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 The annual heating energy consumptions of eighty school buildings are analysed 

 Two energy estimation models were developed to support public authorities planning  

 A multiple regression model was built using nine different influencing variables 

 CART enables also non-expert users to extract information for decision making  

 MAE, RMSE and MAPE were calculated to compare the performance of estimation 

models 

*Highlights
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Abstract 16 

Large building stocks should be well managed, in terms of ordinary activities and formulating strategic plans, to achieve 17 

energy savings through increased efficiency. It is becoming extremely important to have the capability to quickly and 18 

reliably estimate buildings’ energy consumption, especially for public authorities and institutions that own and manage 19 

large building stocks. This paper analyses the heating energy consumption of eighty school buildings located in the 20 

north of Italy. Two estimation models are developed and compared to assess energy consumption: a Multiple Linear 21 

Regression (MLR) model and a Classification and Regression Tree (CART). The CART includes interpretable decision 22 

rules that enable non-expert users to quickly extract useful information to benefit their decision making. The output of 23 

MLR model is an equation that accounts for all of the major variables affecting heating energy consumption. Both 24 

models were compared in terms of Mean Absolute Error (MAE), Root Mean Square error (RMSE), and Mean Absolute 25 

Percentage error (MAPE). The analysis determined that the heating energy consumption of the considered school 26 

buildings was mostly influenced by the gross heated volume, heat transfer surfaces, boiler size, and thermal 27 

transmittance of windows. 28 

 29 

Nomenclature 30 

β  Estimated Coefficient of Multiple Linear Regression Model 31 

CART  Classification and Regression Tree 32 

D-W  Durbin-Watson test 33 

E  Error associated to the tree 34 

EUI  Energy Use Intensity 35 

EUIst  Standard Energy Use Intensity 36 
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EUIst,s  Standard and Specific Energy Use Intensity 37 

F  Fisher-Snedecor test 38 

HDDcon  Conventional Heating Degree Days 39 

HDDreal  Real Heating Degree Days  40 

MAE  Mean Absolute Error 41 

MAPE  Mean Absolute Percentage Error 42 

MLR  Multiple Linear Regression 43 

POW  Boiler Size (Heat Input) 44 

R
2  

Coefficient of Determination 45 

R
2

adj
  

Adjusted Coefficient of Determination 46 

RMSE  Root Mean Square Error 47 

SUR  Heat Transfer Surface 48 

Uwindows  Thermal Transmittance of Windows 49 

VIF   Variance Inflation Factors  50 

VOL  Heated Gross Volume 51 

 52 

1. Introduction 53 

1.1 Energy consumption analysis in school buildings 54 

Buildings are responsible for about 40 % of the total energy consumption in developed countries [1]. In countries like 55 

Italy, about 60 % of the existing building stock is more than 40-years-old [2].  A rapid and substantial energy retrofit 56 

program is therefore required for these existing buildings. There are about two million households in Italy that live in 57 

buildings requiring either demolition and rebuilding or refurbishment. Directive 2010/31/EU (EPBD recast) requires 58 

buildings, or parts of buildings, to meet a minimum energy performance or be subject to a retrofit or refurbishment. 59 

These requirements may be met by renovating a building’s envelope and systems, but an effective management can also 60 

significantly impact a building’s energy consumption. The EU Directive [3, 4, 5] requires public buildings to play an 61 

exemplary role in terms of energy savings. Public utilities and buildings that are typically owned and managed by 62 

municipalities include: street lighting, schools, administrative buildings, public transport, and sport centres, such as 63 

swimming pools and gymnasiums [6]. Local governments would clearly benefit from having access to energy 64 

consumption data. Further, being able to understand the savings potential of these assets would help to prioritise energy 65 

and environmental projects and better illuminate their financial aspects [7]. According to the US Department of Energy, 66 

school buildings constitute a major part of the public building stock. Around 25 % of the energy expenses in schools 67 

could be saved through better building designs and more energy-efficient technologies, combined with improvements in 68 

operation and maintenance [8]. 69 

De Santoli at al. [9] evaluated the energy performance of public schools in Rome. They defined intervention strategies 70 

to reduce energy consumption and identified action priorities by means of a simple payback time analysis (PBT). 71 

Dimoudi et al. [10] conducted an energy simulation to study the energy savings potential of school buildings in Greece. 72 

Kim Tae Woo et al. [11] analysed the energy consumption of some elementary schools in South Korea by utilising 73 

monitoring data from January 2006 to December 2010. They determined that electrical energy was consumed the most, 74 

followed by gas and oil. During the monitoring period, electrical energy continued to increase its relevance on the 75 

energy breakdown because of cooling/heating system replacements. These and other studies were carried out in recent 76 

years to estimate the energy consumption of school buildings. The literature shows that there are two main approaches 77 

for estimating a building’s energy consumption: the direct approach or the inverse approach. The first approach 78 

calculates the energy demand by running an energy simulation under a steady state or dynamic conditions. The second 79 

approach uses historical data to produce data driven models that estimate the energy consumption.  80 



Page 4 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

A large part of the current literature focuses on the inverse approach. Analysts and decision makers have access to 81 

several applications of new or recast versions of existing models. Corrado et al. [12] defined a simplified method for 82 

predicting future consumption based on climatic and real use data on a stock of 120 school buildings. Corgnati et al. 83 

[13] then validated this method, using another stock of 118 schools, as did Ariaudio et al. [14]. Amber et. al. [15] 84 

gathered daily values of a school building’s electrical consumption on the Southwark campus of the London South 85 

Bank University from 2007 to 2013 and then developed a multiple regression model to estimate future daily electrical 86 

consumption. Beusker et al. [16] evaluated the energy consumption of schools and sports facilities in Germany using 87 

different linear and nonlinear regression models. Thewes et al. [17] presented a regression model with categorical 88 

variables to predict the electrical and heating energy consumption of school buildings in Luxembourg.  89 

Innovative techniques, including machine learning, data mining, and knowledge discovery in databases, have also been 90 

successfully applied to building energy consumption data in recent years [18]. In particular, a classification tree which 91 

consists of a multi-stage decision-making process that is useful to categorise observations in a finite number of classes, 92 

can be a powerful estimation tool. This method has not yet been applied in other studies to estimate the energy 93 

consumption of school buildings.  94 

In this paper, the heating energy consumption of a school building stock located in the north of Italy is analysed using a 95 

Multiple Linear Regression (MLR) model and a Classification and Regression Tree (CART). Both MLR model and 96 

CART are data driven models that have been successfully applied to estimate a building’s energy demand. 97 

Nevertheless, the outcome of MLR is an equation, while the output of CART are decision rules that allow users to 98 

quickly extract relevant information [19]. This characteristic substantially changes the practical applicability of the two 99 

models. 100 

1.2 Implementation of multiple regression analysis and classification tree for buildings’ energy use estimations 101 

In recent years, numerous researchers successfully employed multiple regression model as a tool for energy 102 

consumption estimations. Al-Garni et al. [20] correlated electrical energy consumption with relevant climatic variables 103 

(air temperature, relative humidity, solar radiation), and variable occupant populations through statistical methods 104 

(regression model) to forecast the overall electrical energy consumption in Eastern Saudi Arabia. Aranda et al. [21] 105 

developed three regression models to predict the Spanish banking sector’s annual energy consumption. The first model 106 

can be used to estimate the energy consumption of the whole banking sector, while the second estimates the energy 107 

consumption for branches under conditions of a low severity winter climate and the third under conditions of a high 108 

severity winter climate. The variance reported for the three models is 58 %, and 68 %, respectively. Korolija et al. [22] 109 

developed regression models to predict the annual heating, cooling, and electrical auxiliary energy consumption of five 110 

different types of HVAC systems (variable air volume – VAV, constant air volume – CAV, fan-coil system with 111 

dedicated air (FC), and two chilled ceiling systems with dedicated air, radiator heating, and either embedded pipes – 112 

EMB - or exposed aluminium panels – ALU) for office buildings in the UK. Freire et al. [23] used independent 113 

variables like energy consumption, ventilation and air conditioning power, outdoor temperature, relativity humidity, and 114 

total solar radiation to develop a regression equation to predict the indoor air temperature and relative humidity for two 115 

buildings with low and high thermal mass. The literature demonstrates therefore that regression models offer a robust 116 

methodology for estimating a building’s energy consumption (e.g., heating, cooling, lighting, etc.). 117 

Decision trees belong to the machine learning algorithms family. This method is recognised as an emerging analysis 118 

tool and is currently receiving plenty of attention from applied research. Yu  et al. [18] used the decision tree to classify 119 

and predict building energy consumption. This method was applied to Japanese residential buildings for predicting and 120 
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classifying building Energy Use Intensity (EUI) levels based on training data. This tool was then evaluated on a sample 121 

test. 122 

Zhao et al. [24] used a C4.5 decision tree algorithm, locally weighted naïve Bayes and support vector machine, to 123 

classify occupant behaviour and to create schedule models for building energy simulation. The results show that the 124 

C4.5 algorithm correctly classified 90 % of individual behaviour and this allowed getting closer to the real group 125 

schedule. Mikučionienė et al. [25] used a decision tree to increase the sustainability and improve the criteria for 126 

evaluating energy efficiency measures in a public building renovation in Lithuania. By analysing and weighting each 127 

variable (related to insulation of external walls, roof insulation, heating substation renovation, reconstruction of the 128 

entire heating system, and installation of a ventilation system with exhaust air heat recovery), the researchers created a 129 

decision tree to evaluate the influence of each variable on energy consumption. The results show that this algorithm 130 

reduces the amount of data that must be understood by transforming it into a more compact form while still preserving 131 

the basic substance. The researchers determine whether the data are characterised by well-separated object classes and 132 

finally, this algorithm determines the precise relationship between attributes and their class. 133 

In this paper, two different estimation models are developed using a database consisting of 80 school buildings located 134 

in the province of Turin. The estimation models include climatic, envelope and heating system variables, and annual 135 

metered heating energy consumption. They are: 136 

- a Multiple Linear Regression (MLR) model that estimates the energy use for heating based on geometrical, 137 

climate, and thermo-physical characteristics. This model creates an equation that relates n independent 138 

variables to the dependent variable;  139 

- a Classification and Regression Tree (CART) which consists of a multi-stage decision-making process to 140 

classify observations in a finite number of classes. The model’s output is a flowchart constructed by 141 

subdividing the observations into homogeneous subsets with respect to the dependent variable or response 142 

(represented in our model by heating energy consumption).  143 

The two estimation models are compared to determine which one is more accurate in terms of a residuals analysis and 144 

errors (MAE, RMSE, MAPE). The possibilities and limitations of the two models are ultimately contrasted, 145 

highlighting advantages and disadvantages for their use by a final operator, such as a consultant or a decision maker. 146 

Moreover, this paper discusses the practical application and robustness of the constructed estimation models. 147 

2 Methodology  148 

A wide range of theoretical and practical factors that are relevant to each building should be considered to create 149 

estimation models that analyse building energy consumption. The methodology followed in this study is schematised as 150 

shown in the flowchart in Figure 1. 151 

An existing database was initially analysed to evaluate the consistency of the school building stock. The available 152 

variables are associated with a building’s envelope, heating/cooling systems, and location. This step is useful to 153 

understand the limits of applicability of the models, which may be applied to other building stocks with similar features, 154 

once they are validated. In the second step of the analysis, two estimation models were implemented (MLR model and 155 

CART). Finally, in the third phase, the two models were developed and compared, highlighting their usefulness for 156 

public school managers. 157 
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2.1 Pre-processing analysis  158 

The database contains information from 80 school buildings without sport facilities (sport halls), situated in the 159 

Province of Turin (Italy). The initial dataset was composed of 120 school buildings located in the same area, but the 160 

sample was reduced to 80 schools due to missing heating energy consumption data from 40 school buildings. The 161 

analysed influencing variables are related to the opaque and transparent building envelope, heating systems, building 162 

geometry features, and climatic data. 163 

From a climatic point of view, the Province of Turin is located in the Italian climate zones E and F. The analysed 164 

buildings are located in a climate with Conventional Heating Degree Days (HDDconv) ranging from 2517 to 3197 DD.  165 

Figure 2 shows the frequency distribution for the gross heated volume and heat transfer surface of the sampled 166 

buildings. The majority of schools have a gross heated volume lower than 35000 m
3
 (about 60 %). Schools with a 167 

higher gross heated volume are composed of two or more buildings. In addition, about 60 % of the sampled schools 168 

have values of heat transfer surface lower than 10000 m
2
. For this reason, most of the sample is composed of buildings 169 

with an aspect ratio (ratio of heat transfer surface on gross heated volume) range from 0.25 to 0.40 m
-1

. The heat losses 170 

mainly depend on the quality of the building envelope and not from the building shape. 171 

Figure 3 shows the frequency distribution of the sampled buildings for the thermal transmittance of walls and windows. 172 

As can be seen, most of the buildings are characterised by a thermal transmittance of windows higher than 4 W/(m
2 

K) 173 

(about 65 % of the sample is composed of single glazing) and by opaque walls without thermal insulation (80 % of the 174 

sample is characterised by values higher than 0.40 W/m
2
K). 175 

Figure 4 shows the frequency distribution of the sampled buildings for boiler size (heat input) and average system 176 

efficiency. The boiler size (heat input) ranges from values lower than 500 kW to values higher than 8000 kW. 12 % of 177 

the schools are equipped with a boiler size lower than 500 kW, 43 % from 500 to 1500 kW, 17 % from 1500 to 2000 178 

kW, and only 28 % by a boiler size higher than 2000 kW. Analysing the frequency distribution of the average seasonal 179 

system efficiency (the ratio between building energy need and primary energy) reveals that 83 % of the sample have 180 

values lower than 0.70. This figure denotes the presence of high thermal losses in subsystems. Moreover, the schools 181 

are equipped with old emission subsystems (cast iron radiators), old distribution subsystems (non-insulated pipes), and 182 

old control subsystems, i.e. centralised control that is only installed at the generation system level (e.g. climatic control).  183 

Several variables related to school buildings should be considered in a comprehensive analysis of energy consumption. 184 

Ventilation rates, hours of use, set points and time clock settings, infiltration rates, internal heat gains, solar gains, 185 

geometrical building characteristics, building envelope physical variables, heating system features, outdoor temperature, 186 

and number of pupils and classes are all considered important variables in characterising a school’s energy use. 187 

Moreover, occupant behaviour can significantly impact energy consumption, particularly the opening and closing of 188 

windows. However, some of these variables (e.g. infiltration and ventilation rates or variables related to occupant 189 

behaviour) are very difficult to obtain.  190 

In [26], it was claimed that the floor surface and/or the volume (mostly the volume) primarily influenced the heating 191 

energy consumption and the electrical energy in school buildings in their analysed sample [27]. In some cases, it was 192 

also verified that the data related to the transmittance of opaque components of the façades, the boiler size, and the daily 193 

period of use significantly influenced the heating energy consumption [27]. 194 

In our work the available data collected for the analysed sample to characterise the heating energy consumption for each 195 

school building are: real heating degree day, gross heated volume, heat transfer surface, aspect ratio, floor heated 196 
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area, building height, numbers of floors, thermal transmittance of walls, thermal transmittance of windows, boiler size 197 

(heat input), number of classrooms, number of pupils, annual operating time, average seasonal system efficiency.  198 

Table 1 provides a list of the variables with the definition of the data location, central tendency, and dispersion for each 199 

of them. From the literature [26, 27], we know that the selected variables can be considered as the most influential 200 

factors. No major effect of controls may be reported in the database, since no local control was installed in the school. 201 

Occupant behaviour definitely affected the final energy performance by opening and closing windows. However, 202 

information about occupant behaviour were not available and are very difficult to get. 203 

In order to standardise the impact of climate on heating energy consumptions, the degree-days method was applied [28]. 204 

For this purpose, standard heating energy consumptions (EUIst - Standard Energy Use Intensity) for each school 205 

buildings was defined as: 206 

 st conv realEUI EUI HDD HDD            (1) 207 

where EUI is the heating energy consumption [kWh], HDDcon are the Heating Conventional Degree Days, and HDDreal  208 

are the Heating Real Degree Days (related to the year 2012). The average heating energy consumption of the school 209 

building stock EUIst is equal to 830 MWh/year (Figure 5). In order to compare buildings of different sizes, the stEUI  210 

was normalised by the gross heated volume (EUIst,s– Standard and Specific Energy Use Intensity). The EUIst,s ranges 211 

from 17.74 to 61.12 kWh/m
3
/year (Figure 5). 212 

2.2 Outliers detection 213 

A pre-processing analysis [29] is required to identify outliers before creating an estimation model. An observation is an 214 

outlier when it departs from other members of the sample and appears to be inconsistent with the remaining dataset. The 215 

presence of one or more outliers could reduce the capacity of the models to estimate the heating energy consumption. 216 

Outliers should be eliminated from the dataset [30, 31], however, their treatment is not simple. Several indexes were 217 

evaluated to identify outliers in the dataset. In fact, these indexes can be used together to perform an accurate screening 218 

of the database:  219 

- z-score; 220 

- Mahalanobis Distance; 221 

- Index of Mardia; 222 

- Distances Cook;  223 

- Leverage Value. 224 

These techniques made it possible to detect outliers at both multivariate and univariate levels. The first index (z-score) 225 

detected outliers at the univariate level, i.e. for each variable. The other four indexes detected multivariate outliers by 226 

considering a combination of different variables. These outlier detection categories are complementary and should be 227 

used together.  Indeed, a case cannot be considered an outlier if it only has one single distorted value. At the same time, 228 

multivariate outliers represent a pattern of responses that are unlikely to be comparable to the rest of the sample.  229 

The definitions of the analysed indexes are briefly explained in the following. 230 

The z-score is used to measure when the observed value deviates from the mean value. It is expressed by the mean of 231 

the following equation. 232 

 - - DSz score x x            (2) 233 



Page 8 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

where x is the observed value, x is the average value, and DS is the standard deviation. On the basis of Chebyshev’s 234 

theorem, if z-score ≥ the values are potential outliers.  235 

The Mahalanobis distance (Dhk) is a statistical measure of the distance between the units. It is calculated by taking into 236 

account the correlation between variables: 237 

-1( - ) ( - )T
h k h khkD x x W x x   with 1,.......,h k n          (3) 238 

where xh and xk are the vectors with the observations on the samples h and k, and W is the variance-covariance matrix 239 

between the observed variables. As a rule of thumb, values of Dhk higher than the chi-square critical (α = 0,001, degree 240 

of freedom = predictors) are considered abnormal points. 241 

The Index of Mardia checks if the relationship between variables can be considered linear. The multivariate normality is 242 

met if the Index of Mardia is less than a critical value: 243 

( 2)criticalMah k k              (4) 244 

where k is the number of predictors. 245 

The Distances Cook (Di) is the distance between the regression line that includes all observations and the regression line 246 

that does not include the i-th observation: 247 

ˆ ˆ-i y y p DSiD              (5) 248 

where ŷ is the expected value, ŷi is the expected value without the use of the i-th case, p is the order of the multiple 249 

regression analysis, and DS is the standard deviation. Generally, values higher than 1 are considered abnormal points.  250 

The Leverage Value (Laverage) is a measure of how much the specified value of the independent variable deviates from 251 

its mean. The values vary between zero (no influence) and (n/(n-1)) (greatest influence). The average value corresponds 252 

to: 253 

 1
average

k nL              (6) 254 

where k is the number of predictors and n is the number of cases analysed. As a rule of thumb, values higher than two 255 

or three times the average values are considered abnormal points.  256 

2.3 Multiple Linear Regression model  257 

The multivariate statistical analysis [32, 33] can estimate the value of some variables, if the parameters included in the 258 

model are actually relevant for the building’s final energy consumption. The MLR model (classical model for parameter 259 

estimation) is expressed as follows: 260 

0 1 1 2 2 n nY x x x                        (7) 261 

where Y is the dependent variable, β0 is the intercepts, β1,…p are the estimated coefficient of MLR model, and ε is the 262 

statistical error. The regression model’s coefficients β1,…p are estimated by using the ordinary least square or linear least 263 

square method. This method tries to minimise the sum of the squares of the error terms. 264 



Page 9 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

MLR model can be evaluated using statistical tools. The adjusted coefficients of determination (R
2
adj), is a statistical 265 

index that provides information about the goodness of fit of a model. It represents the proportion of the variation in the 266 

dependent variable that is attributable to the explanatory variables: 267 

   
2 21 (1 ) 1 1adjR R n n p 

  
                 (8) 268 

where R
2
 is the coefficient of determination, n is the number of observations, and p is the number of variables included 269 

in the model. 270 

The coefficient t  student is used to test the null hypothesis, i.e. when the values of the estimated coefficients of MLR 271 

model are not significant: 272 

1,...,1,..., ppt SE            (9) 273 

where β1,…p are the estimated coefficients of MLR model and SEβ1,…p is the standard error of each the estimated 274 

coefficient. Generally, if, t ≤ |2|, β1,…p is less significant.  275 

A method for testing the significance of the MLR model is the Fisher-Snedecor test (F). It is conducted on the entire 276 

model and is based on the decomposition of deviance: 277 

RMSF MS             (10) 278 

where MS is the Means Square of the model and MSr is the Residual Mean Square. If the value of F does not exceeds 279 

the critical value (default value for a given probability), the correlation between the variables is not linear. Therefore, 280 

there could be a different correlation.  281 

Durbin-Watson ( )D W is a statistic test used to detect the presence of autocorrelation in the residuals (estimation 282 

errors) of a MLR model. 283 

2 2

1
2 1

( )
n n

i i i
i i

D W e e e
 

              (11) 284 

where  ei = yi - ŷi  and yi and ŷi are respectively the observed values and the expected value of the response variable for 285 

individual i. The value of D-W always lies between 0 and 4. As a rule of thumb, D-W = 2 indicates no autocorrelation, 286 

D-W < 2 indicates negative autocorrelation, and  D-W > 2 indicates positive autocorrelation. 287 

2.4 Classification and Regression Tree method 288 

The CART [34, 35] is a binary decision tree that is constructed by splitting a parent node into two child nodes 289 

repeatedly, beginning with the root node that contains the whole learning sample. The CART can easily handle both 290 

numerical and categorical variables.  291 

A decision tree generation consists of a two-step process: learning and classification. In the first step, the dataset is 292 

divided into a training set and a testing set. The creation of these two subsets is the most delicate part of the technique. 293 

It is important that the training set and the testing set come from the same population and that they are disjointed. In the 294 

classification process, the results obtained from the training set are the input to test the decision tree. The accuracy of 295 

the model is measured by comparing the estimated values of each "leaf node" with the real values contained in the test 296 

sample. If the estimation is acceptable, the decision tree can be applied to new datasets for classification and estimation. 297 

Initially, all records in the training data are grouped together into a single unit. At each iteration, the algorithm chooses 298 
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a predictor attribute that can “best” separate the target class values. Measures of impurity are used to estimate the ability 299 

of a predictor to separate the target class values. The CART consists of three parts: 300 

1.  Construction of maximum tree: the classification tree is built in accordance with the splitting rule. Each time 301 

data must be divided into two parts with the highest homogeneity. The Least Square Deviation measures the 302 

impurity of a node t and is defined as: 303 

21
( ( ))

( )
( ) i i i

w i t

w f y y t
N t

i T


             (12) 304 

where Nw is the weighted number of cases in node t, wi is the weight of the variable in the case, fi is the 305 

frequency value of the variable, yi is the value of the response variable, and y(t)  is the weighted average value 306 

of the variable at node t. The best split s
*
 of a generic node t is what determines the greater decrease of the i(t). 307 

For each split s of node t into tr and tl the following algorithm is valid: 308 

*( , ) ( ) ( ( ) ( ))l rsi t i T i t i t             (13) 309 

where Δi(s
*
,t)  is the decrease of impurities in a generic node, i(T) is the Least Square Deviation of the given 310 

node, i(tl,r) are the Least Square Deviation of the two nodes split. 311 

2.  Choice of the right tree size. Two rules for the stop can be used in practice: optimisation by number of points in 312 

each node (minimum number of cases in the parent’s node and the child’s node) and the error E associated with 313 

the tree. The E parameter allows the tree to be properly built: 314 

 
1

*
n

i

n ni i iE 


              (14) 315 

where ni is the total number of records in the training set which terminate in the leaf, and ni
*
 is the number of 316 

records classify bin the leaf i. 317 

The optimal condition is obtained by setting the error E=1. In fact, in this case the tree correctly classifies all of 318 

the records in the training set. The optimisation of the tree size is important, because the maximum trees may 319 

turn out to be very complex and may consist of hundreds of levels. 320 

3.  Classification of new data: each of the new observations will be set to one of the terminal nodes of the tree by 321 

means of a set of questions. A new observation is assigned with the dominating class/response value of the 322 

terminal node, where this observation belongs. 323 

3. Results: development of models 324 

3.1 Outliers detection analysis 325 

In order to find potential outliers, a pre-processing analysis was carried out prior to creating the estimation model. All of 326 

the variables should show a sufficient range of variability and have skewness and kurtosis values of less than |1.00|. 327 

Indeed, including variables whose distribution is too different from the normal value into the MLR model can lead to 328 

the violation of the assumptions of linearity and homoskedasticity of the residual anomalies. The variable floor heated 329 

area was excluded, because its values were missing for 18 schools.  330 

The pre-processing analysis identified 14 potential outliers. After conducting an accurate frequency distribution analysis 331 

of the sample, it was observed that the detected outliers belonged to the tails of distribution for each variable. In 332 

particular, it was verified that these outliers influence the mean and standard deviation for each variable, causing a non-333 

normal distribution for all of them. Even if the detected outliers can be considered reliable from an energy measurement 334 

point of view, it was verified that they decrease the performance of the estimation models. A detailed analysis on these 335 
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buildings showed that they are characterised by high thermal transmittance values, low system energy efficiencies, low 336 

number of pupils, very low or very high volume. This is the reason why the outliers belong to the tails of distribution 337 

for each variable and therefore determine anomalous values of heating energy consumption. Table 2 shows the indexes 338 

evaluated for the sample without outliers. 339 

3.2 Multiple Linear Regression model 340 

In order to develop the MLR model, all of the reported anomalies were deleted by excluding the identified outliers from 341 

the database. The assumptions relating to the specification of the model (do not omit relevant predictors and do not 342 

include irrelevant predictors) were verified by evaluating the bivariate correlations between the independent variables 343 

and the dependent variable constituted by heating energy consumption (Figure 6 and Table 3). 344 

The variables building height and number of floors have a correlation coefficient of less than 0.20 (Figure 6). For this 345 

reason, they were not included in the model.  346 

The values of the parameter Variance Inflation Factors (VIF) are reported in Table 3. VIF allows detecting the presence 347 

of multicollinearity between the explanatory variables. In general, a multicollinearity occurs if the value of VIF exceeds 348 

10.  349 

 The results analysis found a strong correlation between: 350 

- number of pupils and number of classrooms; 351 

- aspect ratio and gross heated volume; 352 

- aspect ratio and heat transfer surface. 353 

Given these findings, the variables included in the MLR model were reduced to: real heating degree days, gross heated 354 

volume, heat transfer surface, thermal transmittance of walls and windows, boiler size, number of pupils, annual 355 

operating time, and average seasonal system efficiency, as summarised in Table 4. 356 

The sample was randomly split into the training dataset (39 records were selected from the database, i.e. 70 % of the 357 

sample) and testing dataset (the remaining 27 records, i.e. 30 % of the sample). The estimation model was therefore 358 

developed on the basis of a training sample. The training set does not include the outliers previously identified. Each 359 

variable was standardised by the z-score method (Eq.1) to compare variables between them by assuming the same 360 

distribution (μ = 0 ; σ = 1). The most accurate estimation for heating energy consumptions (measured in kWh) is 361 

calculated by means of the following equation: 362 

* * * * * * * * *
1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9662765stEUI X X X X X X X X X                             (15) 363 

where the variables of the model are shown in Table 5, including detailed information about the estimated coefficients 364 

( ) of MLR model, partial standardised regression coefficients (b), and the t-values.  365 

All of the examined variables within this study can theoretically impact heating demand. The gross heated volume,
 

366 

boiler size, and thermal transmittance of windows exhibit the greatest impact in the model, with partial standardised 367 

regression coefficients of 0.86, 0.64, and 0.61, respectively. The t-test identifies the inference on individual coefficients 368 

β. In particular, it verifies whether every single variable X
* 

influences the response variable. The variable annual 369 

operating time
 
and average seasonal system efficiency are the only two variables with a t-value of less than |2|. For this 370 

reason, both of their estimated coefficients of MLR model are less significant. The variance showed by the model 371 
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compared to the total variance of the sample is 86 % (R
2
adj), therefore, 86 % of the heating energy consumption variance 372 

can be explained by the nine variables used in the model. Moreover, there is an absence of auto-correlations among 373 

residuals (D-W = 2.05 ≈ 2) and the value of the Fisher-Snedecor test (F = 27) is greater than the critical value (Fcrit = 4). 374 

As such, the MLR model can be considered robust. To assess the quality of the estimation model, Figure 7 shows the 375 

distribution plot between the estimated EUIst and the monitored EUIst using the testing dataset. 376 

The best fit is affected by an error of 1 %, while the bad fit of the model is affected by an error of 40 %. The average 377 

error is equal to 15 % and for testing dataset the value of R
2 

is 86 %. The model tends to underrate the energy 378 

consumption; in fact, 16 cases of 27 show an estimated heating energy consumption that is lower than the actual value. 379 

The validation test demonstrates that the model has an adequate estimation ability.  380 

3.3 Classification and Regression Tree 381 

In order to develop the CART, the training dataset and the test dataset used are the same as the ones used in the 382 

regression model. The CART algorithm selected five parameters from the database to model input variables (Table 6). 383 

The decision tree was constructed to estimate the heating energy consumptions. The rules set for the arrest of the tree 384 

are as follows:  385 

 minimum number of cases (parents node): 2  386 

 minimum number of cases (children node): 2  387 

 E = 1. 388 

The tree includes a total of eight leaf nodes that represent the final classes. The estimation of the heating energy 389 

consumptions of each leaf node corresponds with the average of cases included in it. The algorithm can be translated 390 

into a set of decision rules that take the following form: if antecedent conditions, then consequent conditions.  Table 7 391 

presents the results of the CART in terms of the decision rules for the training dataset, starting from the root node and 392 

following all the way to each leaf node.  393 

The decision rules can be used to estimate the EUIst target level of a new school building having similar features. For 394 

example, looking at the first rules (Table 7), the EUIst level can be estimated as follows: 395 

Step 1: The root node is the starting point for the estimation. Table 7 shows that the value of the VOL variable should 396 

be examined first. If the VOL is higher or equal to 33195 m
3
, then it is possible to go to the next step. 397 

Step 2: examine the value of the SUR variable; if SUR is lower or equal to 12818 m
2
, the EUIst level of the school 398 

building is 968 MWh.  399 

The CART carries out a sensitivity analysis before creating the decision rules in order to select the variables more 400 

correlated with the heating energy consumptions. In fact, the variables selected by the algorithm are characterised by 401 

high correlation coefficients (see Figure 6). The other factors (heating degrees days, thermal transmittance of walls, 402 

number of pupils and classrooms, average seasonal system efficiency, and annual operating time) do not appear in the 403 

decision tree, because they were excluded during the pruning process.  404 

As previously mentioned, the accuracy of the decision tree must be evaluated before it is applied to a new dataset. Since 405 

the estimated values correspond to the mean value of the data included in the node, the estimation will always be 406 

affected by an error. For this reason, it is appropriate to associate a confidence interval for each estimated value. The 407 

confidence intervals with a 95 % probability of containing the true parameters were calculated and the results are shown 408 

in Table 8. 409 
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The decision tree was applied to the testing dataset and the results are reported in Figure 8. The best fit is affected by an 410 

error of 2 %, while the model’s bad fit is affected by an error of 33 %. The average error is equal to 13 %, and the value 411 

of R
2 
for the testing dataset is 86 %.  412 

3.4 Models comparison  413 

Two estimation models were evaluated based on their ability to estimate heating energy consumption in school 414 

buildings. Although they share the same goal, these models are based on different methodologies. To understand the 415 

possibilities and limitations of both, a residuals analysis is needed. The residuals are often used as an indicator to 416 

validate a model. The basic hypothesis is that the residuals, i.e. the errors, are randomly distributed. Moreover, they 417 

should not be correlated with the dependent or independent variables and the average value of the residuals should be 418 

equal to zero. The last hypothesis was verified for both of the models. The value is less uncertain for the residuals of 419 

CART than for the MLR model. No significant correlation was identified between the variables in both of the models. 420 

Comparing the goodness of fit of the two models, in percentage terms, MLR model commits an average error of 15 %, 421 

while the CART commits an average error equal to 13 %. In particular, the variance explained by the two methods is 422 

equal to 86 %. The residuals analysis and the coefficient of determination are not enough to evaluate the performance of 423 

the estimation models. Three other criteria have been used to test the performance of both models, the Mean Absolute 424 

Error (MAE) the Root Mean Square Error (RMSE) and the Mean Absolute Percentage error (MAPE).These parameters 425 

are shown in the following equations: 426 
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            (18) 429 

where yi is the monitored heating energy consumptions and ŷi is the estimated heating energy consumptions and N is 430 

the sample size. 431 

Table 9 gathers the results of the error analysis. The three indexes for the CART are always lower than the values 432 

estimated for the MLR model. The MAPE values are very similar for both models, but the MAE and the RMSE, 433 

considering the same testing dataset, are lower for the CART. A low RMSE value means that the error is characterised 434 

by a low dispersion. This is more clear in Figure 9, where a comparison between measured and estimated EUIst is 435 

reported with a box-plots representation.  436 

The range of the measured EUIst is comparable with the estimated outputs of both models. In fact, the median values for 437 

the three bars is equal. The lower and upper quartile values of the measured data and the data estimated with CART are 438 

quite close. This confirms that the MLR model tends to underrate the heating energy consumption (minimum, median, 439 

and lower quartile are closer compared to the monitored data), while the CART’s output is unbiased. The results show a 440 

strong relationship between the dependent variables and the heating energy consumptions. In particular, the most 441 

influential variables in the MLR model (gross heated volume, heat transfer surface, boiler size, and thermal 442 

transmittance of windows) are exactly the same factors that CART selected to create the decision rules. It can be 443 
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concluded that both of the estimation models were correctly developed. CART’s performance is slightly better than that 444 

of MLR model, as demonstrated by the results presented earlier (residual analysis, R
2
, MAE, RMSE, and MAPE).  445 

4. Discussion 446 

The analysis of CRESME [2] shows that the Italian school building stock could achieve energy savings of about 48.3 % 447 

and shift from a current energy consumption rate of 9.6 TWh/yr to a target value of 5.0 TWh/yr. Similar results may be 448 

obtained for public directional buildings and dwellings. However, a more detailed analysis may be conducted at the 449 

local level, enabling a better definition of actual planning actions and economic assessments. 450 

The actions that a local authority may adopt to challenge energy savings in the construction sector include:  451 

- defining a public building portfolio (building stocks) and reference performance benchmarks; 452 

- setting simple thresholds for energy performance, using existing energy data; 453 

- setting a priority action list for the energy management and renovation of the building portfolio;  454 

- adopting economic policies to promote the most relevant actions. 455 

These actions may be part of an effective energy plan, but they require a set of technical steps: all of the considered 456 

asset’s fundamental data must be collected, gathered, and assembled in an appropriate database, eventual outliers must 457 

be processed, and an analysis then ultimately produces effective decision rules. These include both the planning of 458 

ordinary management activities and strategic planning targeting energy efficiency improvements.  459 

The choice of the most adequate and accurate estimation model to perform the required analysis, knowing its 460 

possibilities and limitations, is crucial in order to correctly inform the following local authority actions. 461 

The estimation accuracy of the two models analysed in the present paper showed to be influenced by the nature of the 462 

dataset, in terms of its density and how uniform the frequency distribution is. The CART is based on binary splitting 463 

criteria of the response variable as a function of the influencing variables. It performs well when the leaf nodes are 464 

characterised by values that are close to the mean (low confidence intervals). In this case also numerical variables can 465 

be used as target attribute. However, generally the CART algorithm is used to classify categorical attribute. On the other 466 

hand, a non-uniform dataset could make the MLR model incapable of estimating unbiased regression coefficients.  467 

The MLR model requires knowing the exact values of all input variables. This is a weakness, in fact, as the precise 468 

value of some of the variables, such as the thermal transmittance of walls/windows or heat transfer surface, is not easily 469 

obtained or readily available for existing buildings. Moreover, the model requires the input parameters to be 470 

standardised. For this reason, it is not easy for inexperienced users to interpret and use. On the other hand, the MLR 471 

model can be used to create benchmarks [36]. A benchmark value may be used as a target to be reached or exceeded 472 

and may prove quite useful to guide designers towards the optimal technical and economical solution. This is not 473 

possible with the CART. 474 

Despite being a particular data mining technique, the CART’s output consists of a set of decision rules that even non-475 

experts can easily understand and use. Useful information can be obtained from this model, for example, it helps to 476 

understand a building’s energy consumptions pattern and how to optimise a building’s design. The algorithm 477 

automatically selects the different parameters as predictors. These are used to split the nodes of the decision tree, and 478 

their proximity to the root node indicates the strength of the influence and the number of records impacted. By 479 

examining the decision rules (see table 7), one can identify what primary factors account for the energy demand profiles 480 

of the schools. Among the considered factors, the root node, i.e. gross heated volume, indicates that the size of the 481 
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schools is the most important element in determining energy demand. The heating energy consumption of large school 482 

buildings (Rules 1 – 2) is only influenced by the gross heated volume and heat transfer surface. Instead, in medium size 483 

school buildings (Rules 6 – 7 – 8), the heating energy consumption is influenced by four significant factors (gross 484 

heated volume, heat transfer surface, boiler size, and thermal transmittance of windows). Finally, the heating energy 485 

consumption of small size school buildings (Rules 3 – 4 – 5) is a function of two geometric factors (gross heated 486 

volume and heat transfer surface) and one construction feature (thermal transmittance of windows).  487 

The accuracy of MLR and CART models results quite good also compared with values obtained by other researches. 488 

For example in [16], eight different regression models (Linear – Logarithmic – Quadratic – Cubic – Inverse – Linear 489 

and Inverse – Power – S – Exponential)  were developed to estimate the energy consumptions of 105 schools located in 490 

Germany. The linear and inverse regression model showed the best fit with a MAPE of 17 %. Thewes et al. [17] 491 

developed a regression model able to explain 53 % (R
2 

= 53 %) of electrical and heating energy consumption variance 492 

for 68 school buildings situated in Luxembourg. In [15], a multiple regression model was developed to estimate daily 493 

electricity consumption of an administration building located at the Southwark campus of London South Bank 494 

University in London. The final model has an adjusted R
2 
value of 88 %.  495 

No example of the CART model used for the estimation of heating energy consumption in schools is available. 496 

Therefore, only results obtained for other building types may be reported. Yu et al. [18], used a decision tree and 497 

decision rules to classify the EUI level of a new residential building in Japan. The C4.5 algorithm was used with a 498 

percentage error between 0.2 and 141.9 % (average error equal to 25 %), on the basis of 55 records for the training 499 

dataset and 12 records for the test dataset. 500 

5. Conclusion 501 

The present work studied two estimation models, based on different modelling methodologies, and applied them to 502 

estimate the heating consumption of school buildings in the north of Italy. The methods compared are: a multiple linear 503 

regression model and a classification and regression tree. While MLR model have been successfully applied in former 504 

works, data mining techniques, such as the decision tree, are a newly emerging analysis tool. The application of the 505 

decision tree to school buildings was demonstrably reliable in terms of the heating energy consumption estimation. The 506 

variance explained by both models is 86 %, but the decision tree shows lower errors, evaluated by means of the MAE, 507 

RMSE, and MAPE. Moreover, the gross heated volume, heat transfer surface, boiler size, and thermal transmittance of 508 

windows, were the parameters identified as primarily influencing the heating energy consumption among the considered 509 

school building stock. 510 

The two methods are complimentary, not antagonistic, and show different strengths and weaknesses, as discussed in this 511 

paper. The greatest advantage of the CART is that the output consists of a set of practical decision rules that decision 512 

makers can quickly use. It also provides useful information on the influencing variables for each leaf node representing 513 

a sub-dataset, i.e. a homogenous class of school buildings.  514 

The MLR model output consists of an equation including all of the major variables affecting heating energy 515 

consumption. Moreover, the partial standardised regression coefficients provide information on the most influencing 516 

input variables, making it possible to carry out a sensitivity analysis. Finally, the MLR model can be used to perform 517 

benchmark analyses. 518 

Since the variability of the analysed sample is large enough to represent all school buildings in the north of Italy, the 519 

developed models can be used to estimate the heating energy requirements of new structures whose characteristics are 520 
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within the ranges (for each variable) reported for the training dataset of the models. Similar models may moreover be 521 

developed, on the basis of other database, to estimate the heating energy requirements of different building types, since 522 

the model showed to be reliable and robust. 523 

Future research should concern the possibility to couple the two models, in order to increase further the estimation 524 

capability. When the data of each final class of the CART are characterised by a large confidence interval, the 525 

performance of the model decreases. For each of these nodes is therefore possible to develop a MLR model, since each 526 

node is made by a sub-dataset of buildings with homogenous features. This combination may exploit the best 527 

characteristic of each of the two models; however, it requires new and lager training and testing database. 528 
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Variables  Minimum Maximum Mean Standard Deviation 

Real Heating Degree Days [DD] 2537 3197 2701 161 

Gross Heated Volume [m3] 2900 86830 31464 20010 

Heat Transfer Surface [m2] 1905 25946 9866 5404 

Aspect Ratio [m-1] 0.20 0.80 0.35 0.10 

Floor Heated Area [m2] 1578 18254 6791 4073 

Building Height [m] 5 28 14.50 4.50 

Numbers of Floors [n°] 2 7 3 1.5 

Thermal Trasmittance of Walls [W/m2 K] 0.40 2.39 1.05 0.50 

Thermal Trasmittance of Windows [W/m2 K] 2.90 6.50 4.30 0.90 

Boiler Size (Heat input) [kW] 106 8000 1755 1345 

Number of Classrooms [n°] 6 65 27 14 

Number of Pupils [n°] 75 1340 583 320 

Annual Operating Time [h] 889 1888 1444 2450 

Average Seasonal System Efficiency [%] 0.45 0.86 0.64 0.07 

Tab 1 Statistical descript ion of the variables inf luencing the heating energy consumption  

 

Table 1
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Parameters  Limit Values Calculated Values 

z-score < 3 No Values Higher 

Mahalanobis Distance  27.87 No Values Higher 

Index of Mardia 99 94.85 

Cook Distance  1 0.29 

Leverage Values 0.60 No Values Higher 

Tab. 2  Indexes for the  outliers  detection analysis  

 

 

 

Table 2
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Variables VIF 

Real Heating Degree Days [DD] 1.53 

Gross Heated Volume [m3] 24.28 

Heat Transfer Surface [m2] 19.25 

Aspect Ratio [m-1] 4.96 
Building Height [m] 2.55 

Numbers of Floors [n°] 2.46 

Thermal Trasmittance of Walls [W/m2 K] 1.54 

Thermal Trasmittance of Windows [W/m2 K] 1.13 
Boiler Size (Heat input) [kW] 3.10 

Number of Classrooms [n°] 35.90 

Number of Pupils [n°] 36.75 
Annual Operating Time [h] 2.02 

Average Seasonal System Efficiency [%] 1.347 

Tab. 3 Variance Inf lat ion Factors (VIF)  
 

Table 3
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Variables  Minimum Maximum Mean Standard Deviation 

Real Heating Degree Days [DD] 2537 3113 2696 159 

Gross Heated Volume [m3] 5065 78532 28745 17497 

Heat Transfer Surface [m2] 1905 24206 9354 5122 

Thermal Trasmittance  of Walls [W/m2 K] 0.40 2.39 1.05 0.40 

Thermal Trasmittance  of Windows [W/m2 K] 2.90 6.50 4.25 0.95 

Boiler Size (Heat input) [kW] 141 3807 1424 845 

Number of Pupils [n°] 115 1194 530 266 

Annual Operating Time [n°] 889 1848 1426 250 

Average Seasonal System Efficiency [%] 0.45 0.77 0.64 0.06 

Tab 4  Stat istical descript ion of the variables included into MLR model  

 

Table 4
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Variables β b t-value 

   Intercepts 662757 - 3.82 

X1
*  Z: Real Heating Degree Days 16954 0.36 2.11 

X2
*  Z: Gross Heated Volume 203734 0.86 6.29 

X3
*  Z: Heat Transfer Surface 22609 -0.44 2.49 

X4
*  Z: Thermal Trasmittance of Walls -12285 -0.39 -2.44 

X5
*  Z: Thermal Trasmittance of Windows -24142 -0.61 -2.89 

X6
*  Z: Boiler Size (Heat input) 103167 -0.64 3.40 

X7
*  Z: Number of Pupils 55185 0.51 2.39 

X8
*  Z: Annual Operating Time 9940 0.03 0.35 

X9
*  Z: Average Seasonal System Efficiency -1131 -0.04 -0.55 

Tab. 5 Estimated coefficients(β)  part ial standardized regress ion coefficients (b)  and t -va lues 

 

Table 5
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N° VARIABLE NAME TYPE Unit of measure 

1 Standard Energy Use Intensity EUIST Numerical MWh 

2 Heated Gross Volume VOL Numerical m3 

3 Heat Transfer Surface SUR Numerical m2 

4 Boiler Size (Heat input) POW Numerical kW 

5 Thermal Transmittance of Windows Uwindows Numerical W/m2K 

Tab 6 Variables selected in the CART  
 

Table 6
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N° RULES DECISION RULES 

1 If VOL ≥ 33195 m3 and SUR is < 12818 m2 then EUIst is 968 MWh 

2 If VOL < 33195 m3 and SUR is ≥ 12818 m2 then EUIst is 1183 MWh 

3 If VOL < 33195 m3 and SUR < 2460 m2 then EUIst is 140 MWh 

4 If VOL < 33195 m3 and SUR < 6203 m2 and SUR ≥ 2460 m2 and Uwindows is < 4.65 W/m2K then EUIst is 303 MWh 

5 If VOL < 33195 m3 and SUR < 6203 m2 and SUR ≥ 2460 m2 and Uwindows is ≥ 4.65 W/m2K then EUIst is 421 MWh 

6 If VOL < 33195 m3 and SUR is ≥ 6203 m2 and Uwindows is < 4.54 W/m2K then EUIst is 521 MWh 

7 If VOL < 33195 m3 and SUR is ≥ 6203 m2 and Uwindows is ≥ 4.54 W/m2K and POW is < 1336 kW then EUIst is 708 MWh 

8 If VOL < 33195 m3 and SUR is ≥ 6203 m2 and Uwindows is ≥ 4.54 W/m2K and POW is ≥1336 kW then EUIst is 816 MWh 

Tab 7 Decision rules   

Table 7
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RULES 
ESTIMATED EUIst 

[MWh] 

UPPER  

CONFIDENCE  

LEVEL 
[MWh] 

LOWER 

CONFIDENCE 

LEVEL 
[MWh] 

1 968 1004 931 

2 1183 1304 1061 

3 140 214 56 
4 303 328 279 

5 421 472 369 

6 521 604 439 
7 708 774 641 

8 816 832 801 

Tab 8 Confidence interval of est imated EUI s t  (CART) 
 

Table 8
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INDEX MLR MODEL  CART 

MAE (MWh) 108 102 
RMSE (MWh) 145 142 

MAPE (%) 15 14 

Tab 9 Error comparison for MLR model and CART 

Table 9
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Fig.1 Framework of the research  

 

Fig.2 Sample description: gross heated volume and external walls surface  

 

Fig.3 Sample description: thermal transmittance of walls and windows 

 

Fig.4 Sample description: boiler size (heat input) and average  

seasonal system efficiency 

 

Fig.5 Sample description: heating energy consumption 

 

Fig.6 Correlation coefficients 

 

Fig. 7 Distribution plot between the monitored and the estimated EUIst (MLR Model 

testing dataset) 

 

Fig. 8. Distribution plot between the monitored and the estimated EUIst 

(CART - testing dataset) 

 

Fig. 9. Box-plots of monitored and estimated heating energy consumption 
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Figure 1
Click here to download high resolution image

http://ees.elsevier.com/enb/download.aspx?id=604284&guid=2efc9d89-e4a4-41db-86f7-ebd103a1b31b&scheme=1
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Figure 2
Click here to download high resolution image

http://ees.elsevier.com/enb/download.aspx?id=604285&guid=e88661d8-99f0-4195-a571-bb6df6888d5b&scheme=1
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Figure 3
Click here to download high resolution image

http://ees.elsevier.com/enb/download.aspx?id=604286&guid=730daff5-df6b-4d35-a4d2-68a8667ed5f7&scheme=1


Page 31 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 4
Click here to download high resolution image
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Figure 5
Click here to download high resolution image

http://ees.elsevier.com/enb/download.aspx?id=604288&guid=44b8ead3-a60c-4901-b2aa-60b11bd8d1a7&scheme=1
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Figure 6
Click here to download high resolution image

http://ees.elsevier.com/enb/download.aspx?id=604289&guid=d7dc09e5-2d93-416b-b790-aca3b5adf24d&scheme=1
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Figure 7
Click here to download high resolution image

http://ees.elsevier.com/enb/download.aspx?id=604290&guid=57292cf3-5b09-4e3f-abbe-131f80bbb468&scheme=1
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Figure 8
Click here to download high resolution image

http://ees.elsevier.com/enb/download.aspx?id=604291&guid=bd8d2b88-2661-43c5-9676-e92ba295a15d&scheme=1
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Figure 9
Click here to download high resolution image
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