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A B S T R A C T   

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by atypical brain 
anatomy and connectivity. Graph-theoretical methods have mainly been applied to detect altered patterns of 
white matter tracts and functional brain activation in individuals with ASD. The network topology of gray matter 
(GM) abnormalities in ASD remains relatively unexplored. 
Methods: An innovative meta-connectomic analysis on voxel-based morphometry data (45 experiments, 1,786 
subjects with ASD) was performed in order to investigate whether GM variations can develop in a distinct pattern 
of co-alteration across the brain. This pattern was then compared with normative profiles of structural and 
genetic co-expression maps. Graph measures of centrality and clustering were also applied to identify brain areas 
with the highest topological hierarchy and core sub-graph components within the co-alteration network observed 
in ASD. 
Results: Individuals with ASD exhibit a distinctive and topologically defined pattern of GM co-alteration that 
moderately follows the structural connectivity constraints. This was not observed with respect to the pattern of 
genetic co-expression. Hub regions of the co-alteration network were mainly left-lateralized, encompassing the 
precuneus, ventral anterior cingulate, and middle occipital gyrus. Regions of the default mode network appear to 
be central in the topology of co-alterations. 
Conclusion: These findings shed new light on the pathobiology of ASD, suggesting a network-level dysfunction 
among spatially distributed GM regions. At the same time, this study supports pathoconnectomics as an insightful 
approach to better understand neuropsychiatric disorders.   

1. Introduction 

Autism spectrum disorder (ASD) is the diagnostic label that refers to 
a set of neurodevelopmental conditions characterized by impairment in 
social abilities, repetitive behaviors, restricted interests and abnormal 
sensory processing (American Psychiatric Association, 2013). This 
cluster of conditions reports clinical features persisting throughout the 
lifespan (Brighenti et al., 2018; Keller et al., 2020; Lord et al., 2018) and 
afflicting approximately 1 in 54 children aged 8 years (Baio et al., 2018). 

Over the past decades, neuroimaging studies have suggested that 
ASD is associated with both anatomical and functional brain abnor
malities (for a review see Ecker et al., 2015). In particular, voxel-based 
morphometry (VBM), a univariate technique capable of quantifying 
morphometric differences between diagnostic groups (Ashburner and 
Friston, 2000), has been used extensively to elucidate the neuroanatomy 
of autism. In addition, coordinate-based meta-analyses (CBMAs) have 
identified concordant structural effects across independent ASD studies, 
showing focal aberrations in multiple areas such as the cerebellum, 
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amygdala-hippocampus complex, cingulate cortex, parieto-occipital 
pole, temporal and prefrontal cortices (Carlisi et al., 2017; Cauda 
et al., 2014, 2011; DeRamus and Kana, 2015; Liu et al., 2017; Lukito 
et al., 2020; Nickl-Jockschat et al., 2012; Via et al., 2011). These 
important findings notwithstanding, the intrinsic mechanisms and 
network topological organization that underpin the distribution of gray 
matter (GM) abnormalities in ASD remains largely unappreciated. 

In recent years, advances in graph-theoretical analysis have begun to 
provide a conceptual framework for studying the topological properties 
of complex brain systems, which has led to the new field of con
nectomics. This line of research has been aiming to comprehensively 
map large-scale brain networks as a collection of nodes (brain regions or 
sub-areas) and edges (neural pathways or statistical relationships) 
(Sporns, 2013). The conceptual and empirical development of con
nectomics presents novel opportunities for understanding neuropsy
chiatric conditions, which now tend to be conceived of as brain networks 
disorders (Deco and Kringelbach, 2014; Fornito et al., 2017; Rubinov 
and Bullmore, 2013; van den Heuvel and Sporns, 2019). Moreover, there 
is an emerging consensus that the investigation of neuropathological 
patterns is ever more essential to improve diagnosis and prediction of 
mental illness (Cao et al., 2015; Huys et al., 2016; Yahata et al., 2017). 
This view is particularly relevant for psychiatric disorders. The U.S. 
National Institute of Mental Health’s Research Domain Criteria (RDoC) 
takes into account network-level abnormalities as a core feature for 
understanding the neurobiology of mental disorders, with the aim to 
integrate the current symptom-based diagnostic classifications (Insel 
et al., 2010; Insel, 2014). 

Despite advances in neuroimaging, graphs of GM alterations are 
particularly difficult to investigate. So far only a few studies have 
explored differences in GM systems in ASD using source-based 
morphometry (SoBM) (Grecucci et al., 2016; Pappaianni et al., 2018) 
and anatomical covariance, an MRI measure of cortical thickness or 
density relationships between brain areas (Evans, 2013). Although the 
neurobiological basis of anatomical covariance is still poorly understood 
(Alexander-Bloch et al., 2013), research on this topic has produced 
important findings in characterizing abnormal brain structures in ASD 
that appear to be part of the salience and default mode (Valk et al., 2015; 
Zheng et al., 2020; Zielinski et al., 2012), fronto-temporal (Bernhardt 
et al., 2014; Sharda et al., 2017), striatal (Eisenberg et al., 2015), 
parieto-occipital and limbic (Balardin et al., 2015; Bethlehem et al., 
2017; Cardon et al., 2017) networks. A network neuroscience approach 
can better assess the anatomical alterations of ASD, reporting not only 
the sites of the alterations but also their mutual relationships. 

An innovative computational methodology has been devised 
recently to perform morphometric co-alteration networking (MCN) anal
ysis of human brain pathology, which can be defined as the investigation 
of abnormal conjoint patterns formed by localized GM co-altered regions 
(Cauda et al., 2018a). This type of analysis is a meta-connectomic and 
data-driven method, able to extend the information available from 
voxel-wise data. MCN can statistically derive the pathological network 
of a given brain disease using Patel’s κ, an empirical Bayesian technique 
suitable for detecting the probability that alterations of two brain re
gions can co-occur (Patel et al., 2006; Smith et al., 2011). Different from 
the anatomical covariance method, MCN can identify a network in 
which the pathological modifications of GM are statistically related. It is 
therefore possible to examine the topological properties of GM co- 
alterations rather than those related to within-group anatomical 
covariance (Cauda et al., 2018a). 

This innovative approach is well-suited to the study of pathophysi
ological alterations of brain disorders, which tend to be distributed 
across the brain according to network-like patterns (Fornito and Bull
more, 2015; Iturria-Medina and Evans, 2015; Raj et al., 2012; Stam, 
2014). It has been proposed that mutual relationships of morphometric 
variation between two or more structurally defined regions reflects their 
shared vulnerability to damage due to processes of neuronal degenera
tion or neurodevelopmental factors (e.g., atypical dendritic growth, 

cellular migration, myelination, synaptogenesis and axonal path
finding), and is mediated by molecular/cellular trophic and genetic ef
fects (for a review see Fornito et al., 2015; Raj and Powell, 2018). 
Evidence for such mutual alteration distributions in autism exists 
(Casanova, 2006; Cauda et al., 2014; Galvez-Contreras et al., 2017; 
Nickl-Jockschat and Michel, 2011; Palmen et al., 2004; Wegiel et al., 
2014; Zielinski et al., 2012); however, these distributions have not yet 
been comprehensively understood both from a micro- and macro-level 
perspective. Therefore, the identification of statistically robust and 
anatomically plausible co-alteration networks by means of the MCN 
methodology has the potential to reveal more about ASD pathophysi
ology than a canonical GM approach, since it better assesses the complex 
nature of morphometric abnormalities underlying the clinical hallmarks 
of disease. 

Moreover, an emerging literature suggests that certain brain regions 
are preferentially vulnerable to a wide range of psychiatric and neuro
logical disorders (Cauda et al., 2019b; Crossley et al., 2014; Goodkind 
et al., 2015; Liloia et al., 2018; Uddin, 2015). Typically, these regions 
are highly connected and play a pivotal role in supporting the integrity 
of brain network architecture (Buckholtz and Meyer-Lindenberg, 2012; 
Bullmore and Sporns, 2012; Crossley et al., 2014). In relation to their 
high topological centrality, these regions are to be conceived as patho
logical hubs capable of influencing the distribution of alterations within 
the cerebral parenchyma (Manuello et al., 2018; van den Heuvel and 
Sporns, 2013; Worbe, 2015; Zhou et al., 2012). 

To date, the MCN methodology has been applied to find evidence of 
abnormal conjoint patterns in transdiagnostic meta-analyses (Cauda 
et al., 2020, 2018a, 2018b; Mancuso et al., 2020; Nani et al., 2021) and 
in studies on single neurological conditions such as Alzheimer’s disease 
(Manuello et al., 2018) and chronic pain (Tatu et al., 2018). However, 
the presented approach has never been used to analyze data from in
dividuals with ASD or other psychiatric conditions. Following the hy
pothesis that dysfunction at the systems’ level characterizes this 
neurodevelopmental disorder (Ecker et al., 2013; Geschwind and Levitt, 
2007), here we aim to provide a unique and comprehensive description 
of network topology of regional GM co-alterations in individuals with 
ASD. To further clarify the neurobiological basis of co-alterations, we 
also investigate the possible correspondence of MCN with normative 
structural and genetic co-expression connectivity. This choice is moti
vated by recent experimental proposals suggesting that the development 
of pathological alteration patterns are influenced by brain connectivity 
constraints (Cauda et al., 2020, 2018b; Shafiei et al., 2020), as well as by 
degeneration processes and maladaptive mechanisms (Fornito et al., 
2015; Zhou et al., 2012). Finally, since we believe that the application of 
network science tools offer a powerful way of better understanding how 
pathology affects the brain (Filippi et al., 2013; Fornito and Bullmore, 
2015; Fornito et al., 2017), this study takes advantage of graph- 
theoretical measures of centrality and clustering in order to provide 
new insights into large-scale GM co-alteration patterns in ASD. 

2. Materials and methods 

2.1. Data sources and search strategy 

Meta-data of interest were identified in BrainMap (Fox et al., 2005; 
Laird et al., 2005b) and MEDLINE databases. First, the VBM BrainMap 
sector (Vanasse et al., 2018) was queried employing the software 
package Sleuth (v.3.0.3). The search logic was composed as follows:  

• [Experiments Contrast is Gray Matter] AND [Experiments Context is 
Disease Effects] AND [Subjects Diagnosis is Autism Spectrum Disorder] 
AND [Experiments Observed Changes is Controls > Patients]; 

A further systematic search was also carried out on the PubMed 
search engine (https://www.ncbi.nlm.nih.gov/pubmed/). Keywords 
terms were used as follows: 
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• (“Autism spectrum disorder” [title/abstract] OR “ASD” [title/abstract] 
OR “Autism” [title/abstract]) AND (“voxel-based morphometry” [title/ 
abstract] OR “VBM” [title/abstract]). 

The search protocol adheres to the PRISMA Statement international 
guidelines (Liberati et al., 2009; Moher et al., 2009). This study is also 
compliant with the consensus-based rules for neuroimaging CBMA in 
psychiatric disorders (Muller et al., 2018; Tahmasian et al., 2019). 

Up until December 2019, 118 full-text articles were reviewed sys
tematically. We included experiments published in a peer-review jour
nal a) using a whole-brain VBM analysis; b) reporting GM variations (i. 
e., decreased morphometric values) in subjects with ASD; c) adopting a 
between-group comparison with healthy controls; d) including stereo
tactic results in Talairach (TAL) or Montreal Neurological Institute 
(MNI) space. 

We removed all the experimental groups having a sample size 

Fig. 1. Pipeline workflow of the method. (A) Meta-analytic estimation: For each VBM experiment included, the anatomical likelihood estimation (ALE) algorithm 
generated a modeled alteration (MA) map as the union of the 3-D Gaussian probability distribution of each alteration focus. (B) Alteration matrix creation: The 
general ALE map was created from the union of the MA maps and was fed to a peak detection algorithm to generate regions of interest (nodes). For each VBM 
experiment, nodes were considered altered if at least the 20% of their volume overlap with a MA map included. Thus, a binary vector was generated, able to describe 
if each node is altered/unaltered in each experiment. (C) Network detection: Using the Patel’s κ index, the network of co-alteration probability was obtained. 
Specifically, the co-alteration strength was calculated between each one of such vectors and all the others. (D) Topological analysis: Using the resulting co-alteration 
matrix, graph-theoretical measures of centrality and clustering were computed. 
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smaller than 10 participants as previous recommended (Muller et al., 
2018; Norman et al., 2016; Tahmasian et al., 2019). We also excluded 
experiments based on region-of-interest (ROI) analysis that did not 
analyze the whole brain (Muller et al., 2018). Additionally, to avoid the 
possibility of analyzing the same participants several times in a single 
study, we selected only the alteration foci reported by the largest 
experiment or the ones divided into diagnostic subcategories (for further 
details see also Table S1 – Checklist for neuroimaging CBMA). 

2.2. Morphometric co-alteration network identification 

2.2.1. Node definition 
The anatomical likelihood estimation (ALE) results were used as 

priors for the meta-connectomic analysis. ALE is the most employed 
CBMA technique (Tahmasian et al., 2019); it can identify the spatial 
concordance of the morphological brain alterations between different 
neuroimaging experiments (Eickhoff et al., 2012, 2009). For each 
included experiment, the ALE algorithm generated a modeled alteration 
(MA) map as the union of the 3-D Gaussian probability distribution of 
each stereotactic coordinate (Fig. 1A). The final ALE map was obtained 
from the union of the MA maps. 

To produce the MCN set of nodes, we individuated the local maxima 
of the ALE maps using a peak detection algorithm. Only the local max
ima exhibiting the highest values survived this stage (i.e., values greater 
than the 90 percentile of the unthresholded ALE distribution). This step 
was crucial to consider only the altered loci with a very high consensus 
among the selected experiments. Thus, we reduced the number of nodes 
by adding a minimum spatial distance of 10 mm and a spherical ROI 
with a diameter of 10 mm was superimposed on the resulting peaks. The 
aforementioned threshold values employed are based on the quantita
tive estimates of the spatial uncertainty associated with the stereotactic 
coordinate in CBMA provided by Eickhoff et al. (2009), who evidenced 
an uncertainty in a spatial location with a mean of 10.2 mm (StDev =
0.4 mm). Therefore, the rationale behind this step is to minimize the 
redundancy of the co-alterations relating to the same cluster of variation 
that could potentially affect our subsequent topological analysis (Man
uello et al., 2018). The Talairach Daemon (Lancaster et al., 2000) was 
finally used to label the anatomical areas. 

To determine whether these nodes were altered in a given experi
ment, an MA map was produced for each experiment (Laird et al., 
2005a). A 3-D Gaussian distribution of probability was built around each 
reported coordinate of a given experiment, for which standard deviation 
is smaller for a larger number of subjects, as proposed by Eickhoff et al. 
(2009). Then, MA was thresholded at p = 0.01 and overlaid on the set of 
nodes. Each node was considered to be altered for that experiment if at 
least 20% of its volume overlapped with a significant MA voxel. This 
step was crucial to avoid the detection of a false positive, given the 
possibility of considering a node as altered if it only includes the pe
riphery of a distribution probability (Mancuso et al., 2019). For an in- 
depth and comprehensive discussion of the methodological steps, see 
also Manuello et al. (2018). 

2.2.2. Co-alteration probability quantification 
The set of nodes was used to build the MCN in ASD. We generated an 

alteration matrix N × M, where each column corresponds to a node and 
each row represents an included experiment (Fig. 1B). By means of a 
Bernoulli generation data model, we determined the probability distri
bution of joint values of alteration for each pair of nodes. For each 
couple of nodes (a and b) it is possible to describe their state of co- 
occurrence with two binary variables representing four cases: both a 
and b altered; a altered and b non-altered; a non-altered and b altered; 4) 
both a and b non-altered: 

θ1 = P(a = 1, b = 1)

θ2 = P(a = 1, b = 0)

θ3 = P(a = 0, b = 1)

θ4 = P(a = 0, b = 0)

Starting from the marginal probabilities, we calculated the co- 
alteration probability strength between each pair of nodes using the 
Patel’s κ index (Patel et al., 2006; Smith et al., 2011) as: 

κ =
(θ1 − E)

D(max(θ1) − E ) + (1 − D)(E − min(θ1))

where 

E = (θ1 + θ2)(θ1 + θ3)

D =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϑ1 − E
2(max(ϑ1) − E )

+ 0.5, if ϑ1 ≥ E

0.5 −
ϑ1 − E

2(E − min(ϑ1) )
, otherwise  

min(θ1) = max(0.2θ1 + θ2 + θ3 − 1)

max(θ1) = min(θ1 + θ2, θ1 + θ1 + θ3)

The numerator of the fraction calculates the difference between the 
probability that a and b occur to be co-altered and the expected prob
ability E that a and b occur to be co-altered independently. E is the prior 
information of this Bayesian equation, which, in a frequentist frame
work, would be disregarded or treated as not fixed by the data. The 
denominator calculates a weighted normalizing constant so as to have 
the κ ranging from –1 and 1: an index that is close to 1 denotes high co- 
alteration (i.e., co-occurrence) between the nodes (Fig. 1C). The statis
tical significance of κ is assessed by means of a Monte Carlo simulation 
algorithm, a multinomial and generative model, which determines an 
estimate of p(κ|z) by sampling a Dirichlet distribution and by calculating 
the proportion of the samples in which κ > e, where e is the threshold of 
statistical significance set to 0.01 (1,000 permutation runs). The ob
tained co-alteration matrix reports values proportional to the statistical 
occurrence between the alterations of the brain areas taken into account 
(Cauda et al., 2018a). 

2.3. Topological analysis 

Nodes and edges are the basic units of every network, and their ac
curate definition is of fundamental importance for a valid model of a 
complex system (Butts, 2009). Here, a large-scale brain analysis was 
employed: every node was defined as a peak of GM alteration, while the 
undirected binary edges represented the values of the thresholded 
Patel’s κ. To determine the topological properties of the MCN in ASD, the 
corresponding co-alteration matrix was analyzed with Cytoscape 
(v.3.7.2.) (https://cytoscape.org/). Cytoscape is a bioinformatics soft
ware platform, which allows the analysis, modeling and visualization of 
biological networks and complex systems (Su et al., 2014). Then, the 
software application CentiScaPe (v.2.2) (Scardoni et al., 2014) was used 
to examine the topological properties of the nodes (Fig. 1D). 

2.3.1. Measures of centrality 
For each node of alteration, degree, closeness, and betweenness were 

determined in order to quantify the relevance of the node in the context 
of the MCN. These measures are cardinal indices of topological cen
trality (Freeman, 1978) and have been used collectively to examine the 
central network position of brain areas in both structural and functional 
connectomes (for a review see van den Heuvel and Sporns, 2013). 
Among them, degree centrality (DC) is the simplest measure, which is 
formally defined as: 

CD(i) = ki =
∑

i∕=j

Aij 
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In the formula, Aij is a matrix of adjacency. The DC is defined as the 
number of undirected links that are incident to a node, assuming that 
nodes with high connections exert more influence over network struc
ture and function. 

The closeness index can be conceived as the average tendency to 
node proximity or isolation. The closeness is calculated by determining 
the shortest path between the given node and all the others in the graph. 
The reciprocal of the summa is then calculated. Closeness centrality (CC) 
is formally defined as the inverse of the average shortest path length: 

CC(i) =
N − 1
∑

i∕=jlij 

In the formula, lij is the shortest path length between nodesi and j. Of 
note, distance is related to the topological proximity. The CC reflects the 
integration capacity of a node, as it can be conceived as the probability 
of the node to be relevant for several other nodes. 

The betweenness index is determined by considering a pair of nodes 
(i, j) and counting the number of shortest paths connecting i and j that 
pass through another node (h). Betweenness centrality (BC) measures the 
proportion of shortest paths between all pairs of nodes in the network 
that pass through a given node. Therefore, the BC of a node i can be 
formally defined as: 

CB(i) =
1

(N − 1)(N − 2)
∑

h∕=i,h∕=j,j∕=i

lij
phj(i)

phj 

In the formula, phj(i) indicates the number of shortest paths between 
h and j going through i, phj indicates the number of shortest paths be
tween h and j, and (N − 1)(N − 2) indicates the number of couples of 
nodes that do not include node i. The normalization by phj accounts for 
the possibility that several shortest paths may exist between any couple 
of nodes. Of note, the BC value is associated with the total number of 
shortest paths connecting i and j. However, though a node can be crossed 
by only one path connecting i and j, if this path is the only one to link i 
and j, the node will have a high betweenness value. This implies that the 
node is essential in order to maintain the network connections. 

Degree, closeness and betweenness are all measures of node promi
nence because they indicate which focal points, or brain areas in our 
case, occupy a central position in the network (i.e., hubness profile). 
Conceptually, these measures exhibit a considerable overlap in both real 
and simulated networks (Bolland, 1988); however, paying attention to 
different process by which key nodes might influence the distribution of 
the network. In particular, degree and closeness tend to be highly 
intercorrelated because they are directed centrality measures between 
nodes. By contrast, betweenness remains relatively uncorrelated with 
the degree and closeness, as it is an inherently asymmetric metric, 
measuring the frequency with which a node lies along paths that link 
other nodes (Valente et al., 2008). 

Therefore, we defined node centrality on the grounds of different 
topological properties, aggregating rankings across all the measures to 
devise a more robust classification (Fornito et al., 2016). Specifically, we 
considered regions as pathological hubs when they reported the highest 
level of centrality (i.e., one standard deviation above the mean) across 
all three metrics (Fornito et al., 2016; van den Heuvel and Sporns, 
2013). 

2.3.2. Graph clustering 
To provide a more specific characterization of the core architecture 

of the MCN, a network clustering analysis was performed. We applied 
the k-core decomposition algorithm as implemented in the Brain Con
nectivity Toolbox (Hagmann et al., 2008; Rubinov and Sporns, 2010), to 
reveal the hierarchical nucleus organization of the graph by gradually 
focusing on their central cores. This decomposition consists in identi
fying specific subsets of the graph (i.e., k-cores), each obtained by 
recursively eliminating all the nodes with a degree smaller than k, until 
the degree of all the surviving nodes is higher than or equal to k. Higher 

values of coreness indicate the nodes having greater degree and a more 
central position in the network’s organization. 

2.4. Correlation with brain connectivity profiles 

To determine a possible correspondence of the MCN with normative 
patterns of brain connectivity, the Mantel’s test – MT (Mantel, 1967) 
was applied. Specifically, we tested the relationship of similarity (i.e., 
Pearson’s r) of the ASD co-alteration matrix with the structural and 
genetic co-expression connectivity matrices, respectively. The MT is a 
statistical test able to detect the correlation between two distance 
matrices. By means of a permutation test (i.e., Monte Carlo simulation), 
the significance of similarity was assessed. This step was crucial to 
overcome the problem of non-independence of elements in a distance 
matrix (Mantel, 1967). In this investigation we evaluated the statistical 
significance of any apparent departure from a zero correlation. To do so, 
each column and row of one of the two analyzed matrices was randomly 
permuted 5,000 times. The correlation was recalculated after each 
permutation, with a statistical significance consisting in the proportion 
of the permutations leading to a higher correlation coefficient. P-value 
was estimated after 5,000 permutations. 

Analyses of the relationship of similarity between matrices were 
conducted in MNI space. Thus, we renormalized TAL coordinates of the 
co-altered nodes using the ‘icbm2tal’ algorithm developed by Lancaster 
et al. (2007). 

2.4.1. Structural connectivity matrix 
The structural connectivity matrix was generated from the diffusion 

tensor imaging (DTI) data set provided by the WU-Minn Human Con
nectome Project (900 Subjects data release, 2015 Q4) (Van Essen et al., 
2013). DTI data were acquired from 842 healthy subjects using a mul
tishell diffusion scheme (diffusion sampling directions: 90, 90, 90; in- 
plane resolution and slice thickness: 1.25 mm; b-values: 1000, 2000, 
3000 s/mm2). The spatial normalization of the DTI data was conducted 
by the q-space diffeomorphic reconstruction method (Yeh and Tseng, 
2011), which can obtain the spin distribution function in the MNI ste
reotactic space (resolution: 1 mm; sampling length ratio: 1.25). Aver
aging the spike density functions of all subjects, an atlas was created. 
Thus, the generalized q-sampling imaging (GQI) method (Yeh et al., 
2010) was employed to detect the structural pathways. In this investi
gation the GQI was able to obtain 5,000 seeds in the whole-brain. Only 
the seeds corresponding to our co-altered nodes, obtained previously 
with the MCN approach, were employed to calculate the structural 
matrix by using the numbers of fiber tracts passing between two seeds 
normalized by the median length of the connecting paths. 

2.4.2. Genetic co-expression connectivity matrix 
The genetic co-expression connectivity matrix was generated from 

the microarray data sets provided by the Allen Human Brain Atlas 
(AHBA) Project (Hawrylycz et al., 2012). Complete normalized micro
array data were acquired from six healthy human brains. The AHBA data 
set was processed using the workflow pipeline for relating brain-wide 
gene expression profile to neuroimaging results developed by Arnatke
viciute et al. (2019a). The processing steps were performed as imple
mented in the code available at github (https://github. 
com/BMHLab/AHBAprocessing) (for an in-depth discussion of the 
methodological steps, see also Arnatkeviciute et al., 2019a). To note, the 
differential stability measure (Hawrylycz et al., 2015) of gene filtering 
was used to derive gene patterns expressed consistently across all AHBA 
brains. Also, the 1,000 seeds parcellation (Schaefer et al., 2018) was 
applied to identify regions spatially corresponding to the MCN nodes. 
Only the seeds corresponding to our nodes were employed to generate 
the gene expression × node matrix. 
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2.5. Distribution of the nodes across canonical networks and network- 
betweenness estimation 

To evaluate the impact of GM alterations on different functional 
large-scale networks, each co-altered node was assigned in data-driven 
manner to one of the 7 networks of the parcellation proposed by Yeo 
et al. (2011), who parceled the human cerebral cortex using resting-state 
fMRI data from 1000 healthy volunteers. Nodes falling in the basal 
nuclei and cerebellum were assigned to one of Yeo’s networks using the 
striatal (Choi et al., 2012) and cerebellar (Buckner et al., 2011) par
cellations, respectively. We tested if the spatial distribution of the 

alteration nodes across canonical networks was different from chance by 
creating 28 random GM nodes (corresponding to the number of the co- 
altered nodes of our network, see below), and repeating the procedure 
1000 times. The significance of the numerosity of each network’s nodes 
was tested against the resulting null distributions. 

For each network, its network-betweenness – NB (Cauda et al., 2020; 
Mancuso et al., 2020) was estimated as the ratio between the number of 
co-alteration edges connecting its nodes to the nodes belonging to other 
networks and the total number of edges incident upon its nodes. To test 
whether the NB of each network was significantly different from chance, 
the co-alteration network was randomized 1000 times using a Maslov- 

Table 1 
Brain areas (nodes) of the gray matter morphometric co-alteration network. Node labeling, morphometric location (Talairach Daemon Labels) and Talairach co
ordinates were expressed for both co-altered and non co-altered nodes.  

Node ID Node label Anatomical region (Brodmann area) Hemisphere Talairach Co-altered 

x y z 

1 Crus2_L Crus II (cerebellum) Left ¡44 ¡58 ¡44 Yes 
2 Crus2_R Crus II (cerebellum) Right 48 ¡58 ¡44 Yes 
3 ML9 Medial lobule IX (cerebellum) Left − 4 − 56 − 42 No 
4 FG Fusiform gyrus (BA 37) Right 26 ¡2 ¡38 Yes 
5 Crus1 Crus I (cerebellum) Right 48 − 54 − 32 No 
6 Crus1 Crus I (cerebellum) Left ¡44 ¡40 − 32 Yes 
7 BA38 Temporopolar cortex (BA 38) Right 46 12 ¡30 Yes 
8 BA28 Parahippocampal gyrus (BA 28) Right 26 ¡12 ¡28 Yes 
9 Unc Uncus (BA 20) Right 28 − 14 − 26 No 
10 Dec Declive (cerebellum) Right 24 − 84 − 22 No 
11 Amy_R Amygdala Right 24 ¡8 − 22 Yes 
12 OG Orbital gyrus (BA 11) Left − 4 40 − 22 No 
13 IFG Inferior frontal gyrus (BA 11) Left − 12 36 − 20 No 
14 RG Rectal gyrus (BA 11) Left − 6 40 − 20 No 
15 PHG Parahippocampal gyrus (BA 34) Right 20 ¡12 ¡14 Yes 
16 Hip Hippocampus Left − 18 − 6 − 14 No 
17 BA10 Superior frontal gyrus (BA 10) Left − 10 56 − 12 No 
18 OFG_R Orbitofrontal gyrus (BA 10) Right 6 58 ¡12 Yes 
19 BA37 Fusiform gyrus (BA 37) Right 48 − 60 − 10 No 
20 MTG Middle temporal gyrus (BA 37) Right 60 − 48 − 10 No 
21 Amy_L Amygdala Left ¡20 ¡4 ¡10 Yes 
22 BA47 Inferior frontal gyrus (BA 47) Left − 30 12 − 10 No 
23 MFG_R Medial frontal gyrus (BA 10) Right 6 58 − 10 No 
24 BA17 Inferior occipital gyrus (BA 17) Right 16 − 88 − 8 No 
25 Pu Putamen Left ¡20 4 ¡8 Yes 
26 OFG_L Middle orbital gyrus (BA 10) Left − 32 52 − 8 No 
27 IOG Inferior occipital gyrus (BA 18) Right 44 − 72 − 6 No 
28 Cd Caudate tail Right 38 ¡24 ¡6 Yes 
29 BA11 Middle frontal gyrus (BA 11) Left ¡34 52 ¡6 Yes 
30 Cl Claustrum Right 38 − 26 − 4 No 
31 AI_R Anterior insula (BA 13) Right 40 − 26 − 4 No 
32 STG Superior temporal gyrus (BA 22) Right 62 ¡24 ¡2 Yes 
33 ACC_L Anterior cingulate cortex (BA 10) Left − 8 54 − 2 No 
34 AI_L Anterior insula (BA 13) Left ¡40 22 0 Yes 
35 BA22 Middle temporal gyrus (BA 22) Right 64 − 34 2 No 
36 IFG_Tri Inferior frontal gyrus (BA 47) Left − 42 22 2 No 
37 IFG Inferior frontal gyrus (BA 45) Left ¡46 28 2 Yes 
38 LG Lingual gyrus (BA 18) Left 0 ¡72 8 Yes 
39 PCC Posterior cingulate cortex (BA 30) Left 0 ¡62 10 Yes 
40 Pulv Pulvinar (thalamus) Right 12 − 22 10 No 
41 MDN Medial dorsal nucleus (thalamus) Right 2 − 16 10 No 
42 MFG_L Middle frontal gyrus (BA 10) Left ¡26 46 10 Yes 
43 BA18 Middle occipital gyrus (BA 18) Left − 28 − 92 12 No 
44 BA9 Medial frontal gyrus (BA 9) Left ¡16 44 20 Yes 
45 IPL Inferior parietal lobule (BA 40) Left − 50 − 28 22 No 
46 SM Supramarginal gyrus (BA 40) Left ¡54 ¡42 24 Yes 
47 vACC Ventral anterior cingulate (BA 24) Left ¡2 ¡4 26 Yes 
48 PCG Precentral gyrus (BA 6) Left − 48 0 28 No 
49 PCUN_R Precuneus (BA 7) Right 6 ¡64 36 Yes 
50 BA6 Medial frontal gyrus (BA 6) Left − 4 34 36 No 
51 SFG_R Superior frontal gyrus (BA 9) Right 24 46 36 Yes 
52 MOG Middle occipital gyrus (BA 19) Left ¡28 ¡68 38 Yes 
53 PCUN_L Precuneus (BA 7) Left 0 ¡62 38 Yes 
54 BA8 Superior medial frontal gyrus (BA 8) Left ¡10 32 38 Yes 
55 ACC_R Anterior cingulate cortex (BA 32) Right 8 8 40 No 
56 SFG_L Superior frontal gyrus (BA 9) Left ¡4 36 42 Yes 

Bold text = Co-altered nodes; No bold = Non-altered nodes. 
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Sneppen algorithm (Maslov and Sneppen, 2002; Rubinov and Sporns, 
2010); the NB of each network was recalculated in each iteration to 
obtain 7 NB distributions. A one-sample two-tailed t-test was used to 
assess the significance of the 7 NBs (Cauda et al., 2020). 

3. Results 

We included 42 published articles. Specifically, we analyzed meta- 
data coming from 45 VBM experiments, including 3,576 subjects (1,786 
with diagnosis of ASD and 1790 healthy controls) and 244 coordinates 
of GM variation. The analysis was carried out in the TAL space. Original 
MNI coordinates were converted using the ‘icbm2tal’ algorithm (Lan
caster et al., 2007) in order to correct the spatial disparity between 
coordinate (x-y-z) results (Laird et al., 2010), thus promoting accuracy 
of the meta-analytic synthesis (Muller et al., 2018; Tahmasian et al., 
2019). For the systematic study selection see Fig. S1 and Table S1. For 
detailed information about the clinical and methodological character
istics of the selected meta-data, see also Tables S2 and S3, respectively. 

3.1. General characterization of co-alterations 

Our meta-connectomic and data-driven approach reveals that it is 
possible to identify a quantifiable co-alteration network of GM abnor
malities in ASD. On the grounds of the ALE meta-data, our ROI gener
ation procedure derived 56 nodes (see also Table 1 and Table S4 for the 
morphometric location of nodes and their coordinates in TAL and MNI 
space, respectively). However, only 28 nodes exhibit statistically sig
nificant edges of co-alteration, encompassing cortical, basal nuclei and 
cerebellar regions. With regard to the anatomical distribution of the 
nodes, we observe that they can be found in both perceptual lower-level 
and multimodal regions and that some of them show a symmetric po
sition across hemispheres. This is the case of the amygdala, precuneus 
and the cerebellar crus II. 

Fig. 2 reports the whole co-alteration pattern showing 91 edges (45 
interhemispheric and 46 intrahemispheric). Most of the edges involve 
fronto-cerebellar, limbic-striatal and fronto-parietal regions. A complex 
pattern of co-alteration was also detected for occipital and superior 
temporal nodes. Patel’s κ values range from 0.79 of the right amygdala- 
parahippocampal-basal ganglia structures to the 0.23 of the edges of the 
middle occipital-inferior frontal regions. High κ values are also associ
ated to the left precuneus (PCUN_L), lingual gyrus (LG_L) and posterior 
cingulate cortex (PCC_L), as well as to the right orbitofrontal gyrus 
(OFG_R), temporopolar pole (BA_38_R) and posterior cerebellar lobe 
(Crus2_R) (see Table 2 for the κ values graph). 

3.2. Level of the centrality of nodes 

Fig. 3 illustrates the level of topological position of the nodes. The co- 
altered nodes are represented in different colors and sizes according to 
their values of degree, betweenness and closeness centrality. The 
PCUN_L and ventral anterior cingulate cortex (vACC_L) show the highest 
values of degree (12 edges), followed by the left middle occipital gyrus 
(MOG_L, 11 edges) and right Crus2, tail of caudate (Cd_R), left inferior 
frontal gyrus (IFG_L), LG_L and right parahippocampal area (PHG_R) (10 
edges). By contrast, the left anterior insular and cerebellar regions (i.e., 
AI_L and Crus2_L) exhibit the lowest values of degree. Values of close
ness range from 0.34 to 0.63, with the highest values associated with the 
PCUN_L, followed by the vACC_L, MOG_L, IFG_L, Cd_R and PHG_R. Also 
for this measure, the AI_L and Crus2_L show the lowest values. Relative 
to the betweenness, the Crus2_R reports the highest value, followed, in 
order, by the PCUN_L, PHG_R, vACC_L, MOG_L and OFG_R. 

Next, we investigated in detail the pathological hubness profile of the 
regions. To do so, we identified the nodes reporting the highest level of 
centrality (i.e., one standard deviation above the mean) across all three 
metrics. The analysis reveals a central network position for the PCUN_L 
[TAL × = 0; y = -62; z = 38], vACC_L [TAL × = -2; y = -4; z = 26] and 
MOG_L [TAL × = -28; y = -68; z = 38]. For a graphical representation of 
results and node-specific values of degree, betweenness and closeness of 
each node of the MCN, see Fig. 4. 

3.3. Core sub-graph 

Since highly interconnected nodes characterize the MCN of ASD, we 
investigated the possibility of identifying the most central sub-graph and 
its hierarchical components. The implementation of the k-core decom
position algorithm allowed us to detect a core nucleus composed of 15 
nodes and 57 edges using a k degree = 6, including frontal (i.e., OFG_R, 
left superior, medial and inferior frontal gyri), subcortical (vACC_L, 
PHG_R, Cd_R, left putamen and right amygdala), occipital (LG_L and 
MOG_L), temporo-parietal (PCUN_L, right superior temporal gyrus and 
left supramarginal gyrus) and cerebellar (Crus2_R) areas (Fig. 5). 

3.4. Correlation with the brain connectivity profiles 

The Mantel test employed to investigate whether or not GM co- 
alterations overlap the structural or genetic connectivity profiles 
showed that the ASD co-alterations are significantly correlated with the 
anatomical connectivity (r = 0.14, p < 0.027). Finally, the comparison 
with the genetic co-expression connectivity matrix reports non- 

Fig. 2. The gray matter morphometric co-alteration network of autism spectrum disorder. Both co-alteration matrix and brain network related to gray matter 
abnormalities are shown. Edge colors from blue to red mean increasing Patel’s κ values (i.e., increasing co-alteration probabilities). Unconnected nodes are not 
reported. The images were generated by the BrainNet application (Xia et al., 2013). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Table 2 
Edge co-alteration strength between co-altered nodes (Patel’s k). Node labeling, Talairach coordinates and Yeo’s network classification were expressed for each co- 
altered node.  

Node Talairach Yeo’s Network Patel’s k Node Talairach Yeo’s Network 

x y z x y z 

Amy_R 24 − 8 − 22 Limbic  0.790 Cd_R 38 − 24 − 6 FPN 
PHG_R 20 − 12 − 14 Limbic  0.790 Cd_R 38 − 24 − 6 FPN 
Cd_R 38 − 24 − 6 FPN  0.755 LG_L 0 − 72 8 Visual 
OFG_R 6 58 − 12 DMN  0.742 LG_L 0 − 72 8 Visual 
BA_11_L − 34 52 − 6 DMN  0.685 PCUN_L 0 − 62 38 DMN 
BA_38_R 46 12 − 30 DMN  0.669 PCC_L 0 − 62 10 DMN 
Crus2_R 48 − 58 − 44 FPN  0.669 PCUN_L 0 − 62 38 DMN 
BA_9_L − 16 44 20 DMN  0.652 MOG_L − 28 − 68 38 Visual 
Amy_R 24 − 8 − 22 Limbic  0.634 PCUN_L 0 − 62 38 DMN 
PHG_R 20 − 12 − 14 Limbic  0.634 PCUN_L 0 − 62 38 DMN 
Cd_R 38 − 24 − 6 FPN  0.634 PCUN_L 0 − 62 38 DMN 
OFG_R 6 58 − 12 DMN  0.615 PCUN_L 0 − 62 38 DMN 
Amy_R 24 − 8 − 22 Limbic  0.602 IFG_L − 46 28 2 FPN 
PHG_R 20 − 12 − 14 Limbic  0.602 IFG_L − 46 28 2 FPN 
Cd_R 38 − 24 − 6 FPN  0.602 IFG_L − 46 28 2 FPN 
Amy_R 24 − 8 − 22 Limbic  0.602 LG_L 0 − 72 8 Visual 
PHG_R 20 − 12 − 14 Limbic  0.602 LG_L 0 − 72 8 Visual 
Pu_L − 20 4 − 8 SN/VAN  0.600 SM_L − 54 − 42 24 SN/VAN 
Crus1_L − 44 − 40 − 32 SN/VAN  0.600 SFG_R 24 46 36 FPN 
Pu_L − 20 4 − 8 SN/VAN  0.600 BA_8_L − 10 32 38 FPN 
SM_L − 54 − 42 24 SN/VAN  0.600 BA_8_L − 10 32 38 FPN 
Pu_L − 20 4 − 8 SN/VAN  0.600 SFG_L − 4 36 42 DMN 
SM_L − 54 − 42 24 SN/VAN  0.600 SFG_L − 4 36 42 DMN 
OFG_R 6 58 − 12 DMN  0.581 IFG_L − 46 28 2 FPN 
BA_11_L − 34 52 − 6 DMN  0.580 STG_R 62 − 24 − 2 SMN 
Amy_L − 20 − 4 − 10 Limbic  0.580 PCUN_L 0 − 62 38 DMN 
Pu_L − 20 4 − 8 SN/VAN  0.580 PCUN_L 0 − 62 38 DMN 
STG_R 62 − 24 − 2 SMN  0.580 PCUN_L 0 − 62 38 DMN 
SM_L − 54 − 42 24 SN/VAN  0.580 PCUN_L 0 − 62 38 DMN 
BA_11_L − 34 52 − 6 DMN  0.580 BA_8_L − 10 32 38 FPN 
BA_11_L − 34 52 − 6 DMN  0.580 SFG_L − 4 36 42 DMN 
Crus2_L − 44 − 58 − 44 FPN  0.560 Crus2_R 48 − 58 − 44 DMN 
Crus2_R 48 − 58 − 44 DMN  0.560 BA_28_R 26 − 12 − 28 Limbic 
Crus2_R 48 − 58 − 44 DMN  0.560 Pu_L − 20 4 − 8 SN/VAN 
MFG_L − 26 46 10 DMN  0.560 SM_L − 54 − 42 24 SN/VAN 
Pu_L − 20 4 − 8 SN/VAN  0.560 vACC_L − 2 − 4 26 SN/VAN 
SM_L − 54 − 42 24 SN/VAN  0.560 vACC_L − 2 − 4 26 SN/VAN 
Crus2_R 48 − 58 − 44 DMN  0.560 PCUN_R 6 − 64 36 DMN 
vACC_L − 2 − 4 26 SN/VAN  0.560 PCUN_R 6 − 64 36 DMN 
vACC_L − 2 − 4 26 SN/VAN  0.560 SFG_R 24 46 36 FPN 
vACC_L − 2 − 4 26 SN/VAN  0.560 BA_8_L − 10 32 38 FPN 
vACC_L − 2 − 4 26 SN/VAN  0.560 SFG_L − 4 36 42 DMN 
Amy_L − 20 − 4 − 10 Limbic  0.538 IFG_L − 46 28 2 FPN 
STG_R 62 − 24 − 2 SMN  0.538 IFG_L − 46 28 2 FPN 
Amy_L − 20 − 4 − 10 Limbic  0.538 LG_L 0 − 72 8 Visual 
STG_R 62 − 24 − 2 SMN  0.538 LG_L 0 − 72 8 Visual 
IFG_L − 46 28 2 FPN  0.538 SFG_R 24 46 36 FPN 
LG_L 0 − 72 8 Visual  0.538 SFG_R 24 46 36 FPN 
Pu_L − 20 4 − 8 SN/VAN  0.538 MOG_L − 28 − 68 38 Visual 
SM_L − 54 − 42 24 SN/VAN  0.538 MOG_L − 28 − 68 38 Visual 
PCUN_R 6 − 64 36 DMN  0.538 MOG_L − 28 − 68 38 Visual 
SFG_R 24 46 36 FPN  0.538 MOG_L − 28 − 68 38 Visual 
MOG_L − 28 − 68 38 Visual  0.538 BA_8_L − 10 32 38 FPN 
MOG_L − 28 − 68 38 Visual  0.538 SFG_L − 4 36 42 DMN 
Crus1_L − 44 − 40 − 32 SN/VAN  0.515 Cd_R 38 − 24 − 6 FPN 
Amy_R 24 − 8 − 22 Limbic  0.515 STG_R 62 − 24 − 2 SMN 
PHG_R 20 − 12 − 14 Limbic  0.515 STG_R 62 − 24 − 2 SMN 
Cd_R 38 − 24 − 6 FPN  0.515 STG_R 62 − 24 − 2 SMN 
Amy_R 24 − 8 − 22 Limbic  0.515 SFG_R 24 46 36 FPN 
Amy_R 24 − 8 − 22 Limbic  0.515 BA_8_L − 10 32 38 FPN 
PHG_R 20 − 12 − 14 Limbic  0.515 BA_8_L − 10 32 38 FPN 
Cd_R 38 − 24 − 6 FPN  0.515 BA_8_L − 10 32 38 FPN 
Amy_R 24 − 8 − 22 Limbic  0.515 SFG_L − 4 36 42 DMN 
PHG_R 20 − 12 − 14 Limbic  0.515 SFG_L − 4 36 42 DMN 
Cd_R 38 − 24 − 6 FPN  0.515 SFG_L − 4 36 42 DMN 
OFG_R 6 58 − 12 DMN  0.490 STG_R 62 − 24 − 2 SMN 
OFG_R 6 58 − 12 DMN  0.490 BA_8_L − 10 32 38 FPN 
OFG_R 6 58 − 12 DMN  0.490 SFG_L − 4 36 42 DMN 
BA_38_R 46 12 − 30 DMN  0.461 AI_L − 40 22 0 SN/VAN 
AI_L − 40 22 0 SN/VAN  0.461 BA_9_L − 16 44 20 DMN 
FFG_R 26 − 2 − 38 Limbic  0.435 PCC_L 0 − 62 10 DMN 
PCC_L 0 − 62 10 DMN  0.435 BA_9_L − 16 44 20 DMN 

(continued on next page) 
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significant results at p = 0.05. 

3.5. Distribution of the nodes across canonical networks and network- 
betweenness 

The parcellation search revealed the presence of at least one node for 
six out of seven canonical networks, namely the default mode network 
(DMN), frontoparietal network (FPN), salience/ventral attentional 
network (SN/VAN), limbic network, visual network and the sensori
motor network (SMN). In particular, the DMN reports the highest 
number of co-altered nodes (10/28, 35.7% of the total) mainly located 
in fronto-parietal areas. The number of nodes of the DMN was greater 
than a random null model (p = 0.06). By contrast, the number of nodes 
related to the Limbic, SN/VAN FPN and Visual networks was not 

significantly different from chance. The SMN network showed only a 
single node located in the right STG (Fig. 6 left panel), while in the null 
model there were significantly more nodes (p = 0.04). The dorsal 
attentional network (DAN) had no co-altered nodes, which was signifi
cant when compared to the random extraction (p = 0.02). It is impor
tant to clarify that these results do not indicate that the functionally 
defined SMN and DAN regions are not altered in subjects with ASD, but 
rather that their alterations are not associated with that in other nodes. 

With regard to the 91 edges, only 17 edges connect nodes of the same 
functional network, whereas 81.6% of them connect nodes belonging to 
different networks (Fig. 6 right panel). Table 3 indicates the NB of each 
one of the 7 networks identified by Yeo et al. (2011). With the exception 
of the DAN, which is not represented by any node of alteration, each one 
of the canonical networks have a very high NB, that is, the edges of co- 

Table 2 (continued ) 

Node Talairach Yeo’s Network Patel’s k Node Talairach Yeo’s Network 

x y z x y z 

BA_9_L − 16 44 20 DMN  0.435 vACC_L − 2 − 4 26 SN/VAN 
vACC_L − 2 − 4 26 SN/VAN  0.435 PCUN_L 0 − 62 38 DMN 
MOG_L − 28 − 68 38 Visual  0.408 PCUN_L 0 − 62 38 DMN 
FFG_R 26 − 2 − 38 Limbic  0.379 PHG_R 20 − 12 − 14 Limbic 
BA_38_R 46 12 − 30 DMN  0.379 PHG_R 20 − 12 − 14 Limbic 
FFG_R 26 − 2 − 38 Limbic  0.348 OFG_R 6 58 − 12 DMN 
BA_38_R 46 12 − 30 DMN  0.348 OFG_R 6 58 − 12 DMN 
Crus2_R 48 − 58 − 44 DMN  0.342 MFG_L − 26 46 10 DMN 
Crus2_R 48 − 58 − 44 DMN  0.342 vACC_L − 2 − 4 26 SN/VAN 
Crus2_R 48 − 58 − 44 DMN  0.311 IFG_L − 46 28 2 FPN 
Crus2_R 48 − 58 − 44 DMN  0.311 LG_L 0 − 72 8 Visual 
IFG_L − 46 28 2 FPN  0.311 vACC_L − 2 − 4 26 SN/VAN 
LG_L 0 − 72 8 Visual  0.311 vACC_L − 2 − 4 26 SN/VAN 
Crus2_R 48 − 58 − 44 DMN  0.311 MOG_L − 28 − 68 38 Visual 
PHG_R 20 − 12 − 14 Limbic  0.277 PCC_L 0 − 62 10 DMN 
Cd_R 38 − 24 − 6 FPN  0.277 vACC_L − 2 − 4 26 SN/VAN 
OFG_R 6 58 − 12 DMN  0.242 PCC_L 0 − 62 10 DMN 
IFG_L − 46 28 2 FPN  0.235 MOG_L − 28 − 68 38 Visual 
LG_L 0 − 72 8 Visual  0.235 MOG_L − 28 − 68 38 Visual  

Fig. 3. Superposition of the topological analysis of the gray matter morphometric co-alteration network (MCN) on 3-D brain axial slices. Left template: Degree 
centrality values of the MCN in autism spectrum disorder. Central template: Betweenness centrality values of the MCN in autism spectrum disorder. Right template: 
Closeness centrality values of the MCN in autism spectrum disorder. The colors and dimensions of the nodes indicate their network centrality (bigger node: higher 
centrality; from red to yellow, from light blue to purple and from dark blue to green: from lower to higher values of degree, betweenness and closeness centrality, 
respectively). Slices are shown in neurological convention (i.e., right is right, left is left). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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alteration often connect nodes that are placed in two different functional 
networks rather than in the same one. The DMN is the more co-altered 
with itself, while the nodes belonging to the SMN only connect with 
nodes of other networks. However, the Maslov-Sneppen null model 
(Cauda et al., 2020; Maslov and Sneppen, 2002) indicates that, given our 
starting nodes, only the DMN-NB is significantly higher than chance 
(p < 0.001). All the other networks’ NB, SMN included, are not different 
from the null model. The apparent contradiction of having the DMN-NB 
as the lowest one of the 7 canonical networks, but also significantly 
higher than chance, is probably due to the fact that the DMN is the most 
represented network in terms nodes of alteration. Thus, the number of 
within-DMN co-alteration edges is obviously high (Fig. 6 bottom panel); 
however, given the node distribution across the networks, this is not a 
surprising result, as it could be expected to be even higher. 

4. Discussion 

To the best of our knowledge, this is the first meta-analytic study that 
mapped the unknown GM topology in individuals with ASD, using the 

canonical ALE framework as priors for an unbiased and connectome- 
wide analysis. Our findings provide evidence that neuroanatomical 
variations in ASD tend to form a complex network of co-alteration, 
encompassing multiple defined cortical, subcortical and cerebellar 
sites. Within this co-alteration network, certain higher-order areas (i.e., 
vACC, PCUN and MOG) exhibit a substantial hierarchical profile, and 
thereby they are conceivable as pathological hubs. Further, we reveal 
that the organization of co-alterations reflects a biologically plausible 
distribution, mirroring in part the constraints of brain structural con
nectivity. Altogether, these results extend previous literature reporting 
morphometric variations in the ASD pathophysiology, emphasizing the 
necessity of considering this spectrum of disorders as a network-like 
dysfunction of spatially distributed GM sites. 

Significantly, our findings demonstrate that regional GM abnormal
ities are not independent in ASD. Instead, multiple neural sub
populations report a morphometric change that statistically co-occurs 
with an alteration in other brain sites. This result is consistent with 
recent neuroimaging literature suggesting a structural signature of brain 
architecture in other psychiatric disorders, such as schizophrenia 

Fig. 4. Specific centrality values of degree (DC), closeness (CC) and betweenness (BC) of each of the 28 co-altered nodes of the morphometric co-alteration network in 
ASD. The red nodes and bars mark the brain areas that report the highest level of centrality across all three metrics (i.e., > one standard deviation of the mean). The 
figure also illustrates the anatomical position of the brain pathological hubs and their co-alterations using the circular layout algorithm of Cytoscape software 
application (https://cytoscape.org/). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(Cauda et al., 2020; Shafiei et al., 2020; van den Heuvel et al., 2010), 
major depression (Korgaonkar et al., 2014; Zheng et al., 2019), 
obsessive-compulsive disorder (Cao et al., 2021; Reess et al., 2016) and 
bipolar disorder (Ajilore et al., 2015; Collin et al., 2016; Fernandes et al., 
2019). Our analysis reveals robust co-alterations between a distinct set 
of regions that have been consistently reported to be altered and asso
ciated with clinical manifestations in previous MRI-based investigations 
in ASD. However, different from classical anatomical neuroimaging 
techniques such as VBM or cortical thickness, which do not assess any 
kind of topological relationship between regions (Ashburner and Fris
ton, 2001), our graphical analysis was able to consider neuroanatomical 
abnormalities (nodes) and their statistical mutual relationship (edges) as 
a network unit (Cauda et al., 2018b). Therefore, our results can be un
derstood in the context of a spatially distributed model rather than of 
isolated neural loci. 

Anatomical abnormalities have been observed in different cerebral 
systems, encompassing a set of multimodal, cerebellar, perceptual and 
limbic nodes. This large-scale distribution and its conjoint patterns of 
alteration might be considered as a clinical implication of the pheno
typic heterogeneity of ASD (Wylie et al., 2020) and might also derive 
from an abnormal neural development (Frith, 2004; Kim et al., 2017; 
Neniskyte and Gross, 2017; Thomas et al., 2016) or compensatory re
sponses (Fornito et al., 2015; Zhou et al., 2012). 

The present findings, along with recent proposals (Balardin et al., 
2015; Ecker et al., 2010; Geschwind and Levitt, 2007; Minshew and 
Williams, 2007; Picci et al., 2016), are largely consistent with the notion 
of ASD as a syndrome due to perturbations of different cytoarchitectonic 
and neurocognitive systems. According to this view, a reasonable 
interpretation of our results is that topological organization of interre
gional GM co-alterations may arise from volumetric aberrations of the 
regional-level morphology. This hypothesis accords well with the 
experimental evidence of Ecker et al. (2013), who, performing measures 

of cortical separation distances on a sample of adults with ASD, reported 
an abnormal architecture of GM showing reduced cortico-cortical con
nectivity and low intrinsic wiring costs of the cortex. Interestingly, these 
authors observed low intrinsic wiring costs in the fronto-posterior areas 
that are also key components of our MCN, including the left precuneus 
(BA 7), right temporal pole (BA 22), bilateral orbitofrontal and dorso
lateral prefrontal cortices (BA 10, BA 11). 

Moreover, our analysis confirms and extends previous results of 
altered anatomical covariance patterns as a key mechanism in the ASD 
condition. For example, in the seminal paper of Zielinski et al. (2012), 
the authors found distributed abnormal components in GM structure 
using seed-ROIs anchored in the fronto-insular and posterior cingulate 
cortices. In line with their findings, our data show a non-negligible 
overlap with pathological covariance sites in ASD. Morphometric com
ponents with reduced covariance are clearly present and co-altered in 
our MCN; some of these are core units within the co-alteration pattern. 
This is the case with regard to the left precuneus, right STG, left 
supramarginal area, left vACC, left IFG, right MFG, right OFG and the 
left SFG. Similar results obtained with the same seeds were also reported 
by Palande et al. (2017), who carried out a graph correlation analysis 
combined with a statistical inference approach in addition to the 
anatomical covariance analysis. This general overlap is not surprising, as 
significant correlations between the MCN and anatomical covariance 
has been recently evidenced by our group (Cauda et al., 2018a). How
ever, we note that the present methodology differs from the anatomical 
covariance approach because it enables the examination, in a whole- 
brain and data-driven manner, of multiple large-scale network 
affected architectures, thus overcoming the limited resolution of 
network-level effects given by prior ROI correlations (Evans, 2013; 
Palande et al., 2017; Tatu et al., 2018; Zielinski et al., 2012). 

Another important issue addressed by this study concerns the iden
tification of brain sites that have a pivotal position in the MCN of ASD. 

Fig. 5. Brain network clustering results using the k- 
core decomposition algorithm. Upper panel: Super
position of the k-core values of the morphometric co- 
alteration network on 3-D brain template. Bottom 
panel: Graphical illustration of the clustering values 
using the hierarchical layout algorithm of Cytoscape 
software application (https://cytoscape.org/). The 
colors and dimensions of the nodes indicate their 
network centrality (red node: brain areas with 
highest hierarchy; bigger node: higher degree cen
trality). (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   

D. Liloia et al.                                                                                                                                                                                                                                   

https://cytoscape.org/


NeuroImage: Clinical 30 (2021) 102583

12

By combining three different measures of node centrality (i.e., degree, 
closeness and betweenness), we observe that a subset of areas influences 
significantly the architecture of co-alterations; for this reason, these 
multimodal areas can be conceived as pathological hubs (i.e., they are 
topologically central in the co-alteration network) (Cauda et al., 2018a, 
2018b; Manuello et al., 2018). One of those regions is the left precuneus, 
a component of the medial posterior parietal cortex, which has been 
frequently associated with social reasoning and self-reflection (Patriquin 
et al., 2016). The precuneus has also been reported to be involved in a 
range of integrated tasks, including awareness information processing, 
visuospatial imagery, mnemonic retrieval and voluntary attention 
(Cavanna, 2007; Cavanna and Trimble, 2006; Zhang and Li, 2012). From 
a clinical point of view, its morphometric alterations and decreased 
functional connectivity have been linked to autistic symptom severity 
(Cheng et al., 2017; Fang et al., 2020; Lynch et al., 2013), as well as to 

Fig. 6. Brain templates illustrating the anatomical location of the co-altered nodes within the main human large-scale functional networks (left panel) and the 
between/within network distribution of the co-alterations (right and bottom panels). DMN: default mode network; FPN: frontoparietal network; SN/VAN: salience/ 
ventral attentional network; Limbic: limbic network; Visual: visual network; SMN: sensorimotor network. 

Table 3 
The network-betweenness of each one of the Yeo et al. (2011) net
works. DMN: default mode network; FPN: frontoparietal network; 
SN/VAN: salience/ventral attentional network; DAN: dorsal atten
tional network; SMN: sensorimotor network.  

Canonical Network Network Betweenness 

DMN 0.82 
FPN 0.93 
SN/VAN 0.89 
DAN n.a. 
Limbic 0.96 
Visual 0.95 
SMN 1  
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dysfunction in mentalizing processes (Wang et al., 2007), attention 
orienting (Fitzgerald et al., 2015) and empathy (Schulte-Rüther et al., 
2011) in different ASD cohorts. 

The second pathological hub is the left vACC. Reduced activation of 
this region has been reported in patients with ASD while playing a 
social-exchange game (Chiu et al., 2008). Authors have therefore asso
ciated this reduced cingulate response with ASD social impairment. 
Furthermore, it has been observed that developmental differences in the 
limbic nodes as well as in other integrative regions such as the cingulate 
cortex might produce a cascading effect on brain areas mediating social 
perception (Apps et al., 2013; Baron-Cohen et al., 2000; Rolls, 2019). 
These findings are in agreement with the pattern of our MCN, and with 
research finding alterations in the activity of the cingulate cortex in 
individuals with ASD, especially with regard to a reduced glucose 
metabolism (Haznedar et al., 2000), functional connectivity (Zhou et al., 
2016) and disrupted white matter pathways (Barnea-Goraly et al., 
2004). It therefore should not be surprising that this region may be 
significantly co-altered in ASD, given the essential involvement of the 
vACC in integrative circuits that are supposed to help the regulation of 
cognitive, executive and emotional processes (for a review see Stevens 
et al., 2011). Interestingly, the cingulate cortex and the precuneus were 
proposed to be part of a whole-brain system of areas involved in joint 
attention, which disruption is an early and characteristic symptom of 
ASD (Mundy, 2018). 

The third hub node identified in the analysis is the left MOG, a 
second-order region implicated in the integration of multisensory 
stimuli (Kravitz et al., 2011). It has been recently suggested that 
microstructural dendritic dispersion of this site is associated with 
abnormal visual processing in ASD and also with social interaction 
dysfunction because of its long-range disconnections (Matsuoka et al., 
2020). It is worth noting that the central involvement of the MOG in the 
MCN may indicate an anatomical damage, which can be typical of the 
ASD condition. As recently reported by VBM transdiagnostic in
vestigations (Cauda et al., 2019b; Liloia et al., 2018), the left portion of 
the occipital lobe, including BA 18/19, is usually spared by most psy
chiatric and neurological disorders, and is thereby considered a region 
with low structural alteration variety. Therefore, the present finding 
further supports the importance of abnormalities at the perceptual level 
in ASD, as well as of their fronto-posterior patterns. Those abnormalities 
have been hypothesized to be the basis of sensory aberrations and of 
failure in socio-communicative integration (Courchesne and Pierce, 
2005; Hadjikhani et al., 2004; Lombardo et al., 2019; Marco et al., 
2011). 

As the aforementioned nodes are also network hubs in the healthy 
connectome (van den Heuvel and Sporns, 2013), our results are 
consistent with a recent line of research showing that morphometric 
damage of brain disorders preferentially accumulates in areas with 
greater topological value (Crossley et al., 2014), probably due to their 
long-range connections (Cauda et al., 2020) and related high metabolic 
cost (Arnatkeviciute et al., 2019a, 2019b; Liang et al., 2013). 

We found that the pathological hubs are selectively located in the left 
hemisphere. Interestingly, this finding is in line with both experimental 
and theoretical proposals suggesting a typical leftward asymmetry and 
volumetric reduction in ASD, particularly in cognitive and linguistic- 
related areas (De Fossé et al., 2004; Floris et al., 2013, 2020; Kong 
et al., 2020; Mellet et al., 2014; Postema et al., 2019; Prior and Brad
shaw, 1979). Moreover, a recent transdiagnostic study from our group 
(Cauda et al., 2020) found that the regional mean physical distance of 
co-alteration is higher in the left hemisphere compared to the right one. 
In other words, the GM decreases of the left hemisphere tend to show 
long-range co-alterations across many psychiatric and neurological 
diseases. The concurrent existence of GM decreases and GM increases, 
which might be taken as evidence of functional and structural failures 
and compensations, has shown to be more lateralized in the left hemi
sphere in a range of psychiatric and neurodevelopmental diseases, 
including autism (Mancuso et al., 2020). Therefore, our current findings 

of ASD hubs mainly located in left-brain sites suggest a left hemisphere 
dominance in the co-alteration process. 

However, this is not to say that the contribution to the MCN of the 
right hemisphere is negligible. In fact, there is also an important 
involvement of right-lateralized sites in the MCN, encompassing the 
cerebellar crus II, caudate, amygdala, STG and orbitofrontal gyrus. 
These structures and their dysfunctional connections have attracted 
much attention in ASD research and have been associated with specific 
features of social, emotional and motor dysfunctions of the disorder 
(Bachevalier and Loveland, 2006; D’Mello et al., 2016; D’Mello and 
Stoodley, 2015; Gibbard et al., 2018; Girgis et al., 2007; Hardan et al., 
2006; Qiu et al., 2010; Turner et al., 2006). 

To further characterize the topological structure of the MCN and to 
go beyond the peculiarities of the specific hub nodes, we employed k- 
core decomposition. Our network clustering analysis suggests that the 
core hierarchy in ASD contains regions predominantly associated with 
the highest values of node centrality. In particular, several components 
are higher-order associative areas, namely left precuneus, left superior 
and medial frontal gyri, left anterior cingulate cortex, right para
hippocampus, along with visual regions such as lingual and middle oc
cipital gyri (Fig. 5). Interestingly, the aforementioned components were 
recently categorized as units of high hierarchy within large-scale brain 
networks (Lahav et al., 2016) because they essentially support the 
structural organization of inter-connections and, thereby, can efficiently 
allow data integration and monitor cognitive processing (Collin et al., 
2014; Hagmann et al., 2008). Thus, our findings support the notion that 
the integration and monitoring of information might be disrupted in 
ASD, especially with regard to the social and affective domains associ
ated with the DMN (Buckner and DiNicola, 2019; Padmanabhan et al., 
2017), whose nodes appear to be the central components within the 
MCN of ASD. 

Overall, our findings emphasize the importance of the DMN in ASD. 
In fact, many co-altered nodes have been located in this network, indi
cating its relevance in the system of reciprocal GM modifications pro
duced by ASD. This is also pointed out by the combined centrality 
measures and the k-core that highlight brain regions associated with the 
DMN. 

Also, the DMN is the only network whose co-alterations are more 
likely to be between its nodes and those of other networks than within 
itself (Fig. 6). This means that the numerous alterations occurring in the 
DMN also co-occur with many others in the other networks, suggesting a 
pivotal role of the DMN in the spatial distribution of GM abnormalities 
in ASD. Despite the fact that direct associations between functional 
covariation and underlying morphometric substrates remains an open 
question in autism research (Uddin et al., 2013), the peculiar topology 
related to the DMN co-alterations might suggest an atypical morpho
metric substrate for aberrant between-network functional connectivity, 
which was found decreased in different age-stratified cohorts of in
dividuals with ASD compared with neurotypical controls (Kennedy and 
Courchesne, 2008; Nomi and Uddin, 2015; von dem Hagen et al., 2013). 

Although it is tempting to speculate that the DMN might exert a 
causal effect in the development of alterations, our analyses do not 
provide information about the directionality of the co-alteration edges. 
Still, regardless of the direction of the pathological influence, the central 
position of the DMN in the pathoconnectome of ASD is significant. By 
contrast, other networks, namely the SMN and, in particular, the DAN, 
appeared to be much less involved in our network of co-alterations 
(Fig. 6 left panel). This seems to indicate that the alterations in these 
networks do not influence or are not influenced by those in other parts of 
the brain. It is worth pointing out that the only SMN node is connected to 
six other nodes spanning across all the remaining networks (Fig. 6 right 
and bottom panels). Considering its location in the right STG, such a 
node might be associated with auditory functions, thus suggesting an 
association between auditory dysfunctions such as hypersensitivity and 
impaired perception (Marco et al., 2011; Nieto Del Rincón, 2008; Rob
ertson and Baron-Cohen, 2017; Williams et al., 2021). On the contrary, 
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the lack of edges incident upon the DAN nodes might suggest that any 
top-down attention deficit of ASD patients (Allen and Courchesne, 2001) 
might be not associated, at least with respect to morphological sub
strates, with other symptoms. 

Another finding of the present study is a rich pattern of co-alterations 
related to the limbic nodes including fusiform and orbitofrontal gyri, 
parahippocampal cortex and amygdar nuclear complex. Disrupted 
communication of these regions is thought to explain some clinical 
features of ASD, associated with deficits in emotional processing, social 
cognition and executive function (Ameis and Catani, 2015; Catani et al., 
2016; Haznedar et al., 2000). In particular, the PHG_R node showed high 
centrality in our results, mostly due to several connections with the 
DMN. This is not a surprising result, as the parahippocampal gyrus is 
functionally coupled to the DMN and has been found to be involved in 
social cognition tasks regarding face versus non-face stimuli (Patriquin 
et al., 2016). The same brain area has been reported to exhibit altered 
activity in individuals with ASD during social reward learning task (Choi 
et al., 2015). These results can be understood in light of the evidence 
that the memory/encoding system supported by the medial temporal 
lobe represents a functional subnetwork, which is linked to the cortical 
nodes of the DMN through parahippocampal connections (Ward et al., 
2014). 

Another intriguing observation is that the right caudate tends to co- 
alter with prefrontal areas, encompassing both superior and inferior 
frontal gyri (i.e., SFG_L, BA8_L and IFG_L). These nodes are components 
of the dorsolateral prefrontal loop, previously associated with a 
degraded neuronal organization in ASD (Hashemi et al., 2017; Morgan 
et al., 2012) and involved in a number of high-order cognitive functions 
deficient in the disorder, such as complex behavioral planning, working 
memory processing and procedural learning (Çırak et al., 2020). 

Our results also highlighted widespread co-alterations of the cere
bellum, both between its hemispheres and through long-range path
ways. Converging lines of research offer insight into the link between the 
cerebellum and ASD symptomatology (Becker and Stoodley, 2013), 
showing the crucial role of the posterior right lobules and their circuits 
in core deficits, such as those in language and social cognition pro
cessing, stereotyped behaviors and impairments in imitation planning 
and affective regulation (D’Mello and Stoodley, 2015). Our meta-con
nectomic analysis accords well with these evidences, suggesting a ten
dency of the Crus2_R to be co-altered with a set of contralateral fronto- 
posterior nodes (i.e., IFG, MFG, MOG and PCUN) structurally connected 
and intrinsically implicated in an abnormal cerebro-cerebellar connec
tivity in mentalizing, verb generation, attention or resting-state tasks 
(D’Mello and Stoodley, 2015; Ecker et al., 2010; Itahashi et al., 2015; 
Khan et al., 2015; Noonan et al., 2009; Verly et al., 2014). 

The mechanisms that might explain the observed co-alterations are 
varied. In fact, the presence of an alteration in a brain region might 
influence another one due to the long-range effects of diaschisis (Carrera 
and Tononi, 2014), for instance, through the lack of trophic support to 
the connected regions (Fornito et al., 2015; Nave, 2010; Perlson et al., 
2010; Salehi et al., 2003) via direct axonal fiber tracts. In this regard, 
previous in vivo studies suggest that variations in GM morphometry and 
white matter connectivity are closely linked in ASD (Ameis and Catani, 
2015; Andrews et al., 2017; Bos et al., 2015; Ecker et al., 2016; Schaer 
et al., 2013), reflecting a consistent number of gray-white matter path
ological concordances in several clusters throughout the brain (Cauda 
et al., 2014). Therefore, the correlation between the MCN and structural 
connectivity might support the hypothesis that connected regions tend 
to be co-altered because they lack neurotrophic regulation, which has 
been shown to be essential in normal brain development and mainte
nance of neuronal connections (Nickl-Jockschat and Michel, 2011). 
Neurotrophic failure has been also linked to the pathophysiology of ASD 
(Galvez-Contreras et al., 2017; Garcia et al., 2012; Kasarpalkar et al., 
2014; Qin et al., 2016; Zheng et al., 2016), which indicates that a neu
rotrophic factor mechanism may convincingly explain the formation of 
the MCN pattern of ASD. Instead, the absence of a significant correlation 

with the genetic connectivity suggests that a model of shared genetic 
vulnerability to the disease (Zhou et al., 2012) falls short in explaining 
the development of the MCN pattern of ASD. 

4.1. Methodological considerations and future perspectives 

The present meta-connectomics analysis proposes a statistically 
robust view on the GM topology of autism, improving on previous works 
in several ways. The innovative method used here allowed us to extend 
spatial information given by canonical CBMAs, providing valuable in
sights on the mutual relationship between regional changes of the ASD 
phenotype, as well as on the peculiar role of each aberrant component 
and of brain connectivity. Also, from a network-level perspective, the 
MCN integrates current anatomical covariance approaches, exercising a 
thorough and detailed topological resolution not limited by a prior 
choice of ROIs or by circumscribed ASD cohort analysis. However, 
methodologically speaking, it is important to point out that, given the 
different scale of statistical comparison (i.e., meta-analytic vs. group 
data level), the two types of analysis should not be confused but, rather, 
integrated for a better comprehension of the dynamic underlying brain 
disorders. Finally, although this study proposes a new outlook on the 
ASD brain architecture, the MCN methodology can be potentially 
applied to any other condition that reflects morphometric disturbances 
of the brain, opening attractive prospects for an in-depth comprehension 
of the human pathoconnectome. 

Despite these strengths, we acknowledge that some limitations 
should be recognized. By definition, meta-connectomic approaches have 
general limitations inherent to publication biases (i.e., the file-drawer 
problem) and to the quality/constraints of individual investigations 
(Crossley et al., 2016). In this regard, we note that our data set reports a 
certain degree of heterogeneity in terms of clinical- and age-related 
differences among participants. Specifically, 23 out of 45 VBM experi
ments contain a mixed (i.e., comprehensive of two or more diagnostic 
sub-categories) or an unspecified ASD sample (Table S2). Still, the 
marked presence of original experimental groups composed of mixed 
age-stratified participants or with unspecified age ranges (35.6% of the 
experiments included), hampers the possibility to interpret develop
mental co-alteration changes in neuroanatomy of ASD (Table S2). In 
other words, this heterogeneity makes it challenging to discriminate 
possible differences related to the clinical or age-stratified sub
populations. At the same time, however, it offers important advantages. 
In fact, in conjunction with the substantial statistical power provided by 
meta-analytic synthesis (Eickhoff et al., 2016), the meta-level approach 
tends to afford more robust and reliable results in terms of generaliza
tion for the population of interest (Muller et al., 2018). 

Another critical element of the present study relates to the contin
uous dimensionality of the psychopathology of ASD. Since the diagnosis 
of ASD includes a wide array of clinical manifestations and biological 
endophenotypes, it might be pointed out that our database could be 
affected by a large inter-subject variability. This does not constitute a 
limitation per se, as the aim of a meta-analysis is exactly to overcome the 
heterogeneity of samples in order to discover invariant findings across 
groups (Tahmasian et al., 2019). However, not considering the pecu
liarity of each individual or diagnostic subgroup might be simplistic and 
miss some critical feature of ASD. Future research might develop 
subject-level methods to assess co-alteration networks, and eventually 
investigate whether or not they can help discriminate between different 
categories or dimensions of ASD. At the moment, the main issue to 
extend the methodology used here to subject-level data is the identifi
cation of focal structural alteration in absence of normative intensity 
values to discriminate between T1 images of healthy and pathological 
subjects. 

The current work does not assess the directionality of the network co- 
alterations, but future research might test, for instance, the hypothesis 
that the DMN alterations may play a role in the distribution of the other 
GM alterations, or the other way round. Finally, the lack of a significant 
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correlation between the co-alteration network and genetic co-expression 
connectivity is not indicative of an absence of a genetic role in ASD, but 
rather, that the genetic influence does not explain the statistical 
dependence between GM modifications. However, genetic connectivity 
could have a role in determining the first areas to be affected (Cauda 
et al., 2019a), while the diaschisis effect might induce other regions to 
be co-altered (Carrera and Tononi, 2014). Further research is needed to 
investigate these possibilities. 

The long-term aim of the co-alteration approach is to produce 
valuable insights for clinical practice, in terms of improvement in the 
diagnostic procedure and in monitoring the disease course. Future in
vestigations may adopt the co-alteration nodes as ROIs to test the 
generalizability of the MCN pattern on longitudinal native data. In 
addition, multi-scale research may explore the role of the meta-analytic 
hubs in different clinical cohorts, testing in detail the impact of these key 
regions on the ASD pathoconnectome. Finally, a more profound 
comprehension of the role of brain connectivity could help us under
stand the maladaptive mechanisms underlying the distribution of co- 
alterations and could pinpoint how to intervene to halt those 
mechanisms. 

5. Conclusion 

This study investigated VBM abnormalities of individuals with ASD 
using a meta-connectomic perspective, demonstrating a topologically 
characteristic structure of co-alteration underlying a circumscribed set 
of GM sites in the autistic brain. We found that the co-alteration pattern 
is influenced in part by structural connectivity, which is in line with the 
hypothesis that the brain connectome plays an important role in the 
development of disease-related alterations. Finally, we observed that the 
regions belonging to the DMN are central in the topology of co- 
alterations, thus suggesting a significant contribution of DMN dysfunc
tion in the pathophysiology of ASD. This effect may be due to the strong 
network-betweenness of the DMN, which makes GM alterations in these 
network regions to be pathoconnectivity centers. In conclusion, the 
present study provides new insight into the complex pathophysiology of 
ASD, emphasizing the need for a more integrative view based on large- 
scale network dysfunction in order to better understand the complex 
clinical manifestations of this spectrum of disorders. 
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