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ABSTRACT 
Blade vibration reduction is an important task in high performance turbo machinery for power 

generation, in order to avoid the risk of blade failure due to the overcoming of fatigue limit. A 
possible way to obtain this result is a contact related phenomenon, i.e. by physically limiting the 
vibration amplitude on the blade tip leaving a small gap between the shrouds of adjacent blades. 
When the relative displacement between adjacent blades exceeds the gap, in a certain vibration 
mode of the blade row, a contact occurs between the shrouds, the relative motion is restricted and 
energy is dissipated by friction and impact during the contact. This is called the snubbing 
mechanism. 

In this paper, an original simplified model of bladed disks, in which the snubbing mechanism 
can occur, is presented and numerical integration in time domain furnishes the time histories of the 
vibrations of the blades. The level of vibration reduction is then evaluated in some different modes 
that could be excited for instance by the fluid flow. It is also shown that unlucky combinations of 
system and excitation parameters can effect also a certain magnification instead of a reduction of 
the vibration amplitudes. 

Experimental results on single blades and blade groups of a steam turbine are used to tune the 
parameters of the system.  

1. INTRODUCTION 
In the last decades machine manufacturers took great care about blade vibration reduction in 

high performance turbo machinery, to avoid fatigue crack development and consequent blade 
failures [1][2][3]. Blade vibrations are generally excited by the fluid flow and may become 
dangerous in case of resonance. Resonant conditions cannot always be avoided; therefore devices 
are needed to reduce the vibration amplitudes in these conditions. Energy dissipation, due to micro 
slipping friction in blade roots, by means of underplatform dampers [4][5][6][7][8][9] or friction 
rings [10][11][12], or in blade connecting wires, is useful to introduce damping in the system. 
Another way to obtain blade vibration reduction is limiting the vibration amplitude at the blade tip 
by leaving only a small gap between the shrouds of adjacent blades. In the vibration modes of the 
blade row in which the relative displacement between adjacent blades exceeds the gap, a contact 
occurs between the blade tips [13]. During the contact some energy is dissipated because the shock 
is not purely elastic and because there is friction between the contacting surfaces.  

The relative vibration amplitude between adjacent blades is restricted and therefore also the 
absolute vibration amplitude is reduced with respect to the vibration amplitude for free standing 
blades (without contact). In the paper, this mechanism, called snubbing, is analyzed in dynamic 
conditions, taking into account impacts and rebounds and energy dissipation in different conditions.  

Since it is not possible, for practical reasons, to measure snubbing effectiveness on a full scale 
real machine with working fluid, then an original simplified model of blade rows, in which the 
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blades are represented by their modal model, is introduced by the authors; integration in time 
domain is then performed and the time histories of the vibrations of the blades are displayed and 
analyzed. The bladed disk (composed of 120 blades) of a real machine is considered for the 
numerical analysis. The level of vibration reduction, in different modes that could be excited by the 
fluid flow, is then evaluated. It is also shown that unlucky combinations of system and excitation 
parameters can effect a certain magnification instead of a reduction of the vibration amplitudes in 
presence of contact on the shrouds. 

In order to tune the parameters of the system and to give to the proposed model reliable inputs, 
experimental tests on single blade and groups of blades of a steam turbine for power generation 
have been performed and are briefly presented here. 

The analysis of the effect of scatter friction on general contact surfaces or on bladed disks has 
attracted many researchers who have proposed different models for the friction interface elements 
(on both blade tips and roots) and different methods to calculate the response of bladed disks, 
modeled by accurate meshes of finite elements and associated friction interface elements. Anyhow 
they normally deal with turbine engines. Sanliturk and Ewins [14] analyzed the elliptical motion 
across a 2D friction contact interface and they modeled the response to steady state harmonic 
excitation by using an approximate first order harmonic balance method. Yang et al. in [15] 
simulated the harmonic response of a 3D friction contact surface by considering the stick-slip 
phenomenon, adding the nonlinear behavior of the equations in case of surface separation. In [16], 
Petrov and Ewins considered the 3D model of friction contact applied to the case of two turbine 
engine blades with friction contact at blade shrouds. Simple numerical time-domain integrations 
show a reduction of vibrations for harmonic forces applied at blade tips. Petrov in [17] developed a 
method for analyzing the nonlinear forced response of bladed disks as a function of the friction 
contact parameters, whereas the same author in [18], Götting et al. in [19] and Sextro et al. in [20] 
included the mistuning of the blade dynamic characteristics. Harish et al. in [21] and in [22] and 
Golden and Calcaterra in [23], investigated and modeled the friction contact between the blade root 
and the disk of a turbine engine for fretting fatigue analysis. 

One very effective approach is described by Petrov and Ewins [24]. This last method allows 
reducing significantly the computation efforts, but is still too cumbersome to give an overview of 
the possible dynamic behaviors of such complex systems.  

2. KINEMATICS OF BLADED DISK VIBRATION  
The bladed disk considered in this paper are composed of 120 side entry 7.5” – 190.5 mm 

blades with firtree root and shroud on the blade tip (see figure 1). 
Blades are assembled on the disk with a nominal gap g  between the shrouds of two adjacent 

blades. 
Since the nominal gap will not be exactly implemented, because of geometric tolerances, of 

positioning, of rotation and of untwisting of the blades, also the effects of bigger or smaller gaps 
than the nominal one, randomly distributed, are possible. The nominal gap is equal to 20µm for the 
bladed disk considered hereafter. 

The vibration amplitude of the blades, along circumferential direction in their first modes, is 
limited by both the energy dissipation, caused by micro slipping friction, between the slot and the 
root, and by the contact with the adjacent blade, which generally does not vibrate with the same 
amplitude and phase. If, during the vibration, the relative displacement between two adjacent blades 
exceeds the gap, an impact and energy dissipation occurs causing the limitation of the vibration 
amplitude.  
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Figure 1: Bladed disk considered in the paper. 

The different vibration modes of a bladed row, neglecting mistuning effects of the blades, are 
characterized by the presence of nodal diameters and consequent nodal points, in correspondence to 
which the mode amplitude is null. The mode with 0 nodal diameters is also called umbrella mode 
and all the blades move in phase with the same amplitude. Therefore the relative displacement 
between the adjacent blades is null. In the umbrella mode there is no amplitude limitation due to 
snubbing. The mode with 1 nodal diameter ( 1n = ) has a sinusoidal distribution of the amplitudes 
around the row circumference, with half of the row that moves in phase opposition to the other. 
Thus, in this mode, a small relative displacement exists between the adjacent blades that have 
absolute displacements with small differences, being at different points of the sinusoid (see 
figure 2).  

 
Figure 2: Distribution of the vibration amplitudes in the first mode ( 1n = ) of a bladed disk. 

3. FLUID FLOW EXCITATION 
With regard to the excitation, which is mainly caused by the gas/steam flow constrained by the 

stator blade rows or by the nozzles for the machine types considered in this paper, the forcing 
system is non-moving in space. If the stator forces have a uniform distribution around the external 
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diameter, they cause a forced motion with 0 nodal diameters. On the contrary, if they have a 
non-uniform distribution, with different amplitudes in different angular positions, but periodic over 
a revolution, this periodic distribution in the space can be expanded in Fourier’s series: 

( )0( ) sinn n
n

F F F nθ θ ϕ= + +∑  (1) 

where θ  is the generic angular position of the stator force distribution and nϕ  is the n -th phase. 
In the relative motion of the rotating row, the angular force distribution in a fixed place is 

covered with the angular speed of the rotor, equal to Ω . Therefore, the angle θ  covered by the first 
blade in time t  is equal to tΩ  and the force acting on the first blade is: 

( )(1) 0( ) sinn n
n

F t F F n t ϕ= + Ω +∑  (2) 

Assuming for instance only the predominant n -th harmonic component of the force distribution, 
0 0F =  and 0nϕ = , the travelling wave force ( ) ( )kF t  acting on the k -th rotating blade is: 

( ) ( )2( ) sin 1 1, ,nkF t F n t n k k z
z
π = Ω + − = 

 
  (3) 

If the frequency corresponding to the rotating speed Ω  is 0f  and the exciting frequency is 0nf , 
then the blades of the row vibrate with the frequency 0nf  and with the mode having n  nodal 
diameters. Therefore n  is called engine order from the point of view of the excitation in the time 
domain and number of nodal diameters from the point of view of the response in the space domain. 
If the excitation frequency 0nf  is equal to the natural frequency associated to the mode with n  
nodal diameters, then we have resonance and the blade vibration amplitudes become rather high. 
Otherwise, the deflection shape is the same but the amplitudes remain small. 

Furthermore, if 0F  and nF  are not constant, but have variable components due for instance to 
flow turbulence, and have the form of: 

0 0 0 0 0sin 2 sin
m mt tF F F f t F F tπ ω= + ∆ = + ∆  

sin 2 sin
m mn n n t n n tF F F f t F F tπ ω= + ∆ = + ∆  

(4) 

where tω  is the turbulence circular frequency and the excitations acting on the rotating row are: 

( ) ( ) ( )0 0
2( ) sin sin sin 1

m mt n n t nk
n

F t F F t F F t n t n k
z
πω ω ϕ = + ∆ + + ∆ Ω + − + 

 
∑  (5) 

Apart from the constant force 0m
F  due to the fluid, there are 3 different types of excitation: 

( )

( ) ( )

( ) ( )

(1)
0

(2)

(3)

( ) sin

2( ) sin 1

2( ) sin 1 sin

m

tk

n nk
n

n n tk
n

F t F t

F t F n t n k
z

F t F n t n k t
z

ω

π ϕ

π ϕ ω

= ∆

 = Ω + − + 
 
 = ∆ Ω + − + 
 

∑

∑

 
(6) 

• force (1)
( ) ( )kF t  excites the umbrella mode; 

• force (2)
( ) ( )kF t  excites the modes with n  nodal diameters, as previously described; 

• force (3)
( ) ( )kF t  causes the excitations: 

( ) ( ) ( ) ( )(3)
( )

1 2 2( ) cos 1 cos 1
2k n t n t n

n
F t F n t n k n t n k

z z
π πω ϕ ω ϕ

       = ∆ − Ω − − + − + Ω + − +       
       

∑  (7) 

These last forces can excite natural modes of the row only if t nω ± Ω  corresponds to the circular 
natural frequency of the n -th mode. 
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Moreover, natural modes of the row have frequencies that are less than the natural frequency of 
the single blade alone due to the additional stiffness introduced by the disk, strongly dependent on 
the nodal diameter. These frequencies tend to a constant value (i.e. to the natural frequency of the 
single blade) as n  becomes close to z  [24]. In the following a simple model is introduced to 
analyze some dynamic effects of the snubbing mechanism. 

4. A SIMPLE MODEL FOR THE SNUBBING MECHANISM 
On the basis of the previous considerations about fluid excitation and the possibility of impacts 

between the shrouds, dynamics effects could not be neglected, thus an original dynamic model for 
the snubbing is here proposed. Obviously, the model is simplified and cannot take into account the 
real blade models, but it is addressed to show basic characteristics of the snubbing mechanism and 
highlights some aspects that can be extended to a more sophisticated modelling. The simplified 
model does not require huge computational time and resources, which are on the contrary necessary 
if 3D nonlinear calculation is performed. 

Let us consider figure 3 that shows a sketch of the considered bladed disk. The number of the 
blades is z , they are ordered and, due to the radial symmetry of the system, blade 1 follows blade z  
and precedes blade 2. Each blade j  is connected to its root jr  and both have a degree of freedom 
represented respectively by the generalized displacements jx  and jy . Lumped masses jm  and 

jrm  
are attributed to each blade and root respectively. Coefficients jk  and jc  represent the blade modal 
stiffness and damping, while the inter-root stiffness and damping are represented by coefficients 

( 1)j jrk
+

 and 
( 1)j jrc
+

 The model of the continuity of the roots on the disk and other effects, like friction, 
in the connection between the root and the blade, is represented by these coefficients.  

 
Figure 3: Model of the bladed row. 

These assumptions correspond to: 
i) use a modal approach for the blade, that is acceptable because the snubbing effect modeled 

here occurs when the blades are excited in resonance; jm  is the modal mass of the blades, jk  
its modal stiffness and jc  its modal damping; 

ii) consider the roots as very, but not infinitely, rigid because stiffnesses 
( 1)j jrk
+

 are much greater 
than jk .  
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Finally the inter-shroud stiffness 
( 1)j jsk
+

 and damping 
( 1)j jsc
+

 are different from zero only when 
two subsequent shrouds of blade j  and 1j +  are in contact. This condition is verified when: 

1 ( 1)j j j jx x g+ +− >  (8) 

i.e. when the difference between the displacements of blades j  and 1j +  is greater than the nominal 
assembling gap ( 1)j jg +  between them. 

Lagrange’s equation approach is used to define the analytical model of the system. The first step 
is to define the set of values for the index i  used for inter-root and inter-shroud coefficients. This 
index, which can conveniently be used to formalize the equations, belongs to the set I  defined as: 

{ }1,2, , ,1I z=   (9) 

so that the cardinality of I  is 1z + . This reflects the cyclicity of the considered system. 
Kinetic energy of the system is equal to: 

2 2

1 1

1 1
2 2 j

z z

j j r j
j j

T m x m y
= =

= +∑ ∑   (10) 

Linear elastic potential energy is: 

( ) ( )11

22

1 1

1 1
2 2 I I j jj j

z z

j j j r I I
j j

V k x y k y y
++

= =

= − + −∑ ∑  (11) 

Similarly, the linear damping function is: 

( ) ( )11

22

1 1

1 1
2 2 I I j jj j

z z

j j j r I I
j j

R c x y c y y
++

= =

= − + −∑ ∑     (12) 

Apart from external forcing jF  acting on each blade, a nonlinear inter-shroud force is defined 
as: 

( ) ( )( ) [ ]
1 1 1 11 1 1

, 1,
I I j j I I j j j j I I j jj j j j j js I I s I I I I s I IF k x x g c x x j zη

+ + + ++ + +
= − − − − − ∈   (13) 

where 
1j jI Iη
+

 is a Boolean variable, used to take into consideration if the contact between the 
shrouds exists, and is defined as: 

[ ]1 1

1

1 1

1, contact
, 1,

0, no contact
j j j j

j j

j j j j

I I I I

I I
I I I I

x x g
j z

x x g
η + +

+

+ +

− >= ∈ − ≤
 (14) 

The virtual work of the forces is: 

( )1 11
1 1

I I j j j jj j

z z

j j s I I I I
j j

U F x F x x gδ δ δ
+ ++

= =

= + − −∑ ∑  (15) 

Then, the degrees of freedom are grouped in vector q  as follows: 

{ }T
1 1 2 2 z zx y x y x y=q   (16) 

and the system of equations can be written in the canonical form as: 

[ ] [ ] [ ] [ ]( ) [ ] [ ] [ ]( ) ( )( ) ( ) ( )s
r s r s s+ + + + + + = +M q C C C q q K K K q q F q F   (17) 

where matrices on the left hand side of eq. (17) are defined as:  
• the generalized mass matrix: 
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[ ]

1

2

1

2

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

z

r

r

z

r

m
m

m
m

m
m

 
 
 
 
 

=  
 
 
 
 
  

M









      





 (18) 

• the blade-root damping matrix: 

[ ]

1 1

1 1

2 2

2 2

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

z z

z z

c c
c c

c c
c c

c c
c c

− 
 − 
 −
 = − 
 
 

− 
 − 

C









      





 (19) 

• the inter-root damping matrix: 

[ ]

1 12 12 1

12 12 23

1 ( 1) 1

0 0 0 0 0 0
0 0 0

0 0 0 0 0 0
0 0 0 0

0 0 0 0 0 0
0 0 0 0

z z

z z z z

r r r r

r r rr

r r r

c c c c

c c c

c c c
−

 
 + − − 
 
 

− +=  
 
 
 
 

− +  

C









      





 (20) 

• the inter-shroud damping matrix, the general element of which is different from zero only 
when two subsequent shrouds of blade j  and 1j +  are in contact: 

[ ]

1 12 12 1

12 12 23

1 ( 1) 1

1 12 12 1

12 12 23

1 ( 1) 1

0 0 0

0 0 0 0 0 0
0 0 0 0

( ) 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

z z

z z z z

z s s s z s

s s s

s

z s z z s z s

c c c c

c c c

c c c

η η η η

η η η

η η η
−−

+ − − 
 
 
 − +
 

=  
 
 
 − +
 
  

C q









      





 (21) 

• the blade-root stiffness matrix [ ]K , the inter-root stiffness matrix [ ]rK  and the the 
inter-shroud stiffness matrix[ ]( )sK q  have the same structure of the corresponding damping 
matrices. 

The forcing system on the right hand side of eq. (17) consists of: 
• the inter-shroud static stiffness force, the general element of which is different from zero 

only when two subsequent shrouds of blade j  and 1j +  are in contact: 
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( ) ( )
( )

1 12 12 23

( 1) 1

T

1 1 12 12 12 12 23 23( )

( 1) ( 1) 1 1

0 0

0

z

z z z

z s z s s ss
s

z z s z z z s z

k g k g k g k g

k g k g

η η η η

η η
−− −

 + + =  
+  

F



 (22) 

• the external forces acting on the blades: 

{ }T

(1) (2) ( )0 0 0zF F F=F   (23) 

Due to the presence of the terms [ ]( )sC q , [ ]( )sK q  and ( ) ( )s
sF q  that depend on occurrence of the 

contacts on the shrouds, eq. (17) represents a nonlinear system. Its integration in the time domain is 
performed by means of Newmark’s implicit method, in which the values of ( 1)i iη +  are determined at 
each time step by means of eq. (14). The algorithm is the following: 

1. Starting from a suitable set of initial conditions 0q  and 0q  for 0t = , the force vectors 
( )

0( )s
sF q  and (0)F  are calculated. 

2. The initial acceleration vector is calculated by: 

[ ] [ ] [ ]( ) [ ] [ ] [ ]( )( )1 ( )
0 0 0 0 0 0[ ] ( ) (0) ( ) ( )s

s r s r s
−= + − + + − + +q M F q F C C C q q K K K q q   (24) 

3. Starting from the first time step, in a general time step k -th, the new force vectors 
1

( ) ( )
k

s
s t t −=F q  and ( )ktF  are calculated and the generalized displacements, accelerations and 

velocities are equal to: 

[ ] [ ] [ ]( ) [ ] [ ] [ ]( )

[ ] [ ] [ ]( )

[ ] [ ] [ ]( )
[ ] [ ] [ ]( )

1

1 12

( )
1 1 1 12

1 1

1

1 [ ] ( ) ( )

1( ) ( ) [ ] ( )

1 1 [ ] 11 2 2[ ] 1 ( )
( )

k r s k r s k

s
s k k r s k k

r s k k

r s k

b
a t a t

bt
a t a t

ba tb a a
a t a

−

− −

− − − −

− −

−

 
= + + + + + + ⋅ ∆ ∆ 

 
+ + + + + + ∆ ∆ 

  ⋅  − − ∆ − ⋅       + − − + + +    ∆    ⋅ + +

q M C C C q K K K q

F q F M C C C q q

M
M C C C q q

C C C q

 1k−

 
 
 
         

q

 (25) 

( )1 1 12

1 1 1
2k k k k kt a

a t a− − −
 = − − ∆ − − ∆  

q q q q q    (26) 

( )1 1 11 1
2k k k k k

b b bt
a t a a− − −

  = − + − + ∆ −  ∆    
q q q q q    (27) 

The constants a  and b  of Newmark’s method are assumed respectively equal to 0.25 and 0.5; 
this is equivalent to the “trapezium rule” and assures that the implicit integration is unconditionally 
stable, without adding numerical spurious damping (high values of b ). In fact it can be proven that 
Newmark’s method is unconditionally stable if 0.5b ≥  and 20.25(0.5 )a b≥ + . 

5. IDENTIFICATION OF BLADE PARAMETERS 
In order to identify the modal parameters of the considered blade, a suitable test-rig has been 

realized. The test-rig, called hereafter test-block, is composed of a sector of the disk with slots and 
blades (see figure 4). Obviously the test-block cannot reproduce the cyclicity of the entire bladed 
disk and it is employed only for model parameter tuning. 
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Figure 4: Single blade connection to the test-block, layout of accelerometer for impact tests and first mode shape 

calculated by means of a FEM software. 

In the actual turbine, the blade root is hold in place in the slot simply by means of a pin. The 
centrifugal field during disk rotation pulls the blade in radial direction and causes the tightening of 
the firtree root in the slot, so that the constraint becomes rather rigid. This special effect has been 
reproduced in two different ways: 

• for a single blade, a calibrated pin was used in order to force the contact between the 
firtree root and the slot (see figure 4); 

• for the blade group, very stiff glue (araldite) was used between the firtree root and the 
slot and calibrated shims were inserted between the shrouds until glue hardening (see 
figure 7). 

Centrifugal field has also the effect of general stiffening of the bladed disk of the real machine. 
This aspect cannot be reproduced by means of the test-block, but this is not relevant for the use of 
the model, since stiffness parameters can be also evaluated by means of finite element models, 
whilst it is possible to suppose that damping parameters are less sensible to the rotation, once 
correct constraints are reproduced. 

Six piezo-electric accelerometers of negligible mass have been installed on the leading and 
trailing edges of the blade and impact tests allowed to identify natural frequencies and mode shapes 
of the blade. Finite element models showed excellent correspondence with experimental results. 
The first mode is considered in the study, since it is rather similar to a cantilever beam, in which the 
maximum displacement is in correspondence of the shroud. This is also confirmed by FEM 
analysis. 

The first step was the evaluation of the blade root – slot damping and a single instrumented 
blade connected to the test-block has been used. 

Even if impact tests allowed natural frequencies to be identified, it has been preferred to 
perform also forced response tests in order to accurately identify the blade modal parameters, 
especially with regard to the damping, the identification of which is rather critical, as reported also 
in [25].  
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To obtain the forced response, the shroud was connected to an electro-magnetic exciter by 
means of a negligible mass spring, which uncouples the blade from the exciter. The vibration in 
correspondence of the shroud is measured by means of a piezo-electric accelerometer (figure 5) of 
negligible mass compared to that of the system. The effect of the exciter and of the accelerometers 
on the dynamics of the system is negligible. 

 
Figure 5: Excitation of the blade. 

The frequency of the excitation is changed in a sweep at a rate of 0.1 Hz/s, in the neighborhood 
of the first natural frequency bf , equal to 390.9 Hz. The experimental transfer function, between 
the shroud displacement and the excitation, is shown in figure 6 and allows the dimensionless 
damping to be evaluated(1).  

                                                           
(1) Note for the editor: actual damping value cannot be published for confidential reasons. 
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Figure 6: Transfer function for the single blade. 

The second step was the determination of the equivalent damping during shroud contacts. In this 
case a group of blades was installed in the test-block (see figure 7) and accelerometers were 
installed on the lateral sides of the shrouds. Once again the central blade was excited in a frequency 
range, close to the first natural frequency. When the vibration amplitude exceeds the gap, shrouds 
come in contact and the measured response revealed to be as “cut” comparing to the response of the 
single blade. Figure 8 shows the vibration in case of no-contact and contact during a slow frequency 
sweep. 

The comparison of the single free blade response and that of the same blade grouped, with the 
same type of excitation, allowed defining an equivalent damping generated by the snubbing effect, 
on the basis of the additional energy dissipated during the contact. This damping resulted to be 
much higher than the damping of the single blade(2). 

6. SIMULATION OF SNUBBING EFFECT 
The blade modal parameters have been set in the simplified numerical model described in 

section 4 in order to simulate the snubbing effect for the considered bladed disk at the first natural 
frequency of the blade. Modal blade mass jm  was considered unitary and modal stiffness jk  and 
dimensional damping jc  calculated accordingly. Inter-shroud damping 

( 1)j jsc
+

 was obtained by 
means of the experimental tests described before, while the stiffness value of the bladed disk with 
continuous shrouding was used for inter-shroud stiffness 

( 1)j jsk
+

.  
Root mass 

jrm  and stiffness 
jrk  were obtained using the finite element model of the disk, while 

structural damping was used for the damping value 
jrc . Several numerical simulations are hereafter 

shown using the time step equal to 1e−5 s.  
The gaps considered in the simulations have a random variation of 10%with respect to the 

nominal value of 20µm, uniformly distributed. 

                                                           
(2) Note for the editor: actual damping value cannot be published for confidential reasons. 
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Figure 7: Test-block with a group of blade and installation of accelerometer on the shroud. Temporary shims to assure 

calibrated gap during glue hardening are visible. 

 
Figure 8: Vibration response during a frequency sweep. Comparing the left figure relative to a single blade to the right 

one where shroud contacts occur, the “cut” due to snubbing mechanism is evident. 

With regards to the eigenfrequencies of the bladed disk obtained using the model and the modal 
blade parameters, figure 9 shows the system eigenfrequencies as a function of the nodal diameter 
number. Note that the eigenfrequencies tends asymptotically to the blade natural frequency. If the 
blades were always in contact, as in integral shroud condition, i.e. no gaps exist, the system 
becomes stiffer and a similar diagram to figure 9 is obtained but with a higher asymptotic value at 
about 1785 Hz. 
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Figure 9: System eigenfrequencies as a function of the nodal diameter number.  

6.1 Blade excitation by a travelling wave 
In a rotating bladed disk a travelling wave is excited by the stationary force distribution. In this 

case the k -th element of the exciting forces vector of eq. (23) is given by eq. (3), where only the n -
th harmonic component is considered. Figure 10 shows the results obtained starting from initial null 
conditions and considering the external excitation on the row having the amplitude of 150 N, the 
rotating frequency 0 50 Hzf =  and 8 nodal diameters. Thus the equivalent excitation frequency is 
400 Hz, close to the eigenfrequency associated to 8 nodal diameters (see figure 9), and the system is  
close to the resonant condition. 

The effectiveness of the snubbing mechanism is evident in this case, by comparing the time 
histories of the vibrations of the generalized displacements of a blade of the row, without (i.e. the 
blade is free to vibrate, no contact occurs and all ( 1)i iη +  Boolean variables are equal to 0) and with 
the snubbing effect, which are displayed in the top of figure 10. The RMS value of the vibration 
amplitude is RMS

1, 47.9μmsx =  in case of snubbing vs. RMS
1 335.0μmx =  in case of free blades with a 

reduction of slightly less than an order of magnitude ( RMS RMS
1, 1 0.143sx x = ). 

The lower part of figure 10 shows the succession of the Boolean variables ( 1)i iη −  and ( 1)i iη + , 
which indicates whether the blade is in contact with an adjacent blade in case of snubbing. The 
close-up in figure 11, which considers the initial 0.05 s of the simulation, shows that the blades are 
not always in contact. It is easy to see that without the snubbing effect the vibration amplitude 
displays an increasing trend that is linear in its first stage, accordingly to the damped forced 
response of a linear system, and tends asymptotically to a steady value. In presence of the snubbing 
effect, the excitation frequency is no more immediately identifiable from the time response. 

1 5 10 15 20 25 30 35 40 45 50 55 60
330

340

350

360

370

380

390

400

Nodal diameter number

E
ig

en
fre

qu
en

cy
 [H

z]

System eigenfrequencies

390.9Hz



14 
 

 
Figure 10: Time response of blade 1 with travelling wave, n = 8, F8 = 150 N, f0 = 50 Hz. 

 

Figure 11: Close-up of figure 10. 

 
The steady-state spectrum, considering the last 215 samples of the simulation of the blade 

vibration with snubbing is shown in figure 12, which reveals that a kind of resonance is excited 
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when the shrouds get in contact, with relevant sidebands spaced of 400 Hz. The high frequency sf  
of this vibration, about 1780 Hz, corresponds roughly to the eigenfrequency of the bladed disk with 
integral (i.e. continuous) shrouding. The presence of the high frequency component and its 
sidebands are ascribed to nonlinear effects due to the shroud intermittent contacts.  

Similar results are obtained for the other blades of the row, not reported for brevity.  

 
Figure 12: Vibration spectrum of blade 1 with snubbing and travelling wave, n = 8, F8 = 150 N, f0 = 50 . 

6.2 Blade excitation by a travelling wave and turbulence 
In a second set of simulations the turbulence is included, considering only the 3rd term of eq. (6) 

and the n -th harmonic component, i.e.: 

( ) ( )2( ) sin 1 sinn tkF t F n t n k t
z
π ω = ∆ Ω + − 

 
 (28) 

Simulations are performed with different values of n : 4, 6 and 8. The system has been excited 
with a frequency close to the natural frequency of the single blade i.e. 390.9Hzbf = , so that the 
corresponding values of the turbulence frequencies tω  are given by: 

2t bn fω π± Ω =  (29) 

Figure 13-figure 15 show the time histories of the first blade for the three orders n  considered. 
Since the excitation frequency is for all the cases close to the eigenfrequency of the mode and the 
system is close to the resonant condition, snubbing mechanism is effective for the vibration 
reduction with respect to the bladed disk, but without contacts on the shrouds, in the same exciting 
condition. These results are summarized in table 1. The lower part of the figures indicates that 
contact on the shrouds occurs and the close-ups indicate that they are intermittent.  
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Table 1: Comparison between RMS vibration amplitude in case of snubbing and free blades. 

n  RMS
1,sx  RMS

1x  RMS RMS
1, 1sx x  

4 72.6 µm 372.7 µm 0.195 
6 42.4 µm 654.6 µm 0.065 
8 40.0 µm 818.7 µm 0.049 

 

 
Figure 13: Time response of blade 1, n = 4, ∆F4 = 150 N, f0 = 50 Hz with turbulence. 
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Figure 14: Time response of blade 1, n = 6, ∆F6 = 150 N, f0 = 50 Hz with turbulence. 

 
Figure 15: Time response of blade 1, n = 8, ∆F8 = 150 N, f0 = 50 Hz with turbulence. 
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eigenfrequency sf  of the bladed disk with integral shrouding is strongly excited. Anyhow, also the 
excitation at the frequency 0tf nf−  appears as well as several sidebands of sf , spaced of 

0tf nf± − , bf±  and ( )0b tf f nf± + − . This complex structure of sidebands in the spectrum is 
present also for 4n =  and 8n =  and for all the blades of the row. 

A counter-example, in which the snubbing is not effective in the reduction of the vibration with 
respect to free blades is shown in figure 17, that considers the time response, starting from initial 
null conditions, with the same external excitation on the row having the amplitude of 150 N, the 
rotating frequency 0 50 Hzf =  but only 2 nodal diameters. The excitation frequency is also in this 
case 390.9Hzbf = , which is not close to eigenfrequency of 374.2 Hz associated to 2 nodal 
diameters, thus the system is not close to the resonant condition. The RMS value of the vibration 
amplitude is RMS

1, 214.8 msx µ=  in case of snubbing vs. RMS
1 108.9 mx µ=  in case of free blades. 

Anyhow, in this case the blade with snubbing vibrates only about twice the corresponding free 
blade, whilst in the previous cases, when snubbing is effective, the reduction is of about an order of 
magnitude (see table 1). 

 

 
Figure 16: Vibration spectrum of blade 1 with snubbing, n = 6, ∆F6 = 150 N, f0 = 50 Hz with turbulence. 
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Figure 17: Time response of blade 1, n = 2, ∆F2 = 150 N, f0 = 50 Hz. 

7. CONCLUSIONS 
The snubbing effect in bladed disks has been analyzed in this paper. A simple modal model is 

presented to analyze the dynamics of the snubbing over the entire row, with different exciting 
conditions. A suitable test-rig has been used to identify the modal parameters of an actual blade of a 
steam turbine. These values have then been used to simulate the effect of the snubbing on the entire 
row and to explore its actual effectiveness in blade vibration reduction. The examples show that, 
with the considered values of the excitation characteristics, not always snubbing reduces the blade 
vibration. Snubbing is effective when the bladed disk is excited in resonance or close to resonance, 
i.e. when the excitation frequency corresponds or is close to the eigenfrequency of a certain mode 
with a given number of nodal diameters. In these cases, the reduction of the vibration amplitude 
with respect to a free bladed disk is of an order of magnitude. If the excitation frequency is simply 
equal to the blade natural frequency and the number of nodal diameters is small, the bladed disk 
vibration can be higher if snubbing is present than in case of no contact between the shrouds, but 
the amplitude of the vibration is still of the same order of magnitude. 
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