
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

A QUALITATIVE STUDY ON BEST PRACTICES AND PROCESS OF
ELICITING UNAMBIGUOUS QUALITY ATTRIBUTES IN SCRUM-

BASED PROJECTS

 HUSSIN AHMED ABELKADER

DOCTOR OF PHILOSOPHY
UNIVERSITI UTARA MALAYSIA

2022

i

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the University Library may make it

freely available for inspection. I further agree that permission for the copying of this

thesis in any manner, in whole or in part, for scholarly purpose may be granted by

my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate

School of Arts and Sciences. It is understood that any copying or publication or use

of this thesis or parts thereof for financial gain shall not be allowed without my

written permission. It is also understood that due recognition shall be given to me

and to Universiti Utara Malaysia for any scholarly use which may be made of any

material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to :

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

ii

ABSTRAK

Kualiti perisian adalah sangat penting untuk kepuasan pengguna dan kejayaan
perisian dalam pasaran. Kajian terkini mendapati beberapa atribut kualiti perisian
yang tidak jelas menghasilkan perisian yang rendah kualiti, dan kekurangan amalan
elisitasi dalam projek yang menggunakan metodologi Agile Software Development
(ASD) terutamanya Scrum. Walau bagaimanapun, dari metodologi ASD semasa,
semakan karya bersistematik, dan kajian dari penyelidik terdahulu tidak memberikan
penjelasan tentang amalan elisitasi yang diperlukan. Oleh itu, kajian kualitatif ini
adalah penting untuk mencapai dua objektif: meneroka amalan terbaik dan mengenal
pasti proses untuk mendapatkan atribut kualiti yang jelas dalam projek berasaskan
Scrum. Kajian ini menggunakan pendekatan kualitatif di mana data dikumpul
melalui temu bual lapan pengamal perisian berpengalaman dari India dan analisis
dokumen yang menerangkan dokumentasi atribut kualiti dalam Scrum. Untuk
analisis data, kaedah analisis tematik digunakan untuk menganalisis skrip dan
dokumen temu bual berkenaan untuk mendapatkan atribut kualiti yang jelas.
Dapatan kajian terdiri daripada tiga tema awal yang mewakili tiga langkah dalam
proses elisitasi dan enam subtema yang mewakili amalan elisitasi. Langkah pertama
ialah pendedahan proaktif kepada atribut kualiti yang terdiri daripada dua amalan:
memahami skop perisian dan memikirkan potensi atribut kualiti. Langkah kedua
ialah perbincangan pembelajaran bersama yang terdiri daripada dua amalan:
meningkatkan pengetahuan teknikal pelanggan dan pengguna dan menyusun
perincian atribut yang berkualiti. Langkah ketiga ialah mengesahkan pemahaman
umum yang terdiri daripada dua amalan: penggunaan artifak visual dan dokumentasi
atribut kualiti. Sumbangan kajian ini memberikan lanjutan kepada badan
pengetahuan ASD mengenai keberkesanan penggunaan istilah yang jelas dalam
domain perisian, memudahkan istilah teknikal, mewakili artifak perisian boleh guna
semula, menunjukkan perisian serupa, membina model kasar dan membangunkan
bukti konsep untuk mendapatkan sifat kualiti yang jelas. Tambahan pula, penemuan
ini menekankan sumbangan praktikal kepada pembangun perisian seperti
mengurangkan usaha, masa dan kos mereka bentuk dan pembinaan perisian.

Kata kunci: Sifat kualiti yang jelas, Kaedah Agile, Scrum, Amalan elisitasi

keperluan.

iii

ABSTRACT

Software quality is very crucial for users’ satisfaction and software success in the
market. Recent studies found some ambiguous software quality attributes that may
lead to low-quality software, and lack of elicitation practices in projects that apply
Agile Software Development (ASD) methodology especially Scrum. However,
current ASD methodologies, systematic literature reviews and surveys did not
provide explanation of the necessary elicitation practices. Therefore, this qualitative
study was essential to achieve two objectives: exploring the best practices and
identifying process of eliciting unambiguous quality attributes in Scrum-based
projects. The study used qualitative approach in which data was collected via
interviewing eight experienced software practitioners from India and documents
analysis that explains documentation of quality attributes in Scrum. For data
analysis, the thematic analysis method was used for analysing interviews scripts and
documents. The findings resulted in three initial themes that represent three steps in
the elicitation process and six sub-themes that represent the elicitation practices. The
first step is proactive exposure to quality attributes which consists of two practices:
understanding software scope and envisaging potential quality attributes. The second
step is mutual learning discussion which consists of two practices: ameliorating
technical knowledge of customers and users and compiling details of quality
attributes. The third step is verifying common understanding which consists of two
practices: utilization of visual artefacts and documentation of quality attributes. The
contribution of the study provides an extension to ASD body of knowledge regarding
the effectiveness of disambiguation of terminologies in software domain, simplifying
technical terms, representing reusable software artefacts, showing similar software,
drawing mock-up and developing proof of concept in eliciting unambiguous quality
attributes. Furthermore, the findings accentuate practical contributions to the
software developers such as reducing effort, time and cost of designing and
construction of software.

Keywords: Unambiguous quality attributes, Agile methods, Scrum, Requirements

elicitation practices.

iv

ACKNOWLEDGEMENT

In the Name of Allah, the Most Gracious the Most Merciful

First and foremost, all praise is due to Allah the Almighty, the Most Merciful, the

Most Compassionate for all sorts of blessings. Peace and blessings of Allah the

Almighty be upon all Prophets, the Prophet Muhammad, his Family, his

Companions and whosoever follows him. I would like to express my gratitude and

appreciation to my father, my mother, my brother and my sisters who have always

supported me and have been my pillar of strength.

I would like to express my gratitude and appreciation to my supervisor Prof. Ts. Dr.

Azham Hussain for the continuous support of my PhD study and research, for his

enthusiasm, patience, motivation, and immense knowledge. His unique support

promoted me academically and psychologically to overcome multiple hurdles during

my research. My gratitude also goes to Assoc. Prof. Dr. Fauzia Baharom, for her

insightful instructions that enlighten my thinking about academic research. My

research would not have been possible without their guidance.

I am deeply grateful to my colleagues who supported me during the PhD journey,

especially for the motivation, discussions and suggestions on the better ways to

perform my study.

v

TABLE OF CONTENTS

Permission to Use ... i

Abstrak ... ii

Abstract ... iii

Acknowledgement .. iv

Table of Contents ... v

List of Tables .. viii

List of Figures .. x

List of Appendices .. xi

List of Abbreviations ... xii

 .. 1 CHAPTER ONE: INTRODUCTION

1.1 Introduction .. 1

1.2 Background of the Study .. 1

1.3 Problem Statement ... 12

1.4 Research Questions .. 15

1.5 Research Objectives ... 16

1.6 Research Scope .. 16

1.7 Research Approach .. 19

1.8 Significance of the Study ... 19

1.9 Organization of the Thesis ... 21

 .. 23 CHAPTER TWO: LITERTURE REVIEW

2.1 Introduction .. 23

2.2 Requirements Engineering ... 23

2.2.1 Requirements Engineering Processes .. 25

2.2.2 Requirements Elicitation Techniques .. 26

2.3 Quality Attributes ... 29

2.3.1 Software Quality Attributes Models .. 31

2.3.2 Quality Attributes Significance .. 33

2.4 Ambiguity of Quality Attributes .. 37

2.4.1 Consequences of Ambiguous Quality Attributes 38

vi

2.4.2 The Practices of Preventing Ambiguous Quality Attributes 41

2.5 Theoretical Framework .. 45

2.5.1 Activity theory ... 46

2.5.2 Experiential Learning Theory .. 48

2.6 Agile Manifesto .. 50

2.6.1 Characteristics of Agile Methods ... 53

2.6.2 Characteristics of Scrum .. 59

2.7 Challenges of Quality Attributes in Agile-based Projects 63

2.8 Current Approaches to Elicit Quality Attributes in Agile-based Projects 67

2.9 Research Gaps .. 75

2.10 Summary .. 78

 79 CHAPTER THREE: RESEARCH METHODOLOGY

3.1 Introduction .. 79

3.2 Research Paradigm ... 79

3.3 Research Approach .. 81

3.4 Research Process .. 85

3.4.1 Phase One: Data Collection ... 86

3.4.1.1 Interview Protocol ... 89

3.4.1.2 Sampling Strategy ... 92

3.4.1.3 Pilot Interview ... 95

3.4.1.4 Conducting Interview with Participants .. 97

3.4.2 Phase Two: Data Analysis ... 101

3.4.3 Phase Three: Evaluating Trustworthiness of the Findings 109

3.5 Summary .. 113

 115 CHAPTER FOUR: FINDINGS AND EVALUATION

4.1 Introduction .. 115

4.2 The Findings of the Study: Themes ... 115

4.2.1 Initial Theme 1: Proactive Exposure to Quality Attributes 116

4.2.1.1 Sub-theme 1.1: Understanding Software Scope 117

4.2.1.2 Sub-theme 1.2: Envisaging Potential Quality Attributes 128

vii

4.2.2 Initial Theme 2: Mutual Learning Discussion ... 137

4.2.2.1 Sub-theme 2.1: Ameliorating Technical Knowledge of Customer

and Users ... 138

4.2.2.2 Sub-theme 2.2: Compiling the Details of Quality Attributes 147

4.2.3 Initial Theme 3: Verifying Common Understanding 158

4.2.3.1 Sub-theme 3.1: Utilization of Visual Artefacts 159

4.2.3.2 Sub-theme 3.2: Documentation of Quality Attributes 163

4.3 The findings of the Study: Miscellaneous Codes ... 175

4.3.1 Consequences ... 176

4.3.2 Commitment .. 179

4.4 The findings of the Study: Chronology of Steps and Practices 181

4.5 Evaluating the Trustworthiness of the Findings .. 188

4.6 Summary .. 193

 ... 194 CHAPTER FIVE: DISCUSSION

5.1 Introduction .. 194

5.2 Mapping Findings with Research Objectives .. 194

5.3 Comparison between Participants .. 208

5.4 Insights for Scrum Team .. 212

5.5 Summary .. 216

 ... 217 CHAPTER SIX: CONCLUSION

6.1 Introduction .. 217

6.2 Study Recapitulation .. 217

6.3 Contributions of Study ... 227

6.4 Limitations of Study ... 232

6.5 Recommendations for Future Work ... 233

6.6 Final Remarks .. 234

REFERENCES ... 236

viii

List of Tables

Table 2.1 The Categories of Quality Attributes ... 30

Table 2.2 Comparison Between Quality Models ... 31

Table 2.3 Examples of Failure due to Neglect Quality Attributes ... 35

Table 2.4 Consequences of Ambiguous Quality Attributes ... 38

Table 2.5 The Practices of Preventing Ambiguous Quality Attributes 42

Table 2.6 Comparison between Agile and Waterfall ... 51

Table 2.7 Comparison of Requirements Elicitation between Agile Methods 57

Table 2.8 Challenges of Eliciting Quality Attributes in Agile-based Projects 64

Table 2.9 Methodologies for Extracting Quality Attributes .. 67

Table 2.10 The key Practices of Systematic Literature Review .. 69

Table 2.11 The key Practices of Surveys ... 71

Table 3.1 The key Characteristics of Interpretivism Paradigm .. 80

Table 3.2 The Key Elements of Interview Protocol ... 89

Table 3.3 The Key Ethics of Interview .. 91

Table 3.4 Interview Schedule Information .. 98

Table 3.5 The Steps of Thematic Analysis .. 102

Table 3.6 The key Sections and Objectives of Analytic Memo ... 105

Table 3.7 The Four Criteria for Evaluating Trustworthiness ... 111

Table 4.1 Primary Codes of the First Sub-theme: Understanding Software Scope 118

Table 4.2 Primary Codes of the Second Sub-theme: Envisaging Quality Attributes 129

Table 4.3 The Primary Codes of the Third Sub-theme: Ameliorating Technical Knowledge

of Customers and Users ... 138

Table 4.4 The Primary Codes of the Fourth Sub-theme: Compiling the Details of Quality

Attributes ... 147

Table 4.5 The Primary Codes of the Fifth Sub-theme: Utilization of Visual Artefacts 159

Table 4.6 The Primary Codes of the Sixth Sub-theme: Documentation of Quality Attributes

 ... 163

Table 4.7 The key Elements of Documentation Style of Quality Attributes 164

Table 4.8 The Quotes of Participants Regarding Chronology of Steps and Practices 182

Table 4.9 The Comments of Participants Regarding the Steps of the Process 189

Table 4.10 The Comments of Participants Regarding the Practices 191

ix

Table 4.11 The Comments of Participants Regarding the Chronology of the Practices 192

x

List of Figures

Figure 2.1 Sub-disciplines of requirements engineering.. 25

Figure 2.2 The six parts of quality attribute scenario .. 44

Figure 2.3 Activity systems model .. 47

Figure 2.4 Scrum process flow .. 60

Figure 3.1 Research process .. 86

Figure 3.2 Gender of participants .. 100

Figure 3.3 Years of experience of participants .. 100

Figure 3.4 Project types of participants ... 101

Figure 4.1 The flow of presenting findings .. 116

Figure 4.2 The Key guidelines for understanding software scope 128

Figure 4.3 Questionnaire sample from Participant 3 ... 133

Figure 4.4 Questionnaire sample from participant 6 .. 135

Figure 4.5 The key guidelines that lead to envisaging potential quality attributes 136

Figure 4.6 The key guidelines of ameliorating technical knowledge of customers and users

 ... 147

Figure 4.7 The key guidelines for compiling details of quality attributes 158

Figure 4.8 The key guidelines of utilization of visual artefacts ... 162

Figure 4.9 Documentation sample from Participant 1 ... 167

Figure 4.10 Documentation sample from Participant 2 ... 168

Figure 4.11 Documentation sample from Participant 5 ... 170

Figure 4.12 Documentation sample from Participant 7 ... 172

Figure 4.13 Documentation sample from Participant 8 ... 174

Figure 4.14 The consequences of neglect quality attributes .. 178

Figure 4.15 The two required skills for full commitment of Scrum team 181

Figure 4.16 The process and the practices of eliciting unambiguous quality attributes 187

xi

List of Appendices

Appendix A First Version of Interview Protocol ... 257

Appendix B Second Version of Interview Protocol ... 259

Appendix C Third Version of Interview Protocol.. 261

Appendix D Informed Consent Form .. 263

Appendix E Samples from Analytic Memo ... 265

Appendix F Peer Debriefing Report .. 293

Appendix G Member Checking Report ... 294

xii

List of Abbreviations

FSL Formal Specification Language

INCOSE International Council on Systems Engineering

QAS Quality Attributes Scenario

SEI Software Engineering Institute

SLR Systematic Literature Review

SMS Systematic Mapping Study

SWEBOK Software Engineering Body of Knowledge

1

 CHAPTER ONE

INTRODUCTION

1.1 Introduction

This chapter highlights the main aspects of the study which starts with the

background of the study, followed by the discussion on the problem. Then, research

questions are elucidated in order to construct the objectives. Finally, this chapter

presents research scope, research approach and research significance.

1.2 Background of the Study

The findings of a phenomenological study (Bonuke, 2020), multiple case study

(Otiji, 2020), a ground theory (Gibbs, 2015) and a large-scale survey with

practitioners from software industry (Fricker, Grau & Zwingli, 2015) underlined that

a common understanding of requirements among all stakeholders in software

projects is a prerequisite for software success. Requirements define what customers

and users need in the software to be developed (Sommerville, 2015; Hull, Jackson, &

Jeremy, 2010). While users ordinarily use the software, customers are those persons

who request for software development (Nuseibeh & Easterbrook, 2000). Therefore, a

common understanding of requirements among customers and users who need the

software and practitioners who are responsible for developing the software is

indispensable to guarantee software success.

In order to ensure a common understanding of requirements among all stakeholders,

requirements must be unambiguous. A requirement is unambiguous if it has only one

236

REFERENCES

Adams, K. M. (2015). Nonfunctional requirements in systems analysis and design.
Cham, Switzerland: Springer international publishing.

Al-Saqqa, S., Sawalha, S., & AbdelNabi, H. (2020). Agile software development:
Methodologies and trends. International Journal of Interactive Mobile
Technologies, 14(11).

Alam, S., Nazir, S., Asim, S., & Amr, D. (2017). Impact and challenges of
requirement engineering in agile methodologies: A systematic review. Int. J.
Adv. Comput. Sci. Appl, 8(4), 411–420.

Aldave, A., Vara, J. M., Granada, D., & Marcos, E. (2019). Leveraging creativity in
requirements elicitation within agile software development: A systematic
literature review. Journal of Systems and Software, 157.

Aljallabi, B. M., & Mansour, A. (2015). Enhancement approach for non-functional
requirements analysis in Agile environment. Computing, Control, Networking,
Electronics and Embedded Systems Engineering (ICCNEEE), 2015
International Conference, 428–433.

Ambreen, T., Ikram, N., & Usman, M., & Niazi, M. (2018). Empirical research in
requirements engineering: trends and opportunities. Requirements Engineering,
23(1), 63–95.

Amorndettawin, M., & Senivongse, T. (2019). Non-functional requirement patterns
for Agile software development. Proceedings of the 2019 3rd International
Conference on Software and E-Business, 66–74.

Anand, R. V., & Dinakaran, M. (2016). Popular agile methods in software
development: Review and analysis. International Journal of Applied
Engineering Research, 11(5), 3433–3437.

Anwer, F., Aftab, S., Shah, S. M., & Waheed, U. (2017). Comparative analysis of
two popular agile process models: Extreme programming and scrum.
International Journal of Computer Science and Telecommunications, 8(2), 1–7.

Appan, R., & Browne, G. J. (2012). The impact of analyst-induced misinformation
on the requirements elicitation process. MIS Quarterly, 85–106.

Arcos-Medina, G., & Mauricio, D. (2019). Aspects of software quality applied to the
process of agile software development: A systematic literature review.
International Journal of System Assurance Engineering and Management,
10(5), 867–897.

237

Avgeriou, P., Grundy, J., Hall, J. G., Lago, P., & Mistrík, I. (2011). Relating
software requirements and architectures. Springer Science & Business Media.

Bajpai, V., & Gorthi, R. P. (2012). On non-functional requirements: A survey. 2012
IEEE Students’ Conference on Electrical, Electronics and Computer Science,
1–4.

Barnett, M., Leino, K. R. M., & Schulte, W. (2004). The Spec# programming
system: An overview. International Workshop on Construction and Analysis of
Safe, Secure, and Interoperable Smart Devices, 49–69.

Barthelmess, P., & Anderson, K. M. (2002). A view of software development
environments based on activity theory. Computer Supported Cooperative Work
(CSCW), 11(1–2), 13–37.

Bass, L., Clements, P., & Kazman, R. (2013). Software architecture in practice.
Addison-Wesley Professional.

Bazeley, P. (2009). Analysing qualitative data: More than ‘identifying themes.’
Malaysian Journal of Qualitative Research, 2(2), 6–22.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B.,
Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., & Thomas, D. (2001).
Manifesto for agile software development. Http://Agilemanifesto.Org/.

Behutiye, W., Karhapää, P., Costal, D., Oivo, M., & Franch, X. (2017). Non-
functional requirements documentation in agile software development:
Challenges and solution proposal. International Conference on Product-
Focused Software Process Improvement, 515–522.

Behutiye, W., Karhapää, P., Lopez, L., Burgués, X., Martínez-Fernández, S.,
Vollmer, A. M., & Oivo, M. (2020). Management of quality requirements in
agile and rapid software development: A systematic mapping study.
Information and Software Technology.

Behutiye, W., Rodríguez, P., Oivo, M., Aaramaa, S., Partanen, J., & Abhervé, A.
(2020). How agile software development practitioners perceive the need for
documenting quality requirements: A multiple case study. 2020 46th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), 93–
100.

Bevan, N., & Macleod, M. (1994). Usability measurement in context. Behaviour &
Information Technology, 13(1–2), 132–145.

Bhatt, P., Ahmad, A. J., & Roomi, M. A. (2016). Social innovation with open source
software: User engagement and development challenges in India. Technovation,

238

52, 28–39.

Bhoola, V., Mallik, D., Sharda, A., & Sistu, P. (2013). Measuring software project
agility: A special focus on Scrum practices in India. 22nd Australasian Software
Engineering Conference: ASWEC 2013, 27.

Bijan, Y. (2012). Methodology for engineering requirements for complex systems.
(Doctoral dissertation). Southern Methodist University, United States of
America.

Bloor, M., & Wood, F. (2006). Keywords in qualitative methods: A vocabulary of
research concepts. Sage.

Boehm, B., & In, H. (1996). Identifying quality-requirement conflicts. IEEE
Software, 13(2), 25–35.

Bonuke, O. (2020). Requirements to reduce software implementation failures in
public sector organizations in the United States: A qualitative study. (Doctoral
dissertation). Colorado Technical University, United States of America.

Bourque, P., & Fairley, R. E. (2014). Guide to the Software Engineering Body of
Knowledge (3.0). IEEE Computer Society Press.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative
Research in Psychology, 3(2), 77–101.

Braun, V., & Clarke, V. (2018). Thematic analysis. In Handbook of research
methods in health social sciences (pp. 1–8).

Bridges, D. R. (2018). Application of multi-criteria decision analysis in
requirements definition for prioritization of stakeholder elicitation. (Doctoral
dissertation). The George Washington University, United States of America.

Bryman, A. (2016). Social research methods. Oxford university press.

Camacho, C. R., Marczak, S., & Cruzes, D. S. (2016). Agile team members
perceptions on non-functional testing: Influencing factors from an empirical
study. 2016 11th International Conference on Availability, Reliability and
Security (ARES), 582–589.

Cao, L., & Ramesh, B. (2008). Agile requirements engineering practices: An
empirical study. IEEE Software, 25(1), 60–67.

Capgemini. (2019). The World Quality Report 2019-20.
https://www.capgemini.com/wp-
content/uploads/2019/10/2019_10_31_WQR_Press-Release.pdf

Carcary, M. (2009). The research audit trial –Enhancing trustworthiness in

239

qualitative inquiry. The Electronic Journal of Business Research Methods, 7(1),
11 –24.

Castleberry, A., & Nolen, A. (2018). Thematic analysis of qualitative research data:
Is it as easy as it sounds? Currents in Pharmacy Teaching and Learning, 10(6),
807–815.

Cervantes, H., & Kazman, R. (2016). Designing software architectures: A practical
approach. Addison-Wesley Professional.

Chappell, T. W. (2013). An information systems quandary: Why is there a dearth of
interpretive research in a positivist dominated discipline?(Doctoral
dissertation). Capella University, United States of America.

Chen, L., Babar, M. A., & Nuseibeh, B. (2012). Characterizing architecturally
significant requirements. IEEE Software, 30(2), 38–45.

Chillarege, R. (1996). What is software failure? IEEE Transactions on Reliability,
45(3), 354.

Coen, S. M. (2019). The instructional design of online formative activities: A basic
qualitative study. Capella University, United States of America.

Cope, D. G. (2014). Methods and meanings: credibility and trustworthiness of
qualitative research. In Oncology Nursing Forum, 41(1).

Coughlan, J., & Macredie, R. D. (2002). Effective communication in requirements
elicitation: a comparison of methodologies. Requirements Engineering, 7(2),
47–60.

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed
methods approaches. Sage publications.

Creswell, J. W., & Poth, C. N. (2016). Qualitative inquiry and research design:
Choosing among five approaches. SAGE Publications.

Cumberland, D. M., Sawning, S., Church-Nally, M., Shaw, M. A., Branch, E., &
LaFaver, K. (2019). Experiential Learning: Transforming Theory into Practice
through the Parkinson’s Disease Buddy Program. Teaching and Learning in
Medicine, 31(4), 453–465.

Curcio, K., Navarro, T., Malucelli, A., & Reinehr, S. (2018). Requirements
engineering: A systematic mapping study in agile software development.
Journal of Systems and Software, 139, 32–50.

Dasanayake, S., Aaramaa, S., Markkula, J., & Oivo, M. (2019). Impact of
requirements volatility on software architecture: How do software teams keep
up with ever‐ changing requirements? Journal of Software: Evolution and

240

Process.

Davis, A. M. (2004). Achieving quality in software requirements. In Great Software
Debates (pp. 143–154). Wiley-IEEE Press.

Davis, A. M., & Zowghi, D. (2006). Good requirements practices are neither
necessary nor sufficient. Requirements Engineering, 11(1), 1–3.

Deissenboeck, F., Juergens, E., Lochmann, K., & Wagner, S. (2009). Software
quality models: Purposes, usage scenarios and requirements. 2009 ICSE
Workshop on Software Quality, 9–14.

Dingsøyr, T., & van Vliet, H. (2009). Introduction to software architecture and
knowledge management. In Software Architecture Knowledge Management
(pp. 1–17). Springer, Berlin, Heidelberg.

Domah, D. (2013). The NERV methodology: Non-functional requirements
elicitation, reasoning and validation in Agile processes. (Doctoral dissertation).
Nova Southeastern University, United State of America.

Domah, D., & Mitropoulos, F. J. (2015). The NERV methodology: A lightweight
process for addressing non-functional requirements in agile software
development. SoutheastCon 2015, 1–7.

Dragicevic, S., Celar, S., & Novak, L. (2014). Use of method for elicitation,
documentation, and validation of software user requirements (MEDoV) in agile
software development projects. 2014 Sixth International Conference on
Computational Intelligence, Communication Systems and Networks, 65–70.

Drew, K. (2020). Government software development project failures: A qualitative
approach. (Doctoral dissertation). University of Phoenix, United States of
America.

Dromey, R. G. (1995). A model for software product quality. IEEE Transactions on
Software Engineering, 21(2), 146–162.

Dybå, T., Dingsøyr, T., & Moe, N. B. (2014). Agile project management. In
Software project management in a changing world (pp. 277–300). Elsevier.

Dybå, T., Prikladnicki, R., Rönkkö, K., Seaman, C., & Sillito, J. (2011). Qualitative
research in software engineering. Empirical Software Engineering, 16(4), 425–
429.

Eeles, P., Bahsoon, R., Mistrik, I., Roshandel, R., & Stal, M. (2014). Relating system
quality and software architecture: Foundations and approaches. In Relating
System Quality and Software Architecture (pp. 1–20). Morgan Kaufmann.

Elghariani, K., & Kama, N. (2016). Review on Agile requirements engineering

241

challenges. 2016 3rd International Conference on Computer and Information
Sciences (ICCOINS), 507–512.

Elijah, J., Mishra, A., Udo, E. M. C., Abdulganiyu, A., & Musa, A. (2017). Survey
on requirement elicitation techniques: It’s effect on software engineering.
International Journal of Innovative Research in Computer and Communication
Engineering, 5(5).

Engestrom, Y. (2000). Activity theory as a framework for analyzing and redesigning
work. Ergonomics, 43(7), 960–974.

Engeström, Y. (2009). The future of activity theory: A rough draft. In Learning and
expanding with activity theory (pp. 303–328).

Erumban, A. A., & Das, D. K. (2016). Information and communication technology
and economic growth in India. Telecommunications Policy, 40(5), 412–431.

Fair, T. N. (2021). Strategies to improve project management of software
development processes. (Doctoral dissertation). Walden University, United
States of America.

Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Omoronyia, I., & Zojer, H. (2011).
Ontology-driven guidance for requirements elicitation. Extended Semantic Web
Conference, 212–226.

Farid, W. M. (2011). The normap methodology: Non-functional requirements
modeling for agile processes. (Doctorate dissertation). Nova Southeastern
University, United States of America.

Farid, W. M. (2012). The Normap methodology: Lightweight engineering of non-
functional requirements for agile processes. 2012 19th Asia-Pacific Software
Engineering Conference, 322–325.

Femmer, H., Fernández, D. M., Wagner, S., & Eder, S. (2017). Rapid quality
assurance with requirements smells. Journal of Systems and Software, 123,
190–213.

Fernandes, J. C. (2018). An agile approach for IS/IT benefits management. (Doctoral
dissertation). University of Lisbon, Portugal.

Fernandes, J. M., & Almeida, M. (2010). Classification and comparison of agile
methods. 2010 Seventh International Conference on the Quality of Information
and Communications Technology, 391–396.

Ferrari, A., Spoletini, P., & Gnesi, S. (2016). Ambiguity and tacit knowledge in
requirements elicitation interviews. Requirements Engineering, 21(3), 333–355.

Finkelstein, A., & Dowell, J. (1996). A comedy of errors: The London Ambulance

242

Service case study. Proceedings of the 8th International Workshop on Software
Specification and Design, 2.

Flick, U. (2018). An introduction to qualitative research. Sage Publications Limited.

Flora, H. K., & Chande, S. V. (2014). A systematic study on agile software
development methodologies and practices. International Journal of Computer
Science and Information Technologies, 5(3), 3626–3637.

Fontes, T. O., & O’Mahony, M. (2008). In-depth interviewing by instant messaging.
Social Research Update, 53(2), 1–4.

Fossey, E., Harvey, C., McDermott, F., & Davidson, L. (2002). Understanding and
evaluating qualitative research. Australian and New Zealand Journal of
Psychiatry, 36(6), 717–732.

Franch, X., Gómez, C., Jedlitschka, A., López, L., Martínez-Fernández, S., Oriol,
M., & Partanen, J. (2018). Data-driven elicitation, assessment and
documentation of quality requirements in agile software development.
International Conference on Advanced Information Systems Engineering, 587–
602.

Fricker, S. A., Grau, R., & Zwingli, A. (2015). Requirements engineering: Best
practice. In In Requirements Engineering for Digital Health (pp. 25–46).
Springer, Cham.

Fuentes-Fernández, R., Gómez-Sanz, J. J., & Pavón, J. (2010). Understanding the
human context in requirements elicitation. Requirements Engineering, 15(3),
267–283.

Gibbs, D. L. (2015). Constructing requirements: A qualitative study of challenges
encountered during requirements elicitation for information systems. (Doctoral
dissertation). Texas State University.

Gilb, T. (2005). Competitive engineering: A handbook for systems engineering,
requirements engineering, and software engineering using Planguage. Elsevier.

Gilson, F., Galster, M., & Georis, F. (2019). Extracting quality attributes from user
stories for early architecture decision making. 2019 IEEE International
Conference on Software Architecture Companion (ICSA-C), 129–136.

Glinz, M., & Fricker, S. A. (2015). On shared understanding in software
engineering: an essay. Computer Science-Research and Development, 30(3–4),
363–376.

Gorton, I. (2006). Essential software architecture. Springer Science & Business
Media.

243

Grady, R. B. (1992). Practical software metrics for project management and process
improvement. Prentice-Hall, Inc.

Guba, E. G., & Lincoln, Y. (1989). Fourth generation evaluation. Sage.

Guttag, J. V., & Horning, J. J. (1993). Larch: Languages and tools for formal
specification. Springer Science & Business Media.

Heikkila, V. T., Damian, D., Lassenius, C., & Paasivaara, M. (2015). A mapping
study on requirements engineering in Agile software development. 2015 41st
Euromicro Conference on Software Engineering and Advanced Applications,
199–207. https://doi.org/10.1109/SEAA.2015.70

Herkert, J., Borenstein, J., & Miller, K. (2020). The Boeing 737 MAX: Lessons for
engineering ethics. Science and Engineering Ethics, 1–8.

Hess, A., Diebold, P., & Seyff, N. (2019). Understanding information needs of agile
teams to improve requirements communication. Journal of Industrial
Information Integration, 14, 3–15.

Hickey, A. N. N. M., & Davis, A. M. (2004). A unified model of requirements
elicitation. Journal of Management Information Systems, 20(4), 65–84.

Hirshorn, S. R., & Voss, L. D. (2017). NASA Systems Engineering Handbook.

Ho, C. W., Johnson, M. J., Williams, L., & Maximilien, E. M. (2006). On Agile
performance requirements specification and testing. AGILE2006 (AGILE’06).

Holvitie, J., Licorish, S. A., Spínola, R. O., Hyrynsalmi, S., MacDonell, S. G.,
Mendes, T. S., & Leppänen, V. (2018). Technical debt and agile software
development practices and processes: An industry practitioner survey.
Information and Software Technology, 96, 141–160.

Hull, E., Jackson, K., & Jeremy, D. (2010). Requirements Engineering. Springer
Science & Business Media.

Huo, M., Verner, J., Zhu, L., & Babar, M. A. (2004). Software quality and Agile
methods. Proceedings of the 28th Annual International Computer Software and
Applications Conference, 2004, 520–525.

Hussain, A., Mkpojiogu, E. O., & Kamal, F. M. (2016). The role of requirements in
the success or failure of software projects. International Review of Management
and Marketing, 6, 306–311.

Inayat, I., Moraes, L., Daneva, M., & Salim, S. S. (2015). A reflection on agile
requirements engineering: solutions brought and challenges posed. Scientific
Workshop Proceedings of the XP2015, 1–7.

244

Inayat, I., Salim, S. S., Marczak, S., Daneva, M., & Shamshirband, S. (2015). A
systematic literature review on agile requirements engineering practices and
challenges. Computers in Human Behavior, 51, 915–929.

ISO/IEC/IEEE. (2011). 29148-2011 - ISO/IEC/IEEE International Standard -
Systems and software engineering -- Life cycle processes --Requirements
engineering. https://ieeexplore.ieee.org/document/6146379/

ISO. (2001). Software Engineering -Product Quality –Part 1: Quality Model.

Jahja, A. S., Ramalu, S. S., & Razimi, M. S. A. (2021). Generic qualitative research
in management studies. JRAK (Jurnal Riset Akuntansi Dan Bisnis), 7(1), 1–13.

Jain, P., Sharma, A., & Ahuja, L. (2016). ISM based identification of quality
attributes for Agile development. 2016 5th International Conference on
Reliability, Infocom Technologies and Optimization (Trends and Future
Directions)(ICRITO), 615–619.

Jarzabkowski, P., & Wolf, C. (2010). An activity-theory approach to strategy as
practice. In Cambridge handbook of strategy as practice (pp. 127–140).

Jarzębowicz, A., & Weichbroth, P. (2021). A systematic literature review on
implementing non-functional requirements in Agile software development:
Issues and facilitating practices. International Conference on Lean and Agile
Software Development, 91–110.

Jatoba, A., da Cunha, A. M., Vidal, M. C., Burns, C. M., & de Carvalho, P. V.
(2019). Contributions from cognitive engineering to requirements specifications
for complex sociotechnical systems: A case study in the context of healthcare in
Brazil. Human Factors and Ergonomics in Manufacturing & Service Industries,
29(1), 63–77.

Joffe, H. (2012). Thematic analsis. In Qualitative Research Methods in Mental
Health and Psychotherapy: A Guide for Students and Practitioners (pp. 209–
223). John Wiley & Sons.

Jones, C., & Bonsignour, O. (2011). The economics of software quality. Addison-
Wesley Professional.

Kaplan, B., & Maxwell, J. A. (2005). Qualitative research methods for evaluating
computer information systems. In Evaluating the organizational impact of
healthcare information systems. Springer, New York, NY.

Kasauli, R., Knauss, E., Horkoff, J., Liebel, G., & de Oliveira Neto, F. G. (2021).
Requirements engineering challenges and practices in large-scale agile system
development. Journal of Systems and Software.

Kassab, M. (2014). An empirical study on the requirements engineering practices for

245

agile software development. 2014 40th EUROMICRO Conference on Software
Engineering and Advanced Applications, 254–261.

Kazman, R., Bianco, P., Ivers, J., & Klein, J. (2020). Integrability.
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2020_005_001_6373
85.pdf

Khalid, L. (2019). Software architecture for business. Springer.

Khalid, L. (2020). Understanding and dealing with qualities. In Software
Architecture for Business (pp. 33–50). Springer, Cham.

Kiv, S., Heng, S., Kolp, M., & Wautelet, Y. (2018). Agile manifesto and practices
selection for tailoring software development: A systematic literature review.
International Conference on Product-Focused Software Process Improvement,
12–30.

Kivunja, C., & Kuyini, A. B. (2017). Understanding and applying research
paradigms in educational contexts. International Journal of Higher Education,
6(5), 26–41.

Kolb, D. . (1984). Experiential learning: Experience as the source of learning and
development. Englewood Cliffs, NJ: Prentice Hall.

Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and
development (2nd ed.). FT press.

Kolb, D. A., Boyatzis, R. E., & Mainemelis, C. (2001). Experiential learning theory:
Previous research and new directions. Perspectives on Thinking, Learning, and
Cognitive Styles, 1(8), 227–247.

Kopczyńska, S., Ochodek, M., & Nawrocki, J. (2020). On importance of non-
functional requirements in agile software projects—a survey. In Integrating
Research and Practice in Software Engineering (pp. 145–158). Springer, Cham.

Krasner, H. (2018). The cost of poor quality software in the US: A 2018 report.

Krishnamurthy, N., & Saran, A. (2007a). Building software: A practitioner’s guide.
Auerbach Publications.

Krishnamurthy, N., & Saran, A. (2007b). Building software: A practitioner’s guide.
CRC Press.

Kukreja, N. (2015). Using Social Networking Technology to Improve Collaborative
Requirements Elicitation, Negotiation, Prioritization and Evolution. University
of Southern California.

Kumar, M., Shukla, M., & Agarwal, S. (2013). A hybrid approach of requirement

246

engineering in agile software development. 2013 International Conference on
Machine Intelligence and Research Advancement, 515–519.
https://doi.org/10.1109/ICMIRA.2013.108

Kuutti, K. (1996). Activity theory as a potential framework for human-computer
interaction research. In Context and consciousness: Activity theory and human-
computer interaction (p. 1744).

Kyngäs, H. (2020). Qualitative research and content analysis. In The application of
content analysis in nursing science research (pp. 3–11). Springer, Cham.

Laplante, P. A. (2017). Requirements engineering for software and systems. CRC
Press.

Lauesen, S. (2002). Software requirements: Styles and techniques. Pearson
Education.

Leavens, G. T., Baker, A. L., & Ruby, C. (2006). Preliminary design of JML: A
behavioral interface specification language for Java. ACM SIGSOFT Software
Engineering Notes, 31(3), 1–38.

Leavy, P. (Ed.). (2014). The Oxford handbook of qualitative research. Oxford
University Press, USA.

Leimane, L., & Nikiforova, O. (2018). Mapping of activities for object-oriented
system analysis. Applied Computer Systems, 23(1), 5–11.

Leont’ev, A. N. (1978). Activity, consciousness, and personality. Prentice-Hall,
Upper Saddle River, NJ.

Lincoln, Y., & Guba, E. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage.

Litchmore, K. A. H. (2016). A comparative study of Agile methods, people factors,
and process factors in relation to project success. (Doctoral dissertation).
Capella University, United States of America.

Liu, L. (2016). Using generic inductive approach in qualitative educational research:
A case study analysis. Journal of Education and Learning, 5(2), 129–135.

Lutowski, R. (2016). Software requirements: Encapsulation, quality, and reuse.
Auerbach Publications.

Lytra, I., Carrillo, C., Capilla, R., & Zdun, U. (2020). Quality attributes use in
architecture design decision methods: Research and practice. Computing,
102(2), 551–572.

Maguire, M., & Delahunt, B. (2017). Doing a thematic analysis: A practical, step-by-
step guide for learning and teaching scholars. AISHE-J: The All Ireland Journal

247

of Teaching and Learning in Higher Education, 9(3), 3351–33514.

Maher, C., Hadfield, M., Hutchings, M., & de Eyto, A. (2018). Ensuring rigor in
qualitative data analysis: A design research approach to coding combining
NVivo with traditional material methods. International Journal of Qualitative
Methods, 17(1).

Mairiza, D., Zowghi, D., & Nurmuliani, N. (2009). Managing conflicts among non-
functional requirements. Australian Workshop on Requirements Engineering.
University of Technology, Sydney.

Maiti, R. R., Krasnov, A., Wilborne, D. M., & Mitropoulos, F. (2019). Using OCR
to read handwritten texts in search for NFRs in Agile software engineering.
Journal of Software Engineering Practice, 3(2), 1–10.

Maiti, R. R., & Mitropoulos, F. J. (2017). Capturing, eliciting, and prioritizing (CEP)
NFRs in agile software engineering. SoutheastCon, 2017, 1–7.

Malik, M. H., & Velan, N. (2019). Software and services export, IT investment and
GDP nexus in India. International Trade, Politics and Development, 3(2), 100–
118.

Malik, M. U., Chaudhry, N. M., & Malik, K. S. (2013). Evaluation of efficient
requirement engineering techniques in Agile software development.
International Journal of Computer Applications, 83(3), 24–29.

Malik, M. U., Nasir, H., & Javed, A. (2014). An efficient objective quality model for
agile application development. International Journal of Computer Applications,
85(8).

Malone, M. W. (2014). Process subversion in Agile Scrum software development: A
phenomenological approach. (Doctoral dissertation). Capella University,
United States of America.

Mason, M. (2010). Sample size and saturation in PhD studies using qualitative
interviews. Forum Qualitative Sozialforschung/Forum: Qualitative Social
Research, 11(3).

Massie, R. A. (2020). A qualitative study defining behaviors for effective user stories
in distributed Scrum teams based in San Antonio, Texas.(Doctoral dissertation).
Colorado Technical University, United States of America.

Matharu, G. S., Mishra, A., & Singh, H., & Upadhyay, P. (2015). Empirical study of
agile software development methodologies: A comparative analysis. ACM
SIGSOFT Software Engineering Notes, 40(1), 1–6.

Maxwell, J. A. (2012). Qualitative research design: An interactive approach. Sage
publications.

248

McCall, J. A., Richards, P. K., & Walters, G. F. (1977). Factors in Software Quality,
Volumes I, II, and III.

McCarthy, M. (2016). Experiential learning theory: From theory to practice. Journal
of Business & Economics Research (JBER), 14(3), 91–100.

McLeod, L., MacDonell, S. G., & Doolin, B. (2011). Qualitative research on
software development: A longitudinal case study methodology. Empirical
Software Engineering, 16(4), 430–459.

Medeiros, J., Vasconcelos, A., Silva, C., & Goulão, M. (2018). Quality of software
requirements specification in agile projects: A cross-case analysis of six
companies. Journal of Systems and Software, 142, 171–194.

Mendes, T. S., de F. Farias, M. A., Mendonça, M., Soares, H. F., Kalinowski, M., &
Spínola, R. O. (2016). Impacts of Agile requirements documentation debt on
software projects: A retrospective study. Proceedings of the 31st Annual ACM
Symposium on Applied Computing, 1290–1295.

Menezes, J., Gusmão, C., & Moura, H. (2019). Risk factors in software development
projects: A systematic literature review. Software Quality Journal, 27(3), 1149–
1174.

Merriam, S. B. (2009). Qualitative research: A guide to design and implementation.
John Wiley & Sons.

Merriam, S. B., & Grenier, R. S. (2019). Qualitative research in practice: Examples
for discussion and analysis. John Wiley & Sons.

Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and
implementation. John Wiley & Sons.

Mirsalari, S. R. (2017). A model for software quality evaluation using the user’s
point of views. (Doctoral dissertation). École Polytechnique de Montréal,
Canada.

Moe, N. B., Aurum, A., & Dybå, T. (2012). Challenges of shared decision-making:
A multiple case study of agile software development. Information and Software
Technology, 54(8), 853–865.

Mohamed, S. F. P. (2015). A process based approach software certification model
for agile and secure environment. (Doctoral dissertation). Universiti Utara
Malaysia.

Moketar, N. A., & Kamalrudin, M. (2018). Extraction of essential requirements from
natural language requirements. Journal of Telecommunication, Electronic and
Computer Engineering (JTEC), 10(2–2), 35–38.

249

Morse, W. C., Lowery, D. R., & Steury, T. (2014). Exploring saturation of themes
and spatial locations in qualitative public participation geographic information
systems research. Society & Natural Resources, 72(5), 557–571.

Nagaria, J., Sadath, L., & Ahmed, S. (2019). Agile implementation-a milestone for
academics using software engineering industry practices. 2019 Advances in
Science and Engineering Technology International Conferences (ASET), 1–6.

Nawrocki, J., Ochodek, M., Jurkiewicz, J., & Kopczyńska, S., Alchimowicz, B.
(2014). Agile requirements engineering: A research perspective. International
Conference on Current Trends in Theory and Practice of Informatics, 40–51.

Nnamchi, J. (2014). Examining the relationship among systems requirements and
information systems project success. (Doctoral dissertation). Northcentral
University, United States of America.

Nuseibeh, B. (2001). Weaving together requirements and architectures. Computer,
34(3), 115–119.

Nuseibeh, Bashar, & Easterbrook, S. (2000). Requirements engineering: A roadmap.
In Proceedings of the Conference on the Future of Software Engineering, 1, 35–
46.

O’reilly, M., & Parker, N. (2013). Unsatisfactory Saturation: A critical exploration
of the notion of saturated sample sizes in qualitative research. Qualitative
Research, 13(2), 190–197.

Ochodek, M., & Kopczyńska, S. (2018). Perceived importance of agile requirements
engineering practices–A survey. Journal of Systems and Software, 29–43.

Okesola, J., Adebiyi, M., Okokpujie, K., & Adebiyi, A. A. (2019). A systematic
literature review of requirement engineering practices in Agile model.
International Journal of Mechanical Engineering and Technology (IJMET),
10(2), 671–687.

Oriol, M., Seppänen, P., Behutiye, W., Farré, C., Kozik, R., Martínez-Fernández, S.,
& Choras, M. (2019). Data-driven elicitation of quality requirements in agile
companies. International Conference on the Quality of Information and
Communications Technology, 49–63.

Oseni, K., Dingley, K., & Hart, P. (2018). Instant messaging and social networks —
The advantages in online research methodology. International Journal of
Information and Education Technology, 8(1), 56–62.

Osman, M. H., & Zaharin, M. F. (2018). Ambiguous software requirement
specification detection: an automated approach. In Proceedings of the 5th
International Workshop on Requirements Engineering and Testing, 33–40.

250

Osorio, K., Rosero, J. L., & Ch, R. P. R. (2020). Technical writer: A proposal to
improve quality and documentation in the agile methodology “Scrum”. KnE
Engineering, 50–59.

Otiji, S. N. (2020). Strategies managers use to improve software project success and
profitability. (Doctoral dissertation). Walden University, Unites States of
America.

Ozkaya, I., Bass, L., Sangwan, R. S., & Nord, R. L. (2008). Making practical use of
quality attribute information. IEEE Software, 25(2), 25–33.

Pacheco, C., García, I., & Reyes, M. (2018). Requirements elicitation techniques: A
systematic literature review based on the maturity of the techniques. IET
Software, 12(4), 365–378.

Paetsch, F., Eberlein, A., & Maurer, F. (2003). Requirements engineering and Agile
software development. WET ICE 2003. Proceedings. Twelfth IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003, 308–313.

Peng, X., Cao, H., Setlur, S., Govindaraju, V., & Natarajan, P. (2013). Multilingual
OCR research and applications: An overview. Proceedings of the 4th
International Workshop on Multilingual OCR, 1–8.

Percy, W. H., Kostere, K., & Kostere, S. (2015). Generic qualitative research in
psychology. The Qualitative Report, 20(2), 76–85.

Peterson, J. S. (2019). Presenting a qualitative study: A reviewer’s perspective.
Gifted Child Quarterly, 63(3), 147–158.

Phalnikar, R., Deshpande, V. S., & Joshi, S. D. (2009). Applying Agile principles for
distributed software development. International Conference on Advanced
Computer Control, 535–539.

Pham, A. (2011). Scrum in Action: Agile software project management and
development. Cengage Learning.

Pierce, S. P. (2018). Web 2.0 in the online learning environment: A basic qualitative
study to define best practices. (Doctoral dissertation). Northcentral University,
United States of America.

Pietkiewicz, I., & Smith, J. A. (2014). A practical guide to using interpretative
phenomenological analysis in qualitative research psychology. Psychological
Journal, 20(1), 7–14.

Pinto, T. D., Gonçalves, W. I., & Costa, P. V. (2019). User interface prototype
generation from agile requirements specifications written in concordia.
Proceedings of the 25th Brazillian Symposium on Multimedia and the Web, 61–

251

64.

Pivec, M., Trummer, C., & Pripfl, J. (2007). Usable collaborative email requirements
using activity theory. Informatica, 3(1), 71–83.

Poort, E. R., Martens, N., Van De Weerd, I., & Van Vliet, H. (2012). How architects
see non-functional requirements: Beware of modifiability. International
Working Conference on Requirements Engineering: Foundation for Software
Quality, 37–51.

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An Agile
toolkit. Addison-Wesley.

Pour-Previti, M. (2019). Engaging experience: Experiential learning & student
engagement in online community college courses. (Doctoral dissertation).
United Stated of America, University of West Georgia.

Pressman, R. S. (2010). Software engineering: A practitioner’s approach (7th ed.).
Palgrave Macmillan.

Quinn Patton, M. (1990). Qualitative research and evaluation methods. Sage.

Radulovic, F., & García-Castro, R. (2011). Towards a quality model for semantic
technologies. International Conference on Computational Science and Its
Applications, 244–256.

Ramesh, B., Cao, L., & Baskerville, R. (2010). Agile requirements engineering
practices and challenges: an empirical study. Information Systems Journal,
20(5), 449–480.

Ramos, F. B. A., Costa, A. A. M., Perkusich, M., Almeida, H. O., & Perkusich, A.
(2018). A non-functional requirements recommendation system for scrum-
based projects. SEKE, 149–148.

Read, A. (2013). Improving requirements generation thoroughness in user-centered
workshops: The role of prompting and shared user stories. (Doctoral
dissertation). University of Nebraska, United States of America.

Riaz, M. Q., Butt, W. H., & Rehman, S. (2019). Automatic detection of ambiguous
software requirements: An insight. 2019 5th International Conference on
Information Management (ICIM), 1–6.

Rivero, J. M., Grigera, J., Distante, D., Montero, F., & Rossi, G. (2019). DataMock:
An Agile approach for building data models from user interface mockups.
Software & Systems Modeling, 18(1), 663–690.

Robertson, S., & Robertson, J. (2012). Mastering the requirements process: Getting
requirements right. Addison-Wesley.

252

Robiolo, G., Scott, E., Matalonga, S., & Felderer, M. (2019). Technical debt and
waste in non-functional requirements documentation: An exploratory study.
International Conference on Product-Focused Software Process Improvement,
220–235.

Rodrigues, P., Ecar, M., Menezes, S. V., da Silva, J. P. S., Guedes, G. T., &
Rodrigues, E. M. (2018). Empirical evaluation of formal method for
requirements specification in Agile approaches. Proceedings of the XIV
Brazilian Symposium on Information Systems, 1–8.

Ronen, B. (2017). Excessive software development : Practices and penalties. 35, 13–
27.

Rossberg, J. (2019). Introduction to Scrum and Agile Concepts. In Agile Project
Management with Azure DevOps (pp. 67–123). Apress, Berkeley, CA.

Rossman, G. B., & Rallis, S. F. (2016). An introduction to qualitative research:
Learning in the field. Sage Publications.

Rubin, K. S. (2012). Essential Scrum: A practical guide to the most popular Agile
process. Addison-Wesley.

Sabry, A. E., & El-Rabbat, S. S. (2015). Proposed framework for handling
architectural nfr’s within scrum methodology. Proceedings of the International
Conference on SERP, 238.

Sagheer, M., Zafar, T., & Sirshar, M. (2015). A framework for software quality
assurance using agile methodology. International Journal of Scientific &
Technology Research, 4(2), 44–50.

Sajid, A., Nayyar, A., & Mohsin, A. (2010). Modern trends towards requirement
elicitation. In Proceedings of the 2010 National Software Engineering
Conference, 9.

Saldaña, J. (2015). The coding manual for qualitative researchers. Sage.

Saleh, M., Baharom, F., Mohamed, S. F. P., & Din, A. M. (2021). The current
practices and required knowledge for non-functional requirements elicitation in
Agile context: A pilot study in Jordan. Proceedings of Knowledge Management
International Conference (KMICe) 2021, 265–270.

Sarma, S. K. (2015). Qualitative research: Examining the misconceptions. South
Asian Journal of Management, 22(3), 176–191.

Saunders, B., Sim, J., Kingstone, T., Baker, S., Waterfield, J., Bartlam, B., & Jinks,
C. (2018). Saturation in qualitative research: exploring its conceptualization and
operationalization. Quality & Quantity, 52(4), 1893–1907.

253

Schön, E. M., Sedeño, J., Mejías, M., Thomaschewski, J., & Escalona, M. J. (2019).
A metamodel for Agile requirements engineering. Journal of Computer and
Communications, 7, 1–22.

Seaman, C. B. (1999). Qualitative methods in empirical studies of software
engineering. IEEE Transactions on Software Engineering, 25(4), 557–572.

Seaman, Carolyn B. (1999). Qualitative methods in empirical studies of software
engineering. IEEE Transactions on Software Engineering, 25(4), 557–572.

Shahid, M., & Tasneem, K. A. (2017). Impact of avoiding non-functional
requirements in software development stage. Am. J. Inf. Sci. Comput. Eng, 3(4),
52–55.

Shanmugapriya, P., & Kumaran, N. (2016). Predominant quality attributes in
evaluating software architecture and addressing scenario coverage problem.
International Journal of Advanced Research in IT and Engineering, 5(5), 1–7.

Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative research
projects. Education for Information, 22(2), 63–75.

Singh, A. (2012). Agile: Analysis of its problems and their solutions. IJCA Proc Int
Conf Recent Adv Future Trends Inf Technol, 32–35.

Sinpang, J. S., Sulaiman, S., & Idris, N. (2017). Detecting ambiguity in requirements
analysis using Mamdani fuzzy inference. Journal of Telecommunication,
Electronic and Computer Engineering (JTEC), 9(3–4), 157–162.

Smith, G. (2012). The Object-Z specification language Springer Science & Business .
Media.

Soares, H. F., Alves, N. S., Mendes, T. S., Mendonça, M., & Spínola, R. O. (2015).
Investigating the link between user stories and documentation debt on software
projects. 2015 12th International Conference on Information Technology-New
Generations, 385–390.

Solinski, A., & Petersen, K. (2016). Prioritizing Agile benefits and limitations in
relation to practice usage. Software Quality Journal, 24(2), 447–482.

Sommerville, I. (2015). Software engineering. Pearson Education Limited.

Spivey, J. (1992). TheZ notat ion :Are ference manual. Prentice Hall International.

Ssbriye, A. O. J. A., & Zainon, W. M. N. W. (2018). An approach for detecting
syntax and syntactic ambiguity in software requirements specification. Journal
of Theoretical & Applied Information Technology, 96(8).

Stake, R. E. (2010). Qualitative research: Studying how things work. Guilford Press.

254

Stieger, S., & Göritz, A. S. (2006). Using instant messaging for Internet-based
interviews. CyberPsychology & Behavior, 9(5), 552–559.

Suma, V., & Shubhamangala, B. R. (2013). A comprehensive analysis of factors
influencing quality of requirements. Lecture Notes on Software Engineering,
1(2), 199.

Svensson, A. (2020). Identifying motives for implementing eHealth by using activity
theory. Sustainability, 12(4), 1298.

Tabassum, A., Bhatti, D. S. N., Asghar, A. R., Manzoor, I., & Alam, I. (2017).
Optimized quality model for Agile development: Extreme programming (XP)
as a case scenario. International Journal of Advanced Computer Science and
Applications, 8(4), 392–400.

Tenório, N., Pinto, D., Silva, M. J., de Almeida, I. C., & Bortolozzi, F. (2020).
Knowledge management in the software industry: How Scrum activities support
a knowledge management cycle. Navus-Revista de Gestão e Tecnologia, 10, 1–
13.

Tracy, S. J. (2019). Qualitative research methods: Collecting evidence, crafting
analysis, communicating impact. John Wiley & Sons.

Tripathi, V., & Goyal, A. K. (2014). Agile requirement engineer: Roles and
responsibilities. International Journal of Innovative Science, Engineering &
Technology, 1(3), 213–219.

Tripp, J. F. (2012). The impacts of Agile development methodology use on project
success: A contingency view (Doctoral dissertation). Michigan State University,
United States of America.

Tukur, M., Umar, S., & Hassine, J. (2021). Requirement engineering challenges: A
systematic mapping study on the academic and the industrial perspective.
Arabian Journal for Science and Engineering, 1–26.

Uteliyeva, N. K., Ismail, E. E., & Akhmetov, D. F. (2019). Comparative analysis of
models of quality of software tools. Journal of Mathematics, Mechanics and
Computer Science, 104(4), 85–94.

Vermeulen, D., Weger, M. D., & Ravesteyn, P. (2017). Focus on non-functionals!
The effect of focussing on non-functional requirements on the maturity of the
requirements engineering process. Communications of the IIMA, 15(1), 5.

VersionOne. (2018). 13th annual state of Agile survey report.
https://stateofagile.com/#ufh-i-613553418-13th-annual-state-of-agile-
report/7027494

Vierhauser, M., Cleland-Huang, J., Burge, J., & Grünbacher, P. (2019). The

255

interplay of design and runtime traceability for non-functional requirements.
Proceedings of the 10th International Workshop on Software and Systems
Traceability, 3–10.

Vygotsky, L. (1978). Mind in society: The development of higher psychological
processes. Harvard University Press, Cambridge, Mass.

Wagner, S., Fernández, D. M., Felderer, M., & Kalinowski, M. (2017).
Requirements engineering practice and problems in agile projects: Results from
an international survey. Proc.of the 20th Ibero-American Conference on
Software Engineering (CIBSE), Requirements Engineering (WER) Track,
Buenos Aires, Argentina, 2017.

Wagner, S., Méndez-Fernández, D. Kalinowski, M., & Felderer, M. (2018). Agile
requirements engineering in practice: Status quo and critical problems. CLEI
Electronic Journal, 21(1).

Walden, D. D., Roedler, G. J., Forsberg, K., Hamelin, R. D., & Shortell, T. M.
(2015). Systems engineering handbook: A guide for system life cycle processes
and activities. John Wiley & Sons.

Wang, X., Zhao, L., Wang, Y., & Sun, J. (2014). The role of requirements
engineering practices in agile development: An empirical study. In
Requirements engineering (pp. 195–209). Springer, Berlin, Heidelberg.

Werner, C., Li, Z. S., Ernst, N., & Damian, D. (2020). The lack of shared
understanding of non-functional requirements in continuous software
engineering: Accidental or essential? 2020 IEEE 28th International
Requirements Engineering Conference (RE), 90–101.

Wiegers, K., & Beatty, J. (2013). Software requirements. Pearson Education.

Yin, R. K. (2011). Qualitative research from start to finish. Guilford Publications.

You, J., Li, J., & Xia, S. (2012). A survey on formal methods using in software
development. IET International Conference on Information Science and
Control Engineering 2012 (ICISCE 2012), Shenzhen, 1–4.

Younas, M., Jawawi, D. N. A., Shah, M. A., Mustafa, A., Awais, M., Ishfaq, M. K.,
& Wakil, K. (2020). Elicitation of nonfunctional requirements in agile
development using cloud computing environment. IEEE Access, 209153–
209162.

Zamudio, L., Aguilar, J. A., Tripp, C., & Misra, S. (2017). Requirements engineering
techniques review in Agile software development methods. In International
Conference on Computational Science and Its Applications, 683–698.

Zhu, H. (2005). Software design methodology: From principles to architectural

256

styles. Elsevier.

Zowghi, D., & Coulin, C. (2005). Requirements elicitation: A survey of techniques,
approaches, and tools. In Engineering and managing software requirements
(pp. 19–46). Springer, Berlin, Heidelberg.

257

Appendix A

First Version of Interview Protocol

 A heading
1. Participant Name:
2. Participant Gender:
3. Participant Number:
4. Date of Interview:
5. Interview Duration:

 Background Questions
1. Please, what is your role based on Scrum Agile method (e.g., product owner,

Scrum master or software developer)?
2. Please, how many years of experience in eliciting quality attributes from

customers and users based on Scrum Agile method?
3. Please, what are the projects types (e.g., onshore and offshore) that you involved

in during your experience in eliciting quality attributes from customers and users
based on Scrum Agile method?

4. Please, what is the size of your software company (e.g., big, medium, small)?

 Interview Questions
1. Please, can you tell me how do you elicit (i.e., collect, gather, define)

quality attributes from customers and users?
2. Please, to what extent customers and users are familiar with quality

attributes concepts and have the capability to discuss them?
3. Please, how do you manage to overcome neglect quality attributes and

ensure paying attention to all quality attributes during requirements
elicitation?

4. Please, how do you manage to achieve common understanding of quality
attributes with customers and users?

5. Please, how do you document quality attributes during requirements
elicitation?

 Interview Instructions

1. Start the interview by greeting the participant, ensure receiving the
Informed Consent Form and download the Informed Consent Form to
your computer.

2. Establish warm-up discussion with a participant and build rapport with
the participant. Moreover, encourage the participant to state positive and
negative experiences as well that can help to know any challenges or
benefits related to eliciting quality attributes in Scrum.

258

3. After the warm-up discussion, start asking the participants about their
background information from interview protocol.

4. After finishing the background questions, start asking the participants the
interview questions from the interview protocol. Moreover, use initial
probes from probes table to gain additional information.

5. Ask the participant any additional probes when it becomes necessary to
gain in-depth explanation about the research phenomena.

6. Before finishing the interview, review the questions and answers to
ensure covering of all necessary questions.

7. Request from the participant to review the findings of the interview
analysis after finishing the analysis.

8. When you finish the interview, express your gratitude to the participant
and appreciate his efforts and cooperation for involving in the interview.

9. Transfer the answers of background questions from instant messaging
box to the document of participant profile.

10. Transfer the answers of all interview questions from instant messaging
box to the document of interview transcript.

259

Appendix B
Second Version of Interview Protocol

 A heading
1. Participant Name:
2. Participant Gender:
3. Participant Number:
4. Date of Interview:
5. Interview Duration:

 Background Questions
1. Please, what is your role based on Scrum Agile method (e.g., product owner,

Scrum master or software developer)?
2. Please, how many years of experience in eliciting quality attributes from

customers and users based on Scrum Agile method?
3. Please, what are the projects types (e.g., onshore and offshore) that you involved

in during your experience in eliciting quality attributes from customers and users
based on Scrum Agile method?

4. Please, what is the size of your software company (e.g., big, medium, small)?

 Interview Questions
1. Please, can you tell me how do you elicit (i.e., collect, gather, define) quality

attributes from customers and users?
2. Please, to what extent customers and users are familiar with quality attributes

concepts and have the capability to discuss them?
3. Please, how do you manage to overcome neglect quality attributes and ensure

paying attention to all quality attributes during requirements elicitation?
4. Please, how do you manage to achieve common understanding of quality

attributes with customers and users?
5. Please, how do you document quality attributes during requirements elicitation?

 Probes from Pilot Interview
1. Please, specify who attend the discussion of quality attributes?
2. Please, can you explain the roles of Scrum team members during the interaction

with customers and users?
3. Please, to what extent you invite users to participate in elicitation of quality

attributes?

 Interview Instructions
1. Start the interview by greeting the participant, ensure receiving the Informed

Consent Form and download the Informed Consent Form to your computer.

260

2. Establish warm-up discussion with a participant and build rapport with the
participant. Moreover, encourage the participant to state positive and negative
experiences as well that can help to know any challenges or benefits related to
eliciting quality attributes in Scrum.

3. During this rapport, encourage the participant to associate his answers and
perspectives with real examples from his projects as much as he can when he
answers any question.

4. After the warm-up discussion, start asking the participants about their
background information from interview protocol.

5. After finishing the background questions, start asking the participants the
interview questions from the interview protocol. Moreover, use initial probes
from probes table to gain additional information.

6. Ask the participant any additional probes when it becomes necessary to gain in-
depth explanation about the research phenomena.

7. Before finishing the interview, review the questions and answers to ensure
covering of all necessary questions.

8. Request from the participant to review the findings of the interview analysis after
finishing the analysis.

9. When you finish the interview, express your gratitude to the participant and
appreciate his efforts and cooperation for involving in the interview.

10. Transfer the answers of background questions from instant messaging box to the
document of participant profile.

11. Transfer the answers of all interview questions from instant messaging box to the
document of interview transcript.

261

Appendix C

 Third Version of Interview Protocol
 A heading

1. Participant Name:
2. Participant Gender:
3. Participant Number:
4. Date of Interview:
5. Interview Duration:

 Background Questions
1. Please, what is your role based on Scrum Agile method (e.g., product owner, Scrum

master or software developer)?
2. Please, how many years of experience in eliciting quality attributes from customers and

users based on Scrum Agile method?
3. Please, what are the projects types (e.g., onshore and offshore) that you involved in

during your experience in eliciting quality attributes from customers and users based on
Scrum Agile method?

4. Please, what is the size of your software company (e.g., big, medium, small)?

 Interview Questions
1. Please, can you tell me how do you elicit (i.e., collect, gather, define) quality attributes

from customers and users?
2. Please, to what extent customers and users are familiar with quality attributes concepts

and have the capability to discuss them?
3. Please, how do you manage to overcome neglect quality attributes and ensure paying

attention to all quality attributes during requirements elicitation?
4. Please, how do you manage to achieve common understanding of quality attributes with

customers and users?
5. Please, how do you document quality attributes during requirements elicitation?

 Probes from Pilot Interview
1. Please, specify who attend the discussion of quality attributes?
2. Please, can you explain the roles of Scrum team members during the interaction with

customers and users?
3. Please, to what extent you invite users to participate in elicitation of quality attributes?

 Probes during Interview with Participants
1. Please, can you give more details to describe what happens through the interaction with

customers and users during elicitation of quality attributes?
2. Please, can you give additional details about the structure of questionnaire that you

follow to gain information about quality attributes?
3. Please, in the case of offshore projects, how do you communicate with customers and

users?
4. Please, can you explain what do you do to be knowledgeable of quality attributes

domain and what advantages you can get from knowing quality attributes domain?
5. Please, what is the importance and impact of documentation of quality attributes?

262

6. Please, based on your answers, can you describe the chronology of your actions and
guidelines (i.e. sequence and arrangement of what you do) regarding eliciting
unambiguous quality attributes?

 Interview Instructions
1. Start the interview by greeting the participant, ensure receiving the Informed Consent

Form and download the Informed Consent Form to your computer.
2. Establish warm-up discussion with a participant and build rapport with the participant.

Moreover, encourage the participant to state positive and negative experiences as well
that can help to know any challenges or benefits related to eliciting quality attributes in
Scrum.

3. During this rapport, encourage the participant to associate his answers and perspectives
with real examples from his projects as much as he can when he answers any question.

4. After the warm-up discussion, start asking the participants about their background
information from interview protocol.

5. After finishing the background questions, start asking the participants the interview
questions from the interview protocol. Moreover, use initial probes from probes table to
gain additional information.

6. Ask the participant any additional probes when it becomes necessary to gain in-depth
explanation about the research phenomena.

7. Before finishing the interview, review the questions and answers to ensure covering of
all necessary questions.

8. Request from the participant to review the findings of the interview analysis after
finishing the analysis.

9. When you finish the interview, express your gratitude to the participant and appreciate
his efforts and cooperation for involving in the interview.

10. Transfer the answers of background questions from instant messaging box to the
document of participant profile.

11. Transfer the answers of all interview questions from instant messaging box to the
document of interview transcript.

263

Appendix D
 Informed Consent Form

COLLEGE OF ARTS AND SCIENCES

UNIVERSITI UTARA MALAYSIA

INFORMED CONSENT FORM

Exploring the Practices and the Process of Eliciting Unambiguous Quality

Attributes in Scrum-based Projects

Dear Respected Participant,

This is a consent form for the participants who agree to participate in an interview to

explore the practices and the process of eliciting unambiguous quality attributes in

Scrum-based projects. You are invited to participate in this study because you fulfil

the following four criteria: knowledge of quality attributes, experience in eliciting

unambiguous quality attributes from customers and users for more than 3 years,

following Scrum Agile method in your projects and spent your experience in Indian

software organization. If you decide to participate, the researcher will ask you to sign

this consent form. The purpose of this study is to explore the practices and the

process that can help to elicit unambiguous quality attributes from customers and

users in projects that follow Scrum Agile method. Your participation will provide

264

significant help to develop high-quality software in the market and enlighten

academic research regarding this important topic. The expected duration of the

interview will be approximately 2 hours. The interview will be conducted based on

your free time and via instant messaging. Your confidentiality is of high concern and

it will be highly protected and maintained. The results of this study may be

published, but your name will not be presented to protect your privacy. Your

participation in this study is voluntary. There is no compulsion to complete the

interview; you have the right to withdraw from the interview at any time.

Please, if you have any questions regarding this study, please send a message to the

researcher: Hussin Ahmed at hussin_ahmed@ahsgs.uum.edu.my or the supervisor:

Prof. Madya Dr. Azham Bin Hussain at azham.h@uum.edu.my. Thank you.

I have read the consent form. I understand the information and I agree to participate

in this study.

Name of Participant: ..

Signature:... Date: ..

mailto:hussin_ahmed@ahsgs.uum.edu.my
mailto:azham.h@uum.edu.my

265

Appendix E
 Samples from Analytic Memo

1- Section 1: Interview Questions and Answers

 Sample from Participant 1
Question: Please, can you tell me how do you elicit (i.e., collect, gather, define) quality
attributes from customers and users?

Answer: I would like to say that eliciting quality attributes is part of our responsibility for
developing high-quality software. In the very beginning, I conduct a meeting with customer
to ask him about important matters for future discussion of requirements. The most
important matters in the beginning are to know quality attributes domain and crucial
challenges that need to be solved. Then, I conduct a meeting for discussing the required
requirements where project team, customer and some users attend the discussion to ask
questions such as the common problems that users face during executing any function or the
required response time for certain functionality. Also, I can show previous user interfaces
from previous projects to customer and users during the discussion of quality attributes
which were prepared before the discussion. In most cases, I request from software designer
to prepare a portfolio of relevant user interfaces design to use them in elicitation of
requirements.

 Sample from Participant 2
Question: Please, can you explain what do you do to be knowledgeable of quality attributes
domain and what advantages you can get from knowing quality attributes domain?

Answer: In our company we check software market which can be a guide to know the
quality attributes domain. The advantages of knowing domain include covering all
necessary requirements which may be forgotten during the elicitation of quality attributes
and familiarization with common concepts in quality attributes domain to prevent any
misunderstanding of these concepts from the side of development team.

 Sample from Participant 3
Question: Please, can you give additional details about the structure of questionnaire that
you follow to gain information about quality attributes?

Answer: The survey or questionnaire contains questions about important services that will
be provided by the system, important qualities, and deadline for finishing the project. As I
mentioned before, we only use this questionnaire to provide us top level information about
quality attributes before second session with customer and Scrum team members.

 Sample from Participant 4
Question: Please, can you give more details to describe what happens through the
interaction with customers and users during elicitation of quality attributes?

266

Answer: I share examples with customer of other portals that faced challenges like Flipkart,
a popular Indian website that suffered from downtime. Sharing these cases of low-quality
software is important for two reasons. The first reason is considering the cost to test quality
attributes because we may hire testers from outside the company and the second reason is
considering sufficient time for development and testing quality attributes. The key guidance
in interviewing customer is using understood terms. So, I need to define these terms in a way
that can be understood by non-technical people. Using terms that are not popular or normal
to customer can act as a barrier to understanding quality attributes. For instance, while
Scrum team considers using vulnerability a normal word in our technical conversation when
we talk about security, it may not be normal to the customer.

 Sample from Participant 5
Question: Please, to what extent customers and users are familiar with quality attributes
concepts and have the capability to discuss them?

Answer: “As I said before, customers and users are not technical people and they do not
have technical background like software developers. So, our knowledge of their domain is
important to get over this issue before we make them tell us about their quality attributes .It
is also important to inform them about the importance of quality attributes. This can help to
allocateadd itionalbud getf ormaki ngsu re that quality attributesar ecompl ete”.

 Sample from Participant 6

Question: Please, how do you manage to achieve common understanding of quality
attributes with customers and users?

Answer: “Since there are hundreds of systems in the market, I can capitalize on this
advantage to let customer select from these systems functionalities and qualities that are
quite similar to his expectation. These systems make requirements of customers obvious,
clear, understandable and less ambiguous. Additionally, these systems in the market cover
plenty of requirements which encourage customers to discuss what they not discussed before
duringt hei nterview”.

 Sample from Participant 7
Question: Please, how do you document quality attributes during requirements elicitation?

Answer: “I focus on defining what I have to do as a software developer for making a
function usable and reliable without failure. I also focus on defining function name, users of
the function and actions of users like loading a file or downloading a file. If downloading
file is finished completely, I let the user know that downloading a file was complete.
Sometimes, it is possible to lose connection with database, so, I let the user know that he
needs to try downloading the file again”.

 Sample from Participant 8
Question: Please, what is the importance and impact of documentation of quality attributes.

Answer: “When I start development with other developers, documentation of requirements
guides us to consider what we may forget. Moreover, documenting requirements assists
Scrum team to show these requirements to customers in future projects which are similar to
theon ewed evelopedbe fore”.

267

2- Section 2: Familiarization with Data

 Sample from Participant 1

It is interesting that Participant 1 has shown her positive attitude towards elicitation of
quality attributes. She takes elicitation of quality attributes seriously as she referred in her
first answer that “I would like to say that eliciting quality attributes is part of our
responsibility for developing high-quality software”. This is important in software industry
to make software projects successful.

She posited that she conducts a meeting with customer for the purpose of receiving answers
about significant matters from her perspective as she said “In the very beginning, I conduct a
meeting with customer to ask him about important matters for future discussion of
requirements”. According to her view, these matters consist of knowing exactly the domain
of interest and the problems that challenged customer in his company as she said “The most
important matters in the beginning are to know quality attributes domain and crucial
challenges that need to be solved”. Of course, identifying domain is important to know the
scope of project and identifying challenges is important to solve them.

She also demonstrated that she conducted additional meeting to ask several questions to
customers and users to know their requirements as she said “Then, I conduct a meeting for
discussing the required requirements where project team, customer and some users attend
the discussion to ask questions such as the common problems that users face during
executing any function or the required response time for certain functionality”.

She also referred to using user interfaces during the discussion with customer and users as
she noted “Also, I can show previous user interfaces from previous projects to customer and
users during the discussion of quality attributes which were prepared before the discussion”.
Furthermore, she referred to her request from software designer in her Scrum team to
prepare a group or collection of user interfaces as she said “I request from software designer
to prepare a portfolio of relevant user interfaces design to use them in elicitation of
requirements”. This is interesting matter to take elicitation seriously and prepare what can
help in elicitation of requirements.

 Sample from Participant 2

Participant 2 has defined the way to be knowledgeable about quality attributes which is
checking software market. This checking possibly means to know the features of domain by
launching some software from the market and understanding their features. As he said “In
our company we check software market which can be a guide to know the quality attributes
domain”.

He stated the advantages he can get from being knowledgeable about domain which contains
two advantages. The first advantage is avoid forgetting any requirement as he said “The

268

advantages of knowing domain include covering all necessary requirements which may be
forgotten during the elicitation of quality attributes” and the second advantage is achieving
common understanding of domain concepts as he said “familiarization with common
concepts in quality attributes domain to prevent any misunderstanding of these concepts
from the side of development team”. This means that this familiarization of domain concepts
helps to reduce ambiguity.

 Sample from Participant 3

From the answer of Participant 3, the structure of questionnaire consists of three sections or
three type of questions related to the services, qualities and deadline of the project. As he
said “The survey or questionnaire contains questions about important services that will be
provided by the system, important qualities, and deadline for finishing the project.” The
services possibly represent the functions of software that will provide to users and qualities
represent quality attributes like usability and reliability. Deadline of finishing the project is
possibly important to know when exactly they will deliver the final version of software.

The participant referred again to the importance of conducting additional session with
customer in addition to sending questions in a questionnaire as he said “As I mentioned
before, we only use this questionnaire to provide us top level information about quality
attributes before second session with customer and Scrum team members”. This means that
questionnaire precedes another session with customers and users.

 Sample from Participant 4

Participant 4 added additional details about what happens during the interaction with
customers to know quality attributes. It is very interesting that she referred to sharing
examples of software portals or website which had low-quality. She mentioned specific
website which is Flipkart as she said “I share examples with customer of other portals that
faced challenges like Flipkart, a popular Indian website that suffered from downtime”.

According to her explanation, she aims to make customer understand that there is cost
associated for developing high-quality software. Furthermore, she wants to make customer
understand that enough time is needed. This means that she does not want customer to put
them under pressure to finish quickly the development of software as she said “The first
reason is considering the cost to test quality attributes because we may hire testers from
outside the company and the second reason is considering sufficient time for development
and testing quality attributes”.

She also referred to an important guideline which is defining terms for customers to make
communication effective as she said “The key guidance in interviewing customer is using
understood terms. So, I need to define these terms in a way that can be understood by non-
technical people. Using terms that are not popular or normal to customer can act as a
barrier to understanding quality attributes”. She gave example of these terms which is
vulnerability that maybe not understood by non-technical people as she said “For instance,
while Scrum team considers using vulnerability a normal word in our technical conversation
when we talk about security, it may not be normal to the customer”. I think this guidance
has significant value to reduce ambiguity and need to be taken into consideration.

269

 Sample from Participant 5

Participant 5 mentioned again that based on her experience that customers and users do not
have the technical knowledge like any professional in software industry when she said “As I
said before, customers and users are not technical people and they do not have technical
background like software developers”.

From her perspective, the ideal way to overcome this limited technical knowledge is being
knowledgeable about possible quality attributes in the domain. She said “So, our knowledge
of their domain is important to get over this issue before we make them tell us about their
quality attributes”. This quote refers to the necessity to prepare seriously before meeting
customers or users to guide them. This means that Scrum team have to be active and serious
in preparation for ultimate guidance to customers and users to elicit quality attributes from
them.

Furthermore, the Participant 5 referred to the significance of teaching customer that quality
attributes are important as she said “It is also important to inform them about the importance
of quality attributes. This can help to allocate additional budget for making sure that quality
attributes are complete”. The reason behind this act is to encourage customer to allocate
enough money for meeting and fulfilling these quality attributes.

 Sample from Participant 6

Participant 6 has mentioned and focused on a guideline that helps Scrum team to achieve
common understanding and reduce ambiguous requirements. This guidance is using systems
in the market as he said “Since there are hundreds of systems in the market, I can capitalize
on this advantage to let customer select from these systems functionalities and qualities that
are quite similar to his expectation”.

He emphasized the value that can result from this guidance in terms to making requirements
clear to Scrum team and sure that developing these requirements will meet the expectations
of customers and users as he said “These systems make requirements of customers obvious,
clear, understandable and less ambiguous.” The quote also refers to another value which is
discussing more requirements which maybe forgotten before to mention by customer during
the discussion as he said “Additionally, these systems in the market cover plenty of
requirements which encourage customers to discuss what they not discussed before during
the interview”.

 Sample from Participant 7

Participant 7 has shown his approach for documenting quality attributes and focused on the
importance of documenting the required response to achieve quality attributes such as
making a function usable or reliable as he said “I focus on defining what I have to do as a
software developer for making a function usable and reliable without failure”.

270

Moreover, he represents key elements of function like function name, actions, and actors as
he said “. I also focus on defining function name, users of the function and actions of users
like loading a file or downloading a file”.

 Sample from Participant 8

Participant 8 acknowledged the benefit from documentation is twofold. The first benefit is
remembering information that can be guidance for them during software development as he
said “When I start development with other developers, documentation of requirements
guides us to consider what we may forget”. This is natural because developers need written
description of what will be developed, otherwise, they will assume requirements that maybe
not the actual requirements that needed by customers and users.

Furthermore, he said that documentation has another benefit which is using documentation
again in future projects “Moreover, documenting requirements assists Scrum team to show
these requirements to customers in future projects which are similar to the one we developed
before”. Of course, the projects have to be similar or maybe have some common functions
like login functionality that have similar quality attributes like security and usability.

 Sample of Memoing during Familiarization of data
 I have to clearly discover or notice what actions or guidelines participants do or follow?

When they do these actions or follow these guidelines? Why or for what reasons?
 I think that some participants set an introductory appointment of quality attributes. From

the answers of five participants, participant1, participant 2, participant 5, participant 7
and participant 8 they do similar action or follow a same guideline which is having
introductory or initial or first session of interview with customer. This action of these
participants can raise a question: why do they need this first session?

 I think this earlier discussion of these of five participants means that the participants are
serious about elicitation of unambiguous quality attributes and they need to be organized
and involve in the discussion with prior knowledge to effectively elicit unambiguous
quality attributes. This prior knowledge leads them to know the exact domain, the
business goal, end users and software type.

 I can see from some quotes reasons for having introductory session. An interesting
reason is checking their previous projects to see what they have done or developed in the
past in other software that maybe similar to the one they will develop. Another
interesting reason is downloading similar projects to the one they will develop with
customer. This attitude means that these participants are professional and they are
interested to cover what needs to elicit unambiguous quality attributes.

 I discovered that other participants seem to set interview immediately without
preparation or conducting interview in advance. From the answers of three participants:
participant 3, participant 4 and participant 6 they set interview directly with customers
and users. But there is a difference between these participants that I have to mention,
remember and emphasize. This difference is sending questionnaire or a collection of
questions to customer by two participants: participant 3 and participant 6. This means
that two participants: participant 3 and participant 6 also do an action before setting
another interview.

 From my reading, I think that the purpose of sending these questions in questionnaire is
having a prior understanding or prior coverage of requirements that include functional

271

and quality attributes. I must understand the structure of these questionnaires and review
the answers of these two participants who use questionnaire.

 I found significant matter that makes me astonished which is appreciation of participant
1, participant 2 and participant 8 to software reuse. I assume that they don’t want to
waste their time in designing or developing what they already have designed before. But,
they consider that reusing these designs will not be blindly but with consulting
customers and users. I mean they discuss with customers and users whether customer
and users accept these designs or not.

 I have to remember and highlight the attitude of all participants towards their seriousness
of eliciting unambiguous quality attributes. I can see clearly they take elicitation
seriously and try to do what it takes to ensure developing quality software.

 I noticed significant guidelines to elicit unambiguous quality attributes like mock-ups,
software in the market that are similar to the software being developed, prototypes and
previous user interface design. I have to pay attention to these guidelines because they
are related directly to the research questions. I need to know why these guidelines can
make a difference or add value to elicitation of quality attributes?

 It is important to ask myself during coding what participants are looking for during
elicitation? I mean what is the information they want to know? Of course, they need to
know functional requirements and quality attributes, but what exactly they want to know
from asking customers and users? Apparently, they focus on knowing the actors and
actions of any function. They also need to know what exactly will happen to achieve
quality attributes.

3- Section 3: Coding

 Sample from Participant 1

Figure D.1: Attaching Code to One Answer Of Participant 1

Commitment is a code that refers to the willing of Scrum team to do the required effort to
make eliciting quality attributes successful. The quote that refers to this code is “I would like

272

to say that eliciting quality attributes is part of our responsibility for developing high-quality
software”.

Setting an Interview for Pre-elicitation is a code that refers to conducting an interview to
know essential matters before conducting second interview with customers and users. The
quote that manifests this code is “In the very beginning, I conduct a meeting with customer
to ask him about important matters for future discussion of requirements”.

Knowing Software Domain is a code that refers to refers to the subject area in which the
software system is intended to apply (e.g., airline reservation, E-commerce, supply chain
management). The quote that manifests this code is “The most important matters in the
beginning are to know quality attributes domain”.

Delineating Business Goals is a code that refers to underscoring the objectives of customer
behind developing the software. The quote that manifests this code is “The most important
matters in the beginning aret ok now… crucialcha llenges thatnee dt ob es olved”.

Cooperation in a Focus Group is a code that refers to the collaboration of Scrum team
members during elicitation of requirements. The quote that manifests this code is “Then, I
conduct a meeting for discussing the required requirements where project team, customer
and some users attend the discussion”.

Asking open-ended Questions is a code that refers to the questions that enable customers and
users to elaborate on their challenges. The quote that manifests this code is “to ask questions
such as the common problems that users face during executing any function”.

Asking Direct Questions is a code that refers to the questions that need to be answered
directly to identify key elements of functions and quality attributes. The quote that manifests
this code is “or the required response time for certain functionality”.

Representing Reusable Software Artefact is a code that refers to presenting artefacts from
previous projects to customer and users for compiling the details of functions and quality
attributes during elicitation. The quote that manifests this code is “Also, I can show previous
user interfaces from previous projects to customer and users during the discussion of quality
attributes”.

Preparation of Reusable Software Artefact is a code that refers to preparation of oft software
artefacts from previous projects to customer and users for compiling the details of functions
and quality attributes. The quotes that manifest this code are “which were prepared before
the discussion. In most cases, I request from software designer to prepare a portfolio of
relevant user interfaces design to use them in elicitation of requirements”.

Table D.1

List of Codes

Code Name Code Description Quotes
 Commitment The willing of Scrum “I would like to say

273

team to do the required
effort to make eliciting
quality attributes
successful.

that eliciting quality
attributes is part of
our responsibility
for developing high-
quality software”.

 Setting an
Interview for Pre-
Elicitation

 Conducting an
interview to know
essential matters
before conducting
second interview with
customers and users.

 “In the very
beginning, I
conduct a meeting
with customer to
ask him about
important matters
for future
discussion of
requirements”.

 Knowing Software
Domain

 Knowing Software
Domain is a code that
refers to refers to the
subject area in which
the software system is
intended to apply (e.g.,
airline reservation, E-
commerce, supply
chain management).

 “The most
important matters
in the beginning are
to know quality
attributes domain”.

 Delineating
Business Goals

 Underscoring the
objectives of customer
behind developing the
software.

 “The most
important matters
in the beginning are
to know … crucial
challenges that
need to be solved”.

 Cooperation in
Focus Group

 The collaboration of
Scrum team members
during elicitation of
requirements.

 “Then, I conduct a
meeting for
discussing the
required
requirements where
project team,
customer and some
users attend the
discussion”.

 Asking Open-
ended Questions

 The questions that
enable customers and
users to elaborate on
their challenges.

 “to ask questions
such as the common
problems that users
face during
executing any
function”.

 Representing
Reusable Software
Artefact

 Presenting artefacts
from previous projects
to customer and users
for compiling the

 “Also, I can show
previous user
interfaces from
previous projects to

274

 Sample from Participant 2

Figure D.2: Attaching codes to one answer of Participant 2

Exploring Similar Software in Market is a code that refers to investigating software systems

that share the same domain of interest. The quote that refers to this code is “In our company

we check software market which can be a guide to know the quality attributes domain”.

Avoiding Neglecting Requirements is a code that refers to reminding customers and users to

recall additional details about any forgotten quality attribute during the elicitation of

requirements. The quote that refers to this code is “The advantages of knowing domain

details of functions
and quality attributes
during elicitation.

customer and users
during the
discussion of
quality attributes”.

 Preparation of
Reusable Software
Artefacts

 Preparation of
software artefacts from
previous projects to
customer and users for
compiling the details
of functions and
quality attributes.

 “…which were
prepared before the
discussion. In most
cases, I request
from software
designer to prepare
a portfolio of
relevant user
interfaces design to
use them in
elicitation of
requirements”.

275

include covering all necessary requirements which may be forgotten during the elicitation of

quality attributes”.

Disambiguation of Terminologies is a code that refers to understanding business jargon and

associated terminologies helps to establish effective communication with customers and

users and underpinning their needs in a precise manner. The quote that refers to this code is

“familiarization with common concepts in quality attributes domain to prevent any

misunderstanding of these concepts from the side of development team”.

Table D.2

List of Codes

Code Name Code Description Quotes

 Exploring Similar
Software in Market

 Investigating
software systems that
share the same
domain of interest

 “In our company we
check software
market which can be
a guide to know the
quality attributes
domain”

 Avoiding
Neglecting
Requirements

 Reminding customers
and users to recall
additional details
about any forgotten
quality attribute
during the elicitation
of requirements.

 “The advantages of
knowing domain
include covering all
necessary
requirements which
may be forgotten
during the elicitation
ofqua litya ttributes”

 Disambiguation of
Terminologies

 Understanding
business jargon and
associated
terminologies helps
to establish effective
communication with
customers and users
and underpinning
their needs in a
precise manner

 “familiarization with
common concepts in
quality attributes
domain to prevent
any
misunderstanding of
these concepts from
the side of
developmentt eam”

276

 Sample from Participant 3

Figure D.3: Attaching codes to one answer of Participant 3

Conducting questionnaire is a code that refers to sending a set of questions to be answered
by customer. The quote that refers to this code is “The survey or questionnaire contains
questions”.

Listing Essential Functions is a code that refers to the primary and basic functionalities that
will be provided by software. The quote that refers to this code is “questions about
important services that will be provided by the system”.

Listing Essential Quality Attributes is a code that refers to the primary and basic quality
attributes that will be provided by software. The quote that refers to this code is “important
qualities”

Setting Project Schedule is a code that refers to knowing the deadline of finishing the project
to set a timetable for finishing the project. The quote that refers to this code is “deadline for
finishing the project”.

Cooperation in Focus Group is a code refers to the collaboration of Scrum team members
during elicitation of requirements. The quote that refers to this code is “second session with
customer and Scrum team members”.

Table D.3

List of Codes

Code Name Code Description Quotes
 Conducting

questionnaire
 Sending a set of

questions to be
 “The survey or

questionnaire

277

 Sample from Participant 4

Figure D.4: Attaching codes to one answer of Participant

Raising Awareness is a code that refers to emphasising the importance of quality attributes

and showing the possible consequences that result from neglect quality attributes. The quote

that refers to this code is “I share examples with customer of other portals that faced

challenges like Flipkart, a popular Indian website that suffered from downtime”.

answered by
customer.

contains
questions”

 Listing Essential
Functions

 Listing the primary
and basic
functionalities that
will be provided by
software.

 “questions about
important services
that will be
provided by the
system”.

 Listing Essential
Quality Attributes

 Listing the primary
and basic quality
attributes that will be
provided by software.

 “important
qualities”

 Setting Project
Schedule

 Knowing the deadline
of finishing the
project to set a
timetable for finishing
the project.

 “deadline for
finishing the
project”.

 Cooperation in Focus
Group

 The collaboration of
Scrum team members
during elicitation of
requirements.

 “second session
with customer and
Scrum team
members”.

278

Considering Necessary Cost is a code that refers to taking into consideration necessary cost

that maybe necessary for developing high-quality software. The quote that refers to this code

is “The first reason is considering the cost to test quality attributes because we may hire

testers from outside the company”.

Appreciation of time is a code that refers to taking into consideration the required time for

developing high-quality software. The quote that refers to this code is “the second reason is

considering sufficient time for development and testing quality attributes”

Simplification of Technical terms is a code that refers to making the concepts of quality

attributes less complicated by avoiding using the technical jargon and transforming the

technical terminologies into definitions that are easier to grasp by customer and users. The

code that refers to this code is “The key guidance in interviewing customer is using

understood terms”.

Understanding Technical Terms is a code that refers to achieving common understanding of

technical terms after simplification of technical terms. The quote that refers to this code is

“So, I need to define these terms in a way that can be understood by non-technical people.

Using terms that are not popular or normal to customer can act as a barrier to

understanding quality attributes”.

Table D.4

List of Codes

Code Name Code Description Quotes

 Raising Awareness

 Emphasising the
importance of quality
attributes and
showing the possible
consequences that
result from neglect
quality attributes.

 “I share examples
with customer of
other portals that
faced challenges
like Flipkart, a
popular Indian
website that
suffered from
downtime”.

 Considering
Necessary Cost

 Taking into
consideration
necessary cost that

 “The first reason
is considering the
cost to test quality

https://dictionary.cambridge.org/dictionary/english/complicated
https://dictionary.cambridge.org/dictionary/english/easy
https://dictionary.cambridge.org/dictionary/english/understand

279

maybe necessary for
developing high-
quality software.

attributes because
we may hire
testers from
outside the
company”.

 Appreciation of time

 Taking into
consideration the
required time for
developing high-
quality software.

 “the second
reason is
considering
sufficient time for
development and
testing quality
attributes”

 Simplification of
Technical terms

 Making the concepts
of quality attributes
less complicated by
avoiding using the
technical jargon and
transforming the
technical
terminologies into
definitions that are
easier to grasp by
customer and users.

 “The key guidance
in interviewing
customer is using
understood
terms”.

 Understanding
Technical Terms

 Achieving common
understanding of
technical terms after
simplification of
technical terms.

 “So, I need to
define these terms
in a way that can
be understood by
non-technical
people. Using
terms that are not
popular or normal
to customer can
act as a barrier to
understanding
quality
attributes”.

https://dictionary.cambridge.org/dictionary/english/complicated
https://dictionary.cambridge.org/dictionary/english/easy
https://dictionary.cambridge.org/dictionary/english/understand

280

 Sample from Participant 5

 Figure D.5: Attaching codes to one answer of Participant 5

Overcoming Limited Technical Knowledge is a code that refers to overcoming the problem
regarding insufficient technical knowledge of customers and users by having the knowledge
of software domain to guide customers and users on technical matters. The code that refers
to this code is “As I said before, customers and users are not technical people and they do
not have technical background like software developers. So, our knowledge of their domain
is important to get over this issue before we make them tell us about their quality
attributes”.

Raising Awareness is a code that refers to emphasising the importance of quality attributes
and showing the possible consequences that result from neglect quality attributes. The code
that refers to this code is “It is also important to inform them about the importance of quality
attributes”.

 Considering Necessary Cost is a code that refers to taking into consideration necessary cost
that maybe necessary for developing high-quality software. The code that refers to this code
is “This can help to allocate additional budget for making sure that quality attributes are
complete”

Table D.5

List of Codes

Code Name Code Description Quotes

 Overcoming Limited Overcoming the “As I said before,

281

 Sample from Participant 6

 Figure D.6: Attaching codes to one answer of Participant 6

Technical
Knowledge

problem regarding
insufficient technical
knowledge of
customers and users
by having the
knowledge of
software domain to
guide customers and
users on technical
matters

customers and
users are not
technical people
and they do not
have technical
background like
software
developers. So, our
knowledge of their
domain is
important to get
over this issue
before we make
them tell us about
their quality
attributes”.

 Raising Awareness

 Emphasising the
importance of quality
attributes and
showing the possible
consequences that
result from neglect
quality attributes

 “It is also
important to inform
them about the
importance of
quality attributes”.

 Considering
Necessary Cost

 Taking into
consideration
necessary cost that
maybe necessary for
developing high-
quality software

 “This can help to
allocate additional
budget for making
sure that quality
attributes are
complete”

282

Showing Similar Software is a code that refers to presenting and enabling customers and

users to see similar software from the market during requirements elicitation. The quote that

refers to this code “Since there are hundreds of systems in the market, I can capitalize on

this advantage to let customer select from these systems functionalities and qualities that are

quite similar to his expectation”

Making Needs in Tangible Form is a code that refers to making requirements in visual form

like user interfaces to make customers and users express their need more precisely. The

quote that refers to this code is “These systems make requirements of customers obvious,

clear, understandable and less ambiguous”

Remembering Missing Requirements is a code that refers to reminding customers and users

what they did not remember during discussing requirements. The quote that refers to this

code is “Additionally, these systems in the market cover plenty of requirements which

encourage customers to discuss what they not discussed before during the interview”.

Table D.6

List of Codes

Code Name Code Description Quotes

 Showing Similar
Software

 Presenting and
enabling
customers and
users to see
similar
software from
the market
during
requirements
elicitation.

 “Since there are
hundreds of
systems in the
market, I can
capitalize on this
advantage to let
customer select
from these
systems
functionalities
and qualities that
are quite similar
to his
expectation”

 Making Needs in
Tangible Form

 Making
requirements
in visual form
like user

 “These systems
make
requirements of
customers

283

 Sample from Participant 7

 Figure D.7: Attaching codes to one answer of Participant 7

Response is a code that refers to reaction to any action performed by actors and is
determined by a condition and can be in the form of showing an error message or
notification of success. The quote that refers to this code is “I focus on defining what I have
to do as a software developer for making a function usable and reliable without failure”

Artefact is a code that refers to part of software such as a user interface to which the
requirement applies. The quote that refers to this code is “defining function name”

interfaces to
make
customers and
users express
their need
more
precisely.

obvious, clear,
understandable
and less
ambiguous”

 Remembering

Missing

Requirements

 Reminding
customers and
users what
they did not
remember
during
discussing
requirements.

 “Additionally,
these systems in
the market cover
plenty of
requirements
which encourage
customers to
discuss what they
not discussed
before during the
interview”.

284

Actor is a code that refers to a person who interacts with software for the sake of providing
inputs that can be processed by software and lead to generating outputs. The quote that refers
to this code is “users of the function”.

Action is a code that refers to the act performed by actors when they interact with part of
software. The quote that refers to this code is “actions of users like loading a file or
downloading a file”.

Condition is a code that refers to an occasion that changes the response of software
regarding actions done by actors that can be in the form of if statements. The quote that
refers to this code is “If downloading file is finished completely, I let the user know that
downloading a file was complete”.

Table D.7

List of Codes

Code Name Code Description Quotes

 Response

 The reaction to any
action performed by
actors and is
determined by a
condition and can be
in the form of
showing an error
message or
notification of
success.

 “I focus on defining what
I have to do as a software
developer for making a
function usable and
reliable without failure”

 Artefact

 A part of software
such as a user
interface to which
the requirement
applies.

 “defining function name”

 Actor

 A person who
interacts with
software for the sake
of providing inputs
that can be processed
by software and lead
to generating
outputs.

 “users of the function”.

 Action

 The act performed
by actors when they
interact with part of
software.

 “actions of users like
loading a file or
downloading a file”.

285

 Sample from Participant 8

 Figure D.8: Attaching codes to one answer of Participant 8

Remembering Information is a code that refers to remembering all necessary information
related to key elements of functions and key elements of quality attributes during software
development. The quote that refers to this code is “When I start development with other
developers, documentation of requirements guides us to consider what we may forget.

Reusing Information in Future is a code that refers to reusing all information related to key
elements of functions and key elements of quality attributes in future projects. The quote that
refers to this code is “Moreover, documenting requirements assists Scrum team to show
these requirements to customers in future projects which are similar to the one we developed
before”.

Table D.8

Code Name Code Description Quotes

 Remembering
Information

 Remembering all necessary
information related to key
elements of functions and
key elements of quality
attributes during software
development.

 “When I start
development with other
developers,
documentation of
requirements guides us to
consider what we may
forget”.

 Reusing
Information in
Future

 Reusing all information
related to key elements of
functions and key elements
of quality attributes in future
projects.

 “Moreover, documenting
requirements assists
Scrum team to show
these requirements to
customers in future
projects which are
similar to the one we
developedbe fore”.

286

List of Codes

 Sample of Memoing during Coding

 I decided to give a label of Commitment to answers and responses of participants that
show the seriousness or exerting the required effort of participants. This code seems
relevant and depicts the underlying meaning behind the responses of participants where
all participants (P1, P2, P3, P4, P5, P6, P7 and P8) have shown different responses that
have same meaning which is commitment.

 I decided to give a label of knowing software domain to the answers that refer to
software domain that refers to the subject area in which the software system is intended
to apply (e.g., airline reservation, Ecommerce, supply chain management). The
responses of five participants (P1, P2, P5, P7 and P8) contributed to decide this label
that seems descriptive to the exact meaning of the five participants.

 I decided to give a label of delineating business goals to the answers that refer to the
main goals behind developing software. This code is descriptive to the nature of
statements of participants. The responses of three participants (P1, P2 and P5) have
encouraged me to select the label of delineating business goals.

 I decided to give a label of determination of target users to the answer of participant 2
that refers to the potential users of the software who are going to access the services
provided by the software. While there is only one participant who is participant 2, who
provided a response that influenced me to select this label, it is significant and need to be
taken into consideration.

 I decided to give a label of conducting questionnaire to the answers of two participants
(P3 and P6) who used questionnaire. This code is relevant because it refers to the
technique of sending a set of questions to be answered by customer before setting an
interview.

4- Section 4: Generating Initial Themes

 Description of Initial Theme: Proactive Exposure of Quality Attributes

The first theme which is proactive exposure to quality attributes was constructed by
grouping wide array of codes which have similar characteristic which is getting elementary
knowledge during and after the first contact of customers. These codes vary between
participants based on their readiness and appreciation of the importance of getting this
elementary knowledge in the very beginning before conducting a second interview with
customers and users. These codes are: Setting Interview for Pre-Elicitation, Knowing
Software Domain, Delineating Business Goals, Determination of Target Users, Defining
Software Type, Reviewing Previous Projects, Exploring Similar Software in Market,
Avoiding Neglecting Requirement, Disambiguation of Terminologies, Overcoming Limited
Technical Knowledge, Preparation of Reusable Software Artefacts, Conducting
Questionnaire, Listing Essential Functions, Listing Essential Quality Attributes, Listing
Terminologies Definitions and Setting Project Schedule.

Proactive exposure to quality attributes is the first initial theme that is defined as getting
elementary knowledge and insights about quality attributes during and after the first contact
of customer with software organization for the sake of requesting developing software.

287

Getting this elementary knowledge about quality attributes is proactive in the sense that it
precedes conducting a long period of discussion with customer and users about quality
attributes. This elementary knowledge helps to lay the ground for successful elicitation of
quality attributes from prospective customers and users.

 The Codes that construct First Initial Theme from Participants

 Proactive exposure to quality attributes consists of six codes from Participant 1: Setting

Interview for Pre-Elicitation, Knowing Software Domain, Delineating Business Goals,
Reviewing Previous Projects, Disambiguation of Terminologies and Preparation of
Reusable Software Artefacts.

 Proactive exposure to quality attributes consists of nine codes from Participant 2: Setting
Interview for Pre-Elicitation, Knowing Software Domain, Delineating Business Goals,
Determination of Target Users, Exploring Similar Software in Market, Avoiding
Neglecting Requirement, Disambiguation of Terminologies, Overcoming Limited
Technical Knowledge and Preparation of Reusable Software Artefacts.

 Proactive exposure to quality attributes consists of four codes from Participant 3:
Conducting Questionnaire, Listing Essential Functions, Listing Essential Quality
Attributes and Setting Project Schedule.

 Proactive exposure to quality attributes consists of seven codes from Participant 5:
Setting Interview for Pre-Elicitation, Knowing Software Domain, Delineating Business
Goals, Defining Software Type, Reviewing Previous Projects, Avoiding Neglecting
Requirement and Overcoming Limited Technical Knowledge.

 Proactive exposure to quality attributes consists of five codes from Participant 6:
Conducting Questionnaire, Listing Essential Functions, Listing Essential Quality
Attributes, Listing Terminologies Definitions and Setting Project Schedule.

 Proactive exposure to quality attributes consists of six codes from Participant 7: Setting
Interview for Pre-Elicitation, Knowing Software Domain, Reviewing Previous Projects,
Avoiding Neglecting Requirement, Disambiguation of Terminologies and Overcoming
Limited Technical Knowledge.

 Proactive exposure to quality attributes consists of five codes from Participant 8: Setting
Interview for Pre-Elicitation, Knowing Software Domain, Exploring Similar Software in
Market, Avoiding Neglecting Requirement, and Preparation of Reusable Software
Artefacts.

Table D.9

Codes of First Initial Theme: Proactive Exposure of Quality Attributes

Codes Participants

288

 Setting Interview for Pre-Elicitation P1, P2, P5, P7, P8
 Knowing Software Domain P1, P2, P5, P7, P8
 Delineating Business Goals P1, P2, P5
 Determination of Target Users P2
 Defining Software Type P5
 Reviewing Previous Projects P1, P5, P7
 Exploring Similar Software in the Market P2, P8
 Avoiding Neglecting Requirements P2, P5, P7, P8
 Disambiguation of Terminologies P1, P2, P7
 Overcoming Limited Technical Knowledge P2, P5, P7
 Preparation of Reusable Software Artefacts P1, P2, P8
 Conducting Questionnaire P3, P6
 Listing Essential Functions P3, P6
 Listing Essential Quality Attributes P3, P6
 Listing Terminologies Definitions P6
 Setting Project Schedule P3, P6

5- Section 5: Reviewing Themes

 Reviewing Initial Theme: Proactive Exposure of Quality Attributes

The first initial theme (i.e. proactive exposure to quality attributes) consists of two sub-
themes, namely understanding software scope and envisaging potential quality attributes.
Firstly, understanding software scope is a sub-theme that is defined as knowing four
essential matters, namely software domain, business goals, target users and software type
from customers that Scrum team has to take into consideration when developing the
software. Knowing these essential matters is a prerequisite before setting an appointment for
the long discussion about quality attributes with customer and users. The quotes from five
participants (P1, P2, P5, P7 and P8) contributed to develop ten primary codes that construct
the sub-theme of understanding software scope. These codes are setting interview for pre-
elicitation, knowing software domain, delineating business goals, determination of target
users, defining software type, reviewing previous projects, exploring similar software in the
market, avoiding neglecting requirements, disambiguation of terminologies and overcoming
limited technical knowledge.

 The Codes of First Sub-theme: Understanding Software Scope

 Understanding Software Scope consists of five codes from Participant 1: Setting Interview
for Pre-Elicitation, Knowing Software Domain, Delineating Business Goals, Reviewing
Previous Projects and Disambiguation of Terminologies.

 Understanding Software Scope consists of nine codes from Participant 2: Setting Interview
for Pre-Elicitation, Knowing Software Domain, Delineating Business Goals, Determination
of Target Users, Reviewing Previous Projects, Exploring Similar Software in Market,
Avoiding Neglecting Requirement, Disambiguation of Terminologies and Overcoming
Limited Technical Knowledge.

289

 Understanding Software Scope consists of seven codes from Participant 5: Setting Interview

for Pre-Elicitation, Knowing Software Domain, Delineating Business Goals, Defining
Software Type, Reviewing Previous Projects, Avoiding Neglecting Requirement and
Overcoming Limited Technical Knowledge.

 Understanding Software Scope consists of six codes from Participant 7: Setting Interview
for Pre-Elicitation, Knowing Software Domain, Reviewing Previous Projects, Avoiding
Neglecting Requirement, Disambiguation of Terminologies and Overcoming Limited
Technical Knowledge.

 Understanding Software Scope consists of four codes from Participant 8: Setting Interview
for Pre-Elicitation, Knowing Software Domain, Exploring Similar Software in Market and
Avoiding Neglecting Requirement.

Table D.10:

Codes of First Sub-theme: Understanding Software Scope

Code Name Participants
 Setting Interview for Pre-Elicitation P1, P2, P5, P7, P8
 Knowing Software Domain P1, P2, P5, P7, P8
 Delineating Business Goals P1, P2, P5
 Determination of Target Users P2
 Defining Software Type P5
 Reviewing Previous Projects P1, P5, P7
 Exploring Similar Software in the Market P2, P8
 Avoiding Neglecting Requirements P2, P5, P7, P8
 Disambiguation of Terminologies P1, P2, P7
 Overcoming Limited Technical Knowledge P2, P5, P7

Secondly, Envisaging potential quality attributes is the second-sub-theme that can be defined
as expecting the potential quality attributes in the software to be developed. The data suggest
that this expectation of quality attributes is not arbitrary, but based on understanding the
software scope and dependent on using two techniques. These two techniques are
questionnaire and software reuse that help Scrum team to make valid expectations of quality
attributes. The quotes from five participants (P1, P2, P3, P6 and P8) contributed to develop
six primary codes that construct the sub-theme of envisaging potential quality attributes,
namely preparation of reusable software artefacts, conducting questionnaire, listing essential
functions, listing essential quality attributes, listing terminologies definitions and setting
project schedule.

 The Codes of Second Sub-theme: Envisaging Potential Quality Attributes

 Envisaging Quality Attributes consists of one code from three participants (P1, P2 and

P8): Preparation of Reusable Software Artefact.

290

 Envisaging Quality Attributes consists of four codes from Participant 3: Conducting

Questionnaire, Listing Essential Functions, Listing Essential Quality Attributes and
Setting Project Schedule.

 Envisaging Quality Attributes consists of five codes from Participant 6: Conducting
Questionnaire, Listing Essential Functions, Listing Essential Quality Attributes, Listing
Terminologies Definitions and Setting Project Schedule.

Table D.11

Codes of Second Sub-theme: Envisaging Potential Quality Attributes

Primary Code Name Quotes from Participants
 Preparation of Reusable Software Artefacts P1, P2, P8
 Conducting Questionnaire P3, P6
 Listing Essential Functions P3, P6
 Listing Essential Quality Attributes P3, P6
 Listing Terminologies Definitions P6
 Setting Project Schedule P3, P6

6- Section 6: Defining and Naming Themes

1. Proactive exposure to quality attributes is the first initial theme that is defined as getting
elementary knowledge and insights about quality attributes during and after the first contact
of customer with software organization for the sake of requesting developing software.
Getting this elementary knowledge about quality attributes is proactive in the sense that it
precedes conducting a long period of discussion with customer and users about quality
attributes. This elementary knowledge helps to lay the ground for successful elicitation of
quality attributes from prospective customers and users.

1.1 Understanding software scope is a sub-theme that is defined as knowing four essential
matters, namely software domain, business goals, target users and software type from
customers that Scrum team has to take into consideration when developing the software.
Knowing these essential matters is a prerequisite before setting an appointment for the long
discussion about quality attributes with customer and users. This sub-theme consists of ten
primary codes that construct the sub-theme of understanding software scope. These codes
are setting interview for pre-elicitation, knowing software domain, delineating business
goals, determination of target users, defining software type, reviewing previous projects,
exploring similar software in the market, avoiding neglecting requirements, disambiguation
of terminologies and overcoming limited technical knowledge.

291

1.2 Envisaging potential quality attributes is the second-sub-theme that can be defined as
expecting the potential quality attributes in the software to be developed. The data suggest
that this expectation of quality attributes is not arbitrary, but based on understanding the
software scope and dependent on using two techniques. These two techniques are
questionnaire and software reuse that help Scrum team to make valid expectations of quality
attributes. This sub-theme consists of six primary codes that construct the sub-theme of
envisaging potential quality attributes, namely preparation of reusable software artefacts,
conducting questionnaire, listing essential functions, listing essential quality attributes,
listing terminologies definitions and setting project schedule.

2. Mutual learning discussion is the second initial theme that is defined as discussing quality
attributes with customers and users in a mutual learning fashion between customers, users
and Scrum team. Mutual learning discussion means that customers and users learn from
Scrum team technical matters that related to quality attributes and Scrum team learn about
details of quality attributes from customers and users. This discussion is expected to be
established after the customer sets an agreeable appointment for eliciting requirements
which includes functional requirements and quality attributes as well.

2.1 Ameliorating technical knowledge of customers and users can be defined as increasing
the level of technical knowledge of customers in terms of raising the awareness of customers
regarding quality attributes importance and simplifying the concepts of quality attributes to
customers and users. The aim of this sub-theme is to overcome the limited technical
knowledge of customers to make them participate actively in the discussion. This sub-theme
consists of nine primary codes: one-on-one discussion, cooperation in focus group, setting
virtual meeting, involving users, raising awareness, appreciation of time, considering
necessary cost, simplification of technical terms and understanding technical terms.

2.2 Compiling the details of quality attributes is the second sub-theme which can be defined
as collecting sufficient information that is necessary to draw a comprehensive picture of
quality attributes. This sub-theme consists of ten primary codes: asking open-ended
questions, shedding light on challenges, asking direct questions, identifying elements of
functions, identifying elements of quality attributes, representing reusable software artefacts,
showing similar software, making needs in tangible form, remembering missing
requirements and thinking like users.

3. Verifying common understanding is the third initial theme that is defined as examining and
approving the mutual understanding of quality attributes between customers, users and
Scrum team. This verification happens instantly after compiling the details of some set of
requirements and can be considered as a logical extension of the second step (i.e. mutual
learning discussion).

3.1 Utilization of visual artefacts is a sub-theme that is defined as employing visual artefacts
that enable customers and users to see quality attributes in visual form for ensuring common

292

understanding of quality attributes among stakeholders. This sub-theme consists of four
primary codes: Drawing Mock-up, developing proof of concept, making requirements
unambiguous and deriving additional requirements.

3.2 Documentation of quality attributes is a sub-theme that is defined as writing down the
details of quality attributes to enable customers and users come to an agreement with Scrum
team about the quality attributes that should be included in the software. This sub-theme
consists of ten primary codes: specifying artefact, specifying actors, specifying actions,
specifying inputs, specifying conditions, specifying response, specifying output, specifying
response measure, remembering information, creating a definition of done and reusing
information in future.

293

Appendix F

 Peer Debriefing Report

30 August 2020

TO WHOM IT MAY CONCERN

Dear Sir/Madam,

I hereby certify that I reviewed the thematic analysis that belongs to a PhD study of Mr.

Hussin Ahmed Abdel-Kader Mahmoud. I found that all main procedures followed for

interpretation of interviews were taken with care and in line with academic discipline. The

interpretation of all quotes were delineated and supported by literature from published and

coherent sources and all themes are well-explained and justified in academic way. The

researcher fairly stated the themes, explained them, organized them based on their logical

flow, and supported his interpretation with logic and reasonable justification. Moreover, the

included figures in the writing-up document wrapped up the discussion in a clear manner.

Since some quotes have shown limited technical knowledge of participants with certain

aspects of quality attributes, the researcher was right to raise a flag against this limited

technical knowledge for further improvement of software quality. In addition, the

comparison made between the eight participants through the interpretation highlighted some

differences where they collectively gave more insights of the themes investigated. In

general, the comments, interpretations, and justifications are constructive and I strongly

believe that the researcher was felicitous in his interpretation.

Dr. Taufiq Hail Ghilan

Certified Reviewer (Publons, Web of Science)

Researcher ID: AAV-3792-2020

294

Appendix G

 Member Checking Report

It was a great pleasure to conduct an interview with you to explore the practices and the

process of eliciting unambiguous quality attributes in Scrum-based projects. The findings of

the interview resulted in three steps that construct the process of eliciting unambiguous

quality attributes. Moreover, every step consists of two practices that act as guidelines for

eliciting unambiguous quality attributes. Given the significance of your feedback, it will be

highly valuable to review the figure that illustrates the steps, the practices and the

chronology of the practices during requirements elicitation. This figure is equipped with

brief definitions of the steps and the practices based on the interpretation of the interview.

Moreover, the chronology is represented by a set of arrows in the figure to portray

the order of following the practices during requirements elicitation. Thus, please, give your

comments regarding the steps of the process of eliciting unambiguous quality attributes, the

practices that help to elicit unambiguous quality attributes and the chronology of the

practices during requirements elicitation. Thank you.

Figure F.3 The process and the practices of eliciting unambiguous quality attributes in

Scrum

https://dictionary.cambridge.org/dictionary/english/order

295

Table F.1

The definitions of the steps and the practices of eliciting unambiguous quality attributes in

Scrum Agile method

Steps Practices

1- Proactive exposure to quality attributes
is the first step in the process of
eliciting unambiguous quality
attributes from customers and users.
The purpose of this step is getting
elementary knowledge and insights
about quality attributes during the first
contact of customer with software
organization for the sake of requesting
developing software. Getting this
elementary knowledge about quality
attributes is proactive in the sense that
it precedes conducting a long period of
discussion and interview with customer
and users about quality attributes. This
step consists of two practices:
understanding software scope and
envisaging potential quality attributes.

 Understanding software scope is
defined as knowing the essential
matters (i.e. software domain,
target users, business goals and
software types) from customer
that Scrum team has to take into
consideration when developing the
software. Knowing these essential
matters is a prerequisite before
setting an appointment for the
long discussion about quality
attributes with customer and users.
These essential matters are known
by asking customers about them
and complement that with
software domain analysis via
reviewing previous projects and
exploring similar software in the
market whenever it becomes
necessary.

 Envisaging potential quality
attributes is defined as expecting
the potential quality attributes in
the software to be developed. The
data suggest that this expectation
of quality attributes is not
arbitrary, but based on
understanding the software scope
and dependent on using two
techniques, namely conducting
questionnaire and preparation of
reusable software artefacts.

2- Mutual learning discussion is the second
step in the process of eliciting
unambiguous quality attributes from
customers and users that is defined as
discussing quality attributes with
customers and users in a mutual learning
fashion between customers, users and
Scrum team. Mutual learning discussion
means that customers and users learn from
Scrum team technical matters that related
to quality attributes and Scrum team learn

 Ameliorating the technical
knowledge of customers and users
can be defined as increasing the
level of technical knowledge of
customers in terms of raising the
awareness of customers regarding
quality attributes importance and
simplifying the concepts of quality
attributes to customers and users.

 Compiling the details of quality
attributes is defined as collecting

296

about details of quality attributes from
customers and users. This discussion is
expected to be established after the
customer sets an agreeable appointment for
eliciting requirements via an interview with
customer and users. The second step
consists of two practices: ameliorating the
technical knowledge of customers and
users and compiling the details of quality
attributes.

sufficient information that is
necessary to draw a
comprehensive picture of quality
attributes. The purpose of this
practice is to identify the key
elements of functions and the key
elements of quality attributes.
Compiling the details of quality
attributes is achieved via multiple
techniques: asking open-ended
and direct questions to customers
and users, representing reusable
software artefacts and showing
similar software from Market and
thinking like a user to suggest
what can benefit customers and
users.

3- Verifying common understanding is the
third step in the process of eliciting
unambiguous quality attributes that is
defined as examining the mutual
understanding of quality attributes between
customers, users and Scrum team. This
step consists of two practices: utilization of
visual artefacts and documentation of
quality attributes.

 Utilization of visual artefacts is
defined as employing visual
artefacts that enable customers and
users to see quality attributes in
visual form for ensuring common
understanding of quality attributes
among stakeholders. This
utilization of visual artefacts is
centred upon using two
techniques: proof of concept and
mock-ups.

 Documentation of quality
attributes is defined as writing
down the details of quality
attributes to enable customers and
users come to an agreement with
Scrum team about the quality
attributes that should be included
and incorporated in the software.
Documentation of quality
attributes includes eight key
elements of functional
requirements and quality
attributes: artefact, actors, actions,
inputs, outputs, conditions,
responses and responses
measurement.

Table F.2

297

The Comments on the Findings: the Steps, the Practices and the Chronology of the Practices

Findings Type Comment

The steps of the process
..
..

The practices
..
..

The chronology of the

practices
..
..

	FRONT MATTER
	COPYRIGHT PAGE
	TITLE PAGE
	CERTIFICATION
	Permission to Use
	ABSTRAK
	ABSTRACT
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations

	MAIN CHAPTER
	CHAPTER ONE: INTRODUCTION
	1.1 Introduction
	1.2 Background of the Study
	1.3 Problem Statement
	1.4 Research Questions
	1.5 Research Objectives
	1.6 Research Scope
	1.7 Research Approach
	1.8 Significance of the Study
	1.9 Organization of the Thesis

	CHAPTER TWO: LITERTURE REVIEW
	2.1 Introduction
	2.2 Requirements Engineering
	2.2.1 Requirements Engineering Processes
	2.2.2 Requirements Elicitation Techniques

	2.3 Quality Attributes
	2.3.1 Software Quality Attributes Models
	2.3.2 Quality Attributes Significance

	2.4 Ambiguity of Quality Attributes
	2.4.1 Consequences of Ambiguous Quality Attributes
	2.4.2 The Practices of Preventing Ambiguous Quality Attributes

	2.5 Theoretical Framework
	2.5.1 Activity theory
	2.5.2 Experiential Learning Theory

	2.6 Agile Manifesto
	2.6.1 Characteristics of Agile Methods
	2.6.2 Characteristics of Scrum

	2.7 Challenges of Quality Attributes in Agile-based Projects
	2.8 Current Approaches to Elicit Quality Attributes in Agile-based Projects
	2.9 Research Gaps
	2.10 Summary

	CHAPTER THREE: RESEARCH METHODOLOGY
	3.1 Introduction
	3.2 Research Paradigm
	3.3 Research Approach
	3.4 Research Process
	3.4.1 Phase One: Data Collection
	3.4.1.1 Interview Protocol
	3.4.1.2 Sampling Strategy
	3.4.1.3 Pilot Interview
	3.4.1.4 Conducting Interview with Participants

	3.4.2 Phase Two: Data Analysis
	3.4.3 Phase Three: Evaluating Trustworthiness of the Findings

	3.5 Summary

	CHAPTER FOUR: FINDINGS AND EVALUATION
	4.1 Introduction
	4.2 The Findings of the Study: Themes
	4.2.1 Initial Theme 1: Proactive Exposure to Quality Attributes
	4.2.1.1 Sub-theme 1.1: Understanding Software Scope
	4.2.1.2 Sub-theme 1.2: Envisaging Potential Quality Attributes

	4.2.2 Initial Theme 2: Mutual Learning Discussion
	4.2.2.1 Sub-theme 2.1: Ameliorating Technical Knowledge of Customer and Users
	4.2.2.2 Sub-theme 2.2: Compiling the Details of Quality Attributes

	4.2.3 Initial Theme 3: Verifying Common Understanding
	4.2.3.1 Sub-theme 3.1: Utilization of Visual Artefacts
	4.2.3.2 Sub-theme 3.2: Documentation of Quality Attributes

	4.3 The findings of the Study: Miscellaneous Codes
	4.3.1 Consequences
	4.3.2 Commitment

	4.4 The findings of the Study: Chronology of Steps and Practices
	4.5 Evaluating the Trustworthiness of the Findings
	4.6 Summary

	CHAPTER FIVE: DISCUSSION
	5.1 Introduction
	5.2 Mapping Findings with Research Objectives
	5.3 Comparison between Participants
	5.4 Insights for Scrum Team
	5.5 Summary

	CHAPTER SIX: CONCLUSION
	6.1 Introduction
	6.2 Study Recapitulation
	6.3 Contributions of Study
	6.4 Limitations of Study
	6.5 Recommendations for Future Work
	6.6 Final Remarks

	REFERENCES
	APPENDIX

