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Abstract: A single-use disposable in vitro electrochemical immunosensor for the detection of
HbA1c in undiluted human serum using differential pulse voltammetry (DPV) was developed.
A three-electrode configuration electrochemical biosensor consisted of 10-nm-thin gold film working
and counter electrodes and a thick-film printed Ag/AgCl reference electrode was fabricated on
a polyethylene terephthalate (PET) substrate. Micro-fabrication techniques including sputtering
vapor deposition and thick-film printing were used to fabricate the biosensor. This was a roll-to-roll
cost-effective manufacturing process making the single-use disposable in vitro HbA1c biosensor
a reality. Self-assembled monolayers of 3-Mercaptopropionic acid (MPA) were employed to
covalently immobilize anti-HbA1c on the surface of gold electrodes. Electrochemical impedance
spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) confirmed the excellent coverage of
MPA-SAM and the upward orientation of carboxylic groups. The hindering effect of HbA1c on the
ferricyanide/ferrocyanide electron transfer reaction was exploited as the HbA1c detection mechanism.
The biosensor showed a linear range of 7.5–20 µg/mL of HbA1c in 0.1 M PBS. Using undiluted
human serum as the test medium, the biosensor presented an excellent linear behavior (R2 = 0.999)
in the range of 0.1–0.25 mg/mL of HbA1c. The potential application of this biosensor for in vitro
measurement of HbA1c for diabetic management was demonstrated.
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1. Introduction

HbA1c is a stable glycosylated hemoglobin formed by the non-enzymatic reaction of glucose with
the N-terminal valine of the β-chain of normal adult hemoglobin (HbA0) [1–3]. The HbA1c level is
defined as the ratio between the HbA1c concentration and the total hemoglobin concentration. It is
considered as a diagnostic biomarker for diabetic patients in addition to the measurement of the blood
glucose level. The clinical reference range of HbA1c to the total hemoglobin (HbA0) is 5%–20%, and
a value of 4%–6.5% is considered normal [4]. The blood glucose level of a diabetic is not very stable,
even over one single day, and thus the measurement of the HbA1c level can provide a more accurate
indication of the glucose level in the blood over a time period of eight to 12 weeks. Therefore, the
measurement of the HbA1c level is important for the long-term control of the glycemic state in diabetic
patients [5].

HbA1C as the biomarker of diabetes can capture chronic hyperglycemia better than the oral
glucose tolerance test (OGTT) or fasting plasma glucose (FPG) evaluation. Therefore, HbA1c can be

Sensors 2016, 16, 1024; doi:10.3390/s16071024 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 1024 2 of 11

a robust biomarker for both diagnosing and monitoring diabetes. On the other hand, arguments for
defining diabetes by high blood glucose rather than by glycation of proteins persist. Also, the detection
of HbA1c remains relatively costly. Thus, a cost-effective single-use disposable HbA1c biosensor that
can measure the HbA1c level will be highly desirable for diabetic patient management [1].

There are clinical methods to analyze HbA1c including ion-exchange and boronated affinity
chromatography [6,7], electrophoresis [8] and fluorescence [9,10]. However, these methods are
relatively expensive, and require pretreatment of the blood sample, extensive analysis time and
a skillful operator. Thus, a single-use disposable in vitro biosensor capable of the measurement of
HbA1c with a suitable sensitivity and selectivity for diabetic management is scientifically and clinically
significant. In addition to having the sensitivity and specificity of detecting HbA1c in a meaningful
physiological range, it should require a small sample volume such as 10–15 µL of blood or other
physiological fluids and it needs to have a fast response time, such as in seconds. Thus, this HbA1c
biosensor can serve as a stand-alone monitoring system for HbA1c or as a part of a double diagnostic
system for measuring the HbA1c and blood glucose simultaneously.

Electrochemical HbA1c biosensors have been constructed by modifying the surface of an electrode
element by sugar-binding materials (mostly boronic acid), proteins and antibodies specific to
HbA1c. This bio-recognition mechanism is followed by a transduction mechanism including
amperometry/voltammetry, potentiometry or impedometry [11]. Zhou et al. [12] described
an electrochemical interface of BPA-PQQ/ERGO on glassy carbon electrodes for the detection of
HbA1c using differential pulse voltammetry (DPV). However, the fabrication involved multiple
steps and the electrode was not disposable. Furthermore, the selectivity of the biosensor toward
HbA1c was only fair as a result of using a boronic acid derivative which has an affinity for all types
of sugars and glycated proteins and is not limited only to HbA1c. Chopra et al. [13] employed
a sandwich electrochemical immunoassay format which was developed on a screen-printed gold
electrode using MPBA-SAM as the capture molecule and ferrocene labeled anti-HbA1c as a tracer.
Kim et al. [14] exploited the catalytic property of HbA1c for H2O2 reduction to measure the
HbA1c level. The sensor construction involved multiple steps of electrodeposition and potential
cycling. Furthermore, it used a boronic acid–derivative capturing probe (aminophenyl boronic
acid), and it required an additional step of blood sample pretreatment to remove glucose and other
glycated proteins. Electrochemical impedance spectroscopy (EIS) for HbA1c detection was also
suggested [15–17]. However, EIS requires sophisticated instruments and a long measuring time
compared to amperometry/voltammetry techniques. EIS also involves an additional step of equivalent
circuit modeling after data acquisition.
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In this study, single-use disposable thin-film gold-based working and counter electrodes were
constructed as a label-free HbA1c biosensor. Figure 1 shows a schematic representation of the
fabrication steps of this biosensor. Anti-HbA1c was used as a selective HbA1c-capturing probe.
Self-assembled monolayers of MPA were employed to covalently immobilize anti-HbA1c on the surface
of the gold electrode. Differential pulse voltammetry (DPV) was employed as the electrochemical
detection method to enhance the sensitivity through minimization of the charging current. Details of
the fabrication processing of the biosensor will be given later.

2. Materials and Methods

2.1. Apparatus and Reagents

Phosphate Buffer Solution (PBS) 1.0 M (pH 7.4), human serum, 3-Mercaptopropionic acid (MPA),
human hemoglobin, bovine serum albumin (BSA), N-(3-dimethylaminopropyl)-N1-ethylcarbodiimide
hydrochloride (EDC) and N-hydroxysuccinimide (NHS) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Human Hemoglobin A1c (HbA1c) and mouse anti-Human Hemoglobin A1c
(anti-HbA1c) IgG1 were purchased from US Biological (Salem, MI, USA). Potassium hydroxide
pellets, concentrated H2SO4 95.0 to 98.0 w/w % and concentrated HNO3 70% w/w % were
received from Fisher Scientific (Pittsburgh, PA, USA). All the chemicals were used without further
purification. A CHI660C (CH Instrument, Inc., Austin, TX, USA) Electrochemical Workstation was
used for DPV and EIS investigations. All the experiments were conducted at room temperature.
X-ray Photoelectron Spectroscopy (XPS) was performed by a PHI Versaprobe 5000 Scanning X-ray
Photoelectron Spectrometer.

2.2. Electrode Fabrication

Figure 2 shows the biosensor prototype and its actual dimensions used in this study.
The conventional three-electrode configuration consisted of a 10-nm-thin gold film used as working
and counter electrodes and a thick-film printed Ag/AgCl reference electrode. Thin gold film was
deposited on polyethylene terephthalate (PET) by sputtering technique without any binder and the
biosensor was patterned by laser ablation technique. Separate masks were used producing different
elements of the biosensor prototype. The Ag/AgCl reference electrode and the insulation layer were
thick-film printed using DuPont #5870 Ag/AgCl and Nazdar APL 34 silicone-free dielectric inks
respectively. 100 individual biosensors in 4 rows were fabricated on each PET sheet (355 ˆ 280 mm2).
The overall dimensions of an individual biosensor were 33.0 ˆ 8.0 mm2. The working electrode area
was 1.54 mm2 accommodating 10–15 µL of liquid test sample. The combination of sputtering and
laser ablation techniques resulted in producing a very thin and yet uniform gold layer featuring
high-reproduction and low-cost at the same time. This promising and unique fabrication technique
allowed for mass production of single-use disposable biosensors. More detailed explanation of the
electrode fabrication process can be found elsewhere [18].
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2.3. Electrode Functionalization

2.3.1. Pretreatment of Gold Electrode (AuE)

A pretreatment procedure based on those described previously [19,20] was applied to the gold
electrode, prior to the MPA-SAM deposition. This three-step pretreatment procedure resulted in
a significant decrease in electrode charge transfer resistance enhancing the reproducibility of the
biosensor. A row of five or seven biosensors were immersed in a 2 M KOH solution for 15 min.
After rinsing with copious amount of DI water, the biosensors were placed in a 20-fold diluted
concentrated H2SO4 solution (95.0 to 98.0 w/w %) for another 15 min. DI water was then used to rinse
the biosensor prototypes. The biosensors were then placed in a 20-fold diluted concentrated HNO3

solution (70% w/w %) for another 15 min. The biosensors were rinsed once more time with DI water
and dried in a steam of nitrogen. During this pretreatment procedure, the counter and the reference
electrodes were not covered. Concentrations of acids and base solutions used in this pretreatment
procedure were optimized to be effective while maintained the integrity of the thin gold film working
and counter electrodes and the Ag/AgCl reference electrode as well as the overall structure of the
biosensor. The effectiveness of the pretreatment procedure was assessed using EIS and the results
were excellent.

2.3.2. Anti-HbA1c Immobilization on AuE

In all the electrode surface modification steps, both the counter and the reference electrodes were
not covered resulting to a more practical and fast surface modification protocol. Typically, a row
of five biosensors were subjected at once to surface modification. Self-assembled monolayers of
MPA were exploited to wire the anti-HbA1c to the surface of gold working electrode. MPA molecule
consisted of a thiol functional group at one end which processed a great affinity to gold and a carboxylic
group at another end which was suitable for bonding covalently to proteins through peptide bond
after an activation procedure. Thiol modification of gold electrode surface for protein immobilization
was a well-developed technique [13,15,21]. The biosensor used in this study was immersed in 1 mM
solution of MPA in ethanol for 24 h in dark, rinsed with DI water and dried in a steam of N2. The MPA
modified AuEs were incubated in 0.1 M PBS (pH = 7.4) containing 0.25 M EDC and 0.05 M NHS for
5 h to activate MPA carboxylic groups. Activated AuEs were then rinsed by 0.1 M PBS and dried by
N2 flow. 5 µL of 0.05 mg/mL anti-HbA1c was casted on the sensing area of each AuE and left to dry
overnight at 4 ˝C. Antibody immobilized biosensors were rinsed with 0.1 M PBS and immersed in 1%
BSA solution in 0.1 M PBS for 1 h to prevent non-specific bonding. The biosensors were then rinsed
with 0.1 M PBS, dried under a steam of N2 and stored at 4 ˝C.

2.4. Electrochemical Measurements

The experimental measurements were performed at ambient temperature. A solution of
K3Fe(CN)6 and K4Fe(CN)6, with 5 mM in each component, was prepared in 0.1 M PBS and used
as the redox coupled probe for DPV and EIS tests. EIS tests were performed in frequency range of
10´2 to 104 Hz with 5 mV voltage amplitude. Randles equivalent circuit models were used to fit the
Nyquist plots of EIS using EC-lab standard software. Anti-HbA1c immobilized AuEs were rinsed
with 0.1 M PBS and dried in a stream of N2. 5 µL of HbA1c of selected concentration was pipetted
on the sensing area of AuE and allowed to be dried for 2 h at room temperature. The biosensor
was then rinsed with 0.1 M PBS. DPV and EIS measurements were performed after drop casting
of 20 µL K3Fe(CN)6/K4Fe(CN)6 redox couple solution on the sensing area of AuE. EIS was used to
investigate the surface coverage of MPA-SAM formed on AuE. The electron transfer reaction associated
with ferricyanide/ferrocyanide redox couple transformation can be hindered by the presence of
bulky moieties on the surface of the electrode. Figure 3 presents the gradual decrease in the signal
generated by K3Fe(CN)6/K4Fe(CN)6 redox couple reaction as a result of MPA-SAM formation and



Sensors 2016, 16, 1024 5 of 11

Anti-HbA1c immobilization on the surface of gold electrode. Therefore, the hindering effect of HbA1c
on ferricyanide/ferrocyanide electron transfer reaction was exploited as HbA1c detection mechanism.Sensors 2016, 16, 1024  5 of 11 
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Figure 3. Gradual decrease in the signal generated by K3Fe(CN)6/K4Fe(CN)6 redox couple reaction
as a result of MPA-SAM formation and anti-HbA1c (50 µg/mL in 0.1 M PBS) immobilization on the
surface of gold electrode.

2.5. X-ray Photoelectron Spectroscopy

The interaction between the MPA-SAM thiol groups and thin gold film electrode was investigated
using X-ray photoelectron spectroscopy (XPS). The pretreated biosensor was immersed in 1 mM
solution of MPA in ethanol for 24 h in dark, and then rinsed with DI water and dried in a stream of
nitrogen. High resolution C(1s) and S(2p) spectra were collected using a monochromatic Al Kα X-ray
source at the take-off angles of 10˝, 50˝ and 90˝. High resolution C(1s) spectra was used to assess
the orientation of MPA-SAM molecules formed on AuE. The atomic ratio between MPA carboxylic
group carbon (O–C=O) and the carbons from MPA hydrocarbon backbone (C–C) was calculated at
each take-off angle and compared to verify the upward orientation of MPA-SAM.

3. Results and Discussion

3.1. MPA-SAM Characterization

3.1.1. X-ray Photoelectron Spectroscopy

Figure 4 shows XPS high resolution spectra of C(1s) and S(2p) obtained for MPA-SAM–modified
AuE at the take-off angles of 10˝, 50˝ and 90˝. The higher energy peak in S(2p) spectra was at 163.5 eV
as presented in Figure 4a–c, representing the characteristic of the free thiol group (–SH) [22]. As a result
of the Au–S covalent bond, the S(2p) peak was shifted by 1.5 eV negative of the 163.5 eV. Our results
agreed exceptionally well with other reported research [22–25]. Thus, the higher intensity peak at
162 eV in Figure 4a–c confirmed the formation of the covalent bond between the MPA-SAM thiol
groups and AuE. Furthermore, the relative intensity of the free thiol groups to covalently bonded
thiol groups increased by increasing the take-off angle from 10˝ to 90˝, as shown in Figure 4a–c.
This indicated that by approaching toward the surface of the gold electrode, the number of free thiol
groups appeared to decrease. The lower energy peak at the C(1s) spectra (285 eV) in Figure 4d–f was
characteristic of saturated hydrocarbons (C–C) which could be assigned to carbons participating in
the MPA backbone. The lower intensity peak at 288.9 eV in the C(1s) spectra was associated with
–COOH [22]. Table 1 presents the atomic ratio between the MPA carboxylic group carbon (O–C=O)
and the carbons from the MPA hydrocarbon backbone (C–C) at different take-off angles. This was
calculated by the peak integration of the C(1s) spectra. As shown in Table 1, the relative number
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of carbons participating in the carboxylic groups decreased with decreasing the take-off angle from
90˝ to 10˝. Thus, there were fewer numbers of carboxylic groups near the surface. This observation
confirmed the upward orientation of MPA-SAM carboxylic groups in this MPA-SAM arrangement.Sensors 2016, 16, 1024  6 of 11 
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Table 1. Atomic ratio between MPA carboxylic group carbon (O–C=O) and the carbons from the MPA
hydrocarbon backbone (C–C) at different take-off angles.

Take-off Angle –COOH Count O–C=O Count –COOH/O–C=O Atomic Ratio

10˝ 122.20 547.62 0.2231
50˝ 330.02 1385.55 0.2382
90˝ 164.08 516.98 0.3174

3.1.2. EIS Assessment of MPA-SAM Surface Coverage

Figure 5a presents the electrochemical impedance spectroscopy (EIS) results for the bare and
MPA-SAM–modified gold electrodes in the frequency range of 10´2 to 104 Hz with a 5 mV voltage
amplitude in the form of a Nyquist plot. Figure 5b shows the Randles equivalent circuit used to model
the experimental data. Each component in the equivalent circuit represented an element in the physical
electrode/electrolyte interface. The semicircular region of the Nyquist plot was associated with the
electron transfer process which was modeled by a parallel circuit representation of a resistor (Rct)
and a capacitor (Q). The tail at the lower frequencies indicated the presence of a diffusion-limited
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electrochemical process, which was represented using the Warburg element (Zw). The solution
resistance was represented by Rs. The electrode charge transfer resistance (Rct) was related to the
MPA-SAM surface coverage assuming that the electron transfer reaction occurred only at uncovered
spots and that the diffusion to these defects is planar [26,27]. The MPA-SAM surface coverage ratio
was then calculated using the following equations:

θR
IS “ 1 ´

˜

RAuE
ct

RSAM
ct

¸

where RAuE
ct and RSAM

ct are charge transfer resistances measured at bare and MPA-SAM–covered
electrodes, respectively. When θR

IS > 0.9, the surface coverage fraction could be evaluated using a model
based on pinhole size:

θP
IS “ 1 ´

ˆ

σw

m ´ σw

˙

where σw is the Warburg coefficient (slop of Z1 vs. ω´1{2 plot obtained for bare AuE) and m is
the slope of the linear interval in the high frequency region of the Z1 vs. ω´1{2 plot obtained at
MPA-SAM–modified AuE. Table 2 presents data obtained from the Randles equivalent circuit modeling
of EIS Nyquist plots for bare and monolayer-covered electrodes. The calculated value of θP

IS = 0.9950
for MPA monolayers indicated a high coverage fraction compared to previous reports [26,27].

Sensors 2016, 16, 1024  7 of 11 

 

ூௌோߐ = 1 − (ܴ௖௧஺௨ாܴ௖௧ௌ஺ெ)  

where ܴ௖௧஺௨ா  and ܴ௖௧ௌ஺ெ  are charge transfer resistances measured at bare and MPA-SAM–covered 
electrodes, respectively. When ߐூௌோ  > 0.9, the surface coverage fraction could be evaluated using a 
model based on pinhole size: ߐூௌ௉ = 1 − ( ௪݉ߪ −   (௪ߪ

where ߪ௪ is the Warburg coefficient (slop of ܼ′ vs. ߱ିଵ/ଶ plot obtained for bare AuE) and ݉ is 
the slope of the linear interval in the high frequency region of the ܼ′ vs. ߱ିଵ/ଶ plot obtained at 
MPA-SAM–modified AuE. Table 2 presents data obtained from the Randles equivalent circuit 
modeling of EIS Nyquist plots for bare and monolayer-covered electrodes. The calculated value of ߐூௌ௉  = 0.9950 for MPA monolayers indicated a high coverage fraction compared to previous reports 
[26,27]. 

The high surface coverage of MPA-SAM together with the formation of the Au-S covalent bond 
and the upward orientation of the MPA carboxylic groups suggested that our immobilization process 
of anti-HbA1c on the MPA-SAM–modified gold electrode was very effective.  

Table 2. Data obtained from Randles equivalent circuit modeling of EIS Nyquist plots for bare and 
monolayer-covered electrodes. 

Surface ࡽ(μ۴) ࢝ࢆ(ષ) ࣌࢝(ષ. (૚/૛ିܛ ࢓ ࢚ࢉࡾ (ષ) ࡾࡿࡵࢲ (ષ)࢙ࡾ ࡼࡿࡵࢲ   
bare AuE 1.31 972.6 367.7  201.5 107   

MPA-SAM 0.46 1738  74,542 10,347 152 0.9805 0.9950 

 
Figure 5. (a) Nyquist plots obtained for the bare and MPA-SAM-covered AuEs in a frequency range 
of 10−2 to 104 Hz; (b) Randles equivalent circuit used to model the experimental data. 

3.2. HbA1c Detection Using Differential Pulse Voltammetry (DPV) 

The MPA-SAM–modified gold electrode was successfully characterized, and the HbA1c 
biosensor was ready for the evaluation of its performance. Cyclic voltammetry and amperometry are 
the two most used electrochemical detection techniques. However, differential pulse voltammetry 
(DPV) provides a linear sweep voltammetry with a series of regular voltage pulses superimposed on 
the linear potential sweep. Consequently, the current is measured immediately before each potential 
change. Thus, the effect of the charging current is minimized, achieving a higher sensitivity. Hence, 
in this study, we used DPV measurement to achieve higher sensitivity compared to cyclic 
voltammetry and amperometry. 
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10´2 to 104 Hz; (b) Randles equivalent circuit used to model the experimental data.

Table 2. Data obtained from Randles equivalent circuit modeling of EIS Nyquist plots for bare and
monolayer-covered electrodes.

Surface Q puFq Zw pΩq σw

´

Ω¨ s´1{2
¯

m Rct pΩq Rs pΩq θR
IS θP

IS

bare AuE 1.31 972.6 367.7 201.5 107
MPA-SAM 0.46 1738 74,542 10,347 152 0.9805 0.9950

The high surface coverage of MPA-SAM together with the formation of the Au-S covalent bond
and the upward orientation of the MPA carboxylic groups suggested that our immobilization process
of anti-HbA1c on the MPA-SAM–modified gold electrode was very effective.



Sensors 2016, 16, 1024 8 of 11

3.2. HbA1c Detection Using Differential Pulse Voltammetry (DPV)

The MPA-SAM–modified gold electrode was successfully characterized, and the HbA1c biosensor
was ready for the evaluation of its performance. Cyclic voltammetry and amperometry are the
two most used electrochemical detection techniques. However, differential pulse voltammetry (DPV)
provides a linear sweep voltammetry with a series of regular voltage pulses superimposed on the
linear potential sweep. Consequently, the current is measured immediately before each potential
change. Thus, the effect of the charging current is minimized, achieving a higher sensitivity. Hence, in
this study, we used DPV measurement to achieve higher sensitivity compared to cyclic voltammetry
and amperometry.

3.2.1. HbA1c Detection in 0.1 M PBS

Figure 6a shows the testing results of our HbA1c biosensor in 0.1 M PBS test medium over
an HbA1c concentration range of 7.5–25 µg/mL. The DPV of the anti-HbA1c casted biosensor without
HbA1c antigen was measured as the baseline. Each biosensor was used once for testing each HbA1c
concentration, aimed at single-use disposable in vitro applications. Multiple test runs were carried
out with n > 3. As can be seen in Figure 6a, there is a gradual decrease in the signal generated by the
ferricyanide/ferrocyanide transformation reaction as a result of the increasing HbA1c concentration.
This is due to the electron transfer hindering effect of the antigen which was captured on the surface of
the anti-HbA1c immobilized gold electrode. Figure 6b is the calibration curve of HbA1c measurement
in 0.1 M PBS test medium based on the testing results from Figure 6a. An acceptable correlation
coefficient of 0.968 was obtained for the biosensor in the range of 7.5–20 µg/mL. As such, 7.5 µg/mL
was the lowest detection limit for the biosensor in 0.1 M PBS testing medium as the sensor’s responses
to antigen concentrations less than 7.5 µg/mL were not reproducible.

Sensors 2016, 16, 1024  8 of 11 

 

3.2.1. HbA1c Detection in 0.1 M PBS 

Figure 6a shows the testing results of our HbA1c biosensor in 0.1 M PBS test medium over an 
HbA1c concentration range of 7.5–25 µg/mL. The DPV of the anti-HbA1c casted biosensor without 
HbA1c antigen was measured as the baseline. Each biosensor was used once for testing each HbA1c 
concentration, aimed at single-use disposable in vitro applications. Multiple test runs were carried 
out with n > 3. As can be seen in Figure 6a, there is a gradual decrease in the signal generated by the 
ferricyanide/ferrocyanide transformation reaction as a result of the increasing HbA1c concentration. 
This is due to the electron transfer hindering effect of the antigen which was captured on the surface 
of the anti-HbA1c immobilized gold electrode. Figure 6b is the calibration curve of HbA1c 
measurement in 0.1 M PBS test medium based on the testing results from Figure 6a. An acceptable 
correlation coefficient of 0.968 was obtained for the biosensor in the range of 7.5–20 µg/mL. As such, 
7.5 µg/mL was the lowest detection limit for the biosensor in 0.1 M PBS testing medium as the sensor’s 
responses to antigen concentrations less than 7.5 µg/mL were not reproducible. 

 
Figure 6. (a) DPV measurement of HbA1c antigen in 0.1 M PBS in the concentration range of 7.5–25 
µg/mL using 5 µL of 0.05 mg/mL anti-HbA1c as a detection probe; (b) Calibration curve of HbA1c 
antigen concentration using the peak current output of the biosensor obtained from results of Figure 
6a (n = 4). 

3.2.2. HbA1c Detection in Undiluted Human Serum 

HbA1c measurements were performed in undiluted human serum to show the potential 
application of the sensor in real blood samples. Considering the normal adult human hemoglobin 
(HbA10) concentration of 150 mg/mL [28], the HbA1c concentration for a diabetic patient (6.5% 
HbA1c) is more than 9 mg/mL in whole blood. Samples with an HbA1c concentration range of 0.1–
0.25 mg/mL were prepared in undiluted human serum which were 10 times higher than the ones that 
were tested in 0.1 M PBS, and these was more clinically relevant. The antibody concentration for the 
biosensors tested in serum was 0.5 mg/mL in 0.1 M PBS. Figure 7a shows the DPV measurements of 
the HbA1c antigen in undiluted serum over the concentration range of 0.10–0.25 mg/mL and it also 
includes the measurement of 0 mg/mL HbA1c serving as the baseline. 

The biosensors for the measurement of HbA1c in serum were used only once for each HbA1c 
concentration to accomplish the goal of developing a single-use disposable in vitro HbA1c biosensor. 
Figure 6a, b exhibit the excellent performance of the biosensor for HbA1c detection in serum. The 
correlation coefficient for linear fitting was 0.999. Measurements of the HbA1c antigen in serum at 
the concentration level of µg/mL were also undertaken (data not presented). The DPV measurement 
of the HbA1c antigen in serum at the level of 15–25 µg/mL was good and meaningful. However, the 
repeatability of the DPV measurements at lower HbA1c antigen concentrations <10 µg/mL were only 
fair. This might be the lowest detection limit of HbA1c in serum. Nevertheless, the DPV 
measurements of HbA1c in undiluted serum over the range of 0.10–0.25 mg/mL demonstrated this 
potential application of the biosensor in diabetic management. 

Figure 6. (a) DPV measurement of HbA1c antigen in 0.1 M PBS in the concentration range of
7.5–25 µg/mL using 5 µL of 0.05 mg/mL anti-HbA1c as a detection probe; (b) Calibration curve
of HbA1c antigen concentration using the peak current output of the biosensor obtained from results
of Figure 6a (n = 4).

3.2.2. HbA1c Detection in Undiluted Human Serum

HbA1c measurements were performed in undiluted human serum to show the potential
application of the sensor in real blood samples. Considering the normal adult human hemoglobin
(HbA10) concentration of 150 mg/mL [28], the HbA1c concentration for a diabetic patient (6.5% HbA1c)
is more than 9 mg/mL in whole blood. Samples with an HbA1c concentration range of 0.1–0.25 mg/mL
were prepared in undiluted human serum which were 10 times higher than the ones that were tested
in 0.1 M PBS, and these was more clinically relevant. The antibody concentration for the biosensors
tested in serum was 0.5 mg/mL in 0.1 M PBS. Figure 7a shows the DPV measurements of the HbA1c
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antigen in undiluted serum over the concentration range of 0.10–0.25 mg/mL and it also includes the
measurement of 0 mg/mL HbA1c serving as the baseline.
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Figure 7. (a) DPV measurement of HbA1c antigen in serum in the concentration range of
0.10–0.25 mg/mL using 5 µL of 0.5 mg/mL anti-HbA1c as the detection probe of the biosensor;
(b) Calibration curve of HbA1c antigen concentration in serum using the peak current output of
the biosensor obtained from results of Figure 7a (n = 4).

The biosensors for the measurement of HbA1c in serum were used only once for each HbA1c
concentration to accomplish the goal of developing a single-use disposable in vitro HbA1c biosensor.
Figure 6a,b exhibit the excellent performance of the biosensor for HbA1c detection in serum.
The correlation coefficient for linear fitting was 0.999. Measurements of the HbA1c antigen in serum at
the concentration level of µg/mL were also undertaken (data not presented). The DPV measurement
of the HbA1c antigen in serum at the level of 15–25 µg/mL was good and meaningful. However,
the repeatability of the DPV measurements at lower HbA1c antigen concentrations <10 µg/mL were
only fair. This might be the lowest detection limit of HbA1c in serum. Nevertheless, the DPV
measurements of HbA1c in undiluted serum over the range of 0.10–0.25 mg/mL demonstrated this
potential application of the biosensor in diabetic management.

4. Conclusions

A single-use disposable in vitro HbA1c biosensor was designed, fabricated and produced in
a cost-effective manner. The interaction between anti-HbA1c and its antigen (the analyte) was the
bio-recognition mechanism of this biosensor. Differential pulse voltammetry (DPV) was employed as
the transduction mechanism for this biosensor. Covalent immobilization of anti-HbA1c onto the gold
thin-film electrode was accomplished by MPA-SAM modification. Confirmation of the thiol group
bonding on the gold-based electrode elements and the upward orientation of the MPA-SAM carboxylic
groups were experimentally assessed. Excellent coverage and upward orientation of the MPA-SAM
was obtained. DPV measurements of HbA1c in 0.1 M PBS test medium in the range of 7.5–20 µg/mL
and in serum in the range of 0.1–0.25 mg/mL were carried out. The results were excellent. This research
suggested that a cost-effective, single-use, disposable in vitro HbA1c biosensor could be used alone or
together with a blood glucose biosensor for better diabetic management applications.
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