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A B S T R A C T

This paper systematically compares modeled rates of change provided by global integrated assessment
models aiming for the 2 �C objective to historically observed rates of change. Such a comparison can
provide insights into the difficulty of achieving such stringent climate stabilization scenarios. The
analysis focuses specifically on the rates of change for technology expansion and diffusion, emissions and
energy supply investments. The associated indicators vary in terms of system focus (technology-specific
or energy system wide), temporal scale (timescale or lifetime), spatial scale (regional or global) and
normalization (accounting for entire system growth or not). Although none of the indicators provide
conclusive insights as to the achievability of scenarios, this study finds that indicators that look into
absolute change remain within the range of historical growth frontiers for the next decade, but increase
to unprecedented levels before mid-century. Indicators that take into account or normalize for overall
system growth find future change to be broadly within historical ranges. This is particularly the case for
monetary-based normalization metrics like GDP compared to energy-based normalization metrics like
primary energy. By applying a diverse set of indicators alternative, complementary insights into how
scenarios compare with historical observations are acquired but they do not provide further insights on
the possibility of achieving rates of change that are beyond current day practice.
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1. Introduction

Keeping temperature increase to less than 2 �C with a high
likelihood will require substantial changes in energy and land use.
Integrated assessment model (IAM) studies on mitigation
scenarios can provide insights into the level of the required
change over time. IAM-based studies often conclude that the
required transition for reaching the 2

�
C target is ‘technically
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feasible’, depending on the model set-up and assumptions. In the
past, such studies generally considered rather idealized conditions
such as full participation of all regions and sectors in climate policy.
However, more recently, models have also studied the achiev-
ability of the 2

�
C target under less idealized circumstances

assuming limits in technology availability or reduced participation
in international climate policy (Clarke et al., 2009; Kriegler et al.,
2013b; Riahi et al., 2015; Weyant and Kriegler, 2014). Even in those
cases, most models still identify scenarios that reduce emissions in
line with the 2

�
C target. It should, however, be noted that in their

assessment, IAMs mostly account for technological and economic
factors that can be easily included in the models. These factors
include, for example, mitigation potentials, capital stock turnover
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Table 1
Overview of technology change indicators included for study.

Indicator Variations Reference Metric

(a) Average annual capacity addition Average annual capacity addition Eq. (1) GW/yr
Normalized average annual capacity addition Eq. (2) GW/yr/ $

(b) Technology diffusion Normalized extent and duration (Dt) Eq. (3) GW/EJ/yr

(c) Average annual emission decline rates Average annual emission decline rate Eq. (4) %/yr
Normalized average annual emission decline rates Eq. (5) %/yr

(d) Average annual supply-side investments Average annual supply-side investments Eq. (6) $/yr
Normalized average annual supply-side Eq. (7) %/yr
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rates, mitigation costs and inertia in investments patterns. Several
other factors are not included such as the role of international
negotiations, societal inertia or the time associated with decision-
making processes on the one hand and behavioral changes on the
other. Clearly, such factors can have a substantial influence on the
probable (future) rate of change.

Historically observed rates of change can be important
reference points for assessing the difficulty associated with future
rates of change – providing possibly also insights in real world
factors not covered in the models. In fact, several studies have
already tried to compare model results and historical data using
different indicators (Kramer and Haigh, 2009; Loftus et al., 2014;
Riahi et al., 2015; Tavoni and van der Zwaan, 2009; van der Zwaan
et al., 2013; Van Vuuren and Stehfest, 2013; Wilson et al., 2012). In
these studies different methods and data sets have been used to
confront existing scenarios with historical evidence, meaning that
their results and conclusions cannot be easily compared. For
instance, Van Vuuren and Stehfest, 2013; Riahi et al., 2015 looked at
overall change in emissions or emission intensity. In contrast, the
studies of van der Zwaan et al. and Wilson et al. look at absolute
and relative changes in the deployment of particular energy
technologies. It should also be noted that model comparison
projects have shown that models select different pathways in
achieving similar goals, and that models can be ‘diagnosed’ as
being more or less responsive to climate policy (Kriegler et al., 2015
). In order to represent model uncertainty, it is therefore important
to compare the results of a diverse set of IAMs against a
standardized set of historical indicators.

In this light, the goal of this study is (1) to systematically
compare several methods that use historical evidence as a basis for
analyzing the difficulty associated with future energy transitions
and (2) to use these methods for evaluating model results. We use
the results of a multi-model study to provide insight into the
uncertainty resulting from a wide diversity of technology
Table 2
Overview of methodologies and the scope of this study.

Indicator System focus 

(a) Average annual capacity addition Technology specific 

Technology specific 

(b) Technology diffusion Technology specific 

(c) Average annual emission decline rate Energy system 

Energy system 

(d) Average annual supply-side investments Energy system 

Energy system 

a On average over a selected period of time.
b This study depicts GDP throughout the results as the measure of growth, other me
c Normalization only available for primary energy as system growth metric.
trajectories that are consistent with the 2 �C target. Questions
that are addressed are:

- How do historical rates of change compare to future rates of
change required under the 2 �C climate objective?

- Do various indicators of technology change depict a coherent
storyline?

2. Methodology

2.1. Comparing historical and future rates of change

Historical observations provide an important reference point
for the required level of effort to achieve future energy system
changes associated with ambitious climate policy objectives. To
date, different indicators have been used to compare historical
trends with future rates of change, varying in terms of system focus
(technology-specific or energy system wide), temporal scale
(timescale or lifetime), spatial scale (regional or global) and
normalization (accounting for entire system growth). In order to
gain a more holistic insight from these analyses we combine and
harmonize the methods to encompass an overall similar scope of
research. In the following paragraphs the various methods are
described first followed by how they are interpreted in the current
study. Table 1 and Table 2 provide summaries of the metrics used
and scope of study. Fig. 1 provides a visual example of the
introduced methods.

2.1.1. Average annual capacity addition
Van der Zwaan et al. investigated historical and future capacity

growth by comparing the average annual capacity additions (in
GW/yr) in a multi-model context for low-carbon technologies for
the short-term (2010–2030) and medium-term (2030–2050) (van
Temporal scale Spatial scale Normalization (Metric)b

Annuala Global No
Annuala Global Yes (GDP)

Lifetime Global Yes (Primary Energy)c

Annuala Global/National No
Annuala Global/National Yes (GDP)

Annuala Global No
Annuala Global Yes (GDP)

trics of growth are further discussed in Section 4.2.



Fig. 1. Conceptual overview of the methodologies and key indicators. Panel (a) and (b) represent cumulative capacity of coal without CCS. Although the figure demonstrates
future (modeled) trends the analysis is similar for historical trends.
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der Zwaan et al., 2013). The study focused on the absolute rate of
change required to reach the 2 �C target compared to rates
experienced during historical periods of rapid expansion for
established technologies (e.g., natural gas power) and newer
technologies (e.g., solar power). The comparison provided easy
interpretable insights into the expansion rate for future deploy-
ment versus historical figures published in literature and online
databases (e.g., EPIA, 2014; Platt’s, 2013; US EIA, 2014).

The average capacity addition over a selected period of time
(where t0 and tn represent respectively the starting and ending
point of the timeframe under study) is defined as (see Eq. (1)):

Average annual capacity addition

¼

Xtn
t¼t0

newly installed capacityð Þt
tn�t0

ðin GW=yrÞ ð1Þ

Using this approach, van der Zwaan et al. (2013) concluded that
future global expansion rates need to increase significantly,
reaching expansion rates well beyond those observed historically
in order to stay below the 2 �C target. In particular the expansion of
renewable energy technologies would need to be several times
larger than the historical rate.
The comparison of absolute future rates with historical rates
does not correct for the general growth in the size of the energy or
electricity system. It is possible to account for the overall growth by
normalizing the absolute indicators with metrics representing
total system growth as presented in Eq. (2). Normalization metrics
that can be used to represent total system growth are, for example,
global GDP (in T$), global primary energy demand (in EJ), total
electricity generation capacity (in GW) and total capital invest-
ments in the energy system (in billion USD$). For reading
considerations, we predominantly use global GDP in the presented
outcomes in this study, but discuss the other metrics in Section 4.2.

Normalized average annual capacity addition

¼

Xtn
tn¼t0

Newly installed capacity
Normalization metric

� �
t

tn�t0
ðin GW=metric unit=yearÞ ð2Þ

A similar analysis has been done by Loftus et al. (2014), who
normalized electricity capacity deployment rates in various global
decarbonization scenarios using global GDP. In their study they
found that the rates of change are broadly consistent with
historical experience. Only specific decarbonization scenarios
with imposed restrictions on the implementation of clean and



Table 3
Key model characteristics.

Name Time horizon Model category Intertemporal Solution Methodology

IMAGE 2100 Partial equilibrium Recursive dynamic
MESSAGE 2100 General equilibrium Intertemporal optimization
REMIND 2100 General equilibrium Intertemporal optimization
TIAM-ECN 2100 Partial equilibrium Intertemporal optimization
WITCH 2100 General equilibrium Intertemporal optimization
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carbon sequestration technologies would lead to unprecedented
rates of change for the remaining eligable low-carbon energy
technologies (Loftus et al., 2014).

2.1.2. Technology diffusion
Technology growth dynamics are generally characterized by S-

shaped curves that show an initial ‘formative’ phase, followed by
rapid diffusion in an ‘upscaling’ phase and finish into a mature
‘growth’ phase (Grübler et al., 1999; Wilson, 2012). Growth rates
vary over this technology lifecycle, beginning slowly until a lift-off
point is reached and growth accelerates. After some time, an
inflection point is passed and growth rates level off and eventually
saturate, reducing growth to zero.

In this light, Wilson et al. (2012) compared historical and future
dynamics of technology diffusion in the energy system by fitting
logistic growth curves (with a R-squared fit of 98% or higher) to
cumulative capacity time series. The advantage of using cumula-
tive capacity over the technology’s lifecycle, as opposed to installed
capacity or growth rates during particular time periods, is that
short-term volatility and potential selection biases towards
specific periods of growth are avoided.

The (symmetrical) logistic function used in this approach is
portrayed by Eq. (3). The parameters defining the logistic growth
curve are of particular interest, as each parameter represents a
specific growth characteristic used in this comparison approach.
For example, the parameter defining the steepness of the curve
represents the diffusion rate, whereas the parameter defining
growth between 10% to 90% of saturation represents the duration
of diffusion (also depicted as Dt) and the parameter describing the
theoretical asymptote represents the extent of growth or satura-
tion point of a technology (see Eq. (3), Fig. 1 and Supplementary
information). To account for the growing size of the energy system,
Wilson et al. (2012) normalized the extent of diffusion by the size
of the energy system (expressed in primary energy) at the midway
point of each technology’s lifecycle (the inflection point tm). The
normalized extent and Dt create the extent-duration relationship
for the number of technologies included.

Technology diffusion ¼
Extent

Normalization metrictm

� �
ð1 þ e�diffusion rate�DtÞ ð3Þ
Table 4
Overview of selected historical timeframes per indicator and the used databases

Indicator Technology 

(a) Average annual capacity addition PV 

Wind 

Nuclear 

Biomass 

Fossil 

CCS 

(b) Technology diffusion PV 

Wind 

Nuclear 

Fossil 

(c) Average annual emission decline rate System 

(d) Average annual supply-side investments System 
The main disadvantage of this methodology is that it is not
readily comparable to recent observations or to maximum or
frontier growth rates over short time periods. Moreover, only
historical and future technologies that expose S-curve growth
behaviors are included in the analysis. This excludes, for example,
wind and solar power technologies which remain to have a rapid
growth rate in an expanding energy system and therefore do not
conform to S-curve behavior within the time horizon of the model.

The results from the methodology applied by Wilson et al.
(2012) showed that the full lifecycles of advanced power
generation technologies as modeled in many future scenarios
have longer durations than the full lifecycles of energy technolo-
gies that have diffused historically. In other words, there is
evidence that deep decarbonization scenarios may be somewhat
conservative in their long-term technology growth dynamics.
However, the authors acknowledged several caveats, including the
possibility that comparing long-run historical growth with long-
run future growth in this way is problematic. This was specifically
the case for the analysis of coal or nuclear power, which combined
historical and future growth dynamics in the logistic fitting
procedure.

2.1.3. Average annual emission decline rate
An indicator often used to gain insight into economy-wide

changes is the average annual emissions decline rate (Riahi et al.,
2015; Van Vuuren and Stehfest, 2013). We define this indicator as
given in Eq. (4). Similar to the annual capacity additions (described
in Section 2.1.1) we consider the average annual decline rate over a
selected period of time (where ‘Emissions’ describe the total CO2

emissions and t0 and tn represent respectively the starting and
ending point of the timeframe under study).

Average annual emission decline rate

¼ 1 � Emissionstn
Emissionst0

� � 1
tn�t0

  !
� 100 ðin %=yrÞ ð4Þ

To account for system growth changes this study also considers
the normalized version of the average annual emission decline rate
(which is also known as either the intensity decline rate or
decarbonization rate if GDP is considered as the normalization
Historical reference Source

2003–2013 EPIA (2014)
2003–2013 GWEC (2014)
1980–1990 Platt’s (2013)
2005–2011 US EIA (2014)
2003–2012 Platt’s (2013)
– –

1970s Wilson et al., (2012)
1970s
1950s
Early 1900s

1970s–2000 Riahi et al., (2015)
2000–2013 IEA (2014)



Table 5
Overview of normalization metrics, available historical timeframe and source.

Method Metric (Historical) timeframe Source

Normalization GDP 1980–2012 The World Bank (2015)
Primary Energy 1980–2012 US EIA (2014)
Investments 2000–2013 IEA (2014)
Capacity|Electricity 1980–2012 US EIA (2014)
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metric) (see Eq. (5)).

Normalized average annual emission decline rate

¼ 1 �
Emissionstn

Normalization Metrictn

� �
Emissionst0

Normalization Metrict0

� �
0
B@

1
CA

1
tn�t0

0
BB@

1
CCA� 100 ðin %=yrÞ ð5Þ

The disadvantage of this generic descriptive indicator is that
details on underlying drivers of emissions are not visible.
Moreover, as emission reduction and emission intensity decline
rates have not been major policy goals in the more distant past, a
comparison against the long-term historical record can be
regarded as having limited relevance. Nevertheless, the study by
Van Vuuren and Stehfest (2013) used historical comparisons to
conclude that emission reductions as well as decarbonization rates
for scenarios consistent with the 2 �C target can be regarded as
extremely rapid compared to historical rates of change.

2.1.4. Average annual supply-side investments
Structural changes in the energy system are associated with

increasing supply-side investments. As investments are also
needed to achieve other social and economic goals there could
be constraints in the required pace of change. Therefore, we look
into the global investments into electricity generation and supply
(including electricity storage and transmission and distribution,
but not investments into the fossil fuel extraction sector nor the
bio-energy fuel supply costs) to assess the efforts needed to
mobilize an energy system transformation that is in line with the
2 �C objective. Demand-side investments are not taken into
account as such estimates are subject to considerable uncertainty
due to a lack of reliable statistics and definitional issues (McCollum
et al., 2013). The general approach is described by Eq. (6) for which
the average annual supply-side investments are calculated (where
t0 and tn represent respectively the starting and ending point of the
timeframe under study):

Average annual supply � side investments

¼

Xtn
t¼t0

supply � side investmentsð Þt
tn � t0

ðin $=yrÞ ð6Þ

As the total amount of investments is coupled to the size of the
economy, we normalize the annual supply-side investments (see
Eq. (7)). If global GDP is considered as the normalization metric this
creates an indicator reflecting investments as percentage in total
GDP.

Normalized average annual supply � side investments

¼

Xtn
t¼t0

supply�side investments
Normalization metric

� �
t

tn � t0
ðin $=metric unit=yearÞÞ ð7Þ

McCollum et al. (2013) examined absolute rates of change for
investments in more detail, concluding that future investment
levels remain consistent on the short term although significant
increases in investments in both developed and developing
countries will be necessary over the next decades under the 2 �C
objective.

2.2. Comparing future technological change to historical references

2.2.1. Future rates of change
We demonstrate the indicators by using three scenarios from a

five-model study with varying assumptions on long-term interna-
tional climate policy. A marked advantage of the multi-model
approach is that it inherently accounts for technology biases and
preferences among individual models. The study here, however, is
not a model comparison: we only include the model range as an
indication of the uncertainty in model results. We therefore do not
discuss the results of individual models in any detail. The focus in
the figures is also on the median of the range of model results.

The five global energy-environment models included in this
study are: REMIND:(Bauer et al., 2013; Luderer et al., 2013);
MESSAGE: (Messner and Strubegger, 1995); IMAGE: (Bouwman
et al., 2006); WITCH: (Bosetti et al., 2006) and TIAM-ECN: (Keppo
and van der Zwaan, 2011)) (see Table 3). These five models
represent a diverse array of different solution frameworks (general
equilibrium, partial equilibrium, dynamic recursive, perfect
foresight and systems engineering) and differ in a variety of
model characteristics, such as coverage of sectors and their
disaggregation and in technological and socio-economic assump-
tions that determine technology diffusion.

The three scenarios that are used in this study are based on
different policy assumptions for long-term international climate
policy and have been developed as part of the LIMITS project
(Kriegler et al., 2013a).

(1) The baseline (Baseline) scenario addresses the future energy
system and emission developments in the absence of climate
policy. This scenario is a best reference for historical rates of
change as no climate policy is involved.

(2) The second (Reference) scenario reflects current (unilateral)
climate policy implementation based on national energy and
climate targets for 2020 formulated as unconditional Copen-
hagen pledges. These targets are then extrapolated post-2020
by assuming similar levels of stringency in the subsequent
decades. This scenario represents the current day situation and
imposes no additional (technological) restrictions.

(3) The third (2 Degrees) scenario is a cost-optimal mitigation
scenario that assumes immediate global cooperation toward
the long-term target of 2 �C. This scenario represents the most
optimistic view on technology availability, availability of
carbon sinks and (bio-) resources to attain the 2 �C climate
target.

Differences are created due to the varying assumptions on long-
term international climate policy, all other factors, such as the
penetration and expansion rates of technologies, are treated the
same across all scenarios.

The methods and indicators set out in Section 2.1 are
comparatively applied on this set of three scenarios. As timing



Fig. 2. Average annual capacity additions (over the 2010–2030 and 2030–2050 period) for various electricity-generation technologies under different climate policy
assumptions. The horizontal lines indicate the technology-specific peak or maximum value observed historically (solid lines) and the peak value across all technologies which
is given by coal without CCS (dotted lines). The green, blue and red areas indicate whether a historical benchmark has been exceeded (red for all-technology peak, blue for
technology-specific peak) or not (green). The bars indicate the range of modeled rates of change with the median value highlighted in black inside the bars. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of change is important this study has restricted the analysis to the
time period between 2010 and 2050 because it is considered most
relevant for current policy and decision making.
2.2.2. Historical references
For the average annual capacity addition indicator, we

reconstruct a similar analysis to that of van der Zwaan et al.
(2013) by comparing modeled average annual rates of change in



Fig. 3. Average annual capacity additions (GW/yr), normalized using GDP (in trillion US$2005) for both historical data as well as scenario projections. The horizontal lines
indicate the technology specific maximum value and the maximum value of any technology in the past. The green, blue and red areas indicate whether a historical benchmark
has been exceeded (green below technology specific rate; blue above technology specific rate; red above the historical rate of any technology). The bars indicate the range of
modeled rates of change with the median value highlighted in black inside the bars. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article).
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total new installed capacity to historical average annual rates of
change. Several databases provided historical data on various
technologies (see Table 4) of which the decade with the largest
absolute growth in capacity is selected for further analysis.

For the technology diffusion indicator, similar logistic growth
curves are constructed as in Wilson et al. (2012) on both historical
(if applicable) and future time series. The historical time series
begin as far back as the early 1900s (natural gas and coal power),
the 1950s (nuclear power), the 1970s (wind power and solar PV), or
start no sooner than the 2020s or later (CCS—thus fully based on
modeled data only).
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Fig. 4. Capacity growth of energy technologies in 3 future scenarios of the 21st century: extent vs. duration of growth using fitted logistic function parameters. Black dots
represent historical extent-duration relationships of various energy-supply technologies (such as nuclear, coal and gas without CCS, hydro and refineries (FCC).
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For the average annual emission decline rate indicator, we
depict average CO2 emission and CO2 intensity reduction rates and
compare them to historical national events that led to emission
(intensity) reductions (such as oil crises, collapse of political
regime) (Riahi et al., 2015; Van Vuuren and Stehfest, 2013).

For the average annual supply-side investments indicator, we
show the average annual investments or the share in GDP over the
2010–2050 timeframe and compare them to the historical
investments (or share in GDP) over the 2000–2013 timeframe
(IEA, 2014).

In order to normalize the absolute indicators, taking into
account relative changes in the size of the energy system or
economy, we use GDP, primary energy, total energy system
investments and total capacity as normalization metrics. The
historical period taken into consideration is the 1980–2012 period
as most metrics have annual data available in public sources with
investments as an exception (see Table 5). The analysis will
predominantly focus on global GDP as the main system growth
factor, other metrics will be discussed in Section 4.2.

3. Results

In the results below, we show the results of each of the
indicators presented in Section 2 for the three LIMITS scenarios
and all 5 models as well as the historical reference period.

3.1. Average annual capacity addition

The modeled annual capacity additions (in GW) for the 2010–
2030 period are on average consistent with the historical reference
across all three scenarios. In the Baseline scenario, the expansion
rates from 2010–2030 are broadly consistent with historical
observations (see Fig. 2). Coal without CCS maintains a constant
annual expansion rate whereas gas without CCS will nearly double
its current annual expansion rate, matching and overtaking coal
without CCS. Under climate constraints, we find a shift away from
fossil fuels either shifting to a less carbon-intense substitute (gas)
or shifting to non-fossil resources. For solar PV, wind and biomass
the expansion rates stay within historical peak observations. The
projections of nuclear power capacity growth are also consistent
with historically observed expansion rates. However, currently
planned additional nuclear capacity between 2015–2019 (World
Nuclear Association, 2014) indicates that the expansion rate of
nuclear energy will most likely not exceed the 3GW/yr. Hence,
given the long inertia in nuclear power plant planning and
construction process, the actual expansion rates of nuclear power
might continue to be below the deployment rates as depicted in
some of the high scenarios (Table 6).

In the 2030–2050 timeframe, the modeled rates of annual
capacity additions increase beyond technology-specific expansion
rates observed historically. Some even venture into territory that
goes beyond overall best system achievement from the past. Under
Baseline assumptions, this is the case for both coal and gas without
CCS, which will expand their growth to unprecedented levels as
fossil fuels remain the fuel of choice. Under the 2 �C objective (2
Degrees), it will be the growth of solar and wind capacity that
becomes particularly rapid, showing deployment rates above the
historical peak value of overall system achievements.

The outcomes change if overall system growth between
historical and modeled periods is taken into account (by
normalizing the average annual capacity indicator using global
GDP growth). On the short-term the modeled average annual
capacity additions show to remain consistent with technology-
specific expansion rates of the past (see Fig. 3). However, although
some technologies (wind and solar in particular) will exceed their
technology-specific historical reference on the mid-term, all
remain in line with the overall best system achievement from
the past.

3.2. Technology diffusion

If the extent-duration relationships for all electricity generation
technologies and scenarios are assessed (see Fig. 4) we find that all
technologies follow the historically observed patterns. However,
under Baseline assumptions the diffusion durations (Dt) are
generally longer (further to the right) and an eventual saturation
point (extent) is reached beyond the time horizon of the models
involved (presented as a duration that is bigger than a 100 years in
Fig. 4).

Once climate policies are introduced (e.g., the Reference and 2
Degrees scenarios), the extent-duration relationships change. All
technologies show to shift to the left (shorter diffusion durations).
For fossil without CCS technologies this implies a lower capacity
saturation level, a shorter lifecycle, and some capacity reduction in
the year in which maximum growth is achieved (see the
supplementary material online). For clean technologies (fossil
with CCS, CO2 neutral and renewable energy technologies) on the
other hand, greater extents of growth are achieved with shorter



Fig. 5. Average annual emissions decline rates (top) and normalized average annual emission decline rates (bottom). Negative numbers indicate emissions increase. Green
area implies consistency with historical evidence for global rates, blue represents values within historical bounds of the fastest regional reduction addressed and red implies
beyond historical reference for either considered spatial scale. The bars indicate the range of modeled rates of change with the median value highlighted in black inside the
bars. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

444 M.A.E. van Sluisveld et al. / Global Environmental Change 35 (2015) 436–449
diffusion durations. However, despite the shorter diffusion
duration, the rates remain above the historically observed
reference. In that sense this study is in agreement with Wilson
et al. (2012) concluding that the modeled diffusion rates appear to
be conservative compared to historically successful technologies.

3.3. Average annual emission decline rate

Fig. 5 shows the average annual emission decline rate and the
decline rate normalized using GDP (creating a carbon intensity
decline rate or decarbonization rate). Up till today, only rare
historical occurrences on a national level have led to significantly
higher reduction rates than the global average, which have been
negative (�0,8% per year on average throughout the 1970–2010
period) owing to continuously growing emissions worldwide. For
example, fairly swift emission reduction rates were observed in
Sweden from 1974 to 2000 as a result of policy impulses on
greening the Swedish energy system after the oil crisis in 1973 (2–
3% per year). Another example is the emission decline rate of 2–4%
per year for Eastern European and former Soviet Union countries
after the collapse of the Soviet Union (Riahi et al., 2015). To stay in
line with the 2 �C objective a sustained global carbon emission
reduction rate of about 1% till 2030 is required, remaining within
the earlier discussed regional historical boundaries. However, after
2030 the models depict a sustained global carbon emission
reduction rate of 5% which goes beyond both global and regional
historical achievements.

Similarly, the global decarbonization rate (average annual
emission decline rate normalized with GDP) has been around 0.5%
over the period 1900–2010 and around 1% over the 1970–2010
(driven by technological change and sectoral shifts) (Van Vuuren
and Stehfest, 2013). If compared to the modeled decarbonization
rates, we find ranges of 2-3% under Reference scenario assumptions
whereas the margins expand to 6–10% by 2050 if 2 �C is to be
attained at the end of the century. These rates are considerably
higher than the global average rate experienced in the past. At the
regional level, historically faster rates can be observed than the
global average: some Asian regions have managed to achieve



Fig. 6. Average annual supply-side investments (top) and average annual supply-side investments in GDP (bottom). Bars represent the range of model outcomes of
respectively Baseline, Reference and 2 Degrees. The bars indicate the range of modeled rates of change with the median value highlighted in black inside the bars.1

1
For the Baseline scenario, the numbers are recalculated, as they were not

included in the study of McCollum et al. (2013). Due to data availability, only results
for IMAGE and MESSAGE are shown here. The 2 Degrees scenario includes unilateral
climate policy targets till 2020, suspending immediate global action, and therefore
deviating from the 2 Degrees scenario as presented in other graphs. As the Reference
and 2 Degrees scenario start to deviate only after 2020 the time periods are amended
to 2020–2035 and 2035–2050. The historical observation consists of cumulative
energy supply investments and cumulative total GDP from 2000–2013.
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decarbonization rates of 3–5% per year during the late 1980s and
early 1990s. This would imply that the global rate would need to
increase significantly, but also go beyond the most rapid (local)
decarbonization rate experienced in the recent past and maintain
this rate (globally) for several decades.

3.4. Average annual supply-side investments

Rapid transitions in the energy system are associated with
increasing investment flows compared to the status quo, which is
reflected in Fig. 6. Both current climate policy (Reference) as well as
the 2 �C pathway (2 Degrees) would require greater investments
than the business-as-usual case (Baseline), climbing up on the
short term to about 1.5 trillion USD per year which is slightly
greater than observed historically. Under 2 �C ambitions these
investment levels are modeled to nearly double for the subsequent
decade, increasing up to 2.5 trillion USD per year on average.
Upscaling investments to these levels might pose several difficul-
ties as two-third of the total sum is levied by developing areas
(McCollum et al., 2013) which require finance mechanisms other
than their own domestic funds (Bowen et al., 2014).

If total supply-side investments are expressed as a share in
global GDP, it shows that the ratio remains within the bounds of
historical experience. However, by looking into global rates it
potentially masks the large differences between regions. The
average investment intensity of developing economies was around
3.5%, whereas it was just 1.3% in industrialized countries
(McColumn et al., 2014).

4. Discussion

4.1. Comparative overview of indicators and results

This study uses a diverse set of indicators that assess the
consistency of modeled future rates of change with the historical
record. The study yields ambiguous insights into the consistency of
modeled rates of change with historical observations (see Table 6).
Absolute and near-term (2010–2030) rates of change vary in their
consistency with historical observations for the three scenarios,
although these are mostly within the range of overall system
achievements (blue shaded areas on the graphs). By normalizing
the indicators to account for system growth shows an overall
consistency with historical records. Over the longer term the



Table 6
Summary of comparisons between historical observations and three modeled scenarios using a diverse set of indicators. The fossil and non-fossil technologies are grouped—
the table considers the highest rate of change in the group per scenario.
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indicators create a near similar picture for the Baseline and
Reference scenarios. However various significant differences
emerge under the 2-degree objective (2 Degrees), specifically in
terms of (absolute) average annual capacity expansion rates,
(absolute) average annual energy-supply investments and (abso-
lute and normalized) average annual emission decline rates.

4.2. Methodological diversity and issues

The indicators used vary in focus and scope. In this section we
further discuss the influences and sensitivities of the study design
on the outcome.

(1) System focus: Models are inherently limited in their repre-
sentation of energy-economy dynamics, and are highly
dependent on their technological resolution (number of
technologies included), underlying assumptions (on e.g.,
capital replacement or learning rates) as well as model
structure and solution frameworks. In that respect technolo-
gy-specific indicators are potentially more sensitive to specific
model behavior than system-wide indicators. However, in a
multi-model set-up these sensitivities are more-or-less bal-
anced out and in that case, as depicted in Table 6, system
indicators are not consistently more or less likely to remain
consistent with historical observations than technology-
specific ones;

(2) Temporal scale: Indicators that focus on a specific timeframe
(e.g., the average annual capacity additions or average annual
emission decline rates) can be sensitive to the selected time
period under study. This is especially the case if rapid
expansion or declines rates are nested in certain periods of
time, which can be either highlighted or numbed down in the
longer-term average.
Focusing on the full technology lifecycle, however, can also
influence the results. For example, the Wilson et al. (2012)
methodology is sensitive to technology projections with a clear
logistic growth profile, such as mature historical technologies
for which long time-series data are available. As renewable
technologies are generally still in their early deployment phase
these are not expected to saturate in the timeframe of the
model and will therefore not appear as logistic growth profiles
in the Wilson et al. methodology. Hence, some modeled rates of
change will not find application in the extent-duration
analyses. The conservatism in the extent-duration curves
could thus be an outcome of the overrepresentation of
incumbent technologies;

(3) Spatial scale: By focusing on global outcomes an indicator may
potentially mask the large differences between regions. In this
light the indicator provides only limited insights into the actual
challenges that are faced to reach such rates of change.
In the case where a global benchmark is absent (such is the case
for (normalized) emission decline rates) we selected a more
local (contemporary) achieved peak value. Such a comparison
inherently includes selection bias as frontier reduction rates
have specifically been selected. However although these
regional benchmarks only lasted for a short period of time
and emerged under rare circumstances (such as oil crises and
regime changes), these specifically underline the difficulty of
achieving the needed rates of change;

(4) Normalization: The normalization approach is visibly sensi-
tive to the type of system growth metric used (see Fig. 7).
Monetary-based normalization metrics (GDP, investments and
capacity to some degree as well) result in more conservative
rates of change than energy-based normalization metrics
(primary energy). As a result, rates of change that are
normalized by using monetary-based normalization metrics
are less likely to exceed historical rates than those normalized
using energy-based metrics. This is in particular true for
indicators that experience rapid rates of change (for both
technology-specify and system-focus indicators).
Choosing the appropriate normalization metric is important –

as the choice for a specific metric could render future rates of
change (in)consistent with historical rates. The choice depends
according to the authors on (a) the variable being normalized,



Fig. 7. Deviation of the median model value from the maximum peak benchmark per indicator for each considered normalization metric. Positive values indicate that the
indicator exceeded historical experience whereas negative values imply consistency with historical observations. For plotting convenience the annual capacity additions are
limited to nuclear, solar PV and wind technologies. Moreover, the investments indicator is plotted on the 2010–2030 and 2030–2050 timeframe but these represent the
timeframes as depicted in Section 3.4. The picture focuses on the 2 �C objective.
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and (b) the question being asked. For example, if the modeled
variable is annual capacity additions, then (a) suggests using
historical primary energy or capacity as the normalization
metric, unless (b) the specific question is whether investment
requirements in new capacity are in line with historical
observations.

In sum, the results of the indicators discussed in this study are
associated with several methodological considerations. Applying a
wide set of indicators therefore offers alternative, complementary
insights into how scenarios compare with historical observations
on two different scales (e.g., technology-specific and system-wide
indicators and the choice for normalization). Although none of the
indicators provide conclusive insights as to the achievability of
scenarios they are useful ways to contribute to scenario evaluation
and provoke critical interpretation of results.

4.3. Expanding the scope of research

By applying a diverse set of indicators one can gain more
holistic insights into how scenarios compare with historical
observations. Further research in line with this study could focus
on:

(1) Fine-tuning and extending the scope of current indicators:
Two fundamental regularities of successful technology diffu-
sion patterns are described in Kramer and Haigh (2009).
According to their study, the build rate of new and existing
energy technologies follow two ‘laws’ which have been fairly
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consistent across energy technologies in the past. The first law
describes how technologies grow quickly for the first two
decades at exponential rates (�26%/yr) until ‘materiality’ is
reached, defined as a �1% share of the global energy system.
The second law states that after materiality, growth rates level
down to an eventual equilibrium or constant market share.
Although the expansion phase and the maturing growth phase
characterized by Wilson et al. (2012) broadly correspond with
these ‘fundamental laws’, this could be embedded more clearly
within the historical comparison methods. Moreover, addi-
tional insights may also be acquired by distinguishing between
expanding systems (adding new capacity) and stabilizing
systems (substituting existing capacity);

(2) Introducing additional comparison methods: Modeled rates
of change could be compared against actual trends over the
same period of time, for instance a decade after the original
projection was made. An example of such an exercise is found
in Van Vuuren and O’Neill (2006). If short-term model
trajectories are significantly inconsistent with historical
trajectories, it could expose conservatism in the long-term
scenario logic and the assumptions on the driving forces. This
methodology is, however, only useful if historical trends
include similar climate policies as included in the model
projections;

(3) Including demand-side indicators: Historical and future
emissions and their driving forces have also previously been
studied by applying the Kaya-identity (Kaya, 1990). The Kaya-
decomposition analysis is applied in numerous studies (i.e.,
Steckel et al., 2011; Zhang et al., 2009) to examine the
implications of changes in total CO2 emissions on affluence
(representing growth of economic activities), change in energy
intensity (i.e., total primary energy over GPD reflecting
efficiency and consumption patterns) and the carbon intensity
(i.e., total CO2 emissions over total primary energy). The three
components could be assessed in tandem or as separate
indicators in comparative work of prospective studies and
historical records. This study has a greater energy supply
orientation as all indicators focus on either energy supply
technologies, investments or the carbon intensity of energy
supply but future work could also include demand side
indicators such as energy intensity and affluence;

(4) Going beyond the historical benchmark: This study considers
history as an important benchmark, though history provides
only limited information when looking at innovation. For
example the results provide no further information about,
amongst others, the drivers of technological change, (per-
ceived) risks, scalability, structure of the industry or role of
institutions. Expert elicitation could expand the knowledge on
critical implementation barriers and further test the feasibility
of prospective studies. Several prospective studies on technol-
ogy development use expert elicitation protocols as a research
tool to assess the feasibility of emerging (carbon-free) energy
technologies (see for example Bosetti et al., 2012; Jenni et al.,
2013; Fiorese et al., 2014). Experts can go beyond the historical
benchmark by providing probabilistic information on the
likelihood that technologies will overcome particular hurdles
and estimate the overall probability of success for each
technology (Baker et al., 2009).

5. Conclusions

In this study we have compared indicators of change in future
scenarios to historical trends for various degrees of climate policy.
The analysis confronts scenario data from the LIMITS project to
four methodologies that focus on different indicators of technology
change, such as the average annual capacity additions, technology
diffusion and changes in emission trends or investments. The main
conclusions of this analysis are:

The achievability of future rates of change depends on the
indicator used

In this study, we assessed a variety of indicators to look at the
rate of future change versus historically achieved rates of change.
This comparison provides some insight into the effort involved in
achieving these scenarios but is highly dependent on: (1) selecting
the historical benchmark, (2) normalization, (3) data availability as
well as the (4) underlying economic and technological assump-
tions, model structures and the included level of technological
detail in the models. Although none of the indicators provide
conclusive insights as to the achievability of scenarios they are
useful ways to contribute to scenario evaluation and provoke
critical interpretation of results.

Indicators highlight that absolute rates of change in
scenarios achieving the 2 degree target are rapid in the medium
term compared to historically achieved rates of change

In absolute terms we have observed that projections are more-
or-less in line with reported achievements on the short-term, but
these increase to unprecedented levels by mid-century. Specifi-
cally the average annual capacity addition rates for solar and wind
and the required energy-supply investments are particularly
strong under 2 �C constraints, showing rates above the historical
peak value of overall system achievements by 2030.

Methods that look at relative rates of change by comparing
the change to overall system change conclude that future rates
of change are generally within the range of successful
transitions in the past

Indicators that account for the growth in the overall system
show that the modeled rates of change in the scenarios are lower
compared to the rates of change in the past. We find that
monetary-based normalization metrics (GDP, investments and to
some degree capacity) result in less conservative normalization
than energy-based normalization metrics (primary energy). This is
in particular true for indicators that experience rapid rates of
change (for both technology-specific and system-focus indicators).
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