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Abstract

In this paper we propose an output-feedback Model Predictive Control (MPC) algorithm for linear discrete-time systems
affected by a possibly unbounded additive noise and subject to probabilistic constraints. In case the noise distribution is
unknown, the probabilistic constraints on the input and state variables are reformulated by means of the Chebyshev - Cantelli
inequality. The recursive feasibility is guaranteed, the convergence of the state to a suitable neighbor of the origin is proved
under mild assumptions, and the implementation issues are thoroughly addressed. Two examples are discussed in details, with
the aim of providing an insight into the performance achievable by the proposed control scheme.

1 Introduction

The problem of designing robust deterministic Model
Predictive Control (MPC) schemes has nowadays many
solutions, see for example [30,18]. However, the avail-
able approaches are in general computationally very
demanding, since they either require the solution to dif-
ficult on-line min-max optimization problems, see [20],
or the off-line computation of polytopic robust positive
invariant sets, see [24]. In addition they are conserva-
tive, mainly because they (implicitly or explicitly) rely
on worst-case approaches.
If the uncertainties or the state and control disturbances
are characterized as stochastic processes, constraints
should be reformulated in a probabilistic framework
[32,14]. However, worst-case deterministic methods do
not take advantage of the available knowledge on the
characteristics of the process noise, such as their prob-
ability density function, and cannot even guarantee
recursive feasibility in case of possibly unbounded dis-
turbances.
Starting from the pioneering papers [31,17], these rea-
sons have motivated the development of MPC algo-
rithms for systems affected by stochastic noise and
subject to probabilistic state and/or input constraints.
Mainly two classes of algorithms have been devel-
oped so far. The first one relies on the randomized, or
scenario-based approach, see e.g., [4,3], a very general
methodology that allows to consider linear or nonlin-
ear systems affected by noise with general distributions
characterized by possibly unbounded and non-convex

support. As a main drawback, randomized methods
are still computationally very demanding for practical
implementations and their feasibility and convergence
properties are difficult to prove.
The second approach, referred in [34] as probabilistic
approximation method, is based on the point-wise re-
formulation of probabilistic, or expectation, constraints
in deterministic terms to be included in the MPC for-
mulation. Interesting intermediate methods have been
proposed in [1], where a finite number of disturbance
realizations are assumed, and in [15], where constraints
averaged on time are considered. Among the probabilis-
tic approximation algorithms, a further distinction can
be based on the noise support assumptions, which can
be either bounded, e.g., as in [15,16,5] or unbounded,
see [33,28,13,34,6,27]. While for bounded disturbances
recursive feasibility and convergence can be established,
the more general case of unbounded noise poses more
difficulties and some specific solutions and reformula-
tions of these properties have been adopted; for example
in [6] the concept of invariance with probability p is
used, while in [27] the definition of probabilistic resolv-
ability is introduced. Also, linear systems with known
state have generally been considered, with the notable
exceptions of [33,13,5], where output feedback methods
have been proposed.
Finally, it must be remarked that some of the men-
tioned approaches have been successfully applied in
many applicative settings, such as building temperature
regulation [26] and automotive applications [12,3,2].
In this paper, an output feedback algorithm for linear
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discrete-time systems affected by a possibly unbounded
additive noise is proposed, based on the preliminary
work in [8,9]. If the noise distribution is unknown, the
probabilistic constraints on the inputs and state vari-
ables are reformulated by means of the Chebyshev -
Cantelli inequality [22]. This idea has been originally
proposed in [19] for the design of decentralized con-
trollers and in [21] in the context of MPC, and has
been later used in [34,12]. With respect to [8,9], in this
paper we address also the case when the noise distri-
bution is known (i.e., Gaussian), we examine in depth
the implementation aspects, we propose two novel and
theoretically well funded approximated schemes, and
we provide full implementation details. In particular,
we show that the algorithm computational load can be
made similar to the one of a standard stabilizing MPC
algorithm with a proper choice of the design parameters
(e.g., converting all constraints to linear matrix inequal-
ities, LMIs), so that the application of the proposed
approach to medium/large-scale problems is allowed.
The recursive feasibility of the algorithm is guaranteed
by a switching MPC strategy which does not require
any relaxation technique, and the convergence of the
state to a suitable neighbor of the origin is proved.
The paper is organized as follows. In Section 2 we first
introduce the main control problem, then we define and
properly reformulate the probabilistic constraints. In
Section 3 we formulate the Stochastic MPC optimiza-
tion problem and we give the general theoretical results.
Section 4 is devoted to the implementation issues, while
in Section 5 two examples are discussed in detail: the
first one is analytic and is aimed at comparing the con-
servativeness of the algorithm to the one of the well
known tube based approach [24], while the second one
is numeric and allows for a comparison of the different
algorithm implementations. Finally, in Section 6 we
draw some conclusions. For clarity of exposition, the
proof of the main theoretical results is postponed to the
Appendix.
Notation. The symbols � and � (respectively ≺, and
�) are used to denote positive definite and semi-positive
definite (respectively negative definite and semi-negative
definite) matrices. The point-to-set distance from ζ to
Z is dist(ζ,Z) := inf{‖ζ − z‖, z ∈ Z}.

2 Problem statement

2.1 Stochastic system and probabilistic constraints

Consider the following discrete-time linear system

{

xt+1 = Axt +But + Fwt t ≥ 0

yt = Cxt + vt
(1)

where xt ∈ R
n is the state, ut ∈ R

m is the input, yt ∈
R

p is the measured output and wt ∈ R
nw , vt ∈ R

p are
two independent, zero-mean, white noise processes with

covariance matricesW � 0 and V � 0, respectively, and
a-priori unbounded support. The pair (A,C) is assumed

to be observable, and the pairs (A,B) and (A, F̃ ) are

reachable, where matrix F̃ satisfies F̃ F̃T = FWFT .
Polytopic constraints on the state and input variables of
system (1) are imposed in a probabilistic way, i.e., it is
required that, for all t ≥ 0

P{bTr xt ≥ xmax
r } ≤ pxr r = 1, . . . , nr (2)

P{cTs ut ≥ umax
s } ≤ pus s = 1, . . . , ns (3)

where P(φ) denotes the probability of φ, br, cs are con-
stant vectors, xmax

r , umax
s are bounds for the state and

control variables, and pxr , p
u
s are design parameters. It

is also assumed that the set of relations bTr x ≤ xmax
r ,

r = 1, . . . , nr (respectively, cTs u ≤ umax
s , s = 1, . . . , ns),

defines a convex set X (respectively, U) containing the
origin in its interior.

2.2 Regulator structure

For system (1), we want to design a standard regulation
scheme made by the state observer

x̂t+1 = Ax̂t +But + Lt(yt − Cx̂t) (4)

coupled with the feedback control law

ut = ūt −Kt(x̂t − x̄t) (5)

where x̄ is the state of the nominal model

x̄t+1 = Ax̄t +Būt (6)

In (4), (5), the feedforward term ūt and the gains Lt, Kt

are design parameters to be selected to guarantee con-
vergence properties and the fulfillment of the probabilis-
tic constraints (2), (3). Letting

et = xt − x̂t (7a)

εt = x̂t − x̄t (7b)

from (7) one has

δxt = xt − x̄t = et + εt (8)

Define also the vector σt =
[

eTt εTt

]T

whose dynamics,

according to (1)-(7), is described by

σt+1 = Φtσt +Ψt

[

wt

vt

]

(9)

where

Φt =

[

A− LtC 0

LtC A−BKt

]

, Ψt =

[

F −Lt

0 Lt

]
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In the following it is assumed that, by a proper initial-
ization, i.e. E {σ0} = 0, and recalling that the processes
v and w are zero mean, the enlarged state σt of system
(9) is zero-mean, so that x̄t = E{xt}. Then, denoting by
Σt = E

{

σtσ
T
t

}

and by Ω = diag(W,V ) the covariance

matrices of σt and [wT
t vTt ]

T respectively, the evolution
of Σt is governed by

Σt+1 = ΦtΣtΦ
T
t +ΨtΩΨ

T
t (10)

By definition, also the variable δxt defined by (8) is
zero mean and its covariance matrix Xt can be de-

rived from Σt as Xt = E
{

δxtδx
T
t

}

=
[

I I
]

Σt

[

I I
]T

.

Finally, letting δut = ut − ūt = −Kt(x̂t − x̄t),
one has E {δut} = 0 and also the covariance ma-
trix Ut = E

{

δutδu
T
t

}

can be obtained from Σt as

Ut = E
{

Ktεtε
T
t K

T
t

}

=
[

0 Kt

]

Σt

[

0 Kt

]T

.

2.3 Reformulation of the probabilistic constraints

To incorporate the probabilistic constraints (2) and (3)
into the MPC problem, we rely on the probabilistic ap-
proximation method and we reformulate them as deter-
ministic ones (involving the stochastic variable second-
order description) at the price of suitable tightening.
This, save for the case of Gaussian disturbances, induces
some conservativeness.
Consider, in general, a random variable z with mean
value z̄ = E{z}, variance Z = E{(z − z̄)(z − z̄)T }, and
the probabilistic constraint

P{hT z ≥ zmax} ≤ p (11)

The following result, based on the Chebyshev - Cantelli
inequality [22], has been proven in [21].

Proposition 1 Letting f(p) =
√

(1− p)/p, constraint
(11) is verified if

hT z̄ ≤ zmax −
√
hTZh f(p) (12)

Note that this result can be proved without introducing
any specific assumption on the distribution of z. If, on
the other hand, z can be assumed to be normally dis-
tributed, less conservative constraints can be obtained,
as stated in the following result.

Proposition 2 Assume that z is normally distributed.
Then, constraint (11) is verified if (12) holds with f(p) =
N−1(1 − p) where N is the cumulative probability func-
tion of a Gaussian variable with zero mean and unitary
variance.

In Propositions 1 and 2, the function f(p) represents
the level of constraint tightening on the mean value of z

needed to meet the probabilistic constraint (11). In case
of unknown distribution (Proposition 1) the values of
f(p) are greater than in the Gaussian case (e.g., about
an order of magnitude in the range (0.1, 0.4)).
In view of Propositions 1 and 2, the probabilistic con-
straints (2)-(3), at time i, are verified provided that the
following (deterministic) inequalities are satisfied.

bTr x̄i ≤ xmax
r −

√

bTr Xibrf(p
x
r ) (13a)

cTs ūi ≤ umax
s −

√

cTs Uicsf(p
u
s ) (13b)

If the support of the noise termswk and vk is unbounded,
the definition of the state and control constraints in
probabilistic terms is the only way to state feasible con-
trol problems. In case of bounded noise the comparison,
in terms of conservativeness, between the probabilistic
framework and the deterministic one is discussed in the
example of Section 5.1.

3 MPC algorithm: formulation and properties

To formally state the MPC algorithm for the computa-
tion of the regulator parameters ūt, Lt,Kt, the following
notation will be adopted: given a variable z or a matrix
Z, at any time step t we will denote by zt+k and Zt+k,
k ≥ 0, their generic values in the future, while zt+k|t

and Zt+k|t will represent their specific values computed
based on the knowledge (e.g., measurements) available
at time t. The main ingredients of the optimization prob-
lem are now introduced.

3.1 Cost function

Assume to be at time t and denote by ūt,...,t+N−1 =
{ūt, . . . , ūt+N−1} the nominal input sequence over
a future prediction horizon of length N . More-
over, define by Kt,...,t+N−1 = {Kt, . . . ,Kt+N−1},
Lt,...,t+N−1 = {Lt, . . . , Lt+N−1} the sequences of the
future control and observer, respectively, gains, and re-
call that the covariance Σt+k = E

{

σt+kσ
T
t+k

}

evolves,
starting from Σt, according to (10).
The cost function to be minimized is the sum of two
components, the first one (Jm) accounts for the expected
values of the future nominal inputs and states, while
the second one (Jv) is related to the variances of the
future errors e, ε, and of the future inputs. Specifically,
the overall performance index is

J = Jm(x̄t, ūt,...,t+N−1) + Jv(Σt,Kt,...,t+N−1, Lt,...,t+N−1)
(14)
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where

Jm =

t+N−1
∑

i=t

‖x̄i‖2Q + ‖ūi‖2R + ‖x̄t+N‖2S (15)

Jv = E

{

t+N−1
∑

i=t

‖xi − x̂i‖2QL
+ ‖xt+N − x̂t+N‖2SL

}

+

E

{

t+N−1
∑

i=t

‖x̂i − x̄i‖2Q + ‖ui − ūi‖2R + ‖x̂t+N − x̄t+N‖2S

}

(16)

where the positive definite and symmetric weights Q,
QL, S, and SL must satisfy the following inequality

Q̄T − ST +ΦTSTΦ � 0 (17)

where Φ =

[

A− L̄C 0

L̄C A−BK̄

]

, Q̄T = diag(QL, Q +

K̄TRK̄), ST = diag(SL, S), and K̄, L̄ must be chosen
to guarantee that Φ is asymptotically stable.
By means of standard computations, it is possible to
write the cost (16) as follows

Jv =

t+N−1
∑

i=t

tr(QT,iΣi) + tr(STΣt+N ) (18)

where QT,i = diag(QL, Q+ K̄T
i RK̄i). From (14)-(16), it

is apparent that the goal is twofold: to drive the mean
x̄ to zero by acting on the nominal input component
ūt,...,t+N−1 and to minimize the variance of σ by acting
on the gains Kt,...,t+N−1 and Lt,...,t+N−1. In addition,
also the pair (x̄t,Σt) must be considered as an additional
argument of the MPC optimization, as later discussed,
to guarantee recursive feasibility.

3.2 Terminal constraints

As usual in stabilizing MPC, see e.g. [23], some terminal
constraints must be considered. In our setup, the mean
x̄t+N and the variance Σt+N at the end of the prediction
horizon must satisfy

x̄t+N ∈ X̄F (19)

Σt+N � Σ̄ (20)

where X̄F is a positively invariant set such that

(A−BK̄)x̄ ∈ X̄F ∀x̄ ∈ X̄F (21)

while Σ̄ is the steady-state solution of the Lyapunov
equation (10), i.e.,

Σ̄ =ΦΣ̄ΦT +ΨΩ̄ΨT (22)

where Ψ =

[

F −L̄

0 L̄

]

and Ω̄ = diag(W̄ , V̄ ) is built by

considering (arbitrary) noise variances W̄ � W and V̄ �
V . In addition, and consistently with (13), the following
coupling conditions must be verified.

bTr x̄ ≤ xmax
r −

√

bTr X̄brf(p
x
r ), r = 1, . . . , nr (23a)

−cTs K̄x̄ ≤ umax
s −

√

cTs Ūcsf(p
u
s ), s = 1, . . . , ns (23b)

for all x̄ ∈ X̄F , where

X̄ =
[

I I
]

Σ̄
[

I I
]T

, Ū =
[

0 K̄
]

Σ̄
[

0 K̄
]T

(24)

As it will be shown (see Theorem 1), (19) and (20) allow
for recursive feasibility of the control scheme and enforce
mean square convergence properties.
In (22), the choice of Ω̄ is subject to a tradeoff. In fact,
large variances W̄ and V̄ result in large Σ̄ and, in view
of (24), large X̄ and Ū . This enlarges the terminal con-
straint (20) but, on the other hand, reduces the size of
the terminal set XF compatible with (23).

3.3 Statement of the stochastic MPC (S-MPC) problem

The formulation of the main S-MPC problem requires a
preliminary discussion concerning the initialization. In
principle, and in order to use the most recent informa-
tion available on the state, at each time instant it would
be natural to set the current value of the nominal state
x̄t|t to x̂t and the covariance Σt|t to diag(Σ11,t|t−1, 0),
where Σ11,t|t−1 is the covariance of state prediction er-
ror e obtained using the observer (4). However, since
we do not exclude the possibility of unbounded distur-
bances, in some cases this choice could lead to infeasible
optimization problems. On the other hand, and in view
of the terminal constraints (19), (20), it is quite easy to
see that recursive feasibility is guaranteed provided that
x̄ is updated according to the prediction equation (6),
which corresponds to the variance update given by (10).
These considerations motivate the choice of account-
ing for the initial conditions (x̄t,Σt) as free variables,
which will be selected by the control algorithm (based
on feasibility and optimality of the MPC optimization
problem defined below) according to the following alter-
native strategies:S1) reset of the initial state: x̄t|t = x̂t,
Σt|t = diag(Σ11,t|t−1, 0); S2) prediction: x̄t|t = x̄t|t−1,
Σt|t = Σt|t−1. The S-MPC problem can now be stated.

S-MPC problem: at any time instant t solve

min
x̄t,Σt,ūt,...,t+N−1,Kt,...,t+N−1,Lt,...,t+N−1

J

where J is defined in (14), (15), (16), subject to
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- the dynamics (6) and (10);
- the constraints (13) for all i = t, . . . , t + N − 1, r =
1, . . . , nr, s = 1, . . . , ns;

- the initialization constraint (corresponding to the
choice between strategies S1 and S2)

(x̄t,Σt) ∈ {(x̂t, diag(Σ11,t|t−1, 0)), (x̄t|t−1,Σt|t−1)}
(25)

- the terminal constraints (19), (20). �

Denoting by ūt,...,t+N−1|t = {ūt|t, . . . , ūt+N−1|t},
Kt,...,t+N−1|t = {Kt|t, . . . ,
Kt+N−1|t}, Lt,...,t+N−1|t = {Lt|t, . . . , Lt+N−1|t}, and
(x̄t|t,Σt|t) the optimal solution to the S-MPC problem,
the feedback control law actually used is then given
by (5) with ūt = ūt|t, Kt = Kt|t, and the state observa-
tion evolves as in (4) with Lt = Lt|t.
We define the S-MPC problem feasibility set as
Ξ := {(x̄0,Σ0) : ∃ū0,...,N−1,K0,...,N−1, L0,...,N−1 such
that (6), (10), and (13) hold for all k = 0, . . . , N − 1 and
(19), (20) are verified}
Some comments are in order.
1) At the initial time t = 0, the algorithm must be ini-
tialized by setting x̄0|0 = x̂0 and Σ0|0 = diag(Σ11,0, 0).
In view of this, feasibility at time t = 0 amounts to
(x̂0,Σ0|0) ∈ Ξ.
2) The binary choice between strategies S1 and S2 re-
quires to solve at any time instant two optimization
problems. However, the following sequential procedure
can be adopted to reduce the average overall computa-
tional burden: the optimization problem corresponding
to strategy S1 is first solved and, if it is infeasible,
strategy S2 must be solved and adopted. On the con-
trary, if the problem with strategy S1 is feasible, it
is possible to compare the resulting value of the op-
timal cost function with the value of the cost using
the sequences {ūt|t−1, . . . , ūt+N−2|t−1,−K̄x̄t+N−1|t},
{Kt|t−1, . . . ,Kt+N−2|t−1, K̄}, {Lt|t−1, . . . , Lt+N−2|t−1, L̄}.
If the optimal cost with strategy S1 is lower, strategy
S1 can be used without solving the MPC problem for
strategy S2. This does not guarantee optimality, but
the convergence properties of the method stated in the
result below are recovered and the computational effort
is reduced.
Now we are in the position to state the main result
concerning the convergence properties of the algorithm.

Theorem 1 If, at t = 0, the S-MPC problem admits a
solution, it is recursively feasible and the state and the
input probabilistic constraints (2) and (3) are satisfied
for all t ≥ 0. Furthermore, if there exists ρ ∈ (0, 1) such
that the noise variance Ω verifies

(N + β
α
)

α
tr(STΨΩΨT ) < min(ρσ̄2, ρλmin(Σ̄)) (26)

where σ̄ is the maximum radius of a ball, centered at the

origin, included in X̄F , and

α = min{λmin(Q), tr{Q−1 +Q−1
L }−1} (27a)

β = max{λmax(S), tr{ST }} (27b)

then, as t → +∞

dist(‖x̄t‖2 + tr{Σt|t}, [0,
1

α
(N +

β

α
) tr(STΨΩΨT )]) → 0

(28)

Note that, as expected, for smaller and smaller values of
Ω, also ‖x̄t‖ and tr{Σt|t} tend to zero.

4 Implementation issues

In this section two issues are addressed. First, the
non linear constraints (13) and the non linear de-
pendence of the covariance evolution, see (10), on
Kt,...,t+N−1, Lt,...,t+N−1 make the numerical solution of
S-MPC impractical. In sections 4.1 and 4.2 two possi-
ble solutions are described, allowing to cast the S-MPC
problem as a quadratic one, with linear constraints.
The second issue concerns the fact that, in our frame-
work, deterministic constraints on input variable (e.g.,
saturations) are not accounted for. In Section 4.3 we
propose some possible solutions to this problem.

4.1 Approximation of S-MPC for allowing a solution
with LMIs

A solution, based on an approximation of S-MPC char-
acterized by linear constraints solely, is now presented.
First define AD =

√
2A,BD =

√
2B,CD =

√
2C, and

V D = 2V and let the auxiliary gain matrices K̄ and L̄
be selected according to the following assumption.

Assumption 1 The gains K̄ and L̄ are computed as the
steady-state gains of the LQG regulator for the system
(AD, BD, CD), with state and control weights Q and R,
and noise covariances W̄ � W and V̄ � V D.

Note that, if a gain matrix K̄ (respectively L̄) is stabi-

lizing for (AD − BDK̄) =
√
2(A − BK̄) (respectively

(AD − L̄CD) =
√
2(A − L̄C)), it is also stabilizing for

(A−BK̄) (respectively (A− L̄C)), i.e., for the original
system. The following preliminary result can be stated.

Lemma 1 Define AD
Lt

= AD − LtC
D, AD

Kt
= AD −

BDKt, the block diagonal matrixΣD
t = diag(ΣD

11,t,Σ
D
22,t),

ΣD
11,t ∈ R

n×n, ΣD
22,t ∈ R

n×n and the update equations

ΣD
11,t+1 =AD

Lt
ΣD

11,t(A
D
Lt
)T + FWFT + LtV

DLT
t (29a)

ΣD
22,t+1 =AD

Kt
ΣD

22,t(A
D
Kt

)T + LtC
DΣD

11,tC
D TLT

t

+ LtV
DLT

t (29b)
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Then
I)ΣD

t � Σt implies thatΣD
t+1 = diag(ΣD

11,t+1,Σ
D
22,t+1) �

Σt+1.
II) We can rewrite as LMIs the following inequalities

ΣD
11,t+1 �AD

Lt
ΣD

11,t(A
D
Lt
)T + FWFT + LtV

DLT
t (30a)

ΣD
22,t+1 �AD

Kt
ΣD

22,t(A
D
Kt

)T + LtC
DΣD

11,tC
D TLT

t

+ LtV
DLT

t (30b)

Based on Lemma 1-II, we can reformulate the original
problem so that the covariancematrix ΣD is used instead
of Σ. Accordingly, the update equation (10) is replaced
by (29) and the S-MPC problem is recast as an LMI one
(see Appendix B).
As for the nonlinear dependence of the inequalities (13)
on the covariance matrices Xt and Ut, it is possible to
prove that they are satisfied if

bTr x̄i ≤ (1− 0.5αx)x
max
r − bTr Xibr

2αxxmax
r

f(pxr )
2 (31a)

cTs ūi ≤ (1− 0.5αu)u
max
s − cTs Uics

2αuumax
s

f(pus )
2 (31b)

where αx ∈ (0, 1] and αu ∈ (0, 1] are free design pa-

rameters. Also, note that Xt �
[

I I
]

ΣD
t

[

I I
]T

=

ΣD
11,t + ΣD

22,t and that Ut �
[

0 Kt

]

ΣD
t

[

0 Kt

]T

=

KtΣ
D
22,tK

T
t so that, defining XD

t = ΣD
11,t + ΣD

22,t and

UD
t = KtΣ

D
22,tK

T
t , (31) can be written as follows

bTr x̄i ≤ (1− 0.5αx)x
max
r − bTr X

D
i br

2αxxmax
r

f(pxr )
2 (32a)

cTs ūi ≤ (1− 0.5αu)u
max
s − cTs U

D
i cs

2αuumax
s

f(pus )
2 (32b)

Note that the reformulation of (13) into (32) has been
performed at the price of additional constraint tighten-
ing. For example, on the right hand side of (32a), xmax

r

is replaced by (1 − 0.5αx)xmax
r , which significantly re-

duces the size of the constraint set. Parameter αx cannot
be reduced at will, since it also appears at the denomi-
nator in the second additive term.
In view of Assumption 1 and resorting to the separation
principle, it is possible to show [11] that the solution Σ̄D

to the steady-state equation

Σ̄D =ΦDΣ̄D(ΦD)T +ΨΩ̄ΨT (33)

is block-diagonal, i.e., Σ̄D = diag(Σ̄D
11, Σ̄

D
22), where

ΦD =

[

AD − L̄CD 0

L̄CD AD −BDK̄

]

The terminal constraint (20) must be transformed into
ΣD

t+N � Σ̄D, which corresponds to setting

ΣD
11,t+N � Σ̄D

11, Σ
D
22,t+N � Σ̄D

22 (34)

Defining X̄D = Σ̄D
11 + Σ̄D

22 and ŪD = K̄Σ̄D
22K̄

T , the
terminal set condition (23) must now be reformulated as

bTr x̄ ≤ (1− 0.5αx)xmax
r − bTr X̄

Dbr
2αxxmax

r

f(pxr )
2 (35a)

−cTs K̄x̄ ≤ (1− 0.5αu)umax
s − cTs Ū

Dcs
2αuumax

s

f(pus )
2 (35b)

for all x̄ ∈ X̄F .
Also Jv must be reformulated. Indeed

Jv ≤ JD
v =

t+N−1
∑

i=t

tr
{

QLΣ
D
11,i +QΣD

22,i +RKiΣ
D
22,iK

T
i

}

+ tr
{

SLΣ
D
11,t+N + SΣD

22,t+N

}

(36)

where the terminal weights S and SL must now satisfy
the following Lyapunov-like inequalities

(ĀD
K)TSĀD

K − S +Q+ K̄TRK̄ � 0

(ĀD
L )TSLĀ

D
L − SL +QL + (CD)T L̄TSL̄CD � 0

(37)

where ĀD
K = AD − BDK̄ and ĀD

L = AD − L̄CD. It is
now possible to formally state the S-MPCl problem.

S-MPCl problem: at any time instant t solve

min
x̄t,ΣD

11,t
,ΣD

22,t
,ūt,...,t+N−1,Kt,...,t+N−1,Lt,...,t+N−1

J

where J is defined in (14), (15), (36), subject to

- the dynamics (6) and (29);
- the linear constraints (32) for all i = t, . . . , t+N − 1,
r = 1, . . . , nr, s = 1, . . . , ns;

- the initialization constraint, corresponding to
the choice between strategies S1 and S2, i.e.,
(x̄t,Σ

D
11,t,Σ

D
22,t) ∈ {(x̂t,Σ

D
11,t|t−1, 0), (x̄t|t−1,Σ

D
11,t|t−1,Σ

D
22,t|t−1)}

- the terminal constraints (19), (34).

�

The following corollary follows from Theorem 1.

Corollary 1 If, at time t = 0, the S-MPCl problem ad-
mits a solution, it is recursively feasible and the state and
input probabilistic constraints (2) and (3) are satisfied
for all t ≥ 0. Furthermore, if there exists ρ ∈ (0, 1) such
that the noise variance ΩD = diag(W,V D) verifies

(N + β
α
)

α
tr(STΨΩDΨT ) < min(ρσ̄2, ρλmin(Σ̄

D)) (38)
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then, as t → +∞

dist(‖x̄t‖2+tr{ΣD
t|t}, [0,

1

α
(N+

β

α
) tr(STΨΩDΨT )]) → 0

The proof of Corollary 1 readily follows from the proof
of Theorem 1. For details please see [10].

4.2 Approximation of S-MPC with constant gains

The solution presented in the following is characterized
by a great simplicity and consists in setting Lt = L̄ and
Kt = K̄ for all t ≥ 0. In this case, the value of Σt+k (and
therefore of Xt+k and Ut+k) can be directly computed
for any k > 0 by means of (10) as soon as Σt is given.
As a byproduct, the nonlinearity in the constraints (13)
does not carry about implementation problems. There-
fore, this solution has a twofold advantage: first, it is
simple and requires an extremely lightweight imple-
mentation; secondly, it allows for the use of nonlinear
less conservative constraint formulations. In this simpli-
fied framework, the following S-MPCc problem can be
stated.

S-MPCc problem: at any time instant t solve

min
x̄t,Σt,ūt,...,t+N−1

J

where J is defined in (14), (15), (16), subject to

- the dynamics (6) , with Kt = K̄, and

Σt+1 = ΦΣtΦ
T +ΨΩΨT (39)

- the constraints (13) for all i = t, . . . , t + N − 1, r =
1, . . . , nr, s = 1, . . . , ns;

- the initialization constraint (25);
- the terminal constraints (19), (20).

�

An additional remark is due. The term Jv in (18) does
not depend only on the control and observer gain se-
quences Kt,...,t+N−1, Lt,...,t+N−1, but also on the initial
condition Σt. Therefore, it is not possible to discard it
in this simplified formulation.
The following corollary can be derived from Theorem 1.

Corollary 2 If, at time t = 0, the S-MPCc problem ad-
mits a solution, it is recursively feasible and the state and
input probabilistic constraints (2) and (3) are satisfied
for all t ≥ 0. Furthermore, if there exists ρ ∈ (0, 1) such
that the noise variance Ω verifies (26), then, as t → +∞,
(28) holds.

The proof of Corollary 2 readily follows from the proof
of Theorem 1. For details please see [10].

4.3 Boundedness of the input variables

The S-MPC scheme described in the previous sections
cannot handle hard constraints on the input variables.
However, in general input variables are bounded in prac-
tice, and may be subject to

Hut ≤ 1 (40)

where H ∈ R
nH×m is a design matrix and 1 is a vector

of dimension nH whose entries are equal to 1. Three pos-
sible approaches are proposed to account for this case.
1) Inequalities (40) can be stated as additive proba-
bilistic constraints (3) with small violation probabilities
pus . This solution, although not guaranteeing satisfaction
of (40) with probability 1, is simple and easy.
2) In the S-MPCc scheme, define the gain matrix K̄ in
such a way that A − BK̄ is asymptotically stable and,
at the same time, HK̄ = 0. From (5), it follows that
Hut = Hūt +HK̄(x̂t − x̄t) = Hūt. Therefore, to verify
(40) it is sufficient to include in the problem formulation
the deterministic constraint Hūt ≤ 1.
3) In the S-MPCc scheme, if probabilistic constraints on
u are absent, replace (5) with ut = ūt and set Hūt ≤ 1
in the S-MPC optimization problem to verify (40). If we
also define ût = ūt−K̄(x̂t− x̄t) as the input to equation
(4), the dynamics of variable σt is given by (9) with

Φt =

[

A− L̄C BK̄

L̄C A−BK̄

]

and the arguments follow similarly to those proposed in
the paper. It is worth mentioning, however, that matrix
Φt must be asymptotically stable, which requires asymp-
totic stability of A.

5 Examples

In this section a comparison between the characteristics
of the proposed method and robust tube-based MPC
[25,24] is first discussed. Then, the performances of the
algorithms S-MPCl and S-MPCc described in Section 4
are discussed with reference to a numerical example.

5.1 Simple analytic example: comparison between the
probabilistic and the deterministic robust MPC

Consider the scalar system xt+1 = axt + ut +wt, where
0 < a < 1, w ∈ [−wmax, wmax], wmax > 0, and the
measurable state is constrained as follows

xt ≤ xmax (41)

The limitations imposed by the deterministic robust
MPC algorithm developed in [25] and by the proba-
bilistic (state-feedback) method described in this paper
are now compared. For both the algorithms, the control
law ut = ūt is considered, where ū is the input of the

7
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Fig. 1. Distributions: uniform (case A, solid line), triangular
(case B, dashed line), truncated Gaussian (case C, dotted
line).

nominal/average system x̄t+1 = ax̄t + būt. This control
law is equivalent to (5), where it has been set Kt = 0.
In the probabilistic approach, we allow the constraint
(41) to be violated with probability p, i.e.,

P{x ≥ xmax} ≤ p (42)

To verify (41) and (42) the tightened constraint x̄k ≤
xmax − ∆x must be fulfilled in both the approaches
where, in case of [24], ∆x = ∆xRPI =

∑+∞
i=0 aiwmax =

1
1−a

wmax while, having defined w as a stochastic pro-
cess with zero mean and varianceW , in the probabilistic
framework ∆x = ∆xS(p) =

√

X(1− p)/p, and X is the
steady state variance satisfying the algebraic equation
X = a2X +W , i.e. X = W/(1 − a2). Notably, W takes
different values depending upon the noise distribution.
It results that the deterministic tightened constraints are
more conservative provided that ∆xS(p) < ∆xRPI , i.e.

p >
(1− a)2

b(1− a2) + (1− a)2
(43)

Consider now the three distributions depicted in Figure
1 with W = w2

max/b, with A) b = 3 for uniform distri-
bution; B) b = 18 for triangular distribution; C) b = 25
for truncated Gaussian distribution.
Setting, for example, a = 0.9, condition (43) is veri-
fied for p > 0.0172 in case A), p > 0.0029 in case B),
and p > 0.0021 in case C). Note that, although for-
mally truncated, the distribution in case C) can be well
approximated with a non-truncated Gaussian distribu-
tion: if this information were available, one could use
∆xS(p) =

√
XN−1(1−p) for constraint tightening, and

in this case ∆xS(p) < ∆xRPI would be verified with

p > 1−N
(

(1−a2)b
(1−a)2

)

' 0.

5.2 Simulation example

The example shown in this section is inspired by [25].

We take A =

[

1 1

0 1

]

, B =

[

0.5

1

]

, F = I2, C = I2 and

we assume that noise is Gaussian, with W = 0.01I2 and

−20 −10 0 10 20 30 40 50
−10

−8

−6

−4

−2

0

2

x
1

x 2

S−MPCc (1)

S−MPCc (2)
S−MPCl (1)

S−MPCl (2)

Fig. 2. Plots of the feasibility sets for S-MPCc (1), S-MPCc
(2), S-MPCl (1), S-MPCl (2)

V = 10−4I2. The probabilistic constraints are P{x2 ≥
2} ≤ 0.1, P{u ≥ 1} ≤ 0.1, and P{−u ≥ 1} ≤ 0.1. In
(14), (15), and (18) we set QL = Q = I2, R = 0.01, and
N = 9.
In Figure 2 we compare the feasible sets obtained with
the methods presented in Section 4, with different as-
sumptions concerning the noise (namely S-MPCc (1), S-
MPCc (2), S-MPCl (1), S-MPCl (2), where (1) denotes
the case of Gaussian distribution and (2) denotes the
case when the distribution is unknown). Apparently, in
view of the linearization of the constraints (see the dis-
cussion after (32)), the S-MPCl algorithm is more con-
servative than S-MPCc. On the other hand, concern-
ing the dimension of the obtained feasibility set, in this
case the use of the Chebyshev - Cantelli inequality does
not carry about a dramatic performance degradation in
terms of conservativeness.
A 200-runs Montecarlo simulation campaign has been
carried out for testing the probabilistic properties of the
algorithms, with initial conditions (5,−1.5). The fact
that the control and estimation gains are free variables
makes the transient behaviour of the state responses in
case of S-MPCl more performing and reduces the vari-
ance of the dynamic state response (at the price of a
more reactive input response), with respect to the case
when S-MPCc is used. For example, the maximum vari-
ance of x1(k) (resp. of x1(k)) is about 0.33 (resp. 0.036)
in case of S-MPCc (1) and (2), while it results about 0.25
(resp. 0.035) in case of S-MPCl (1) and (2). On the other
hand, the maximum variance of u(k) is about 0.006 in
case of S-MPCc, while it is 0.008 in case of S-MPCl.

6 Conclusions

The main features of the proposed probabilistic MPC al-
gorithm lie in its simplicity and in its light-weight com-
putational load, both in the off-line design phase and in
the online implementation. This allows for the applica-
tion of the S-MPC scheme to medium/large-scale prob-
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lems, for systems affected by general disturbances.
Themain limitations with respect to existing approaches
are due to the difficulty to cope with saturations in the
input variables and in the suboptimality of the solution
when the Cantelli inequality is used instead of the full
noise characterization. Future work will address these
issues. Also, future developments will focus on the use
of the proposed scheme in challenging application prob-
lems, such as the control of micro-grids in presence of
renewable stochastic energy sources. The application of
the algorithm to cope with linear time-varying systems
is envisaged, while its extension to distributed imple-
mentations is currently underway.

Acknowledgements
We are indebted to B. Picasso for fruitful discussions.

A Proof of the main Theorem 1

Recursive feasibility is first proved. Assume that,
at time instant t, a feasible solution of S-MPC
is available, i.e., (x̄t|t,Σt|t) ∈ Ξ with optimal se-
quences ūt,...,t+N−1|t, Kt,...,t+N−1|t, and Lt,...,t+N−1|t.
We prove that at time t + 1 a feasible solution
exists, i.e., in view of the initialization strategy
S2, (x̄t+1|t,Σt+1|t) ∈ Ξ with admissible sequences

ūf

t+1,...,t+N |t = {ūt+1|t, . . . , ūt+N−1|t, −K̄x̄t+N |t},
Kf

t+1,...,t+N |t = {Kt+1|t, . . . ,Kt+N−1|t, K̄}, and

Lf

t+1,...,t+N |t = {Lt+1|t, . . . , Lt+N−1|t, L̄}.
Constraint (13a) is verified for all pairs (x̄t+1+k|t, Xt+1+k|t),
k = 0, . . . , N − 2, in view of the feasibility of
S-MPC at time t. Furthermore, in view of (19),
(20), (24), and the condition (23a), we have that

bT x̄t+N |t ≤ xmax −
√

bTXt+N |tbf(p
x
r ), i.e., constraint

(13a) is verified.
Analogously, constraint (13b) is verified for all pairs
(ūt+1+k|t, Ut+1+k|t), k = 0, . . . , N − 2, in view of the
feasibility of S-MPC at time t. Furthermore, in view of
(19), (20), (24), and the condition (23b), we have that

−cT K̄x̄t+N |t ≤ umax −
√

cTUt+N |tcf(p
u
s ), i.e., con-

straint (13b) is verified.
In view of (19) and of the invariance property (21) it
follows that x̄t+N+1|t = (A − BK̄)x̄t+N |t ∈ X̄F and,

in view of (20), (22) Σt+N+1|t � ΦΣ̄ΦT + ΨΩ̄ΨT = Σ̄,
hence verifying both (19) and (20) at time t+ 1.

The proof of convergence is partially inspired by [29]. In
view of the feasibility, at time t+1 of the possibly subop-

timal solution ūf

t+1,...,t+N |t, K
f

t+1,...,t+N |t, L
f

t+1,...,t+N |t,

and (x̄t+1|t,Σt+1|t), we have that the optimal cost func-
tion computed at time t+ 1 is J∗(t + 1) = J∗

m(t+ 1) +

J∗
v (t+ 1) 1 . In view of the optimality of J∗(t+ 1)

J∗(t+ 1) ≤ Jm(x̄t+1|t, ū
f

t+1,...,t+N |t) (A.1)

+ Jv(Σt+1|t,K
f

t+1,...,t+N |t, L
f

t+1,...,t+N |t)

Note that, in view of (17)

Jm(x̄t+1|t, ū
f

t+1,...,t+N |t) ≤
Jm(x̄t|t, ūt,...,t+N−1|t)− ‖x̄t|t‖2Q − ‖ūt|t‖2R (A.2)

Furthermore

Jm(x̄t|t, ūt,...,t+N−1|t) = J∗
m(t) (A.3)

Now consider Jv in (18) and note that, in view of the
properties of the trace and (17)

Jv(Xt+1|t,K
f

t+1,...,t+N |t, L
f

t+1,...,t+N |t)

≤ Jv(Xt|t,Kt,...,t+N−1|t, Lt,...,t+N−1|t)

− tr{
[

QL 0

0 Q+KT
t|tRKt|t

]

Σt|t}+ tr(STΨΩΨT )

(A.4)

From (A.1)-(A.4) we obtain

J∗(t+ 1) ≤ J∗(t)− (‖x̄t|t‖2Q + ‖ūt|t‖2R)

−tr{
[

QL 0

0 Q+KT
t|tRKt|t

]

Σt|t}+ tr(STΨΩΨT )

(A.5)
Furthermore, from the definition of J∗(t)

J∗(t) ≥ ‖x̄t|t‖2Q + ‖ūt|t‖2R

+ tr

{[

QL 0

0 Q+KT
t|tRKt|t

]

Σt|t

}

(A.6)

Now, denote ΩF = {(x̄,Σ) : x̄ ∈ X̄F ,Σ � Σ̄}. Assuming
that (x̄t|t,Σt|t) ∈ ΩF we have that J∗(t) ≤ Jaux

m (t) +
Jaux
v (t), where

Jaux
m (t) =

∑N−1
k=0 ‖(A−BK̄)kx̄t|t‖2Q

+‖K̄(A−BK̄)kx̄t|t‖2R + ‖(A−BK̄)N x̄t|t‖2S

since {−K̄x̄t|t, . . . ,−K̄(A − BK̄)N−1x̄t|t} is a feasible
input sequence. Therefore, from (17),

Jaux
m (t) ≤ ‖x̄t|t‖2S (A.7)

1 For brevity, we denote J∗(xt, x̄t|t−1,Σt|t−1) with J∗(t),
J∗
m(xt, x̄t|t−1,Σt|t−1) with J∗

m(t), and J∗
v (xt, x̄t|t−1,Σt|t−1)

with J∗
v (t)
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Similarly, recalling (17), we obtain that

Jaux
v (t) ≤ tr{STΣt|t}+Ntr{STΨΩΨT } (A.8)

Combining (A.7) and (A.8) we obtain that, for all
(x̄t|t,Σt|t) ∈ ΩF

J∗(t) ≤ ‖x̄t|t‖2S + tr{STΣt|t}+N tr{STΨΩΨT } (A.9)

From (A.5), (A.6) and (A.9) it is possible to derive ro-
bust stability-related results.

Before to proceed, recall that tr{STΣt|t} = tr{S
1
2
T

T Σt|tS
1
2

T }
where S

1
2

T is a matrix that verifies S
1
2
T

T S
1
2

T = ST . There-

fore tr{STΣt|t} = tr{S
1
2
T

T Σt|tS
1
2

T } = ‖Σ
1
2

t|tS
1
2

T ‖2F . On the

other hand, denoting QT |t = diag(QL, Q +KT
t|tRKt|t),

it follows that tr{QT |tΣt|t} = ‖Σ
1
2

t|tQ
1
2

T |t‖2F . Moreover,

tr{STΣt|t} ≤ ‖Σ
1
2

t|t‖2F ‖S
1
2

T ‖2F = tr{ST }tr{Σt|t} (where

‖·‖F is the Frobenius norm) and, in view of the matrix in-

version Lemma, tr{QT |tΣt|t} ≥ (‖Q− 1
2

T |t‖2F )−1‖Σ
1
2

t|t‖2F ≥
tr{(diag(QL, Q))−1}−1tr{Σt|t} = tr{Q−1+Q−1

L }−1tr{Σt|t}.
Define V (x̄t|t,Σt|t) = ‖x̄t|t‖2 + tr{Σt|t} and ω =

tr{STΨΩΨT }. In view of this, we can reformulate (A.5),
(A.6) and (A.9) as follows.

J∗(t+ 1) ≤ J∗(t)− αV (x̄t|t,Σt|t) + ω (A.10a)

J∗(t) ≥ αV (x̄t|t,Σt|t) (A.10b)

J∗(t) ≤ βV (x̄t|t,Σt|t) +Nω (A.10c)

If (x̄t|t,Σt|t) ∈ ΩF then, in view of (A.10c), (A.10a)

J∗(t+ 1) ≤J∗(t)(1 − α

β
) + (

α

β
N + 1)ω (A.11)

Let η ∈ (ρ, 1) and denote b = 1
η
(N + β

α
). In view of

(A.10b), if J∗(t) ≤ b ω then V (x̄t|t,Σt|t) ≤ b
α
ω. This,

considering (26), implies that

‖x̄t|t‖2 ≤ ρ

η
σ̄2, tr(Σt|t) ≤

ρ

η
λmin(Σ̄) (A.12)

In view of (A.12), then x̄t|t ∈ X̄F and λmax(Σt|t) <

λmin(Σ̄), which in turn implies that Σt|t < Σ̄. Therefore,
recalling (A.11), if J∗(t) ≤ b ω, then J∗(t+1) ≤ b ω and
the positive invariance of the set D = {(x̄,Σ) : J∗(t) ≤
b ω} is guaranteed.
If (x̄t|t,Σt|t) ∈ ΩF \D, it holds that J∗(t) > bω which,
in view of (A.10c), implies that

V (x̄t|t,Σt|t) >
1

α
ω (A.13)

Since (x̄t|t,Σt|t) ∈ ΩF \D, recalling (A.11), (A.13), and
(A.10b), there exists c̄1 > 0 (function of η) such that

J∗(t+ 1)− J∗(t) ≤ −(1− η)
α2

β
V (x̄t|t,Σt|t) ≤ −c̄1

(A.14)
On the other hand, for all xt with (x̄t|t,Σt|t) ∈ Ξ\ΩF ,
there exists constant c̄2 > 0 such that there exists xΩ

with (x̄Ω,ΣΩ) ∈ ΩF \D such that −αV (x̄t|t,Σt|t) ≤
−αV (x̄Ω,ΣΩ)− c̄2. This, in view of (A.10a) and (A.14),
implies that

J∗(t+ 1)− J∗(t) < −c̄2 (A.15)

In view of (A.14)-(A.15), for all xt with (x̄t|t,Σt|t) ∈
Ξ\D there exists c̄ (function of η)

J∗(t+ 1)− J∗(t) < −c̄ (A.16)

This implies that, for each η ∈ (ρ, 1), there exists T > 0
such that xt+T is such that (x̄t+T |t+T ,Σt+T |t+T ) ∈ D,
i.e., that αV (x̄t+k|t+k,Σt+k|t+k) ≤ bω for all k ≥ T .
This, for η → 1, implies (28).

B The S-MPCl problem

B.1 Proof of Lemma 1

For the proof of Part I., the following result is used.

Lemma 2 Given a positive semi-definite, symmetric
matrix M , then

M =

[

M11 M12

MT
12 M22

]

�
[

2M11 0

0 2M22

]

Proof of Lemma2 SinceM � 0, then
[

−xT
1 xT

2

]

M

[

−x1

x2

]

=

xT
1 M11x1 + xT

2 M22x2 − xT
1 M12x2 − xT

2 M
T
12x1 � 0 for

all x1, x2 such that
[

xT
1 xT

2

]

6= 0. From this, we ob-

tain that
[

xT
1 xT

2

]

M

[

x1

x2

]

= xT
1 M11x1 + xT

2 M22x2 +

xT
1 M12x2 + xT

2 M
T
12x1 ≤ 2xT

1 M11x1 + 2xT
2 M22x2 =

[

xT
1 xT

2

]

[

2M11 0

0 2M22

][

x1

x2

]

for all x1, x2 such that

[

xT
1 xT

2

]

6= 0. This concludes the proof of Lemma 2. �

Consider now matrix Σt and its block decomposition

Σt =

[

Σ11,t Σ12,t

ΣT
12,t Σ22,t

]

10



where Σij,t ∈ R
n×n for all i, j = 1, 2. A bound for the

time evolution of the covariance matrix Σt is computed,
iteratively, considering that

Σt+1 � ΦtΣ
D
t ΦT

t +ΨtΩΨ
T
t (B.1)

If we define ΣD
t+1 = diag(ΣD

11,t+1,Σ
D
22,t+1), where

ΣD
11,t+1 = 2(A− LtC)ΣD

11,t(A− LtC)T+

FWFT + 2LtV LT
t (B.2)

ΣD
22,t+1 = 2(A−BKt)Σ

D
22,t(A−BKt)

T+

2LtCΣD
11,tC

TLT
t + 2LtV LT

t (B.3)

then we obtain that ΣD
t+1 � Σt+1, in view of Lemma 2.

The latter corresponds with (29).

Part IIa. LMI reformulation of the update of
ΣD

11,k.

We define Γk = diag(ΣD
11,k,W

−1, (V D)−1), Θ̃k =
[

AD
Lk

FW LkV
D

]

and we rewrite constraint (30a) as

ΣD
11,k+1 − Θ̃kΓkΘ̃

T
k � 0. Resorting to the Schur com-

plement it is possible to derive the equivalent form
Γ−1
k − Θ̃T

k (Σ
D
11,k+1)

−1Θ̃k � 0. To obtain a linear in-
equality from the previous expression we define

Zk = (ΣD
11,k+1)

−1Lk (B.4)

and Σ̃D
11,i = (ΣD

11,i)
−1, i.e., diag(Σ̃D

11,k,W, V D) −
ΦT

k (Σ̃
D
11,k+1)

−1Φk � 0, where Φk = [(Σ̃D
11,k+1A

D −
ZkC

D) , Σ̃D
11,k+1FW , ZkV

D]. The latter expression
can be written as a compact LMI as follows























Σ̃D
11,k 0 0

0 W 0

0 0 V D









ΦT
k

Φk Σ̃D
11,k+1















� 0 (B.5)

Notice that, however, in the constraints (32) and in the
cost function (36), the term ΣD

11,i appears, rather than

its inverse Σ̃D
11,i. To solve this issue, we define matrix ∆k

as an upper bound to ΣD
11,k (i.e., ∆k � ΣD

11,k), which can

be recovered from Σ̃D
11,k+1 through the following linear

inequality
[

∆k I

I Σ̃D
11,k

]

� 0 (B.6)

Then, one should replace ΣD
11,k with ∆k in (32) and (36).

Part IIb. Reformulation of the update of ΣD
22,k.

Consider now the inequality (30b), i.e.,

ΣD
22,k+1 − (AD −BDKk)Σ

D
22,k(A

D −BDKk)
T

− Lk(C
DΣD

11,kC
DT + V D)LT

k � 0 (B.7)

Recalling (B.4), (B.7) can be rewritten as ΣD
22,k+1 −

(AD−BDKk)Σ
D
22,k(A

D−BDKk)
T−ΣD

11,k+1MkΣ
D
11,k+1 � 0,

where
Mk = Zk(C

DΣD
11,kC

DT + V D)ZT
k (B.8)

By defining Ξk = KkΣ
D
22,k, and using the matrix ∆k+1

in place of ΣD
11,k+1, the inequality (B.7) can be recast as

a suitable LMI. In fact, in view of the Schur complement
Lemma and letting M̃k = M−1

k , we obtain









ΣD
22,k+1

[

(ADΣD
22,k −BDΞk) ∆k+1

]

[

(ADΣD
22,k −BDΞk)

T

∆k+1

] [

ΣD
22,k 0

0 M̃k

]









� 0 (B.9)

The equation (B.8) can be recast as the inequalityMk �
Zk(C

DΣD
11,kC

DT +V D)ZT
k , which can be reformulated

as









Mk

[

ZkV
D ZkC

D

]

[

(ZkV
D)T

(ZkC
D)T

] [

V D 0

0 Σ̃D
11,k

]









� 0 (B.10)

Finally, concerning the equality M̃k = M−1
k , it can be

solved using the approach proposed in [7]. Indeed, we
solve the following LMI

[

Mk I

I M̃k

]

� 0 (B.11)

and, at the same time, we minimize the additional cost
function

tr{MkM̃k} (B.12)

The problem (B.11)-(B.12) can be managed using the
recursive cone complementarity linearization algorithm
proposed in [7] with a suitable initialization.

B.2 LMI reformulation of the constraints

While the constraint (31a) is a linear inequality (and
therefore it does not need to be further reformulated),
the inequality (31b) needs special attention. As already
remarked, in (31b), Uk must be replaced by Ūk. In turn,
the equality Ūk = KkΣ

D
22,kK

T
k = Ξk(Σ

D
22,k)

−1ΞT
k must

be recast as an LMI as follows:

[

Ūk Ξk

ΞT
k ΣD

22,k

]

� 0 (B.13)
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