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� We experimentally study a large-diameter counter-current bubble column.

� We compare the results obtained with different experimental methods.
� We investigate the flow regime transition.
� We analyse bubble size distributions and shapes in the developed region and near the sparger.
� We provide optical probe measurements at different axial and radial positions.
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a b s t r a c t

In this paper, we apply a variety of experimental techniques to investigate the influence of the counter-
current mode on bubble column hydrodynamics. We study an air–water bubble column, which is 5.3 m
in height and has an inner diameter of 0.24 m, and we consider gas superficial velocities in the range of
0.004–0.20 m/s and liquid superficial velocities up to �0.09 m/s. The experimental investigation consists
of holdup, gas disengagement, image analysis and optical probe measurements. The holdup measure-
ments are compared with the literature and are used to investigate the flow regime transition. The gas
disengagement measurements are used to further investigate the flow regime transition and study the
structure of the holdup curve. The image analysis is used to study the bubble shapes and size dis-
tributions near the sparger and in the developed region of the column; in particular, the image analysis is
applied to different gas velocities in the homogeneous regime in both the batch and counter-current
modes. The optical probe is used to acquire radial profiles of the local properties (i.e., local void fraction
and bubble rise velocity) to study the flow properties and further investigate the flow regime transition.
Comparing the results from the different techniques, the influence of the gas superficial velocity and the
liquid superficial velocity is discussed considering all main aspects of the two-phase flow, from the local
flow properties to the global flow features. The counter-current mode is found to increase the holdup,
reduce the bubble rise velocity, destabilize the homogeneous regime and change the local flow prop-
erties.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Bubble columns are frequently used in chemical and biochem-
ical engineering. Their main advantage is a large contact area
between the liquid and gas phases and good mixing within the
liquid phase. The correct design and operation of these devices rely
sagni),
on the proper prediction of the flow pattern and global and local
flow properties—i.e., the holdup (εG), bubble rise velocity (ub), local
void fraction (εG,Local) and bubble size distributions (BSDs). The
global and local flow properties are related to the prevailing flow
regime: mainly, the homogeneous and heterogeneous regimes. The
former is associated with small superficial gas velocities (UG) and is
characterized by the presence of small, uniformly sized bubbles
with little interaction. The latter is associated with high gas
superficial velocities, high coalescence and breakage phenomena
and a wide variety of bubble sizes. Eventually, when a sparger with
large openings is used, the quality of the gas distribution is poor,
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and a gas maldistribution regime is established at low UG values
(Nedeltchev and Schubert, 2015). The transition from the homo-
geneous regime to the heterogeneous regime is a gradual process in
which a transition flow regime occurs. This regime is characterized
by large flow macro-structures with large eddies and widened
bubble size distribution owing to the onset of bubble coalescence.
The global and local flow properties (and the flow regimes) are also
related to the bubble column operation mode: the batch (UL E
0 m/s), the co-current (UL40 m/s) or the counter-current (ULo
0 m/s) mode (Deckwer, 1992; Leonard et al., 2015; Rollbusch et al.,
2015b). Whereas the co-current or semi-batch modes are widely
studied, the counter-current mode is significantly less frequently
investigated (Leonard et al., 2015).

In this paper, we apply a variety of experimental techniques to
investigate the influence of the counter-current mode on holdup,
regime transition, local flow properties and bubble size distribu-
tions. We study an air–water bubble column (Hc¼5.3 m height
and dc¼0.24 m inner diameter, aspect ratio Hc/dc420) and con-
sider gas superficial velocities in the range of 0.004–0.20 m/s and
liquid superficial velocities up to �0.09 m/s. The diameter of the
column and its height were chosen considering the well-known
scale-up criteria for the results: dc40.15 m and Hc/dc45 (Kantarci
et al., 2005; Leonard et al., 2015). The column diameter classifies
this facility as a large-diameter pipe, considering the dimension-
less diameter D�

H proposed by Kataoka and Ishii (1987):

D�
H ¼ DHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ=g ρL�ρG

� �q ð1Þ

where DH is the hydraulic diameter, σ is the surface tension
coefficient, g is the gravity acceleration, and ρL�ρG is the density
difference between the two phases. Columns with dimensionless
diameters greater than the critical value D�

H;Cr¼52 are considered
to be large-diameter columns (Brooks et al., 2012), and the present
bubble column has a dimensionless diameter D�

H¼88.13. When the
column diameter is larger than the critical value, the stabilizing
effect of the channel wall on the interface of the Taylor bubbles
decreases, and the slug flow can no longer be sustained because of
the Rayleigh–Taylor instabilities. The hydrodynamic properties in
large-diameter columns differ from the flow in small-diameter
columns and the flow regime maps and flow regime transition
criteria used to predict the behavior of two-phase flow in small-
diameter columns may not be scaled up to understand and predict
the flow in large ones (Shawkat and Ching, 2011). Therefore, ad-
hoc experimental studies are needed for establishing a reliable
dataset, especially for counter-current large-diameter bubble col-
umns, owing to the lack of research. In the remainder of the
introduction, we propose a literature survey about the influence of
the liquid velocity over holdup, flow regime transition, local flow
properties and bubble size distributions.

Low liquid velocities do not affect the holdup—as found by several
investigators (Akita and Yoshida, 1973; de Bruijn et al., 1988; Lau et al.,
2004; Rollbusch et al., 2015a; Sangnimnuan et al., 1984; Shah et al.,
1982; Shawaqfeh, 2003; Voigt and Schügerl, 1979; Yang and Fan,
2003)—because, if UL is low compared with the bubble rise velocities,
the acceleration of the bubbles is negligible (Hills, 1976). For example,
Akita and Yoshida (1973) (dc¼0.152m, Hc¼2.5 m) observed a negli-
gible effect of UL (up to 0.04m/s) in both co-current and counter-
current operations. At higher liquid velocities, the column operation
influences the holdup: the co-current mode reduces the holdup (Biń et
al., 2001; Chaumat et al., 2005b; Jin et al., 2007; Kumar et al., 2012;
Otake et al., 1981; Pjontek et al., 2014; Shah et al., 2012; Simonnet et
al., 2007), and the counter-current mode increases the holdup
(Besagni and Inzoli, 2016a; Besagni et al., 2014, 2015; Biń et al., 2001;
Jin et al., 2010; Otake et al., 1981) as bubbles are either accelerated or
decelerated by liquid motion (Leonard et al., 2015; Rollbusch et al.,
2015a). Baawain et al. (2007) showed that the counter-current or co-
current operation modes influenced the holdup by approximately 5%
in weight, and less than 1% in bubble size, showing that the effect
observed is mainly caused by the bubble rise velocity and not only the
bubble size. Biń et al. (2001) showed that the holdup increases with
increasing UL in counter-current mode and decreases (or remains
constant) in co-current mode. The effect is more pronounced at high
gas velocities, and the difference in the holdup between co-current
and counter-current mode is approximately 10%. The same trends
were observed by Jin et al. (2010) (dc¼0.160 m, Hc¼2.5 m), who
reported a maximum difference of 2% between counter-counter and
co-current modes. Similar trends were found by Otake et al. (1981)
(dc¼0.05 m, Hc¼1.5 m). Besagni et al. (2014, 2015) (dc¼0.24 m,
Hc¼5.3 m), (Besagni and Inzoli, 2016a) found that the counter-current
mode influences the column hydrodynamics affecting both the holdup
and the local flow properties in annular gap and open tube (with a
"pipe-sparger") bubble columns. Their analysis covered gas superficial
velocities up to 0.26 m/s and liquid superficial velocities up to
�0.11 m/s. It appears that the influence of the operation mode is
lower at high holdup (Besagni and Inzoli, 2016a; Besagni et al., 2014,
2015; Jin et al., 2010). With regard to the regime transition, Jin et al.
(2010) reported that the transition point is the same among the three
working modes if UL is lower than 0.04 m/s, whereas for higher UL (in
co-current and counter-current modes), the transition velocity
decreases with increasing superficial liquid velocity. Otake et al. (1981)
observed an earlier regime transition increasing the liquid flowrate in
the counter-current mode (UL up to �0.15 m/s). Similar conclusions
were drawn by Yamaguchi and Yamazaki (1982a) (dc¼0.04 m and
0.08 m), Besagni et al. (2014, 2015) and Besagni and Inzoli (2016a). It is
worth noting that the hydrodynamic properties of bubble columns are
determined by the momentum exchange between the liquid and gas
phases. Therefore, the flow in a bubble column is governed by the
same mechanisms as in other pipe flows. In this respect, Besagni et al.
(2015) proposed a survey on counter-current flow in vertical pipes; as
a result, most of the studies focused on small-diameter pipes, and our
experimental setup (D�

H¼88.13) covers a range inwhich there is a lack
of studies.

The holdup is also a function of the axial and radial position in the
column. The spatial variation of the holdup gives rise to pressure
variation, which results in liquid recirculation in the bubble column
(which governs the rate of mixing, heat transfer and mass transfer).
Knowledge of the local void fraction profiles would help in deter-
mining the flow regimes, liquid mixing, and heat and mass transfer,
and knowledge of the local flow properties would help in the Com-
putational Fluid Dynamics (CFD) model validation. Local void fraction
holdup profiles may be center peaked, wall peaked or flat, depending
on UG, UL, the column design, the sparger design, the nature of the
gas–liquid system and the operating conditions. During recent dec-
ades, many experimental measurements of holdup profiles have been
reported by using a variety of techniques, as reviewed by Joshi et al.
(1998). Among the different techniques, we employed needle probes.
In general, two types of needle probes have been previously used for
measurement in bubble columns: optical fiber and impedance/con-
ductive probes (Boyer et al., 2002). Optical and impedance probes
operate based on the differences in the refractive index or con-
ductivity, respectively, of the liquid and gas phases. In this study, dual-
tipped optical probes have been used: these devices are capable of
simultaneously measuring local holdups, bubble chord lengths and
rise velocities (Chabot et al., 1998; Chaumat et al., 2007; Magaud et al.,
2001; Moujaes, 1990; Shiea et al., 2013).

In addition to the holdup, another important parameter of
bubble column hydrodynamics is the Bubble Size Distribution
(BSD). The BSD generated at the sparger gradually changes along
the column owing to coalescence and break-up phenomena until
reaching an equilibrium/developed BSD. Along with the holdup,
the BSD provides an evaluation of the interfacial area (Kantarci
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et al., 2005) and is an important parameter for the setup and vali-
dation of CFD models (Lucas et al., 2015). In fact, when setting up an
Euler multi-fluid model, a bubble diameter or a BSD is requested as an
input, and if considering the bubble-coalescence and -breakupmodels,
the BSD at both the sparger and in the developed region should be
considered (the former for input and the latter for validation). In the
literature, different intrusive and nonintrusive techniques have been
proposed for measuring the bubble size distribution and bubble shape
(Busciglio et al., 2010; Rodrigues and Rubio, 2003; Xu and Shepard,
2014). Nonintrusive measurement techniques are preferred over
intrusive methods because the flow conditions are not disturbed, and
image analysis is attracting growing attention. Image analysis has been
mostly applied to rectangular/small-scale (Lau et al., 2013a, 2013b;
Zaruba et al., 2005) or medium scale (Schäfer et al., 2002) bubble
columns, but there is a lack of studies concerning BSDs in large-
diameter bubble columns. Furthermore, studies analyzing the bubble
size distributions near the sparger are uncommon (Hur
et al., 2013), and the influence of the liquid velocity on the bubble
shape and bubble size distribution is far from being understood
(Besagni and Inzoli, 2016b). In the present study, we have applied a
method based on human recognition of the bubble edge (Besagni et
al., 2015; Besagni and Inzoli, 2016b). This method was selected
because, despite different image-processing algorithms that have been
proposed, these techniques are still limited to resolve large bubble
clusters, highly unsteady flows, and large void fractions (Karn et al.,
2015). Additionally, at low holdup, there are problems associated with
overlapping: if the holdup exceeds 1%, more than 40% of the bubbles
are overlapping in the image (Lecuona et al., 2000; Rodríguez-
Rodríguez et al., 2003). Various studies have addressed this problem
and have proposed different methods for dealing with overlapping
bubbles (Lau et al., 2013b); however, no agreement has been reached,
and some approaches may cause a significant reduction of the bubble
sample size and an underestimation of the bubble diameter.

In this paper, we experimentally investigate the influence of the
counter-current mode on bubble column hydrodynamics. Holdup,
local holdups, local bubble velocities, bubble size distribution and
shape parameters are measured by a wide variety of techniques, and
results obtained with different methods are compared. Specifically, in
this study, we use (i) holdup measurements, (ii) gas disengagement
technique, (iii) image analysis and (iv) optical probe. The holdup
measurements are compared with the literature and are used for
investigating the regime transition. The gas disengagement technique
is then used for further investigating the regime transition and
describing the holdup structure. An image analysis technique is
applied to quantify the bubble size distribution and bubble shape near
the sparger and in the developed region. The image analysis is applied
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for five superficial gas velocities in the homogeneous regime—up the
transition point—in both the batch and counter-current modes. Finally,
the optical probe is used to acquire the radial profiles of the local flow
properties (local void fraction, bubble rise velocity and bubble size) at
two axial positions to study the flow structures and further investigate
the regime transition. The paper is structured as follows. In Section 2,
the experimental setup and the measurement techniques are detailed.
In Section 3, the experimental results are presented, and in Section 4
the conclusions are given.
2. Experimental setup and method

2.1. Experimental setup

The experimental facility (Fig. 1) is a non-pressurized vertical
pipe made of Plexiglas with height Hc¼5.3 m and inner diameter
dc¼0.24 m. A pressure reducer controls the pressure upstream of
the rotameters (1) and (2), used to measure the gas flowrate
(accuracy 72% f.s.v., E5-2600/h, manufactured by ASA, Italy). A
pump, controlled by a bypass valve, provides water recirculation,
and a rotameter (3) measures the liquid flowrate (accuracy 71.5%
f.s.v., G6-3100/39, manufactured by ASA, Italy). The air distributor,
is a “spider-sparger” with hole diameters do¼2–4 mm (Fig. 2a).
Filtered air and clean filtered deionized water were used; during
the experiments, the air and water temperatures were maintained
constant at room temperature (2271 °C).

The values of gas density (used to compute the superficial gas
velocity, UG) are based upon the operating conditions existing at
the column midpoint. The midpoint column pressure is assumed
to be equal to the column outlet pressure plus one-half the total
experimental hydrostatic pressure head (Reilly et al., 1994).

2.2. Holdup measurements

2.2.1. Measurements
Measurements of the bed expansion allowed the evaluation of the

holdup εG. The procedure involves measuring the location (height) of
liquid free surface when air flows in the column. The holdup is then
obtained using the relation:

εG ¼ HD�H0ð Þ
HD

ð2Þ

where HD and H0 are the heights of the free-surface after and before
aeration, respectively (H0 ¼ 3.4 m from the bottom of the column and
H0 ¼ 3.0 m from the sparger).
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Fig. 2. Experimental setup and measurement techniques.
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2.2.2. Flow regime transition
Two main transitions exist in large-diameter bubble columns:

(i) the transition between the homogeneous and transition regimes
and (ii) the transition between the transition and the hetero-
geneous regimes. However, in the literature, many authors consider
only the first regime transition, without any reference to the second
one, except for a limited number of studies (Nedeltchev, 2015;
Nedeltchev and Shaikh, 2013). In the following, for the sake of
clarify, we refer to “flow regime transition point” considering the first
transition. Although the transition from the homogeneous to the
heterogeneous regime does not occur instantaneously, the defini-
tion of an approximate transition point is helpful to model the
hydrodynamic behavior of bubble columns (Krishna et al., 1991).

We use two statistical methods to study the flow regime
transition.

2.2.2.1. Swarm velocity method. The swarm velocity method was
developed by Zuber and Findlay (1965) and is based on the swarm
velocity:

Uswarm ¼ UG=εG ð3Þ

The swarm velocity is plotted against the superficial gas velocity:
Uswarm is almost constant in the homogeneous regime (in some cases,
it can be slightly decreasing), but it starts to increase as the system
enters the heterogeneous regime at a transition superficial velocity
Utrans. The appearance of the first large bubble is responsible for this
sudden increase in swarm velocity and is an indication of flow regime
transition. This method has previously been employed by Krishna
et al. (1991), Letzel et al., (1997), Gourich et al., (2006), Ribeiro and
Mewes (2007), Besagni et al. (2014, 2015) and Besagni and Inzoli
(2015, 2016a, 2016b). In this study, the quantitative evaluation of Utrans

is determined by the intersection between the trends of Uswarm in the
two regimes. Uswarm is constant for the homogeneous regime.

Uswarm is constant for the homogeneous regime:

Uswarm;homogeneous ¼ cons ð4Þ

whereas, in the heterogeneous/transition regime is determined by
a least squares fitting of the following function:

Uswarm;heterogeneous ¼ S1 UGð ÞS2 þS3 ð5Þ

where S1, S2 and S3 are fitting parameters. The transitional velocity
is then evaluated by solving the following equation:

Uswarm;homogeneous ¼Uswarm;heterogeneous ð6Þ
2.2.2.2. Drift-flux method. The drift-flux method was proposed by
Wallis (Wallis, 1969) and has been widely applied in the literature
(Besagni et al., 2015; Besagni and Inzoli, 2015, 2016a, 2016b; Pas-
sos et al., 2015; Ribeiro Jr and Mewes, 2007; Wallis, 1969). This
method is based on the drift flux, which represents the gas flux
through a surface moving with the speed of the two-phase mix-
ture and is experimentally obtained as follows:

JT ¼ UG 1�εGð Þ7ULεG ð7Þ

which, for a counter-current flow, reads as follows:

JT ¼ UG 1�εGð ÞþULεG ð8Þ

Please refer to the discussion proposed by Besagni and Inzoli
(Besagni and Inzoli, 2016a) for the detailed derivation of Eq.
(7) and (8).

Theoretically, the drift flux is written in terms of the bubble
swarm velocity, whose dependence upon εG varies with the pre-
vailing regime:

JE ¼Ub 1�εGð Þ ð9Þ

The idea in this method is to employ a model for Ub that is valid
for the homogeneous regime, plotting JE and JT in the same graph
as a function of εG. In the homogeneous regime, JE is equal to JT and
the transition point is defined when:

JT a JE ð10Þ

The evaluation of Ub is a matter of discussion in the literature,
and different models have been proposed and applied. In this
study, we follow the approach of Krishna et al. (2000), which is
based on the empirical model of Richardson and Zaki (1997):

Ub ¼ u1 1�εGð Þn�1 ð11Þ
where n is fluid-dependent (nffi2 for water) and should be fitted with
the aid of the experimental data, together with u1, the terminal
velocity of an isolated bubble, in the determination of the regime
transition point. Combining Eqs. (9) and (11), we obtain the following:

JE ¼ u1εG 1�εGð Þn ð12Þ

2.3. Gas disengagement technique

The structure of the gas phase and the flow regime transition
are further investigated by the gas disengagement (GD) technique
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using a camera. By recording the drop in dispersion height after
stopping the gas supply and following the procedure of Schumpe
and Grund (1986), we may evaluate the contributions of the
“coalescence-induced” (CI) and the “non-coalescence-induced” (NCI)
bubbles. The GD technique has been widely discussed and applied
in the literature. Fig. 3 presents an example of the GD profiles
obtained in this study (homogeneous and heterogeneous regimes).
Despite this technique having been widely applied in the litera-
ture, its assumptions should be noted:

� the dispersion is axially homogeneous when the gas flow is
interrupted;

� there are no interactions between “coalescence-induced” and the
“non-coalescence-induced” bubbles (coalescence and break-up
are neglected);

� the rate of the disengagement process is constant (“coalescence-
induced” bubbles do not influence “non-coalescence-induced”
and vice-versa).

The problems related to the deviations from these assumptions
(i.e., in coalescing systems at high UG) have been discussed else-
where and will not be repeated here (Deshpande et al., 1995;
Schumpe and Grund, 1986).

2.4. Optical probe

The local flow properties were measured using a double fiber
optical probe. The optical probe is inserted, via an access port
(Fig. 2c), into the flow at a height of hprobe¼2.3 m from the bottom
of the column (hprobe¼1.9 m from the sparger) and at hprobe¼1.1 m
(hprobe¼0.7 m from the sparger).

2.4.1. Instrumentation
A double-fiber optical probe system (manufactured by RBI)

measures local flow properties (local void fraction, bubble vertical
velocity, bubble Sauter mean diameter, interfacial area and bubble
chord length distributions). Similar optical probe system have
been used by different authors (Besagni et al., 2014, 2015; Besagni
and Inzoli, 2015, 2016a; Chaumat et al., 2005a; Kiambi et al., 2003;
Lima Neto et al., 2008; Simonnet et al., 2007; Zhang and Zhu,
2013).

Optical probes distinguish the gas and liquid phases by mea-
suring the intensity of a laser light that is reflected and/or
refracted at the probe tip on the basis of the refractive indexes of
the probe tip, gas and liquid phases (Barrau et al., 1999). The probe
signal is measured via an optoelectronic module, which emits the
laser to the probe tip and converts the reflected optical signal into
a digital signal. From the digital signal, the bubble frequency f
(bubble number per unit time) and void fraction εG,Local (assuming
it equals the proportion of time when the tip is surrounded by gas)
can be obtained. By cross-correlating the signals from the two tips,
the bubble traveling time from one tip to the other can be esti-
mated, and the bubble velocity ub can be calculated. Assuming that
bubbles are spherical, bubble Sauter mean diameter db, is calcu-
lated by the optical probe system:

db ¼ 3εG;Localub=2f ð13Þ
Eq. (13) is based on the assumption of spherical bubbles;

however, this assumption is only approximately valid when bub-
bles are small. The following equation has been used to account for
the non-sphericity of bubbles (Simonnet et al., 2007):

db;corrected ¼φ�2=33εG;Localub=2f ð14Þ
where φ is the aspect ratio.

In this study, all the measurements have been obtained using a
sampling period equal toΔtsampling¼1000 s, which is large enough
to produce reliable time-averaged values. Moreover, this mea-
surement period is far above the typical values of 1–5 min for
similar optical probes (Chang et al., 2003; Chaumat et al., 2005a;
Lima Neto et al., 2008; Zhang and Zhu, 2013).

2.4.2. Optical probe sources of errors
When considering the experimental error of the optical probes,

two aspects should be considered. The first is the statistical error
associated with the measuring time, which is proportional to the
square root of the measuring time: in our case, the absolute
uncertainty in the gas fraction is approximately 0.001. The second
aspect is a bias error due to the difficulties of piercing a bubble at
the bubble edge (Vejražka et al., 2010):

� improper dewetting at the probe tip (the blinding effect);
� alteration of bubble trajectory prior to or during the piercing

process (the drifting effect);
� bubble deformation and/or deceleration at the probe tip (the

crawling effect).

Both the blinding effect and the crawling effect include defor-
mation effects. The deformation of the blinding effect is mainly
related to a local deformation zone located in the bubble interface,
which may be produced by both the probe-induced liquid pressure
over the bubble and the direct impact itself. The crawling effect
considers the deformation of large parts of the bubble. The relative
influence of these effects on the final residence time estimates, as
well as their absolute magnitude, is not yet clear. A summary of the
errors reported by the optical probe in the literature is as follows:

� Void fraction. Generally, the optical probe is considered rather
accurate in terms of void fraction. Comparing optical probe
results with other measurement techniques (i.e., visual or
pressure sensors), the relative differences found in the literature
are as follows: between �0.8% and �16% (Barrau et al., 1999),
�2.2% (Zhang and Zhu, 2013), - 3% (Chang et al., 2003), �11%
(Lima Neto et al., 2008), between �6 and �14% (Kiambi et al.,
2003), þ12% (Simonnet et al., 2007). Barrau et al. observed the
worst performance with no liquid flow and/or at low gas
fractions.

� Bubble rise velocity. The rise time errors are primarily affected by
the impact angle of the bubbles with the probe tip. The relative
difference reported in the literature, compared with other
techniques (i.e., image processing) are þ45% (Cartellier and
Barrau, 1998), þ5% (Kiambi et al., 2003), between þ5 and þ6%
(Chang et al., 2003), between þ10 and þ30% (Chaumat et al.,
2005a), þ15% (Simonnet et al., 2007), and þ29% (Lima Neto
et al., 2008), approximately þ9% (Zhang and Zhu, 2013).

� Bubble diameter. The assumption of spherical bubbles leads to
an underestimation of the equivalent diameter by between
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þ10% and 27% (Chaumat et al., 2005a; Lima Neto et al., 2008;
Zhang and Zhu, 2013). Applying a correction based on the
aspect ratio evaluation can reduce the error, e.g., from þ26.6
to þ7% (Zhang and Zhu, 2013).

2.5. Photography

2.5.1. Instrumentation
The photos were taken using a NIKON D5000 camera (f/3.5, 1/

1600s, ISO400); the back light method is employed in the experiments
using a 500W halogen lamp as the light source. Visualization sections
consist in squared boxes (filled with water) around the vertical pipe
designed for correcting the distorted image (Fig. 2b). The camera was
accurately aligned horizontally to the visualization sections. The
resolution of each image is 4288�2848 pixels. Images have been
acquired at approximately himage¼2.4 m and himage¼1.4 m from the
sparger (developed region of the two-phase flow) and near the
sparger.

2.5.2. Image analysis methods
The goal of the image analysis is to obtain bubble shape, bubble

orientation and bubble size distributions. The image analysis
method considers two types of bubbles: spherical/ellipsoidal
bubbles (Fig. 4a) and distorted bubbles (i.e., near-sparger bubbles,
Fig. 4b). Indeed, at the sparger, some bubbles were characterized
by an ellipsoidal shape, and others by an irregular shape (i.e., due
to the channeling effect (Hur et al., 2013)).

2.5.2.1. Image analysis method for spherical/ellipsoidal bubbles. For
sampling the spherical/ellipsoidal bubbles, we use the same approach
that we have successfully applied to a large-diameter annular-gap
bubble column (Besagni et al., 2015; Besagni and Inzoli, 2016b). In this
approach, each bubble is approximated and reconstructed using an
ellipse (Fig. 4a), represented by the following equation:

c1x2þc2xyþc3y2þc4xþc5xþ1¼ 0 ð15Þ

The method is structured in three phases:

1. Calibration. The reference conversion factor between pixels and
millimeters is provided;

2. Bubble reconstruction. For each bubble, six points on the bubble
are selected (by human vision), and ellipse equation parameters
c1, c2, c3, c4 and c5 are evaluated using the least square method;
selbbubladiospillE

10mm

θ 

2a

2b

Fig. 4. Image p
3. Bubble processing. The equivalent ellipse is processed to obtain
the major axis 2a, the minor axis 2b, the center of the bubble
and the orientation angle θ (Fig. 4a). Finally, the bubble
equivalent diameter deq and aspect ratio φ are obtained:

deq ¼ 2
ffiffiffiffiffiffiffiffi
a2b

p
ð16Þ

φ¼ b
a

ð17Þ

Two references are used: a ruler inside the column and one
along the external wall.

2.5.2.2. Image analysis method for distorted bubbles. Near the
sparger, in addition to the spherical/ellipsoidal bubbles, some
bubbles have an irregular shape, and some phenomena such as the
channeling effect occur. The method for sampling the channeling/
distorted bubbles (Fig. 4b) is structured in three phases:

1. Calibration. The reference conversion factor between pixels and
millimeters is provided;

2. Bubble reconstruction. For each bubble, several points on the
bubble edge are selected (by human vision), and a fitting line is
obtained by using the least square method;

3. Bubble processing. The symmetry axis is evaluated and, using the
hypothesis of the axi-symmetric bubble, the bubble equivalent
diameter deq is obtained.

The reference length is the sparger itself.

2.5.3. Bubble sampling
The number of bubbles to be sampled to achieve a reliable BSD

is a matter of discussion in the literature (Honkanen et al., 2005).
Various studies have sampled different numbers of bubbles—
between 50 and 100 (Lage and Espósito, 1999), 200 (Wongsuchoto
et al., 2003), 250 (Rakoczy and Masiuk, 2009), 300 (Hanselmann
and Windhab, 1998), between 250 and 300 (Aloufi, 2011) and 100
(Passos et al., 2015). In this study, for each case, at least 800
bubbles were selected using two (or more) photos. Using image
analysis, five superficial gas velocities have been analyzed in the
batch (UL¼0 m/s) and counter-current mode (UL¼�0.066 m/s).
The image analysis is applied for studying the developed and
sparger regions. For a complete discussion considering the
uncertainties of the image analysis the reader should refer to
Besagni and Inzoli (2016b).
selbbubregrapS

rocessing.
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3. The experimental results

3.1. Holdup

3.1.1. Holdup measurements
Fig. 5 displays the holdup measurements. At low air superficial

velocity, in the homogeneous regime (Fig. 6a), the relationship
between the holdup and the air superficial velocity is linear, fol-
lowed by a change in slope due to the regime transition (Fig. 6b
and c) toward the transition regime (Fig. 6d–f). The slug flow was
not observed, which agrees with the Shah flow map (Shah et al.,
1982) and the large-diameter theory (Section 1). Following the
discussion proposed by Nedeltchev (Nedeltchev and Schubert,
2015), the homogeneous regime—in the present bubble column—
can be regarded as a maldistribution regime owing to the large
sparger openings, do. The drift flux plots (Section 3.2), flow
visualizations (Section 3.3) and optical probe measurements
(Section 3.4) confirm the existence of the maldistribution regime.
For the sake of clarity, in the following, we simply refer to the
homogeneous regime. The shape of the holdup curve is the one
typically found for similar sparger geometries: the shape of the
holdup curve mainly depends upon the sparger used and its
openings (Urseanu, 2000). The sparger used in this study has
“large” holes (d041 mm), and the shape of the holdup curve is the
one typically obtained for a sparger with similar hole openings
(i.e., single/multiple nozzles, spider sparger or perforated plate
sparger with a hole diameter greater than 1 mm); as expected, no
peak can be observed in the holdup curve. Alternatively, when
using “fine” spargers, a peak in the holdup curve may appear, as
obtained by Al-Oufi (Al-Oufi et al., 2010, 2011), Schumpe and
Grund (1986), and Zahradnik et al. (1997).

Upon increasing the liquid flowrate, a faster increase in the
holdup is observed at low UG, and the transition point also moves
toward lower superficial gas velocities (Section 3.2). This change is
explained by the effect of the liquid flow, which slows down the
rise of the bubbles, leading to higher holdup: the more compact
arrangement of the bubbles leads to an earlier flow regime tran-
sition (Sections 3.2 and 3.4). Our results prove that UL (counter-
current mode) has an influence on the holdup, which agrees with
the findings of Otake et al. (1981), Baawain et al. (2007), Biń et al.
(2001), Jin et al. (2010), Besagni et al. (2014, 2015) and Besagni and
Inzoli (2016a) but disagrees with Akita and Yoshida (1973). Our
results are probably due to the comparable order of magnitude of
the liquid and gas velocities. Hills (1976) mentioned that if UL is
low compared with the bubble rise velocities, no impact of the
liquid velocity on holdup is expected because the acceleration of
the bubbles will be negligible. This hypothesis is confirmed by
Fig. 5. Holdup measurements.
using the approach of Rollbusch et al. (2015a): the bubble swarm
velocities (Section 3.2) are comparable with the liquid velocities.

Above the transition velocity, large, deformed bubbles begin to
appear (Fig. 6d–f), and the bubble coalescence increases the
average rise velocity and reduces the gas residence time in the
column, thus reducing the holdup versus gas velocity slope. In this
region, the slope of the curve changes continuously, indicating a
continuous increase of the “coalescence-induced” bubble compo-
nent (Urseanu, 2000). In this regime, large periodic eddies
accompanied with flow recirculation are observed all along the
vertical development of the pipe. This is further discussed in the
next paragraph (gas disengagement technique) and in Section 3.4
(optical probe). Above a certain holdup (depending on UL), the
liquid superficial velocity has no more influence on the holdup. A
similar behavior was observed by Besagni et al. (2014, 2015) while
studying an annular gap “AG” bubble column equipped with a pipe
sparger (Fig. 7). The main difference between the present bubble
column and the “AG” bubble column is the value of the holdup for
which UL has no more influence. In the literature, Jin et al. (2010)
observed that the influence of working mode is lower at high
holdup. The discrepancy of the holdup in the transition regime
between the batch and counter-current modes is hardly justified.
This behavior was also discussed by Besagni et al. (2014, 2015)—for
the “AG” bubble column—where the proposed cause was the
asymmetric distributor, which generated a larger flow develop-
ment zone in the no-liquid flow configuration with respect to the
counter-current cases, owing to the lower liquid back-mixing.
Besagni and Inzoli (2016a) also studied the influence of the inner
pipes on the “AG” configuration: the inner tubes were removed,
and the results for the open tube “OT” bubble column are dis-
played in Fig. 8. As the reader can observe, the liquid velocity has a
continuous influence on the holdup value. The asymmetrical
injection without the inner pipes may cause this behavior. Our
results suggest the hypothesis that the influence of the counter-
current mode on the holdup depends upon the column design
(which also applies to large-diameter columns). It is worth noting
that the "spider-sparger" holdup curves obtained in this study are
similar to the holdup curves obtained using the same experi-
mental facility equipped with the "pipe-sparger" in the “AG” and
“OT” configurations (Section 3.1.2.2). This suggests a limited
influence of the sparger design in large-diameter bubble columns,
possibly due to the large-diameter and the sparger with large
openings. This concept was also discussed in the experimental
investigation proposed by Besagni and Inzoli (Besagni and Inzoli,
2016a).

The hydrodynamics of the column and the structure of the
holdup are further investigated using the GD technique, and the
results are presented in Fig. 9 along with the results of Schumpe
and Grund (1986) (dc¼0.3 m, Hc¼4.4 m). The holdup values and
the holdup of the “non-coalescence-induced” and the “coalescence-
induced” bubble classes are plotted in Fig. 9a: the holdup mea-
sured by the bed expansion technique and the GD technique are in
good agreement. The mean rise velocity and the holdup of the
“non-coalescence-induced” and the “coalescence-induced” bubble
classes are plotted in Fig. 9a. “Coalescence-induced” bubbles begin
to form at approximately UG¼0.03 m/s, which corresponds
approximately to the end of the homogeneous regime (this is
verified in the next section). The rise velocity of the large bubble
class increases with increasing gas flowrate and their contribution
to the total holdup. This indicates that the transition from the
homogeneous regime is a gradual process. Similar results have
been reported in the literature (Camarasa et al., 1999; Schumpe
and Grund, 1986). Whereas the large bubble contribution increases
with UG, the small bubble rise velocity after an initial decrease
remains constant at approximately 0.1–0.15 m/s. Beyond the
regime transition, the holdup of the “non-coalescence-induced”



UG=0.0037m/s–UL=0m/s UG=0.0614m/s–UL=0m/s

UG=0.0168m/s–UL=0m/s UG=0.0894m/s–UL=0m/s

UG=0.0306m/s–UL=0m/s UG=0.1665m/s–UL=0m/s

Fig. 6. Photographs of the air–water flow at h¼2.4 m from the sparger: influence of UG.

Fig. 7. Holdup measurements in the annular gap (AG) configuration – Besagni et al.
(2014, 2015).

Fig. 8. Holdup measurements in the open tube (OT) configuration – Besagni and
Inzoli (2016a).
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bubble increases only slightly, and so the augmentation of the total
holdup is mainly due to the increase in the holdup of fast-rising
“coalescence-induced” bubbles. It should be noted that if holdup
values measured by the bed expansion and the GD technique are
in good agreement, the rise velocities of large bubbles obtained by
GD are overestimated compared with terminal rising velocities of
“coalescence-induced” bubbles because of the presence of internal
liquid circulation (Camarasa et al., 1999; Deshpande et al., 1995).
Our results agree with the findings of Schumpe and Grund (1986),



Fig. 9. Gas disengagement results.
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Fig. 10. Holdup measurements – Comparison between the experimental results
and the data from the literature: low superficial gas velocity range.

Fig. 11. Holdup measurements – comparison between the experimental results and
the data from the literature: complete gas velocity range.

Table 1
Literature studies and code reference to Fig. 10.

Code Reference dc
[m]

Aspect ratio
[dimensionless]

Sparger

R1 –

Exp.
This study 0.24 22.1 Spider sparger

d0¼1–3.5 mm
R2 Fair et al. (1962) 0.46 6.63 Ring Sparger

d0¼0.5 mm
R3 Fair et al. (1962) 1.07 2.85 Ring Sparger

d0¼0.76 mm
R4 Akita and Yoshida

(1973)
0.152 26.32 Single hole

d0¼5 mm
R5 Otake et al. (1981) 0.05 30 Single nozzle

d0¼5 5 mm
R6 Otake et al. (1981) 0.05 30 Multiple nozzle

d0¼0.65 mm
R7 Gopal and Sharma

(1983)
0.2 4 Single Nozzle

d0¼6 mm
R8 Gopal and Sharma

(1983)
0.2 4 Ring Sparger

d0¼1 mm
R9 Gopal and Sharma

(1983)
0.6 1 Ring Sparger

d0¼2 mm
R10 Gopal and Sharma

(1983)
0.6 1 Ring Sparger

d0¼3 mm
R11 Sada et al. (1984) 0.073 13 Single Nozzle

d0¼1.5�2.7�5.7 mm
R12 Reilly et al. (1986) 0.3 16.7 Perforated plate

d0¼1.5 mm
R13 Reilly et al., (1986) 0.3 16.7 Single Sparger

d0¼25.4 mm
R14 Kawase and Moo-

Young (1987a)
0.23 5.3 Multiple nozzle

d0¼1 mm

G. Besagni, F. Inzoli / Chemical Engineering Science 146 (2016) 259–290 267
except for the transition point: in this case, the homogeneous
regime is destabilized earlier (refer to the next section for further
details) and the contribution of the “non-coalescence-induced”
bubbles to the overall holdup is lower compared with that found
by Schumpe and Grund (1986).

3.1.2. Comparison with data from the literature
In the literature, several experimental data are available on bub-

ble columns. Herein, we compare our results (in the batch mode)
with a set of experimental studies with similar column diameters
and sparger designs (Akita and Yoshida, 1973; Besagni et al., 2015;
Fair et al., 1962; Gopal and Sharma, 1983; Kawase and Moo-Young,
1987a; Otake et al., 1981; Reilly et al., 1986; Sada et al., 1984;
Schumpe and Grund, 1986; Thorat et al., 1998; Ying et al., 1981;
Yoshida and Akita, 1965). At first, we compare the data in the low UG

range (Fig. 10, Table 1), and then we compare the data in the com-
plete UG range (Fig. 11, Table 2). When comparing holdup data
between different configurations—at the same operating conditions
(i.e., atmospheric pressure and temperature)—some design para-
meters must be considered (Rollbusch et al., 2015a):

� Column diameter (or, if the operating conditions are fixed, the
non-dimensional diameter, Eq. (1)). Despite some contradictory
results, it appears that column size dc¼0.15 m is sufficiently
large to obtain holdup values that can be used to predict holdup
in larger columns (Kantarci et al., 2005);

� Sparger openings. The role of the sparger opening was already
discussed in Section 3.1.1;
� Aspect ratio. In systems where the bubble sizes are not at their
maximum equilibrium size, the holdup would decrease with
increasing liquid height: the longer the column, the more time
the bubbles have to coalesce. This is confirmed by, for example,



Table 2
Literature studies and code reference to Fig. 11

Code Reference dc [m] Aspect ratio
[dimensionless]

Sparger

R1 – Exp. This study 0.24 22.1 Spider sparger
d0¼1–3.5 mm

R2 Besagni et al.
(2015)

0.24 22.1 Pipe Sparger
Annular gap d0¼3.5 mm

R3 Akita and
Yoshida
(1973)

0.152 26.32 Single hole
d0¼5 mm

R4 Ying et al.
(1981)

0.305 – Single hole
d0¼1.66 mm

R5 Ying et al.
(1981)

0.127 – Single hole
d0¼1.66 mm

R6 Otake et al.
(1981)

0.05 30 Single nozzle
d0¼5 5 mm

R7 Thorat et al.
(1998)

0.385 7 Sieve Plate
d0¼1 mm

R8 Thorat et al.
(1998)

0.385 7 Sieve Plate
d0¼1.5 mm

R9 Thorat et al.
(1998)

0.385 7 Sieve Plate
d0¼3.0 mm

R10 Thorat et al.
(1998)

0.385 7 Sieve Plate
d0¼6.0 mm

R11 Yoshida and
Akita, 1965)

0.0707 12–33 Single nozzle
d0¼2.25–
7 mm

R12 Yoshida and
Akita (1965)

0.30 4–6.3 Single nozzle
d0¼1.48–
3.00 mm

R13 Reilly et al.
(1986)

0.3 16.7 Single Sparger
d0¼25.4 mm

R14 Schumpe
and Grund
(1986)

0.3 12 Single Sparger
d0¼1 mm
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Fig. 12. Holdup measurements – comparison between the experimental results
and correlations from the literature.
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Ruzicka et al. (2001) and Voigt (Voigt and Schügerl, 1979).
However, there seems to be no influence by the liquid height on
the holdup for large aspect ratios, as reported by other inves-
tigators (Deckwer et al., 1980; Godbole et al., 1984; Hikita and
Kikukawa, 1974). It is generally admitted that holdup is inde-
pendent of aspect ratio for columns in which the aspect ratio is
higher than 5 (Kantarci et al., 2005).

Another parameter that should be considered is the water
quality, as stated by Kemoun et al. (2001) and remarked by Roll-
busch et al. (2015a): if tap water is used, its qualities differ from
location to location; if deionized water is used, the qualities may
differ from day to day, and remnants of used liquids and dirt may
be present and affect the results. The interested reader may refer
to the discussion of Rollbusch et al. (2015a).

3.1.2.1. Low gas velocity range. Considering low gas velocities
(Fig. 10, Table 1), our experimental measurements are in good
agreement with the holdup data of Fair et al. (1962) (R2 and R3)
and Gopal and Sharma (1983) (R8 and R9). The differences
between the two set of data from Fair et al. (1962) (R3 and R4) are
in dc and the aspect ratio. Gopal and Sharma (1983) (R7–R9) stu-
died bubble columns with low aspect ratios and different dia-
meters and sparger openings; among the different datasets, R8
(d0¼1 mm, dC¼0.2 m) and R9 (d0¼2 mm, dC¼0.6 m), are in good
agreement with our study. However, when considering larger (R7)
or smaller (R10) openings, the holdup data are slightly different.
The holdup curve of Sada et al. (1984) (R11), at low UG, is quite
agreeable with our study, probably because the homogeneous
regime is provided by a sparger with a similar opening to the
present study. The data of Akita and Yoshida (1973) (R4) are lower
than our measurement, and the data of Otake et al. (1981) (R5 and
R6) agree with our measurement only up to UG¼0.05 m/s. Finally,
the data of Reilly et al. (1986) (R12 and R13) and that of Kawase
and Moo-Young (1987a) (R14) are comparable with our dataset:
the former has higher holdup values, and the latter has lower.

3.1.2.2. Complete operating range. Considering the complete UG

range (Fig. 11, Table 2), our experimental measurements are in
good agreement with the holdup data of the AG bubble column of
Besagni et al. (2015) (R2) and the data of Yoshida et al. (Yoshida
and Akita, 1965) (R11), Reilly et al. (1986) (R13) and Schumpe and
Grund (1986) (R14). The “AG” bubble column configuration studied
by Besagni et al. (2015) (R2) was obtained in this same facility but
using inner pipes: the data are in very good agreement; further
details may be found in Section 3.1.1. In addition, our data are in
good agreement with the “OT” configuration studied by Besagni
and Inzoli (Section 3.1.1). The holdup data of Akita and Yoshida
(1973) (R3) are lower than our measurements; the data of Ying
et al. (1981) (R4 and R5) either overestimate or underestimate our
data, but no information is available for the column height, so no
conclusion may be drawn for this configuration. The measure-
ments of Otake et al. (1981) (R6) are higher compared with our
data. The holdup data of Thorat et al. (1998) (R7–R10) are in good
agreement with our measurements, except for the R9 configura-
tion. Concerning the study of Yoshida et al. (Yoshida and Akita,
1965) (R11 and R12), the dataset R11 is in very good agreement
with our data, and the dataset R12 has a lower holdup (owing to
the lower aspect ratio). Finally, the data of Reilly et al. (1986) (R13)
and the data of Schumpe and Grund (1986) (R14) are comparable
with our dataset.

3.1.3. Comparison with correlation from the literature
Many correlations have been proposed in the literature for the

holdup. Herein, a set of correlations have been selected and
compared with our data (Fig. 12):

� Hughmark (1967):

εG ¼ 1

2þ 0:35
UG

� �
ρLσ
72

� �1=3 ð18Þ

� Mashelkar (1970):

εG ¼ UG

0:3þ2UUG
ð19Þ
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Fig. 13. Proposed correlation for the holdup in the batch mode (UL¼0 m/s).
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� Akita and Yoshida (1973):

εG
ð1�εGÞ4

¼ c1
gdc

2ρL

σ

 !1=8
gdc

3

νL2

 !1=12
UGffiffiffiffiffiffiffiffi
gdc

p
 !

ð20Þ

� Hikita and Kikukawa (1974):

εG ¼ 0:505UUG
0:47 72

σ

	 
2=3 1
μL

	 
0:05

ð21Þ

● Sada et al. (1984):

εG
ð1�εGÞ4

¼ 0:32U
gdc

2ρL

σ

 !0:121
gdc

3

νL2

 !0:086
UGffiffiffiffiffiffiffiffi
gdc

p
 !

ρG

ρL

	 
0:068

ð22Þ

� Reilly et al. (1986):

εG ¼ 296UUG
0:44ρL

�0:98σ�0:16ρG
0:19þ0:009 ð23Þ

� Kawase and Moo-Young (1987b):

εG ¼ 1:07Un2=3 U2
G

gdc

 !1=3

ð24Þ

The experimental data (batch mode, UL¼0 m/s) and the fore-
going correlations are compared in Fig. 12. The reader should refer
to Besagni and Inzoli (Besagni and Inzoli, 2016a) for a detailed
discussion of these correlations and their range of applicability.
The experimental data are well predicted for both low and high air
superficial velocities by the correlation of Hughmark. The corre-
lation of Reilly et al. reveals a similar trend to the experimental
data; however, a constant shift in holdup is observed. The corre-
lation of Kawase and Moo-Young underestimates the data in the
homogeneous regime and overestimates the data in the churn
turbulent flow regime. The correlation of Hikita and Kikukawa
exhibits the opposite behavior. All of the other correlations
underestimate the data in all of the flow regimes. These correla-
tions have been obtained considering datasets obtained in differ-
ent experimental setups. The holdup is a function of the column
design and operation, phase properties (both liquid and gas) and
operating conditions. Therefore, the discrepancies between these
correlation and the present dataset depend on the different col-
umn design, sparger (i.e., the maldistribution at the sparger) and
operating conditions (ambient temperature and pressure).

3.1.4. Proposed correlations for the holdup
The correlations from the literature have low accuracy in pre-

dicting the holdup throughout the operating range; therefore, a
new correlation is proposed following the same approach that we
have successfully applied in our previous papers (Besagni et al.,
2015; Besagni and Inzoli, 2016a). The correlation is based on our
data in the batch mode only and will be extended to the counter-
current mode in future works. The relationship between the
holdup and the physical properties of the system may be written
as a function of the following parameters:

εG ¼ f g;UG; deq;μL;ρL�ρG; g
� � ð25Þ
This equation can be transformed through the dimensional
analysis:

φ¼ f
UGμL

σ
;

g μ4
L

ðρL�ρGÞ σ3

	 

¼ f Ca;Moð Þ ð26Þ

Different formulations can be used for the function f, and, in
this paper, the same expression proposed by Akita and Yoshida
(1973) is used:

εG
1�εGð Þn ¼ k1 Mok2Cak3 ð27Þ

Holding the liquid properties constant, the Mok2 term becomes
constant:

εG
1�εGð Þn ¼ k�1 Ca

k3 ð28Þ

which can be rewritten as follows:

ln
εG

1�εGð Þn
	 


¼ k3 lnðCaÞþ ln kn1
� � ð29Þ

which is equivalent to

y¼m xþq ð30Þ

where k3¼m, ln(Ca)¼x and ln(k�1)¼q. The resulting correlation is:

εG
1�εGð Þn ¼ 329:31 Ca0:997 ð31Þ

Then, the exponent n is selected. Using n¼4, such as in Akita
and Yoshida (1973), gives unsatisfactory results, and n¼4.9 is
selected using a least square minimization method. The results are
displayed in Fig. 13: the proposed correlation matches the data
fairly well compared to the previous correlations in the literature.
This correlation, obviously, may fit literature data reported in
Figs. 10 and 11. The same comments as before also apply here and
will not be repeated. In future studies, our experimental facility
should be used for studying the influence of the liquid phase (i.e.
viscous and “non-coalescing” solutions) over the holdup for pro-
posing a new correlation for the gas holdup (also considering the
literature data). For example, recently, Besagni and Inzoli (2015)
recently studied the influence of electrolyte concentration over
holdup, flow regime transition and local flow properties. In future
study, the liquid velocity may be considered in the correlation
development.



Fig. 14. Flow regime transition points: the swarm velocity method.
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3.2. Flow regime transition

The results of the swarm velocity (Section 2.2.2.1) and the drift
flux method (Section 2.2.2.2) are displayed in Figs. 14 and 15,
respectively. The transition points agree between the two meth-
ods, and following the proposal of Ribeiro Jr and Mewes (2007)
and Besagni and Inzoli (2015), the transitional holdups and gas
velocities are evaluated as the mean of the two values. The tran-
sition points are displayed in Fig. 16 along with the transition
points of the “AG” (Fig. 7; Besagni et al., 2014, 2015) and the “OT”
(Fig. 8; Besagni and Inzoli, 2016a) configurations. The counter-
current mode destabilizes the homogeneous regime (Utrans

decreases with increasing UL). Indeed, the counter-current liquid
slows the bubbles and increases the holdup (Fig. 5), the local void
fraction and the bubble mean diameter (Section 3.4): for the same
UG, the mean distance between the bubbles decreases, and coa-
lescence phenomena may occur more easily because of the
expected increase in the bubble collisions. In the present config-
uration, Utrans, depending on UL, lies between 0.0264 m/s and
0.0173 m/s. In the batch mode, the transition points of the present
bubble column and the “AG” bubble column are close. Krishna
et al. (2000) suggested that similar transition points indicate
similar column hydrodynamics, and as discussed before, the pre-
sent bubble column has a similar behavior to the “AG” bubble
column. Alternatively, in the “OT” bubble column, the regime
transition begins earlier, and this configuration also has different
hydrodynamic behavior (as discussed before). A possible cause for
the earlier regime transition in the “OT” bubble column may be the
sparger, which causes higher bubble coalescence in the region
upstream of itself owing to the absence of the inner pipes. In the
literature, Otake et al. (1981) observed an increase in the holdup
and earlier regime transitions with increasing counter-current
liquid flowrate in a small pipe of diameter 0.05 m. Their analysis
covered gas superficial velocities up to 0.0824 m/s and liquid
superficial velocities up to �0.15 m/s. Similar conclusions were
drawn by Yamaguchi and Yamazaki (1982b) for small pipes of
diameters 0.04 m and 0.08 m, with gas superficial velocities up to
�1 m/s. In contrast, Akita and Yoshida (1973) observed that the
liquid flowrate had no influence in a large pipe with a diameter
0.152 m at gas superficial velocities up to 0.032 m/s and liquid
superficial velocities up to �0.04 m/s. The latter disagrees with
what we observed in the homogeneous regime, whereas the for-
mer suggests an influence of liquid flowrate at gas superficial
velocities higher than 0.06 m/s. Our results, considering the lit-
erature, support the idea of a correlation between the superficial
liquid velocity and the transitional velocity.

Focusing on the batch mode, the typical values of Utrans found
in the literature for air–water systems in bubble columns of dia-
meter greater than 0.15 m range between 0.01 and 0.08 m/s under
ambient operating conditions (Dargar and Macchi, 2006; Hur
et al., 2013; Krishna et al., 1991; Letzel et al., 1999; Reilly et al.,
1994; Ruzicka et al., 2001; Schumpe and Grund, 1986; Urseanu,
2000; Wilkinson et al., 1992; Zahradnik et al., 1997). The value
depends mainly on the sparger type. Single and multiple nozzles
or perforated plate spargers with a hole diameter greater than
1 mm (“coarse” spargers) usually lead to an early regime transi-
tion, whereas “fine” spargers such as porous plates (Al-Oufi et al.,
2010, 2011) or needles (Mudde et al., 2009) can maintain a stable
homogeneous regime at higher gas flowrates (i.e., Mudde et al.
(2009) reported a homogeneous regime up to a holdup equal to
0.55). The sparger considered in this study is of the “coarse” type,
and the values of Utrans agree with the data and observations
presented in the literature (i.e., the study of Dargar and Macchi
(2006) and Rollbusch et al. (2015a)). A brief comparison with some
of the previous studies is presented in Table 3. Ribeiro Jr and
Mewes, Zahradnik et al. and Al-Oufi et al. reported a flow regime
transition for a larger holdup than our value. Probably, this is due
to the air distribution at the inlet (i.e., the porous sparger in Al-
Oufi et al. or perforated plate sparger with doo1 mm). The tran-
sition holdups measured by Krishna et al. and Urseanu and Letzel
et al. are approximately 10% higher than those obtained in this
study. This point was also discussed by Rollbusch et al. (2015a).
The higher transition velocities and holdups in these studies can
be explained considering the column diameter: the studies con-
sidered from the literature were carried out in columns with a
small pipe diameter. Ruzicka et al. (2001) calculated Utrans in three
bubble columns (dc¼0.14, 0.29, and 0.4 m) and found that an
increase in dc reduced transition velocity. Their results are also
consistent with the observations of Zahradnik et al. (1997). Despite
the fact that the experimental data lie within the ranges observed
in the literature, the flow regime transition occurs quite early. This
is probably due to the sparger used and the maldistribution
regime. The maldistribution regime is verified here because the
experimental data do not perfectly match the theoretical curve in
the drift flux plots (Fig. 15).

Finally, we compare out experimental data with literature
correlations. One of the first correlations was proposed by Wilk-
inson et al. (1992):

Utrans ¼ 0:5Ub;small exp �193ρ�0:61
G μ0:5

L σ0:11� � ð32Þ



Fig. 15. Flow regime transition points: the drift flux method.
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with

Ub;small ¼ 2:25
σ
μL

σ3ρL

gμ4
L

 !�0:273
ρL

ρG

	 
0:03

ð33Þ
Another correlation was proposed by Reilly et al. (1994) and
reads:

Utrans ¼ ρL

ρG
1�εG;trans
� � B�

A�

	 
1:5

ð34Þ



Fig. 16. Transition holdup and gas velocity: influence of the liquid velocity.

Table 3
Flow regime transition: comparison with data from the literature.

Reference dc [m] Sparger type εG,trans
[dimensionless]

Utrans

[m/s]

This study 0.24 Spider sparger 0.09 0.0264
do¼1–4 mm

Besagni and Inzoli,
(2016a)

0.24 Pipe sparger 0.0683 0.0179
do¼3.5 mm

Besagni et al. (2014,
2015) and Besagni
and Inzoli (2015)

0.24 Pipe sparger 0.0874 0.0263
do¼3.5 mm
Annular gap

Zahradnik et al.
(1997)

0.15 Perforated plate 0.21 0.04
do¼0.5 mm

Urseanu (2000) 0.051 Perforated plate 0.098 0.019
do¼0.5 mm

Urseanu (2000) 0.15 Perforated plate 0.127 0.027
do¼0.5 mm

Krishna et al. (2000) 0.15 Sieve plate 0.11 0.025
do¼0.5 mm

Letzel et al. (1999) 0.15 Perforated plate 0.13 0.027
do¼0.1 mm

Dargar and Macchi
(2006)

0.152 Perforated plate 0.09 0.028
do¼0.8 mm

Ribeiro Jr and
Mewes (2007)

0.12 Perforated plate 0.35 0.0405
do¼0.7 mm

Al-Oufi et al. (2011) 0.102 Porous sparger 0.26–0.15a 0.048–
0.026a

Rollbusch et al.
(2015a)

0.16 Perforated plate 0.068 0.03
do¼1 mm

a Depending on the geometrical configuration.

Table 4
Flow regime transition: comparison with correlations the literature.

Exp. Wilkinson et al. (1992) Reilly et al. (1994)

Utrans [m/s] 0.0264 0.0029 0.0322
εgas,trans [dimensionless] 0.09a 0.011522b 0.1484

a The value is given by Utrans/Uswarm.
b The value is given by Utrans/Ub,small.
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with, the holdup at the transition:

εG;trans ¼ 0:59B�1:5 σ0:12ρ0:96
G

ρL

	 
0:5

ð35Þ

and:

A� ¼ 2:81ρLρ
0:96
G σ�0:12 ð36Þ

For water as the liquid phase, B*¼4. Comparisons of Utrans and
εG,trans from the experimental investigation and these correlations
are given in Table 4. Eq. (25) largely underestimates the transition
gas velocity. This observation was also made by Letzel et al. (1999),
who also compared their results with the correlation of Reilly et al.
(1994), which provide a better agreement. On the other hand, Eq.
(27) gives a value for Utrans and εG,trans in agreement with the
experimental data.
3.3. Image analysis

The image analysis is applied for five UG values between
UG¼0.0037 m/s and UG¼0.0188 m/s in the batch mode (UL¼0 m/s,
Utrans¼0.0264 m/s, εG between 1.02% and 6.60%, Fig. 17) and the
counter-current mode (UL¼�0.066 m/s, Utrans¼0.0201 m/s, εG
between 1.02% and 8.00%, Fig. 18). Both the developed region and
the sparger region were analyzed (Figs. 17 and 18). In the batch
mode, the bubbles were sampled both in the center and near the
wall of the column at UG¼0.0037 m/s (Fig. 17a) and UG¼0074 m/s
(Fig. 17b). For higher UG, the bubble overlap is such that sampling
in the center of the column was impossible.
3.3.1. Developed region
3.3.1.1. Bubble size distributions. The bubble diameter distribution
is detailed by using histograms with 26 classes (each class has an
extension of 0.5 mm). Figs. 19a and 20a display the BSDs at the
wall and at the center of the column for UG¼0.0037 m/s and
UG¼0.0074 m/s, respectively. Near the wall, there is a higher
number of small bubbles: this may be because of the lift force,
which pushed the small bubbles toward the wall (Besagni and
Inzoli, 2016b). It is well-known that the direction of the transversal
lift force depends upon the bubble size and shape. For “small
bubbles”, the lift force acts in the direction of decreasing liquid
velocity (i.e. batch or co-current mode, thus, the lift force pushes
the small bubbles toward the wall), whilst for “large bubbles” it
changes direction (a force that can be assimilated to the lift force
tends to push large and deformed bubbles towards the center of
the column (Lucas et al., 2005; Tomiyama et al., 2002)). This is also
confirmed by the DNS studies of Santarelli and Fröhlich (2016). As
a result, correlations for the lift coefficient usually display a change
of sign from negative for “small diameter” (deqo5.8 mm for
air–water at ambient condition) to positive for “large bubbles”
(deq45.8 mm for air–water at ambient condition). The change of
sign of the lift coefficient is well described using the model of
Tomiyama et al. (2002).

The BSDs near the wall are bimodal: the first peak of frequency
appears between deq¼0.5 mm and 1 mm, and the second is
between deq¼3 mm and 3.5 mm. In contrast, the BSDs at the
center of the column are unimodal with a peak of frequency at
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Fig. 17. Image analysis of the homogeneous regime: gas velocities investigated in the batch mode (UL¼0 m/s).
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Developed regionDeveloped region Sparger regionSparger region

Fig. 18. Image analysis of the homogeneous regime: gas velocities investigated in the counter-current mode (UL¼�0.06 m/s).
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Fig. 19. Image analysis for the batch mode (UL¼0 m/s): comparison between wall and center at UG¼0.0037 m/s.
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deq¼3.5 mm (UG¼0.0037 m/s) and deq¼4 mm (UG¼0.0074 m/s).
Except for the frequency peak at low deq, the BSDs near the wall
and at the center of the column are similar. Therefore, the bubbles
sampled at the wall may represent the bubble shapes and size
distributions in the column, which agrees with the findings of
Besagni and Inzoli (2016b). Fig. 21a displays the BSDs (sampled at
the wall) for the different superficial gas velocities. Up to
UG¼0.0149 m/s, the BSDs are bimodal: the first peak of frequency
occurs between deq¼0.5 mm and 1 mm, whereas the second peak,
depending on UG, ranges between deq¼2.5 mm and 3.5 mm. The
presence of two maxima is also observed in the distribution of the
equivalent diameters in each individual photograph. At
UG¼0.0188 m/s, the BSD changes from bimodal to unimodal and is
shifted toward higher bubble diameters with a peak between
deq¼3.5 mm and 4 mm (also, for UG40.0188 m/s, the small bub-
bles were not observed). This behavior may occur because
UG¼0.0188 m/s is close to the regime transition. This result agrees
with the studies concerning the size of the bubbles and the flow
regime transition (Lucas et al., 2003) and the findings of Besagni
and Inzoli, (2016b) for an annular gap bubble column. In the lit-
erature, a bimodal distribution was found by different authors
(Hernandez-Aguilar et al., 2004; Lau et al., 2013b; Parthasarathy
and Ahmed, 1994; Wongsuchoto et al., 2003). Lau et al. (2013b)
and Wongsuchoto et al. (2003) observed a transition from a
unimodal distribution to a bimodal distribution with increasing
UG. This change in the distribution of bubble size has been justified
with increased coalescence (Lau et al., 2013b) or break-up
(Wongsuchoto et al., 2003). This may appear to contradict with
our results; however, the present configuration (large-diameter
bubble column with spider sparger) is different from the cases
reported in the literature. Photographs are unavailable at a lower
gas flowrate, and it is therefore impossible to verify a possible first
passage from unimodal distribution to bimodal distribution.
However, our BSDs are obtained by sampling the bubbles near the
wall, and the equivalent BSD at the center of the column may
be unimodal, as previously discussed. It is worth noting the
poly-dispersed nature of the bubble size distributions with respect
to the change in lift force direction at a bubble diameter of 5.8 mm
(for the air–water system at ambient conditions). The poly-
dispersed homogeneous regime is probably a consequence of the
sparger with large openings. The BSDs discussed above were
obtained at h¼2.4 m from the sparger and are assumed to be
representative of the developed flow. This is verified in Fig. 23, in
which the BSDs (UG¼0.0111 m/s) at h¼2.4 m and the BSD at



Fig. 20. Image analysis for the batch mode (UL¼0 m/s): comparison between wall and center at UG¼0.0074 m/s.
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h¼1.4 m are compared: the BSDs are similar, confirming that the
flow is developed. This agrees with the literature: according to
Thorat et al. (1998), at h/dc45, the holdup profile is fully devel-
oped (then, the BSD is approximately constant) and, in this case,
the images taken at h¼1.4 m correspond to h/dc¼5.83.

The main difference in the counter-current mode (Fig. 24a),
compared with the batch mode BSDs, is that the distributions are
mostly unimodal with a peak between 3.5 mm and 4.5 mm
(except for UG¼0.0111 m/s, with a BSD slightly shifted toward the
lower diameters and a peak at approximately 3 mm). The change
from bimodal to unimodal distribution and the shift toward higher
diameters may be due to the lift force pushing the small bubbles
toward the center of the pipe. Indeed, in the counter-current
mode, “small bubbles” (having a positive lift coefficient) migrate
toward the center of the column (please, refer to the discussion
concerning the lift force in the first paragraph of this section). This
is confirmed by the DNS studies of Lu et al. (2006) and Lu and
Tryggvason (2007, 2013). A shifted of the BSD toward the higher
diameters, in the counter-current mode (UL¼�0.04 m/s), was also
observed by Besagni and Inzoli (2016b) in annular gap bubble
column. We may also compare our results with the findings of
Sundaresan and Varma (1990). Their results confirm the change in
BSD from a wide distribution, at low flowrates, to a narrower BSD,
at higher flowrates. However, their BSDs are shifted to lower
values probably because of the different experimental setups and
operating conditions: different sparger, smaller bubble column
(dc¼0.0093 m, hc¼1 m high, lower aspect ratio), and different UL.

3.3.1.2. Bubble shapes. Figs. 19b and 20b display the aspect ratio, ϕ,
distributions at the wall and at the center of the column for
UG¼0.0037 m/s and UG¼0.0074 m/s, respectively. At the center of
the column, the two aspect ratio distributions are similar:
approximately 5% of the bubbles can be approximated as a sphere,
with φ between 0.9 and 1; 86–88% of the bubbles have
0.4rφr0.9, with a peak between 0.5 and 0.6; and the remaining
7–10 % are very stretched on the major axis, with 0.3rφr0.4. At
UG¼0.0037 m/s, near the wall, the number of spherical bubbles
increases, and the distribution of the aspect ratio moves toward a
higher aspect ratio. At UG¼0.00074 m/s, the number of bubbles
with an aspect ratio between 0.5 and 0.7 increases. Fig. 21b dis-
plays the aspect ratio distribution for the different UG values (near
the wall). The aspect ratio distributions for UG¼0.0111 m/s and



Fig. 21. Image analysis for the batch mode (UL¼0 m/s): influence of UG (wall samplings).
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UG¼0.0147 m/s are similar to UG¼0.0074 m/s: approximately 6–
7% of the bubbles have φ between 0.9 and 1, 87–90% of the bub-
bles have 0.4rφr0.9, and 4–6% have 0.3rφr0.4. At
UG¼0.0188 m/s, there is a change in the distribution, and more
significantly distorted bubbles appear. This agrees with the change
in the bubble size distribution and is caused by the onset of the
flow regime transition, in which larger bubbles appear (gas dis-
engagement measurements, Section 3.1.1). Fig. 22 displays the
relationship between the aspect ratio and the equivalent diameter
(the φ–deq space). As expected, a relation between the size and the
aspect ratio of the bubbles seems to exist: the small bubbles have a
high aspect ratio, whereas the larger bubbles seem to be char-
acterized by lower aspect ratios. Indeed, bubbles with equivalent
diameters less than 1 mm have an aspect ratio greater than 0.7.
This means that the small bubbles tend to be spherical. Bubbles
with higher equivalent diameters are characterized by lower
aspect ratios (between 0.4 and 0.7), which reveals the trend of
larger bubbles to be flatter. At UG¼0.0037 m/s and UG¼0.0074 m/
s, the aspect distribution is compared near the wall and at the
center of the column (Fig. 22a, b and Fig. 22c, d, respectively). Near
the wall, there is a slightly higher number of small bubbles
(ϕ40.7, deqo2); however, despite this small difference, the data
cover almost the same φ–deq space. This suggests that the shape of
the bubbles is not influenced by their position in the column, as
expected. All operating conditions—until UG¼0.0147 m/s—have a
comparable φ–deq distribution (Fig. 22a, c, e and f); at
UG¼0.0188 m/s (Fig. 22g), there is a change in the distribution
with the appearance of larger and more distorted bubbles. It is
worth noting that—owing to the point selection for ellipse fitting—
the smaller the bubble, the larger the error of estimation. In
principal, this should change the results in Fig. 22, thus causing the
low diameter data to have a higher aspect ratio. No general rela-
tion seems to exist between the aspect ratio and the position of
the bubbles for the considered cases, so these data are not pre-
sented here. These results agree with the analysis of Besagni and
Inzoli (2016b) concerning the aspect ratio distributions in an
annular gap bubble column.

In the counter-current mode (Figs. 24b and 25), there is a lower
number of spherical bubbles and a larger number of distorted/
ellipsoidal bubbles: this may be caused by the higher shear stress
between the phases. Indeed, the BSDs were shifted toward higher
diameters. There is not a remarkable difference between the dif-
ferent UG values (Fig. 24b), except for UG¼0.0037 m/s (with a
larger number of bubbles with a lower aspect ratio). At
UG¼0.0037 m/s, approximately 3% of the bubbles have φ between
0.9 and 1, 83% of the bubbles have 0.4rφr0.9, and 13% have



Fig. 22. Image analysis for the batch mode (UL¼0 m/s): relationship between the aspect ratio and the equivalent diameter.
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Fig. 23. Comparison of BSDs sampled at h¼2.4 m and h¼1.4 m from the sparger (UG¼0.111 m/s).
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0.3rφr0.4. For the other cases: approximately 3–5% of the
bubbles can be approximated as a sphere, with φ between 0.9 and
1; 89–86% of the bubbles have 0.4rφr0.9, with a peak between
0.5 and 0.6; and the remaining 7–10% are very stretched on the
major axis, with 0.3rφr0.4. All operating conditions have a
comparable φ–deq space (Fig. 25), and—as previously noted—the
small bubbles have a high aspect ratio, whereas the larger bubbles
seem to be characterized by lower aspect ratios.



Fig. 25. Image analysis for the counter-current mode (UL¼�0.066 m/s): relationship between the aspect ratio and the equivalent diameter.
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3.3.1.3. Bubble orientation. Figs. 19c, 20c and 21c display the dis-
tributions of bubble orientation in the batch mode for the oper-
ating conditions discussed above. Comparing the bubble orienta-
tion distributions, they are similar in shape. The only remarkable
difference is at UG¼0.0188 m/s, where there are more bubbles
with a lower angle of orientation. Generally, 50% of the bubbles
have an orientation between �15° and þ15°. Seventy-five percent
of the bubbles have an orientation between �30° and þ30°. In the
counter-current mode (Fig. 24c), there is a larger number of bub-
bles with a lower angle of orientation: 60% of the bubbles have an
orientation between �15° and þ15°. Eighty percent of the bub-
bles have an orientation between �30° and þ30°. These dis-
tributions may indicate that the bubbles move predominantly
upward with a zigzag motion at angles ranging from �30° to 30°.
3.3.1.4. Bubble Sauter mean diameter. Fig. 26 compares the Sauter
men diameter for the batch and counter-current mode (wall-
samplings). The Sauter mean bubble diameter is computed as:

d23 ¼
ΣN

i nid
3
Bi

ΣN
i nid

2
Bi

ð37Þ

where dBi and ni are the diameter and number of bubbles of size
class i, respectively, and N is the number of classes used for the
distribution. In the counter-current mode, for the same gas velo-
city, the mean diameter decreases. This may be related to the
enhanced breakup owing to the higher turbulence in the pipe.

3.3.1.5. Comparison with the literature. For bubbles rising in an
infinite medium, Clift et al. (1978) proposed a graphical correlation
to determine the shapes of the bubbles in terms of Eo, M and Re. M
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is defined only by the properties of the fluids; for a constant M, the
shapes of the bubbles evolve from spherical to ellipsoidal to cap-
shaped with increasing equivalent diameter. Clift et al. (1978)
evaluated influence of the wall on the rising bubbles according to
the ratio λ between the equivalent diameter of the bubble and the
diameter of the system. For values of λ less than 0.6, the walls have
little influence, and the rising bubble can be considered as if rising
in an infinite medium. Herein we focus on the batch mode only
Fig. 26. Sauter mean diameter: comparison between the batch and counter-
current modes.

Fig. 27. Data obtained for the batch m
(for the sake of clarity): the largest bubble detected in this analysis
had an equivalent diameter of 12 mm, and the hydraulic diameter
of the column is equal to 240 mm. The maximum value of λ is
therefore 0.13. Thus, the effect of the wall can be neglected as a
first approximation. The data are represented in Fig. 27. With
regard to the shapes of the bubbles, the data obtained from the
analysis of the images agree with the diagram by Clift et al. (1978):
the bubbles sampled cover the spherical and ellipsoidal area.
There is no bubble in the area of the cap-bubbles; indeed, cap-
bubbles were not detected. The same procedure may be applied to
the counter-current mode and results in the same conclusions.
These results agree with the literature comparison of Besagni and
Inzoli (2016b), for an annular gap bubble column.

3.3.2. Near sparger
3.3.2.1. Near sparger phenomena. It is clear from the flow visuali-
zations (Figs. 18 and 19) that the hole activation depends on the air
flowrate. This is further proof of the maldistribution regime caused
by the sparger.

In the this region, we observed the same phenomena as
described by Hur et al. (2013):

� Nucleating bubbles (Fig. 28a): the bubble is forming on the
surface of the orifice of the sparger.

� Channeling (Fig. 28b): with increasing gas superficial velocity,
the bubble nucleating on the orifice is affected by the wake of
the preceding bubble and thus is trailed and accelerated. In this
ode plotted on the Clift diagram.



Fig. 28. Bubble shape and phenomena near the distributor.
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way, the channeling effect creates bubbles with a peculiar shape
that are still attached to the orifice by their bottom, thus, larger
bubbles are nucleated and are encountered only on the gas
sparger surface.

� Clustering/coalescence (Fig. 28c): above the sparger orifices,
agglomeration occurs owing to the bubble wakes that accelerate
the trailing bubbles. This phase normally involves low energy
collisions that do not lead to coalescence. Only when the
colliding bubbles have sufficient energy and remain in contact
for enough time can coalescence occur.

� Segregation of agglomerates (Fig. 28d): coalescence hardly occurs
within clusters of bubbles because of the low energetic colli-
sions. Therefore, the agglomerates segregate a short time later,
resulting in multiple bubbles that rise distinctly.

3.3.2.2. Bubble size distributions. At first, the bubble size distribu-
tion in the sparger region is analyzed by sampling all bubbles from
the sparger up to hE0.2 m above the sparger itself. The results are
presented in Fig. 29a and b for the batch and counter-current
modes, respectively. Fig. 29a displays the sparger BSDs for the
different superficial gas velocities. In all conditions, the BSD covers
the range from the low to high equivalent diameter (up to
22.5 mm). At UG¼0.0037 m/s, the BSD is unimodal with a peak at
approximately deq¼3.5 mm; with increasing air flowrate, at
UG¼0.0074 m/s, the peak moves toward a lower equivalent dia-
meter (approximately 1 mm). With increasing UG, the BSDs
change, and an absolute maximum is always observed at
approximately 1 mm, whereas multiple relative maxima are found
for higher diameters. Although the large bubbles have low relative
frequencies, they are strictly non-negligible owing to their large
volume. At UG¼0.0037 m/s and UG¼0.0074 m/s, the BSDs have a
large peak in the low diameter range (approximately 1 mm) and
extend towards higher equivalent diameters. For the higher gas
velocities, the BSDs change to bimodal: the first frequency peak is
at approximately deq¼1 mm (but it is lower if compared with the
batch mode), and the second peak is at approximately deq¼3 mm
and 3.5 mm. Compared with the batch mode, the counter-current
mode (Fig. 29b) changes the shape of the BSD from bimodal to
unimodal and moves the BSD toward a larger diameter. The latter
effect was also reported by Besagni and Inzoli (2016b). It is worth
noting that these results consider a wide region (0.2 m above the
sparger) where coalescence and break-up phenomena already
occur. Therefore, additional bubble sampling (in the batch mode
only) is performed by considering only the bubbles freshly
detached from the sparger, which were unaffected by the coales-
cence and break-up phenomena. This sampling was conducted
considering many images and focusing the camera near the
sparger openings. The results are displayed in Fig. 30a for the
different UG values. In this region, the BSDs are shifted toward the
higher diameter and cover only bubbles with deq47 mm. These
bubbles are unstable and will break into smaller bubbles. Indeed,
the bubbles in this region have equivalent diameters higher that
the critical ones (10.1–12.8 mm) reported by Besagni and Inzoli
(2016b); on the other hand, in the developed region, the bubble
equivalent diameters are below these values. The bubble side
distributions change because of the coalescence and break-up
phenomena (Fig. 30b). It is worth noting that the BSD at the
sparger depends on many design parameters (i.e., the hole of the
sparger and the flowrate) as reported by Hur et al. (2013) and
Geary and Rice (1991). For example, a sensitivity analysis made by
Cao et al. (2009) using the Geary and Rice (1991) model showed
that increasing hole flowrate or decreasing hole dimensions lead
to larger bubbles, whereas an increasing number of holes results in
smaller bubbles detaching from the sparger.

3.3.2.3. Comparison with the literature. The data obtained by
sampling only the bubbles freshly detached from the sparger
(Fig. 30a) can be compared with the correlations of Polli et al.
(2002) and by Cao et al. (2009). These correlations are based on
non-dimensional numbers—the “dimensionless bubble diameter”
dw and the “dimensionless velocity” Nw:

dw ¼ dv
gρL

doσ

	 
1
3

ð38Þ

Nw ¼ We

Fr1=2
ð39Þ

where dv and Fr are the volumetric mean bubble diameter and
the Froude number, respectively, defined as:

dv ¼
P

deq
3

ntot

 !1
3

ð40Þ

Fr ¼ uth
2

gdH
ð41Þ

where ntot is the number of bubbles sampled, and uth is the gas
velocity through the hole. Cao et al. (2009) and Polli et al. (2002)
assumed that dw is well estimated with the dimensionless cor-
relation of Miyahara et al. (Miyahara and Hayashino, 1995) for
values of Nw lower than 14 and 10, respectively. For higher Nw,
their correlations are obtained by fitting experimental values
with an exponential function, as suggested by Miyahara and
Hayashino (1995). The two correlations predict the trend of the
experimental data, and in particular, the Cao correlation well fits
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Fig. 29. Bubble size distribution at the sparger: comparison between the batch and counter-current modes.
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the experimental value (Fig. 31a). Only two points do not match
the correlation, probably because of differences in sparger design
(the authors used a ring sparger). The aim of these correlations is
to predict the BSD at the sparger using the design parameters as
the inputs: by knowing all quantities concerning Nw, through the
correlation, it is possible to obtain dw and, finally, dv. Under the
hypothesis that the BSD is lognormal, the predicted BSD is
expressed by:

f ðdeqÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πdeq

p exp �1
2

ln deq�m
σD

	 
� �
ð42Þ

Where m is the logarithm of dv. By applying the Cao et al.
(2009) correlation for obtaining dv and using σD¼0.19 as the
standard deviation—in accordance with Cao et al. (2009)—the
predicted and experimental BSDs are in good agreement (Fig. 30b).
3.4. Optical probe

The optical probe measurements consist of radial profiles at
two different axial positions: in the developed region (h¼1.9 m
from the sparger) and closer to the sparger (h¼0.7 m from the
sparger)

3.4.1. Developed region
Figs. 32 and 33 display the radial profiles of the local void

fractions and bubble rise velocities: Fig. 32 focuses on the batch
mode, whereas Fig. 33 displays the influence of the counter-
current mode (UL¼�0.066 m/s). Fig. 34 displays the radial pro-
files of the Sauter mean diameters in batch (Fig. 34a) and counter-
current (Fig. 34b) modes.

The local void fraction profiles are center peaked, which may
appear to be surprisingly: in the homogeneous regime, the void



Fig. 30. Bubble size distribution at the sparger: near sparger sampling and flow development.
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fraction profiles are usually somewhat flat. This behavior may be
caused by the spider sparger with the large openings, which
produces a poly-dispersed flow in the column (Section 3.3). In this
respect, the center peaked profiles in the homogenous regime may
be induced by the bubbles with an equivalent diameter larger than
5.8 mm, thus having a lift force pushing them towards the center
of the pipe. The center peaked profiles in the homogeneous regime
suggest the existence of a maldistribution regime. Increased gas
flowrates resulted in overall higher void fractions and greater
profile curvature from the column wall to the center, particularly
after the flow regime transition. Indeed, after the transition point,
the formation of “coalescence-induced” bubbles (Section 3.1.1) led
to increased curvature of the radial profiles, where maximum local
holdups occurred at the center of the column. The existence of a
pronounced radial holdup profile, which generates strong liquid
recirculation, is a characteristic of the heterogeneous regime. The
local void fractions were compared to global holdups by inte-
grating the radial measurements over the column cross-sectional
area:

oεG4 ¼ 1

πR2
C

Z RC

0
εG;Local2πrdr ð43Þ
where RC is the radius of the column. Table 5 shows that the
relative errors between the integrated local measurements
(oεG4) and the global holdups (εG), with the exception of low
UG, are below 20%. This agrees with the study of Pjontek et al.
(2014) and Barrau et al. (1999), which reported the worst perfor-
mance of the optical probes at low gas fractions. The error may
also be derived from the pressure gradient along the column,
which causes an axial profile in the local void fraction.

An increase in UG leads to an increase in bubble vertical velo-
city, ub, as expected (Fig. 32b). However, the increase in velocity is
limited to the homogeneous regime, with the exception of
UG¼0.0188 m/s, which is closer to the transition point. Above the
flow regime transition, the bubble rise velocity increases because
of the bubble coalescence (proved by the presence of the
“coalescence-induced” bubbles). The increase in the bubble rise
velocity reduces the gas residence time in the column, thus
decreasing the holdup versus gas velocity slope (Fig. 5) and
increasing the center peaked void fraction profiles (Fig. 32a).
Fig. 33 displays the effect of the counter-current mode: the local
void fraction is increased (Fig. 33a) by the effect of the liquid flow
slowing down the rise of the bubbles (Fig. 33b). These results
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Fig. 31. Near sparger sampling: comparison with the literature.
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explain the behavior of the holdup curve in the counter-current
mode in the homogeneous regime.

Fig. 34 displays the radial profiles of the bubble diameters as a
function of UG (Fig. 34a) and UL (Fig. 34b) in the homogenous
regime. These data were obtained by correcting the optical probe
measurements (Eq. (13)) by using Eq. (14). The values of the mean
aspect ratio in Eq. (14) were provided by the image analysis.
Considering Fig. 34a, the bubble diameter profiles are almost
constant in the cross section of the pipe. There are no remarkable
differences in the bubble diameter profiles at UG¼0.0037 and
UG¼0.0074 m/s; the bubble diameter profiles then increase at
UG¼0.0111 and UG¼0.0149 m/s, and finally, the profile at
UG¼0.188 m/s decreases (because of the lower aspect ratio due to
the higher distorted bubbles near the regime transition). Con-
sidering the counter-current mode (Fig. 34b), the mean diameter
decreases, probably because of the lower aspect ratio and the
enhanced breakup (owing to the higher turbulence in the pipe).
However, no quantitative data are available to support the second
statement, and this will be a matter for future studies. The optical
probe also provides bubble chord distributions: these data will be
used in future studies regarding algorithms for the conversion of
bubble chord distributions into bubble diameter distributions.

It is worth noting that similar results (i.e., the center peaked
void fraction profiles and the influence of the counter-current
mode) were obtained by Besagni and Inzoli (2016a) in the “OT”
bubble column.

3.4.2. Near sparger
Figs. 35–37 display the void fraction, bubble rise velocity and

Sauter mean diameter profiles at h¼0.7 m from the sparger. The
local void fraction profiles (Fig. 35) are more center peaked than
those in the developed region. This suggests that, in this region,
there is higher liquid recirculation and a larger number of large
bubbles that will break into smaller bubbles. Indeed, in the sparger
region, the BSDs cover larger bubble diameters compared with the
developed region (Section 3.3). It is particularly interesting that at
low UG, the void fraction profile is highly asymmetric and center
peaked, confirming the maldistribution regime. Thus, the sparger
used (with large openings) has a non-negligible influence on the
column hydrodynamics. As in the developed region, increased gas
flowrates resulted in overall higher void fractions and greater
profile curvature from the column wall to the center, particularly
after the flow regime transition. As expected, the presence of lar-
ger bubbles at higher UG leads to increased curvature of the radial
profiles. Concerning the bubble vertical velocity (Fig. 36), ub, an
increase in air superficial velocity leads to an increase in bubble
vertical velocity, as expected. However, the increase in velocity is
limited to the homogeneous regime. It is worth noting that, con-
trary to the developed region, also at UG¼0.0188 m/s, the bubble
rise velocity profile is similar to that for lower UG. This result
suggests that the “coalescence-induced” bubbles—which cause the
regime transition—begin to appear at approximately this gas
velocity, probably above this measurement section. This will be a
matter for future studies. Finally, Fig. 37 displays the radial bubble
diameter profiles (corrected by Eq. (14)) as a function of UG: the
Sauter mean diameter is larger compared with the developed
region, as expected and previously discussed.

4. Conclusions

We have experimentally studied a counter-current bubble column
(0.24 m inner diameter and 5.3 m height), considering gas superficial



Fig. 32. Optical probe data (h¼1.9 m from the sparger): void fraction and bubble
rise velocity profiles – batch mode (UL¼0 m/s).

Void fraction 

Bubbles rise velocity 

Fig. 33. Optical probe data (h¼1.9 m from the sparger): void fraction and bubble
rise velocity profiles – counter-current mode (UL¼�0.066 m/s).
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velocities in the range of 0.004–0.20 m/s and liquid superficial velo-
cities up to �0.09 m/s. A variety of techniques is applied to study the
influence of the counter-current mode on holdup, flow regime tran-
sition, bubble size distribution and local flow properties.

The main results are as follows:

� Two regimes (the homogeneous and transition regimes) have
been identified, and the transition points between them have been
evaluated. In the homogeneous regime, the holdup increases lin-
early as a function of UG, and it increases with UL. In the transition
regime, the influence of the superficial water velocity on the
holdup decreases. The counter-current mode destabilizes the
homogeneous regime: the transition point lies in the range
between 0.0264 m/s and 0.0173 m/s depending on the liquid
velocity. Above the regime transition, “coalescence-induced” bub-
bles, rising in the column at higher velocities, appear.

� The holdup data have been compared with data taken from the
literature and with a set of correlations. Comparing the holdup
data obtained with our previous studies, we observe a limited
influence of the sparger design in large-diameter bubble col-
umn, possibly due to the sparger with large opening. In
addition, a new correlation for the holdup was proposed.

� In the batch mode, the BSDs are poly-dispersed and bimodal;
the small bubbles are more concentrated near the wall, prob-
ably because of the lift force. We observed a change in the
bubble size distribution (from bimodal to unimodal) near the
flow regime transition. In the counter-current mode, larger
bubbles are pushed toward the wall—probably owing to the lift
force—and the bubble size distribution are shifted toward larger
diameters. The relations between the bubble size and shape
have been discussed. In particular, the counter-current mode
produces a change in the bubble shape distribution (i.e., more
distorted bubbles appear).

� Near the sparger, the bubble size distributions are shifted
toward higher diameters; however, these large bubbles are
unstable and break into smaller ones. The results agree with
correlations found in the literature.

� The local flow properties are a function of both the axial and
radial positions in the bubble column. In the developed region
of the column, the local void fraction profiles are center peaked,
and increased gas flowrates result in overall higher void frac-
tions and greater profile curvature from the column wall to the
center, particularly after the flow regime transition. The void
fraction profiles are center peaked even in the homogeneous
regime: the spider sparger with large openings, which produces
a poly-dispersed flow in the column, may cause this behavior.
An increase in air superficial velocity also increases the bubble
vertical velocity; however, the increase in velocity is limited to
the homogeneous regime and is higher in the transition flow
regime. The counter-current mode increases the local void
fraction by slowing down the rise of the bubbles.

� The void fraction profiles, near the sparger, are more center
peaked than those in the developed region; this suggests that in
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Fig. 34. Optical probe data (h¼1.9 m from the sparger): bubble mean diameter.

Table 5
Comparison between local and global holdup values.

UG [m/s] oεG4 [%] εG [%] Relative errora [%]

0.0037 1.65 1.02 �61.06
0.0074 2.98 2.28 �30.65
0.0111 4.37 3.72 �17.47
0.0149 5.88 5.30 �10.92
0.0188 7.80 6.60 �18.13
0.0389 12.74 11.22 �13.57
0.0614 16.35 14.36 �13.89

a Computed using: 100∙εG � o εG 4
εG

.

Fig. 35. Optical probe data (h¼0.7 m from the sparger): void fraction profiles.

Fig. 36. Optical probe data (h¼0.7 m from the sparger): bubble rise velocity.

G. Besagni, F. Inzoli / Chemical Engineering Science 146 (2016) 259–290 287
this region, there is a larger number of large bubbles that will
break into smaller bubbles as the flow develops.

In conclusion, the proposed investigation offers a comprehen-
sive view of counter-current bubble columns and provides a large
dataset with which to set up and validate numerical models.
Fig. 37. Optical probe data (h¼0.7 m from the sparger): bubble Sauter mean
diameter.
Nomenclature

Non-dimensional numbers

Ca¼ UGμL
σ Capillary number [dimensionless]
dw ¼ dv
gρL
doσ

� �1=3
Non-dimensional diameter [dimensionless]

Eo¼ g ρL �ρGð Þd2eq
σ Eötvös number [dimensionless]

Fr¼ v2
gdeq

Froude number [dimensionless]
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Mo¼ g ρL �ρGð Þμ4
L

ρ2
Lσ

3 Morton number [dimensionless]

Nw ¼ We
Fr0:5 Non-dimensional velocity [dimensionless]

Re¼ ρLubdeq
μL

Reynolds number [dimensionless]

We¼ dequ2
bρL
σ Weber number [dimensionless]

Acronyms

AG Annular Gap bubble column as discussed in Besagni and
Inzoli (Besagni and Inzoli, 2016a)

BSD Bubble Size Distribution
CFD Computational Fluid Dynamics
CI Coalescence-induced bubbles
DNS Direct Numerical Simulation
GD Gas Disengagement
NCI Non-coalescence-induced bubbles
OT Open Tube bubble column as discussed in Besagni and

Inzoli (Besagni and Inzoli, 2016a)

Symbols

a Major axis of the bubble [m]
b Minor axis of the bubble [m]
c Coefficient in the ellipse equation [dimensionless]
α Coefficient in the aspect ratio correlation [dimensionless]
A*, B* Parameter in the Reilly correlation for the flow regime

transition [dimensionless]
do Gas sparger holes diameter [mm]
dc Diameter of the column [m]
deq Bubble equivalent diameter [mm]
db Sauter mean diameter from the optical probe [mm]
db,Corrected Sauter mean diameter from the optical probe corrected

by the bubble aspect ratio [mm]
d23 Sauter mean diameter from the image analysis [mm]
dv Volumetric mean bubble diameter [mm]
D*
H Non-dimensional diameter [dimensionless]

D*
H,Cr Critical Non-dimensional diameter [dimensionless]

f Bubble frequency [1/s]
n,k1

*, k1, k2, k3 Parameters in the holdup correlation [dimensionless]
H Height from the bottom of the column [m]
Hc Height of the column [m]
HD Heights of the free-surface after aeration [m]
H0 Heights of the free-surface before aeration [m]
J Drift flux [m/s]
g Gravity acceleration [m/s2]
Rc Radius of the column [m]
S Parameter in the swarm velocity method [dimensionless]
x Horizontal axis [dimensionless]
xc Horizontal coordinate of the bubble center [m]
y Vertical axis [dimensionless]
yc Vertical coordinate of the bubble center [m]
ub Bubble rise velocity [m/s]
uth Gas velocity through the holes of the sparger [m/s]
u1 Terminal bubble velocity [m/s]
Ub Parameter in the drift flux methods (the swarm

velocity) [m/s]
U Superficial velocity [m/s]
θ Bubble orientation [deg]
m Dynamic viscosity [Pa s]
σ Surface tension [N/m]
φ Aspect ratio [dimensionless]
εG Gas Holdup [dimensionless]
εG,Local Local void fraction [dimensionless]
oεG4 Integrated gas holdup [dimensionless]
ΔtsamplingOptical probe sampling time [s]

Subscripts

L Liquid phase
G Gas phase
T, E Subscripts in the drift flux formulation
trans Transition point
swarm Swarm velocity
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