximity to the client. However, Edge infrastructure is more susceptible to geographically

correlated failure, which increases the probability of making multiple replicas of a given

data-item unavailable. Hence, latency, consistency and failure tolerance are conflicting

objectives at the Edge, and the control-planes of off-the-shelf data stores do not offer a

reasonable tradeoff between them.

FogStore tackles the problem of providing both the conflicting but valid objectives of

fault-tolerance and low-latency while satisfying consistency guarantees in geo-distributed

key-value stores. The key insight about situation-awareness applications is the dependence

of relevance of a certain data-item on the client’s spatial context. For instance, in the smart

city domain, information related to a particular city may be relevant to clients who are in

close proximity to that city. Using this context-sensitive characteristic of applications, we

design a replication strategy that guarantees strong consistency for spatially-relevant data

items while also providing tolerance from geographically-correlated failures. The strategy

is to place replicas close to the relevant clients (for low latency) and also in geographically

distant locations (for fault-tolerance).

FogStore, which embodies the design principles for achieving fault-tolerance and low-

latency for strongly consistent access to application state makes the following contribu-

tions:

• Develop a notion of relevance for situation-awareness applications, which is formal-

ized as Context-of-Interest (CoI) - which determines the degree of consistency at

which queried state should be reported;

• FogStore utilizes the Dynamic Spatial Context Management mechanism to perform

location-aware replica placement to ensure low latency data access along with toler-

ance from geographically correlated failures.

• FogStore utilizes the Dynamic Spatial Context Management mechanism to perform

quorum selection that guarantees strongly consistent operations for relevant data.

The roadmap of this chapter is as follows. Section 7.1 provides a background of the moti-

vating application scenario and the basic concepts of a key-value store. It also discusses in

detail the requirements of situation-awareness applications and the challenges of meeting
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Figure 7.1: Schematic of multi-camera tracking of suspicious vehicles. The numbered
arrows suggest the temporal order of flow of information.

those requirements in an Edge setting. Section 7.2 presents the architecture of FogStore.

Section 7.3 describes how FogStore leverages the Dynamic Spatial Context Management

mechanism to perform replica placement to ensure low-latency data access along with tol-

erance from geographically correlated failures. Section 7.4 describes how FogStore uses

the same mechanism to perform quorum selection to ensure high consistency data access

for relevant data items. Section 7.5 presents results of experimental evaluation of FogStore

and Chapter 9 concludes the chapter.

7.1 Background

7.1.1 Motivating Application Scenario

To highlight the necessity of a system like FogStore, we present a motivating use-case that

poses strict latency and staleness requirements on the data-store. Consider a distributed

camera network that may be deployed on urban roadways, feeding real-time video streams

for multi-camera tracking of suspicious vehicles.

The application can be logically partitioned into components, as per the MobileFog

programming model [75], each performing a specific function and having well-defined

input-output characteristics. A schematic of the application is presented in Fig. 7.1. Upon

detection of a vehicle in a video frame, the application extracts the identity of the vehi-

cle by reading the license plate to get the unique identifier of the vehicle. It then inserts
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the detection of that vehicle along with location and time into the set of detections. The

application also maintains the complete trajectory information of the vehicle, in that, for

each detection of a vehicle, it saves the location and time when the car was detected before

that. To achieve this, for each detection the application retrieves the set of previous detec-

tions that took place within 5 KM and 10 minutes from the current detection. It looks for

the most recent detection from them and adds the identifier of that detection to the current

detection’s prevDetection field.

Algorithm 16 Vehicle tracking algorithm
1: procedure ONDETECTVEHICLE(V, X, Y, T)
2: K ← INSERT INTO vehicle detections (V,X, Y, T )
3: prevDets← SELECT * FROM vehicle detections

WHERE (x, y)within 5 km &t WITHIN 10 min ORDER BY t
4: prevDet← k.V : k has most recent time in prevDets
5: UPDATE K in vehicle detections SET K.prevDet = prevDet

It is evident from the schematic that access to application state lies in the critical path

of application execution, hence making correct execution of the application contingent on

fast access to state. For instance, if the insert of a vehicle detection is slow, the vehicle may

be detected by an adjoining camera and not mark the former detection as the previous one

- hence missing that detection from the trajectory. It is worth noting that the presented ap-

plication has a dependence on contextually relevant events, specifically previous detections

within a 5 km radius and at a maximum of 10 minutes before the current detection. Events

that don’t fall under this space-time filter may be past detections of the car but are typically

not relevant for generating a fine-grained trajectory. Furthermore, retrieving the entire set

of previous detections of the particular car and searching for the most recent detection could

be slow.

7.1.2 Interface offered by a Key-Value Store

Data Model

The data-model of FogStore follows a key-value pair model, wherein keys are strings and

values can be elementary data-types such as strings, integers or floating point numbers, or

a dictionary of key-value pairs themselves. Following are the types of key-value pairs that

data-items of typical applications contain.

• Each data item needs to possess spatial information, that is, location in terms of

132



latitude-longitude. This field denotes the location of the event or entity that the data-

item is about.

• Data-items, especially those that pertain to events that happened at a certain point of

time, contain a timestamp field.

• Data-items are allowed to contain key-value pairs specific to the application’s logic,

such as vehicle identifier in the case of a multi-camera vehicle tracking application.

• It is up to the developer to specify which keys of a set of data-items constitute the

primary key, which will be used to uniquely identify data-items for queries.

{
"vehicle_id": "A54 3527",

"location": {
"latitude": "33.42553",

"longitude": "-84.74456",

},
"timestamp": "1520123197"

}

Listing 7.1: A sample data-item that captures a spatio-temporal event in the vehicle-

tracking application’s detection set. The field storing Vehicle ID forms the key that will

be used to retrieve detections of a particular vehicle.

Types of Query Supported

FogStore supports the following types of queries.

• Insert/Delete data-items. FogStore allows applications to insert data-items into

the store by providing the key-value pairs that make up the data-item, including the

primary key. For deleting a data-item the application can simply use the primary key.

• Update data-items. FogStore allows applications to update an existing data-item

by providing the primary key of the data-item and the new set of key-value pairs. If

the key exists the value will be updated, otherwise a new key-value pair will be added

to the data-item.
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• Selecting data-items. Applications can fetch data items whose key-value pairs

match a certain predicate. The predicate can either be an exact match on one or more

keys or an inequality-based condition.

Replication and Consistency of Data

Dynamo-style data stores have the notion of keyspaces, which denotes the namespace

of keys. Key-value pairs belonging to the same application have keys that belong to the

same keyspace. Dynamo-style data stores map data to storage nodes by computing a hash-

function on the key. The output range of the hash function is divided among the storage

nodes such that if a key’s hash falls within the partition that is mapped to a particular storage

node, then the key-value pair will be mapped to that node. Each storage node is assigned

a token on the output range of the hash function. The storage node with the smallest token

that is greater than the hash value of a key is assigned as the primary replica of the key-

value pair (as shown in Fig. 7.2). Additional replicas are chosen based on the requirements

of the application (replication factor, rack-awareness, etc.) and the primary replica.

Key-value stores built on the Dynamo-style model offer fine-grained tuning options for

consistency per-operation. Fig. 7.2 shows how Cassandra (a popular Dynamo-style key-

value store) distributes data among the cluster nodes. The data-item’s key is hashed to

determine the nodes responsible for storing it (replicas). The client making read/update

requests can specify a consistency level for that specific operation, which determines the

number of nodes that need to execute that operation before the client is acknowledged

of its completion. For example, an update operation with consistency level of TWO would

update the copy of the data-item on 2 of the replica nodes and acknowledges that the update

was successful. The update is propagated to the rest of replicas in an eventual manner.

The choice of this consistency level plays a crucial role in tuning the tradeoff between

latency and consistency. Eventually consistent implementations use a consistency level

of ONE while strong consistency implementations use consistency level of QUORUM. In

a highly geo-distributed datastore, synchronizing with all replicas for each operation can

be extremely slow, given that the replicas may be stored on nodes with a high network

round-trip-time from the client or the coordinator node.

7.1.3 Control-plane Decisions involved in a Key-Value Store

FogStore is a geo-distributed key-value store with data stored on multiple Edge sites. Fog-

Store needs to make the following control-plane decisions:
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Figure 7.2: Demonstration of write-request path for a 12-node Cassandra cluster on
keyspace with Replication Factor (RF) = 3

• Replica Placement. FogStore needs to determine the data store nodes that should

host the replicas for a particular of data-item.

• Quorum Sizing. For each query, FogStore needs to decide how many of the existing

replicas of the queried data-item should be contacted before returning the result to

the client. For read queries, the query coordinator node reads the data-item from Q

replicas of the data-item and returns the latest version to the client, where Q denotes

the quorum size selected. Similarly in the case of an insert or update query, the query

coordinator returns success to the client as soon as the query has been executed on Q

replicas.

7.1.4 Application Requirements

• Low-Latency of Data Access. State access is in the critical-path of typical ap-

plications. Hence, low-latency data access would allow the application instances to

maintain their response-time.

• High Consistency. For those data-items that have multiple readers and writers, ap-

plications require that the version of data that they read is the latest version. Reading

a stale version of the data could result in errors in the application logic. Ensuring

strong consistency in the application layer requires significant development time and
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often leads to complicated and error-prone mechanisms [shute2013f1]. Hence, the

data store needs to be responsible for providing data access with strong consistency

guarantee.

• Failure Tolerance. Applications assume that with sufficient number of replicas

of each data-items, at least one copy of a data-item will always be available for

accessing in the event of failures.

7.1.5 Challenges in achieving Application Requirements

Operating a data store over a geo-distributed Edge infrastructure has a number of unique

challenges arising out of the nature of the infrastructure, and are discussed as follows:

• Network topology of the Edge infrastructure is heterogeneous, with Edge sites con-

nected to the Internet through different peering points, thereby making the latency be-

tween Edge sites heterogeneous. Hence, the data-placement strategies used in cloud-

based data stores that ensure uniform load-balancing across storage nodes would

result in high data-access latencies at the Edge.

• High-consistency data read and writes require performing operations with multiple

replicas of a data-item. In an Edge-based data store, where the inter-node latency

distribution is heterogeneous, low-latency data access with high-consistency can only

be achieved if all the replicas in the quorum are located close to the query coordinator.

• Edge infrastructure consists of sites that often share the same network and power

lines. These sites are susceptible to geographically correlated failures. Hence, plac-

ing all replicas of a data-item on nodes in proximity of each other to ensure low-

latency high-consistency access would result in making that data-item more vulner-

able to such failures. In such an event, all replicas of that data-item would be lost.

• Data-items that compose the state of situation-awareness applications are generated

due to activity in the physical environment. Spatial skews exist in the distribution

of activity. For instance, within a city, there may be surveillance cameras deployed

only in a certain portion of the city (e.g. Downtown), which would create a skew in

terms of the number of events pertaining to those areas compared to rest of the city.

Storing data-items on storage nodes that are located close to the location of the data-

item itself would result in workload skews, that would impact query performance

and increase the storage requirement on a subset of nodes. This problem is avoided
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in datacenter-based data stores by using consistent hashing [76] to distribute data-

items across storage nodes, but that would significantly deteriorate query latency in

a geo-distributed data store.

Hence, low-latency, high-consistency and tolerance from geographically-correlated failures

are conflicting objectives in an Edge setting.

7.2 Architecture of FogStore

In this section, we first describe the edge-centric control-plane policies in FogStore at a

high-level, that allow it to meet the application requirements. Then we discuss the func-

tionalities of the system components in FogStore.

7.2.1 Edge-centric Control-plane Policies

FogStore’s control-plane policies for replica placement and quorum sizing aim at simulta-

neously providing the application requirements of low-latency, high-consistency and toler-

ance from geographically-correlated failures, while dealing with the specific challenges of

the Edge infrastructure. It does so by utilizing a peculiar characteristic in the data-access

pattern of situation-awareness applications, wherein certain data-items are of higher rele-

vance for the application logic if they are located in the spatial context of a given instance of

the application. We call the spatial context of the application instance Context of Interest,

which is explained further in the following.

Context of Interest

Situation-awareness applications have a strong notion of locality-awareness. For example,

in the case of publish-subscribe systems, the publishers and subscribers are often located

geographically close to each other, because the events they are concerned with pertain to

the local geographical area. This property was exploited by Teranishi et al. [77] with the

Locality-aware publish-subscribe system. In general, geo-distributed applications possess

the notion of contextual relevance, in that a given data-item is more relevant in a certain

context than another. The notion of context is application-specific. For instance, in the

use-case mentioned in Section 7.1.1, a vehicle detection is relevant at a higher degree in

a context around the event in space and time, that is, within 5 kms from the event’s loca-

tion and within 10 minutes of the event generation. This is because of the nature of the

application - to build an accurate trajectory of a vehicle, the previous detection has to be
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in proximity to the current detection. Similarly, smart cars accessing the state of a traffic

light (red/green), where the cars are located in proximity to the traffic light, would require

consistent access to traffic light state to prevent collisions. Cars not in the traffic light’s

proximity would be able to live with data that may be stale, that is, eventual consistency

may suffice for them. Often the data generated by Internet-of-Things applications are used

for big-data analysis, which are offline batch processing tasks and don’t require highly

consistent data. In the context of key-value stores, the notion of relevance translates to

consistency and staleness as follows : all relevant items must be available in a consistent

manner with minimum staleness. In other words, for a data-item I all entities for whom I

is contextually relevant must see updates to I in the same order (serializability) and with as

low staleness as possible (real-timeliness).

We now formally define the above notion of contextual relevance. Fogstore allows the

application developer to specify a generic (possibly conservative) region of relevance (also

called Context of Interest) around each data item such that operations originating from that

region are executed in a strongly consistent manner. We represent the region of relevance as

a bounding box in geographical space. The size of the CoI is configurable and application-

specific. Fogstore compares the location of a client to the location of the queried data-item

and provides a strongly consistent result only when the client’s location lies within the

CoI of the data-item. Clients beyond the CoI are typically not using the data for critical

operations and hence can tolerate inconsistent/stale data to the same extent as an eventually

consistent database.

Two Replica Types offering Differential Consistency

We would like to revisit the two fundamental requirements of situation-awareness applica-

tions:

• Clients sharing context with the data-item require low-latency access to strongly con-

sistent data.

• Placement of all replicas in proximity of the client may lead to complete data loss

under geographically-correlated failures.

These requirements lead us the design decision of having two classes of replicas, which

is also illustrated in Fig. 7.3.

1. In-CoI replicas : Placed on nodes located at low network delay from the clients,

typically within/around the CoI of the data-item. Their maximum distance from the
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data-item’s location is determined by a parameter InCoIDist. This parameter deter-

mines the location of InCoI (strongly consistent) replicas and hence has implications

on the latency of query operations. These replicas are kept consistent by enforcing

that all read and write quorums include a majority of these replicas. These repli-

cas are meant to provide both low-latency and strong-consistency to users that are

contextually relevant to the queried data-item.

2. Out-CoI replicas: The purpose of these replicas is to provide tolerance from geo-

graphically correlated failures. They are placed on datastore nodes which are a min-

imum distance away from the data-item’s location, a parameter called OutCoIDist.

This parameter determines the location of OutCoI replicas, and hence affects the

geographical separation between InCoI and OutCoI replicas - and thereby the fault-

tolerance. These replicas are kept eventually consistent by propagating updates asyn-

chronously, and hence are never included in the read/write quorum operations orig-

inating from within the CoI. These replicas could also serve as the source of data

for big-data analysis of information generated at the edge, by using tools like Kafka

Connect [78] that can use key-value stores as data sources for large-scale analytics.

It is worth noting that the concept of differential consistency for replicas based on their

context is not a novel concept proposed in this dissertation. Apache Cassandra itself pro-

vides a consistency level called LOCAL QUORUM [79] that makes sure that any oper-

ation selects a quorum that consists of the quorum-set of replicas on the local datacenter

on which the request-handler (coordinator) node is located. This is done to avoid the high

latency of inter-datacenter traversal. The updates are propagated to rest of the replicas (in

other datacenters) in an eventual manner. However, this concept is easy to adopt in the

context of cloud-based data-stores, which have a well-defined notion of datacenters such

that the network latency across datacenters is at least an order of magnitude higher than

intra-datacenter latency. Data stores deployed on densely geo-distributed Edge infrastruc-

tures cannot make use of such a concept, especially when the concept of contextual locality

is based on node location and geographical distance rather than simpler properties like a

datacenter identifier or IP address subnet.

Handling skews in event workload

FogStore’s replica placement policy ensures that InCoI replicas are located close to the

location of the data-item, while also ensuring that the workload across data-storage nodes
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Spatio-temporal
data-item

Figure 7.3: Illustration of the two types of replicas maintained by Fogstore along with the
typical use-cases that both these types serve. The dotted circle around the spatio-temporal
data-item denotes the Context-of-Interest for the data-item. We direct all reads/updates to
that data-item originating within the CoI (represented by red crosses) to the InCoI repli-
cas (which are shown inside the circle). The other (OutCoI) replicas are kept eventually
consistent and serve the use-cases dealing with batch processing and monitoring.

is balanced. It does so by incorporating a hash-based replica placement approach akin to

datacenter-based data stores into the location-based policy. More concretely, among the

candidate nodes that fulfil the condition of InCoI replicas being close to the data-item’s

location, FogStore uses hashing to map the replica to tge candidate node. By doing so,

FogStore not only achieves location-awareness but also ensures that the workload is evenly

distributed among all candidate storage nodes. The notion of proximity is tunable, and can

be set to match the degree of skew in workloads.

Hence the major issues that the implementation of Fogstore should resolve are :

• Placement of replicas based on the data-item’s context, so as to have replicas both in

proximity serving the queries from relevant clients within the CoI with low-latency

and also at a significant geographical-separation from the CoI to provide tolerance

from geo-correlated failures.

• Providing a transparent consistency interface to clients by determining the per-query

consistency level based on contextual information of the client and queried item.

This tuning of consistency-level is done by choosing the quorum of replicas in a way
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so as to deliver strongly consistent information to relevant clients and possibly stale

information to clients outside the context-of-interest.

• Avoid the formation of hotspots in data-partitioning due to inherent skews in the

input workload.

7.2.2 FogStore Client

The client of FogStore is an entity in the situation-awareness application pipeline that needs

to read or update state. It could be an end-client, such as an application module running

on an autonomous vehicle querying the status of a traffic light in vicinity, or a module

running on an Edge site as described in Section 7.1.1. Since the client is a component of

a situation-awareness application, it is associated with a certain spatial context. The client

provides the current spatial context to FogStore along with the query request. FogStore

system determines if the current spatial context of the client overlaps with the Context Of

Interest of the data-item being queried to determine the appropriate consistency level for

executing the query.

7.2.3 FogStore Servers

FogStore is composed of multiple geo-distributed servers which act as the interface be-

tween the clients and the stored data. These servers perform two main functionalities.

Firstly, they act as Coordinators for query execution, wherein they perform the entire ex-

ecution of the query on behalf of the client. The coordinator checks the location of the

client and the CoI of the data-item being requested to determine whether the data-item is

contextually relevant to the client. As discussed in Section 7.2.1, if the client is contextu-

ally relevant, the quorum set for this query is set to a majority of the InCoI replicas (strong

consistency), otherwise the quorum is set to 1 (eventual consistency). In other words, the

coordinator would return the query result to the client after a quorum of replicas have re-

turned the result.

Second, FogStore servers act as Data Storage Nodes – whereby they host replicas of

data-items and respond to queries from the coordinators. Each data storage node is respon-

sible for a partition of the hash-space (as described in Section 7.1.2) based on its token.

Since FogStore performs location-aware replica placement, the token of a data store node

is derived from its location.
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7.3 Use of Spatial Context Management mechanism for Replica Placement

In this section, we show how the Spatial Context Management mechanism is used for

selecting replica placement candidates for a data-item. As described in Section 7.1.2, in

Dynamo-style data stores, each data-item is hashed to generate a scalar value which is

used to select the right node to host its replica. In FogStore’s case, since replica selection

needs to be based on location, the location field of data-items and storage nodes need to be

converted into a scalar value to serve as the hash lookup key and node token respectively.

The key idea in FogStore’s use of the Spatial Context Management mechanism is to use the

spatial partitioning created by the mechanism as a geo-index to encode location to a scalar

value.

7.3.1 Using Spatial Partitioning for Spatial Encoding of Geographical Locations

We partition the entire geographical space containing the application workload and data

store nodes using the Spatial Context Management mechanism. The partitioning is then

used to geo-index data-items and storage nodes. Each vertex of the KD-Tree in the pro-

posed spatial partitioning is assigned a unique ID based on the area that it covers. The root

of the tree covers the entire geographical area in question, while the size of the smallest

tile or leaf vertex is determined by the height of the KD-Tree. Fig. 7.4a illustrates such a

KD-Tree of height 2. Each non-leaf node is partitioned along the two axes - latitude and

longitude - and therefore has 4 children. These children are termed as childsw, childnw,

childne, childse respectively. Fig. 7.4b illustrates how the ID of each child vertex can be

derived from the ID of the parent vertex. We convert the ID of each node using base-32

encoding to a human-readable ID. The height of the KD-Tree is configurable and can be

tuned based on application-specific requirement of low-latency and uniform load balanc-

ing. FogStore then encodes the location of a data-item or a storage node to the ID of the

tile that the location maps to.

Each data-item has an additional field called partition key which stores the ID of the

leaf spatial partitioning tile that it belongs to. This ID forms the hash-value that is used to

lookup the token ring for replicas.

7.3.2 Building the Token Ring

In order to perform location-aware data distribution we use the spatial encoding (as de-

scribed in Section 7.3.1) of a data-item’s location field to compose the partition-key. Data-
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(a) KD-Tree of height 2 for partitioning ge-
ographical space. Each node of the tree is
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(b) Spatial partitioning obtained by using a
KD-Tree of height 3. As in Fig. 7.4a, only
the Northwest child of each vertex is ex-
panded into its own children.

Figure 7.4: Illustration of using KD-Tree based spatial partitioning in FogStore.

store nodes are placed on the token-ring at a position equal to the spatial encoding of their

location. In order to ensure that a data-item is placed on a node whose spatial-encoding

is similar to the data-item’s, it is important that tokens be ordered with respect to their

spatial encodings for replica selection. Hence we don’t use the popular consistent hashing

algorithm for generating the token, but rather use the partition key directly as the token.

Notion of distance in spatial encoding

We define a notion of distance between two spatial encodings which is core to choosing

the right nodes to place replicas on. Two spatial codes d1 and d2, have a distance of d if

and only if d1 and d2 have the dth bit as the maximally significant bit that differs in them.

This is clarified in Fig. 7.5. This notion of distance can be applied to any spatial encoding

technique used to calculate tokens. It preserves the closeness of locations, that is, if two

locations are closeby in terms of the proposed encoding distance, they are also closeby in

terms of geographical distance. The converse, however, is not true, that is locations that
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 x1 = 100110 … 0011

 x2 = 101100 … 1001
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KD-Tree depth = 20
40 bits

Distance = 38

Figure 7.5: An illustration of distance between the IDs of two tiles in a KD-Tree of height
20.

are close in geographical distance may have spatial encodings that are far apart in terms of

encoding distance. This property is evaluated in Section 7.5 when determining the location

of OutCoI replicas.

7.3.3 Selecting Candidate Replica Nodes based on Data Item’s Spatial Context

Selection of replicas for a given data-item is done based on the spatial encoding distance

of a node’s token and the data-item’s token. The replica selection algorithm takes the

following two parameters as inputs :

• InCoIDist : the maximum spatial encoding distance threshold for placing InCoI repli-

cas.

• OutCoIDist : the minimum spatial encoding distance threshold for placing OutCoI

replicas.

The first node token that the item’s token gets mapped to in the token ring is used as

the starting point for iteration to find the InCoI replicas. Each potential node that is within

CoI’s distance threshold is a suitable candidate. A similar search is performed for getting

the list of OutCoI replicas, the difference being that the spatial encoding distance between

item’s token and node’s token now needs to be greater than the CoI distance threshold.
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7.3.4 Ensuring Even Load Distribution among Data Storage Nodes

The distribution of spatio-temporal event traffic is not expected to be uniform, with much

more activity in densely populated regions and lesser activity in sparsely populated regions.

Forming a node’s token solely based on the spatial encoding would lead to partitions in the

hash ring not being uniform in terms of the number of tokens contained in them. This

can lead to uneven distribution (poor load balancing) of key-value pairs across data store

nodes. Consistent hashing forms one extreme of data partitioning that achieves best load

balancing, but does not take into account spatial locality of replicas, while just using spatial

encoding forms the other extreme which guarantees spatial locality but not load balancing.

Hence, the two objectives of proximal data placement and load balancing prompts us to

come up with a hybrid data partitioning scheme. We construct the partition-key part key

of a data-item d as shown in Fig. 7.6.

part_key(d) = tile_id(d.loc)  mmh3(d.key)

g bits k bits

.

Figure 7.6: Illustration showing the inclusion of location-specific information in data-
item’s token to enforce proximal placement and the hash of key for even distribution.

7.3.5 Replica Placement Algorithm

The replica selection policy for InCoI replicas is presented in Algorithm 2. The first node

token that the item’s token gets mapped to in the token ring is used as the starting point

for iteration to find the InCoI replicas. Each potential node that is within CoI’s distance

threshold and has a token with key portion lexicographically higher than item’s token is

a suitable candidate. Note that the comparison of token’s key portion is solely for load

balancing purposes. A fixed number of such replicas are selected. If the required number

of replicas are not found after a complete traversal of the ring, the CoI’s distance threshold

is incremented by a small amount and the search is repeated. This increase in the threshold

(which is specified by application developer) may harm the expected latency, but we choose

to do so over declaring that no suitable replicas could be found.
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Algorithm 17 Replica selection algorithm
1: procedure FINDPRIMARYREPLICA(H, itemToken, itS)
2: itP ← null
3: for it ∈ iterate(H, itS) do
4: if itemToken ≤ it&it.key ≥ itemToken.key then
5: itP ← it
6: break
7: if itP ==null then
8: itP ← itS

return itP
9: procedure FINDREPLICAS(H, itemToken, itP , inCoiDist,N )

10: replicas← {}
11: for it ∈ iterate(H, itS) do
12: if encodingDist(it.tile id, itemToken.tile id) ≤ inCoiDist & it.key ≥

itemToken.key & it not already chosen then
13: replicas = replicas ∪ {it}
14: if |replicas| == N then
15: break

return replicas
16: procedure FINDINCOIREPLICAS(H, itemToken, inCoiDist, nReplicas)
17: itS ← H.find(itemToken)
18: itP ← findPrimaryReplica(H, itemToken, itS)
19: nFound← 0
20: inCoiReplicas← {}
21: while |inCoiReplicas| < nReplicas do
22: R← findReplicas(H, itemToken, itP , inCoiDist, nReplicas− nFound)
23: inCoiReplicas← inCoiReplicas ∪R
24: nFound← nFound+ |R|
25: inCoiDist++

return inCoiReplicas
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7.3.6 Optimizations for efficient range queries

Typical Dynamo-style key-value stores designed for datacenters use consistent hashing

(Murmur3 hash) on the partition-key to partition the key-value pairs across nodes. Since

the Murmur3 hash function does not preserve the order between input values, they do not

allow range queries on the partition key. However, Fogstore calculates partition key of data

items as shown in Fig. 7.6, which preserves the order between partition-keys, thus making

it possible to issue range queries on them. A typical range query has a structure as shown

in Listing 7.2.

SELECT * FROM t r a c k i n g k s . d e t e c t i o n s

WHERE t o k e n ( p a r t k e y )>= t o k e n (<m i n p a r t k e y >) AND
t o k e n ( p a r t k e y )<= t o k e n (<m ax p a r t k ey >) AND
key= '<o b j e c t k e y> '

Listing 7.2: Typical form of a range query that Fogstore handles. The minimum and max-

imum limits of partition key range queried for is calculated based on the bounding-box of

locations that forms the range query. Note that we omit timestamp based filtering for sim-

plicity, however that can be incorporated in the query provided a secondary index is built

on the timestamp field.

For efficient execution of this query, a secondary index on the key column is created so

that events within a particular partition can be queried in lesser time. Upon receiving such a

query, the coordinator node splits the range into individual partitions and issues concurrent

read requests to the replicas responsible for those partitions.

7.4 Use of Spatial Context Management mechanism for Consistency Tuning

Selection of replicas constituting a quorum based on the context of interest of the data item

being queried is done based on the token of the coordinator node 1. We use a parameter

CoISize, which represents the size of the CoI in terms of spatial encoding distance. If the

coordinator’s token is less than CoISize units distant from the item’s token, it lies within the

CoI of the queried data item, and a quorum of InCoI replicas are selected to sychronously

execute the operation. This ensures that all operations within the CoI will be highly con-

sistent. Read operations on coordinators that are outside the CoI of queried data item are

returned the version from whichever replica responds the fastest, thus providing eventual

1The underlying assumption is that client and coordinator node are in relative proximity
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consistency. Write operations, on the other hand, need to update a quorum of the InCoI

replicas before returning so that InCoI replicas don’t enter an inconsistent state. Enforcing

quorum for operations inside the CoI is fast as the quorum members are located in close

network proximity from the client/coordinator node.

7.5 Evaluations

We implement the architecture present above by extending Apache Cassandra. We use the

distributed network emulator MaxiNet [80] to create the infrastructure setup for evaluation

experiments. MaxiNet is an extension of the popular network emulator MiniNet, and allows

the user to package an application as a Docker container and deploy it on a set of nodes.

Latencies between the nodes are calculated using the geographical distance between the

nodes based on the online tool WAN Latency Estimator2 and emulated using Linux Traffic

Control tc.

Figure 7.7: Map showing the locations of Edge sites in Atlanta region and the bounding
box from where events are generated. The sites shown in the figure are the ones that store
the InCoI (consistent) replicas in Fogstore. The evaluation also consists of nodes located at
remote locations : Houston, San Francisco, Chicago and Seattle.

7.5.1 Comparison of FogStore against typical replication policies

The first step towards proving the efficacy of the context-aware policies of Fogstore is to

evaluate its performance against typical replication policies - quorum-based (strict) and

eventual3. For this experiment, we build a representative infrastructure topology of data-

store nodes - 4 inside Atlanta region and 4 more as remote datacenters. Yahoo Cloud
2http://wintelguy.com/wanlat.html
3The strict and eventual systems use Cassandra’s SimpleStrategy policy for replication.
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Serving Benchmark (YCSB) is used to generate spatio-temporal workloads of applications

running in the Atlanta area, by having 4 client nodes running YCSB with 4 threads each.

Each YCSB client is collocated with one of the datastore nodes in Atlanta area and mimics

a situation-awareness application component making queries to the spatio-temporal state.

To cover a wide variety of workloads, we experiments with workloads that have varying

read-to-update ratios (20%, 50% and 80% reads) and varying distribution of selecting keys

for operations (hotspot, latest and Zipfian). We consider mutable data-items to measure the

behaviour of evaluated systems on consistency. We set the replication factor of eventually

consistent and quorum-based store to 3. For the replication policy of Fogstore, we set num-

ber of InCoI replicas to 2 and OutCoI replicas to 1. Also, the read and write quorum for

queries by clients inside the CoI are set to 2 and 1 respectively.

To be able to perform these experiments and collect the required metrics, we had to

modify the core workload executor of YCSB. Here we describe the major modifications to

YCSB here :

• We associate each version of an entity with a given key with a timestamp, which

corresponds to the wall-clock time when the YCSB client starts updating or insert-

ing that version. When updating the entry in the table, we also add the timestamp

associated with that version to that entry. We also record the time when an update/in-

sert finishes. Since the experiment is done as an emulation on a single machine, the

clocks of all datastore nodes and YCSB clients (Docker containers) use the time of

the underlying physical machine.

• We associate each key generated by YCSB to a unique geolocation, since the spa-

tial attributes of a data-item is central to the consistency model of Fogstore. The

challenge here is to create a deterministic mapping between the key domain and the

geolocation domain - so that this mapping stays the same across all the threads on

all YCSB clients. Each key selected by the request distribution of YCSB is based on

an integer value, which we convert to a sequence of bits. This bit sequence is then

decoded (exactly same as spatial decoding using KD-Tree) to generate the latitude

and longitude of the request.

• We needed to modify Python’s driver for Cassandra to allow queries to have CoI-

aware consistency level.

• We use the latency aware load balancing policy to avoid choosing a coordinator that

is too far away in terms of network latency - effectively defeating the purpose of
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(a) 20% reads (b) 50% reads (c) 80% reads

Figure 7.8: Read latencies for varying distribution of reads. The solid, vertically dashed
and obliquely dashed portions of the bar denote 50th, 95th and 99th percentiles respectively.

(a) 20% reads (b) 50% reads (c) 80% reads

Figure 7.9: Update latencies for varying distribution of reads. The remaining operations
are updates. The solid, vertically dashed and obliquely dashed portions of the bar denote
50th, 95th and 99th percentiles respectively.

Fogstore.

The metrics we are interested in are :

• Latency of read/update operations

• Throughput of read/update operations

• Client-centric degree of consistency

Applications that require strong consistency for data-accesses would use the aforemen-

tioned quorum-based (strict) datastore. The client’s expectation from a datastore guaran-

teeing strong consistency is that a read always returns the most recent version whose update

was successful. We analyze the trace of YCSB clients and for every read compare the ver-

sion returned to the version that was written by the most recent successful update, and call

it a violation if these versions don’t match. We analyze the YCSB client trace against a

quorum-based store and, following the expectation, don’t find any violations as the read
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Figure 7.10: Throughput (ops/sec) for varying distribution of reads

Table 7.1: Percentage of reads returning a version that was not most recently written. The
percentage of inconsistent reads has been reported for workloads with varying proportion
of read requests and key-selection distribution.

20% reads 50% reads 80% reads
Latest 0.17 0.6 0.11

Hotspot 0.06 0.06 0.02
Zipfian 0.03 0.02 0.01

and write quorums overlap. This means that the application does not have to implement

special logic for handling inconsistent/stale data reads.

This reduction in programming effort due to strong consistency guarantees from the

datastore comes at a price on performance, as now each operation has to wait to complete

on a quorum of nodes, which may have high network latency between them. This hypoth-

esis is validated by the variation of read and update latencies shown in Figures Figure 7.8

and Figure 7.9 and the aggregate operation throughput shown in Figure Figure 7.10. The

applications in this paper’s context are heavily dependent on the low-latency execution of

read and update operations, and hence guaranteeing performance of paramount importance.

For the sake of performance, the applications at hand would use an eventually consis-

tent datastore, and wait for each operation to complete on only one replica before acknowl-

edging the user. The experimental results show that the eventually consistent datastore is

able to outperform the quorum-based store significantly in terms of operation latencies and

throughput (Figures Figure 7.8, Figure 7.9 and Figure 7.10). However, since clients may

initiate reads before previous updates to those data-items have been propagated to all repli-

cas, there are mismatches between the version returned by read operations and the most

recently written version. Table 7.1 shows the percentage of reads that undergo such consis-

tency violations. Note that due to the limitations of the emulation platform, we only have

16 client threads in these experiments, and increasing the concurrency would lead to more
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reads that violate strong consistency. Hence the improvement in performance comes at the

cost of programming effort to handle inconsistent reads from the datastore.

To counter the performance limitations of quorum-based and consistency violations

of an eventually consistent datastore, we run the same client workloads against Fogstore,

which is fundamentally Cassandra extended with the context-aware policies for replication

and quorum selection. Since the read and write quorums are limited to replicas placed

close to the data-item and overlap, there are no consistency violations i.e., it offers strong

consistency. On the performance side, we observe that read and update latencies are even

better than that of the eventually consistent store. We reason that this is because of the

location-agnostic replica placement in plain Cassandra, where all the 3 replicas of a data-

item may be located on remote nodes, leading to high operation latency even with eventual

consistency. Fogstore is, therefore, able to achieve a better throughput than the eventual

store. In fact, since the read quorum is set to 1 and write quorum to 2, the throughput for

a read-heavy workload beats the eventual datastore by a higher margin as the number of

replicas to block for is just one.

Hence, based on these results, the context-aware optimizations of Fogstore allow it to

obtain the performance of an eventually-consistent store and, at the same time, provide

consistency guarantees similar to a quorum-based database. This enables the design of

systems that are dependent both on high throughput and low programming effort of dealing

with inconsistent operation results.

7.5.2 Performance of range queries

Applications processing spatio-temporal data have a high performance dependence on ef-

ficiency of range-queries. Fogstore performs data-distribution based on location, which

would lead range queries to span across a number of datastore nodes. In the following

set of experiments we analyze the performance of Fogstore for delivering results of range

queries and the impact of range filter size. We compare the performance of range queries

on Fogstore against a baseline eventually consistent database setup - which uses the data-

item’s type to partition items across datastore nodes. Since events are not mutable, we are

not dependent on consistency guarantees.

For this paper, we assume that range queries request events of a certain type T in a

circular geographical area of radius R km centered at location L and can be expressed as

the tuple (L,R, T ). To support efficient range queries, we built a wrapper that transforms

the tuple (L,R, T ) into a number of contiguous subset of tile IDs, such that they cover the
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area covered by the range (similar to [spatialcassandra]). For each of these subsets we

trigger a child concurrent sub-query to Fogstore that returns events with a location falling

under the subset of tile IDs. The range query is said to be completed when all the children

sub-queries are complete. For this set of experiments, we build a datastore cluster same as

the previous experiment, with 4 nodes around Atlanta and 4 at remote locations (see Figure

Figure 7.7). A KD-Tree of depth 10 is chosen for spatial partitioning. We load the database

with 4000 events of 10 different types from the area marked by the blue outline. For each

range query (L,R, T ), L is sampled from the bounding box in Figure Figure 7.7 while T

is sampled from the set of 10 event types. The value of R is varied and the impact of its

variation on range query completion time is reported in Figure Figure 7.11.
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Figure 7.11: Comparison of latency of range queries with varying range-radius for Fog-
store’s data partitioning and eventually consistent Cassandra deployment. All statistics are
aggregated over 5000 range queries.

As is evident from Figure 7.11, the location-based distribution of data done by Fogstore

is able to achieve comparable performance to the baseline eventually consistent datastore

with the increase in radius of range queries. Increasing the range-query radius increases

the number of replicas (datastore nodes) that would store the events queried for, which

increases the overhead on Fogstore’s coordinator node to split the original sub-query further

down into read requests that are sent to individual replicas. This factor, however, does not

impact the baseline datastore, since the events are partitioned based on the item type field,

which is fixed for a particular range-query, meaning each replica assigned to that item

153



type would have all the data-items of that type. Furthermore, an increase in range-query

radius also leads to increase in the number of events returned, which also impacts query-

completion time, both for Fogstore and the baseline.

7.5.3 Load balancing across data-store nodes

One of the supposed limitations of partitioning data-items based on spatial encoding using

Cassandra’s hash ring mechanism is that skews in application workload can lead to some

datastore nodes storing significantly more data-items than others. This is because of the

fact that we want to preserve spatial proximity of replica placement.

In order to perform large-scale tests of load balancing, we design a simulation environ-

ment which mimics the replica placement approach of Fogstore 4. We focus on the region

around Atlanta, as shown in Figure Figure 7.7, and place 64 datastore nodes within that

region in a uniformly-spaced manner. To simulate spatial skew in data access pattern, we

generate 80% of the data-items from a small area (0.0625 times the full region) around

Downtown while the rest of the region generates 20% of data-items. For every data-item

we set the number of InCoI replicas to 2, and configure the CoI distance so as to have

all the 64 fog nodes candidates for hosting the InCoI replicas. Furthermore, we also en-

vision having multiple datastore nodes deployed at a particular resource location, akin to

a mini-datacenter. The data-partitioning policy should be able to utilize all the available

capacity, both at the same location as well as across multiple locations. The metric of inter-

est is the number of data-items that each node is assigned. A data partitioning policy that

does not take load-balancing into account would lead to nodes close to the hotspot region

storing much more data-items than those away from it, resulting in a high variance in the

aforementioned metric. We report the measured metric in Figure Figure 7.12.

As described in Section 7.3.2, the depth of the KD-Tree used for spatial partitioning also

lends itself to determining the spatial encoding of a data-node’s location. The KD-Tree

height is, hence, crucial for determining the degree of spatial load balancing. A smaller

value of height leads to a large number of nodes having the same location-specific part of

the token, leading to more widespread load balancing. A larger height leads to higher spa-

tial proximity and, hence, less widespread load balancing. We are able to see the above ef-

fect of the KD-Tree height on the degree of load balancing (as show in Figure Figure 7.12).

Interestingly, a KD-Tree based encoding with height of 12 and above encodes the location

4The emulation platform used in previous experiments is not large enough to emulate a very large number
of nodes
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Figure 7.12: Standard deviation of the number of data-items stored by each datastore node
(lower number denotes better load balancing). We vary the height of the KD-Tree used for
spatial partitioning and encoding as well as the number of datastore nodes on each resource
location. The numbers are averaged over 10 simulation runs.

of all datastore nodes to be distinct, thus leading to no changes in load balancing metric

with trees of greater height.

Furthermore, an increase in the number of datastore nodes on each resource location

also improves the load balancing metric, as the data-partitioning policy is able to seam-

lessly distribute data-items across them as well. Hence with a proper KD-Tree height token

formation and enough resources near regions with higher activity, we can obtain both spa-

tial proximity of replicas and good load balancing.

7.5.4 Evaluation of fault-tolerance

One of the important properties of Fogstore’s data distribution policy is that it takes toler-

ance to geographically correlated failures into account. Contemporary cloud-based databases

provide such fault-tolerance by distributing replicas of a data-item across multiple datacen-

ters, so that they are at a sufficiently high distance from each other to not be affected by cor-

related failures like earthquakes or massive power outages. Fogstore, however due to lack

of physical constructs like datacenters and regions, performs wide-area geo-distribution us-

ing the location of data-items and data-store nodes, by guaranteeing a certain minimum dis-
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tance in their spatial encodings. However, since spatial encodings tend to translate higher

(two) dimensional attributes into one-dimension, high distance in terms of encoding of two

locations does not consistently translate to high geographical (actual) distances between

the two locations

In the following set of experiments we examine the distribution that the geographical

distance between Out-of-CoI replica nodes have from the data-item. Since the In-CoI repli-

cas are kept close to the data-item’s location, placing the Out-of-CoI replicas significantly

far away from the data-item’s location implies geographical separation between the In-CoI

and Out-CoI replicas - thus achieving the aforementioned tolerance to correlated failures.

We choose a few candidate large-scale resource topologies that are likely of being repre-

sentative of how such geo-distributed infrastructures could be realized, which are described

below :

1. Capitals : Each capital of mainland USA’s states is considered a central location of

resource capacity, with a fixed number of fog nodes scattered around a certain radius

(50 km) from the capital city’s centre.

2. AT&T : Locations of core routers of AT&T’s backbone network inside the USA are

considered central locations of resource capacity, with a fixed number of fog nodes

scattered around a certain radius (50 km) from the peering points location.

Accesses are generated from within a radius of 100 km from each central resource

capacity location (an example of which is shown in Figure Figure 7.13). We note the

Figure 7.13: Geographical distribution of data-store resources (red dots) and accesses (blue
dots) for a reference topology with mainland USA state capitals as resource capacity loca-
tions.

location where the Out-CoI replicas are placed and the distance of that node from the
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location of the data-item for the aforementioned reference topologies, as shown in Figure

Figure 7.14. For both the candidate topologies, a maximum encoding distance threshold of

34 can allow a median separation of atleast 2500 KM, which is a significantly large distance

for geographically-correlated failures, like natural disasters or massive power outages, to

affect.

Figure 7.14: Distribution of distance between OutCoI replicas and data-items’ locations for
various reference topologies. The height of KD-Tree used for generating the node tokens
has been taken as 20.

7.6 Related Work

ElfStore[81] is a resilient data storage service that is designed for a federated infrastructure

consisting of both Edge and Cloud resources. It offers content-based discovery of data

along with high reliability and transparent access irrespective of where the data is stored.

The data placement policy of ElfStore ensures that placement is done within two hops

from the client for fast retrieval. To provide high reliability of data storage, it monitors the

uptime of each storage node and performs replication on a select subset of nodes such that

a minimum reliability threshold can be provided. However, the system does not deal with

mutable data and therefore has no notion of consistency tuning as FogStore. In addition,

all replicas are placed in proximity of the client, therefore not offering any resilience from

geographically correlated failures.
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Cathode [82] presents a consistency-aware data placement algorithm for Edge-based

data stores. It performs replica placement based on the consistency requirements of the ap-

plication, the cost of synchronization between replicas and the storage capacity constraints

on the data nodes. The system is designed for smart-city applications that have a strong

geographical locality in data-access patterns. It uses pairwise network latency estimates

between client and data store nodes to compute the cost of consistent read/write opera-

tions for a given data placement, while relying on a decentralized approach for computing

the best placement for each data-item. The paper, however, does not cover the overhead

of collecting the information of network latency at the different decentralized nodes for

decision-making. The network-aware data-placement approach can be a meaningful addi-

tion to the system architecture of FogStore.

Portkey [83] presents an adaptive key-value placement approach over dynamic Edge

networks. It monitors the latency between clients and datastore servers using efficient

network tomography. An alternate placement for a client’s data items is calculated only

when the client’s latency distribution to proximal datastore servers changes significantly.

In case the placement needs to be updated in the event of client mobility, the data-items

are migrated to a better data storage server. Although the proposed system does not sup-

port replication, PortKey’s control algorithm is extensible to allow adding logic to perform

placement of multiple replicas for avoiding geographically correlated failures.

EdgeKV [84] is a decentralized, scalable, and consistent storage system for the Edge.

It supports two levels of data locality with different latency guarantees based on applica-

tion requirements. The separation of local and global data allows deploying EdgeKV in

different use cases. It is built for a layered infrastructure, with clusters of closeby Edge

storage nodes connected to each other via gateways. Each cluster operates as a replicated

state machine with distributed consensus for data consistency. The Gateways are part of a

Distributed Hash Table (DHT) which uses consistent hashing for data lookups. Each data

item is either Local or Global. In case it is Local, it is replicated in the local cluster, other-

wise it is replicated in the Global DHT. The selection of Local or Global is coarse-grained,

which makes the tradeoff between consistency and latency coarse-grained as well.

7.7 Conclusion

FogStore is a key-value store built for highly geo-distributed infrastructures with edge-

centric context-aware replica placement and quorum selection policies – for both of which

FogStore leverages the Dynamic Spatial Context Management mechanism. FogStore’s
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replica placement is done taking the low-latency requirement of data-access into account,

while also making the placement tolerant to geographically correlated failures. It, creates

two types of replicas, ones which are located in proximity to the clients for low latency and

ones in remote location for fault-tolerance. The quorum selection policy leverages the fact

that the context of clients determine the degree of consistency expected when querying the

state of a situation-awareness application. Hence queries from clients in the vicinity of the

queried item, which require consistent data access, have a majority of the proximal replicas

in quorum, while those from remote clients are offered eventual consistency. FogStore uses

the Dynamic Spatial Context Management mechanism to perform both replica placement

and quorum selection. We show the performance of the proposed policies by implement-

ing them on Apache Cassandra and using YCSB to stress-test the system. Evaluations

show that the proposed policies are able to achieve a throughput and latency comparable to

eventually consistent systems, while still guaranteeing serializability guarantees on relevant

data-items to clients.
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CHAPTER 8
DISCUSSION

8.1 Realizing Proposed Mechanisms in Contemporary Edge Computing Offerings

In this chapter we discuss how the proposed mechanisms can be incorporated into the Edge

platform offerings at present, and how they interact with the different stakeholders in the

Edge Computing ecosystem.

8.1.1 Stakeholders in Edge Computing

The following stakeholders exist in contemporary Edge Computing offerings:

Infrastructure Provider. The most significant factor that differentiates Edge comput-

ing from the existing Cloud computing paradigm is the presence of a large number of

geo-distributed infrastructure sites, which can be leveraged to offer compute, storage and

networking services. Unlike building datacenters in a remote location, setting up Edge

infrastructure capabilities is more complicated. This is because, firstly, multiple sites of

real-estate have to be purchased in an urban area and power and network connectivity have

to be ensured, all of which are expensive and cumbersome to manage. Secondly, since

users of Edge applications would inevitably connect to the applications running on these

sites through a telecommunication network, the Edge sites should be peered efficiently with

the telecom network to avoid high access latencies, despite geographical proximity. Hence,

there is a high bar for entry for newcomers in the Edge computing arena.

Fortunately, there are existing organizations who already manage such a geo-distributed

infrastructure for their own purposes - telecommunication providers, such as AT&T and

Verizon. They operate a large number of geo-distributed central offices which are stocked

with network functions (NFV) or custom hardware that enable cellular connectivity. Re-

cently, they have been opening up their infrastructure to be used for hosting Edge com-

puting platforms. For instance, Verizon has partnered with Amazon Web Services to offer

AWS Wavelength, which is an offering that provides AWS compute and storage services

from Edge infrastructures located in several metropolitan areas in the USA [85]. Simi-

larly, AT&T has partnered with Microsoft to provide Edge computing services [86]. Since

these Edge sites are within the network of telecommunication providers, application clients

would not have to pay extra latency overhead to communicate with them.
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Figure 8.1: Schematic of the various stakeholders in an Edge computing environment and
their interactions with one another.

There is a different flavor of infrastructure providers entering the Edge ecosystem. Ex-

amples of such infrastructure providers are Vapor IO [12] and Edge Micro [87]. These

organizations build up facilities to serve as Edge sites and ensure efficient peering to net-

work providers serving users closeby. Because of efficient peering, they are able to of-

fer low-latency access to clients that are connect to them through other network service

providers.

Platform Providers. These are organizations that utilize the infrastructure owned by In-

frastructure Providers to run their application platform/middleware. Examples of platform

providers are Amazon Web Services and Microsoft Azure, who already have experience in

providing such middleware in the Cloud computing space. The middleware provided by

them consists of several platform services that the applications can utilize, such as execu-

tion runtimes for applications, key-value stores for data storage and message queues for

communication. Usually the same platform services that are offered by the provider in the

cloud are made available at the Edge. Examples of such offerings are AWS Wavelength,

Microsoft Azure Edge Zones, and Azure IoT Edge.

Application Developer. The application developer utilizes the platform services offered

by the platform provider to implement the application logic.

8.1.2 Dependencies of Proposed Mechanisms on Stakeholders

We now discuss the kinds of dependencies that the proposed mechanisms have on the stake-

holders of the Edge computing ecosystem. We will break down each mechanism into its

constituent components and discuss which stakeholder manages that component.
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Dynamic Spatial Context Management Mechanism

The Dynamic Spatial Context Management mechanism consists of two main components –

(1) the spatial partitioning metadata managed by the control policy; and (2) the client library

that maintains a cache of the current spatial tile and reports client location to the spatial

partitioning metadata component. The spatial partitioning metadata has to be maintained

within the control plane of the platform service that uses the mechanism. The client library

of the mechanism needs to be incorporated into the client library of the platform service.

Network Proximity Estimation

The Network Proximity Estimation mechanism consists of three main components – (1)

Edge Gateways; (2) Network Coordinate Agents on clients; and (3) Network Coordinate

Agents on Edge sites. The Edge Gateways will have to be set up and maintained by the

infrastructure providers as it is dependent on the network connectivity of clients and inde-

pendent of the deployment of platform services. Network coordinate agents on the Edge

sites would be managed by the infrastructure provider or the platform provider. In case

they are managed by the platform provider, they would be able to have agents belonging

to different infrastructure providers to be part of the same network coordinate cluster. Net-

work coordinate agents on the clients could be a part of the client library of the platform

provider itself, e.g., the client SDK of Azure IoT Edge. It could also be a part of the client

library of the platform service.

End-to-End Monitoring

All components of the end-to-end monitoring mechanism would be deployed on the plat-

form provider, possibly with one instance of the monitoring mechanism for each platform

service.

8.2 Edge-Centric Architecture of Control-Plane

The mechanisms proposed in this dissertation aim at aiding the control-plane policies in

their decision-making so that the data-plane of the platform services can be optimized for

supporting situation-awareness applications. However, a move from the Cloud to the Edge

not only affects the data-plane, but also the control-plane. In cloud-based implementations

of platform services, the control-plane and data-plane are both resident within the same

datacenter, and the latency between them is negligible. However in the Edge setting, these
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two components are separated potentially by a Wide Area Network. The high network

latency between the control and data plane leads to the responsiveness of the platform

service to deteriorate.

While this is not the focus of this dissertation, we make two specific optimizations in

two of the platform services presented here to improve the responsiveness of the control-

plane.

8.2.1 Increase Decision-making Autonomy at the Edge

OneEdge considers two classes of applications - coordinated and standalone. Coordinated

applications are those that require multi-client collaboration, and hence scheduling deci-

sions for them are taken in a centralized controller. On the other hand, each instance of a

standalone application serves a unique client. Therefore, application placement for a stan-

dalone application client can be done independent of other clients. OneEdge assigns the

responsibility of standalone application placement to the Site Agents themselves, which

receive deployment requests directly from the clients.

Through experimental evaluations on real-world workloads in [88], we have shown that

adding autonomy for resource scheduling improves the response time of the control plane.

However, this autonomy results in the emergence of multiple writers to the aggregate in-

frastructure state maintained by the control plane, which needs to be consistent. One tech-

nique that allows high control-plane throughput in the presence of concurrent autonomous

updates to the aggregate state by Site Agents is to maintain an eventually consistent view

of the aggregate state at the central controller and use it to optimistically make scheduling

decisions. These decisions then need to be verified against the remaining resource capacity

at the Edge sites during Transaction Executor’s operation. If the target Edge sites do not

have enough spare capacity to carry out the scheduling decision, the decision is rolled back,

aggregate state updated and the scheduling is redone. We have shown that the probability

of conflicts between the central controller’s and site agents’ updates is low, which allows

such a design to achieve high throughput and avoid overhead of rollback and rescheduling

[88].

8.2.2 Improve Coordination between Control-Plane and Data-Plane

One of the important objectives of platform services serving situation-awareness applica-

tions is their ability to respond to performance violations by performing reconfigurations

with agility. Such reconfigurations typically require multiple rounds of communication
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with the central control-plane and the data-plane components involved. Due to the high

WAN latency between control and data-plane components, this process is slowed down,

leading to the clients continuing to face performance violations for an extended period of

time. ePulsar tackles this problem by making the communication between control and

data-plane asynchronous, so that the multiple rounds of communication can proceed in

parallel, thereby shortening the time required for performing the reconfiguration [89].
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CHAPTER 9
CONCLUSION AND FUTURE DIRECTIONS

This dissertation proposed three mechanisms that aid the control plane policies of edge-

centric platform services to satisfy the requirements of situation-awareness applications.

This chapter first presents a summary of the main contributions of this dissertation and

then presents future directions for research in this domain.

9.1 Conclusion

Situation-awareness applications consist of a sense-process-actuate control loop, which

senses data from the environment, processes it and performs actions based on the extracted

insights. These applications require low response time from the backend to ensure that the

performed actions are in real-time with respect to changes in the surrounding environment.

Furthermore, they also exhibit spatial affinity, wherein multiple nearby clients need to be

served by the same application instance. These requirements are not fulfilled by the con-

temporary offerings of cloud-based platform services. Hence, new mechanism are needed

to facilitate edge-centric control policy decisions in these platform services.

This dissertation introduces the proposed mechanisms in Chapter 3, wherein the neces-

sity of each proposed mechanism are highlighted by quantitatively analyzing the perfor-

mance of the state of the art control policies. It then formalizes the interface provided by

each mechanism to the control policies of platform services, and demonstrates the utility of

each mechanism in the context of a platform service’s control policy. Chapter 4 then per-

forms a design-space exploration of each mechanism. It presents candidate design choices,

explains the metrics of interest and compares the candidate design choices against each

other.

The dissertation then goes on to demonstrate the utility of the proposed mechanism in

the context of three platform services in Chapters 5 through 7. Chapter 5 presents ePulsar ,

which is an edge-centric publish-subscribe system that offers end-to-end message delivery

latency guarantees to applications. It utilizes the network proximity estimation mechanism

for selecting the right broker for hosting a pub-sub topic. The mechanism is used for

estimating the message delivery latency for a topic if a particular candidate broker is chosen

for hosting the topic. It also utilizes the distributed end-to-end monitoring mechanism to
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monitor the observed latency by clients and trigger a topic migration to another broker if

the latency requirement is violated.

Chapter 6 presents an application orchestrator system for situation-awareness appli-

cations. It supports applications that have response time requirements as well as spatial

affinity requirements. It utilizes the network proximity estimation mechanism to perform

latency-sensitive placement of application components on the infrastructure and the dy-

namic spatial context management mechanism for mapping clients to application instances

while satisfying spatial affinity requirements. It leverages the end-to-end monitoring mech-

anism for detecting violations of response-time requirement, identifying the root-cause of

the violation and triggering the right reconfiguration action. Through end-to-end evalua-

tions of realistic application workload on a realistic infrastructure topology, we have shown

that OneEdge is able to meet the requirements of situation-awareness applications.

Chapter 7 presents FogStore, which is a key-value store built for highly geo-distributed

infrastructures with edge-centric context-aware replica placement and quorum selection

policies – for both of which FogStore leverages the Dynamic Spatial Context Manage-

ment mechanism. FogStore’s replica placement is done taking the low-latency requirement

of data-access into account, while also making the placement tolerant to geographically

correlated failures. It, creates two types of replicas, ones which are located in proximity

to the clients for low latency and ones in remote location for fault-tolerance. The quo-

rum selection policy leverages the fact that the context of clients determines the degree of

consistency expected when querying the state of a situation-awareness application. Hence

queries from clients in the vicinity of the queried item, which require consistent data ac-

cess, have a majority of the proximal replicas in quorum, while those from remote clients

are offered eventual consistency. FogStore uses the Dynamic Spatial Context Management

mechanism to perform both replica placement and quorum selection. We show the per-

formance of the proposed policies by implementing them on Apache Cassandra and using

YCSB to stress-test the system. Evaluations show that the proposed policies are able to

achieve a throughput and latency comparable to eventually consistent systems, while still

guaranteeing serializability guarantees on relevant data-items to clients.

9.2 Future Directions

We now discuss directions for future work that follow from the contributions of this disser-

tation.
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9.2.1 Federation of Control Plane

This dissertation highlights the efficacy of the proposed mechanisms in the context of plat-

form services that have a centralized control plane architecture, wherein policy decisions

are made by a centralized entity. Note that by a centralized entity, we do not refer to a

monolith. The centralized control plane could consist of multiple components, with repli-

cation to ensure fault tolerance. In this context, a centralized architecture refers to the fact

that the control plane components are located in a single facility which is separated from all

the data plane components by the wide area network. Such a design makes the coordination

between control and data plane inefficient due to repeated WAN traversals to accomplish

tasks such as application instance deployment, data migration, etc.

In a federated control plane architecture, there would be multiple controllers for a given

platform service. Each controller would manage a subset of Edge sites, which could over-

lap with the set of sites managed by another controller. This overlap of sites is essential to

ensure that in the event of the failure of a controller, the sites served by the failing controller

can be managed by another one. When reserving Edge resource capacity for data or com-

pute placement, the controller making this decision would need to synchronize with the

other controllers managing the affected Edge sites to ensure that their infrastructure state

is consistently updated. A distributed synchronization protocol such as two-phase commit

can be used for this purpose.

A federated architecture allows the control plane to be located close to the Edge sites

that host the data plane components, while still allowing the control policy decisions to be

made against global infrastructure state. In our previous work [88], we have shown how

introducing decentralization in the control plane results in better response times. This fed-

eration, however, comes at a cost in terms of how and when to handover monitoring data

from one controller instance to another. These challenges can be addressed by once again

leveraging the fact that the goal of a federated design is to have the multiple controller in-

stances close to the Edge site they are managing. Hence, a shared data store for monitoring

data could be utilized in which case explicit migration of data between controller instances

can be avoided.

9.2.2 Extending to Other Platform Services

A widely used platform service in the Edge computing space is Functions as a Service

(FaaS). FaaS is a useful paradigm for application development at the Edge because it

quickly scales in and out according to ingress workload, and hence suits the scarce nature
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of Edge resources. Contemporary FaaS platforms such as Knative [90], Apache OpenFaaS

[91] and OpenWhisk [92] consist of a centralized gateway, which receives ingress requests

and distributes them to one or more workers of the requested function. Since they have been

designed for datacenters, the communication latency between clients and the ingress gate-

way, and that between the gateway and worker nodes is predictably low. This assumption

does not hold true in an Edge computing setting.

Therefore, to operate a geo-distributed FaaS platform, three main changes to the typ-

ical architecture are needed. Firstly, instead of a single ingress gateway, there need to be

multiple geo-distributed gateways, with at least one gateway per Edge site hosting workers.

This is to ensure that function invocation requests do not suffer from unnecessary network

traversal overhead. Secondly, the dispatch of requests from the ingress gateway to work-

ers should be done to ensure that the sum of communication and execution latencies does

not exceed the application’s end-to-end processing latency constraint. The estimation of

communication latency between gateway and worker node can use the network proximity

estimation mechanism proposed in this dissertation, while the current execution latency

profile can be inferred using the end-to-end monitoring mechanism. Finally, worker nodes

on Edge sites can get overloaded due to unpredictable workload surges. In such a scenario,

the overloaded worker node would offload ingress request to other worker nodes which

might have spare processing capacity. The choice of the node to offload a request is again

dependent on the communication latency between the offloader and offloadee, such that the

end-to-end latency constraint is not violated. For the estimation of communication latency,

the network proximity estimation mechanism can be used.

9.2.3 Incorporating Radio Network Information into Control Plane Policy Decisions

This dissertation assumes that the access network link via a cellular tower’s radio interface

is reliable and offers stable network latency and bandwidth. However that is a simplify-

ing assumption that does not hold in real-world scenarios. The performance of the access

link varies due to interference with other user devices, user mobility or due to effects from

the weather. Drops in channel quality causes packet loss, which affects both latency and

throughput. The Mobile Edge Computing (MEC) standard by the European Telecommu-

nications Standards Institute (ETSI) includes Radio Network Information Service (RNIS)

[93]. The goal of the service is to allow authorized MEC application instances to con-

sume RAN level information, such as UE channel quality indications and location updates,

which they can utilize to offer enhanced services and optimize performance. Earlier this
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information was only available to the telecommunication network operator, who used it for

allocating wireless spectrum resources to users. However, with the advent of MEC and

the concomitant co-location of the control planes of the network and application stack, this

information can also be shared with the application control plane stack.

The information provided by the RNIS can be used in a number of ways to offer reliable

and stable performance to applications. For instance, Tan et al. [94] utilize the network

throughput estimates from the RNIS to inform the cache update strategy for a Video-on-

Delivery caching service running on the Edge. The key idea is to cache video segments

of particular bitrates only, i.e., those bitrates that can be delivered to the user with good

performance given the current network conditions. In a similar vein, Li et al. [95] propose

a video delivery scheme for user devices that are connected to multiple access networks.

The control plane of the proposed system periodically analyzes the status of the multiple

access networks and decides which one to use for the delivery of a certain video segment

so as to ensure optimal client experience. The control plane obtains network status using

RNIS.

9.2.4 Monitoring Bandwidth as a Metric of Interest

This dissertation uses latency as the foremost performance metric for situation-awareness

applications. However, for typical Edge computing applications, network bandwidth is also

an important performance metric that should be taken into account when making control

policy decisions. Several previous work propose bandwidth-aware control plane policies

for managing applications that require high network bandwidth. Dedas [96] is an online

deadline-aware task dispatching and scheduling algorithm that takes into account the net-

work bandwidth and propagation latency between Edge sites. The objective of Dedas is to

control the latency of task execution such that the deadline of the task can be met. It selects

Edge sites for dispatching tasks such that both the transmission latency and propagation

latency are low. Lavea [97] is a latency-aware video analytics platform which is designed

for operation on Edge infrastructure. Lavea offloads video analytics tasks between clients

and Edge nodes and also facilitates coordination between multiple Edge nodes. Based

on the chosen offloading strategy, it allocates bandwidth among clients to ensure that the

deadlines of tasks are met. The system consists of a monitoring service that periodically

measures the latency and available bandwidth of the wireless link (4G LTE/5G/WiFi) which

is used to make task offloading decisions. However, bandwidth monitoring is complicated

as it involves sending probe packets through potentially already congested network links,
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which can severely affect application performance. The spatial and temporal variations in

bandwidth can also be predicted in advance by using techniques such as those proposed in

Foresight [98].

9.2.5 Proactive Violation Detection Policies

The control policies discussed in this dissertation for detecting violation of application re-

quirements and root-cause analysis act in reaction to a violation. Therefore, clients will

always go through a transient phase of requirement violation before the platform service

can detect and alleviate it. However, proactive policies can be integrated into the control

plane to proactively identify situations in which a violation is expected to occur in the near-

future and trigger a re-configuration action. Such proactivity in the control plane would

significantly minimize or even eliminate violations. The processing latency on application

components can be analyzed to identify short-term trends which can help trigger a parti-

tioning of client workload in advance. Systems like Foresight [98] can be used to predict

when the network quality is going to deteriorate in the future and trigger a migration.
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and M. J. Sillanpää, “Edge computing server placement with capacitated location
allocation,” Journal of Parallel and Distributed Computing, vol. 153, pp. 130–149,
2021.

[18] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwälder, “Incre-
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[80] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and H. Karl, “Max-
inet: Distributed emulation of software-defined networks,” in 2014 IFIP Networking
Conference, IEEE, 2014, pp. 1–9.

[81] S. K. Monga, S. K. Ramachandra, and Y. Simmhan, “Elfstore: A resilient data stor-
age service for federated edge and fog resources,” in 2019 IEEE International Con-
ference on Web Services (ICWS), IEEE, 2019, pp. 336–345.
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