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ABSTRACT

Carbonic anhydrases (CAs) Ill and VIl are two cytosolic isoforms of the o-CA family which catalyze the
physiological reaction of carbon dioxide hydration to bicarbonate and proton. Despite these two enzymes
share a 49% sequence identity and present a very similar three-dimensional structure, they show profound
differences when comparing the specific activity for CO, hydration reaction, with CA VIl being much more
active than CA lIl. Recently, CA Ill and CA VII have been proposed to play a new role as scavenger enzymes
in cells where oxidative damage occurs. Here, we will examine functional and structural features of these
two isoforms giving insights into their newly proposed protective role against oxidative stress.

Introduction

Carbonic anhydrases (CAs) are ubiquitous metalloenzymes, present
throughout most living organisms and encoded by six unrelated
gene families: the a-, B-, y-, 8-, n-, and {-CAs. These enzymes con-
tain a Zn(ll) ion in the active site that can be replaced by Fe(ll) or
Co(ll) in the gamma family and by Cd(ll) in the zeta one'™®.
Human CAs (hCAs) belong to the a class which consists of 15 iso-
forms, among which 12 are enzymatically active (CAs I, II, lll, IV,
VA, VB, VI, VII, IX, XII, Xlll, and XIV) and 3, called CA-related pro-
teins (CARPs VIII, X, and XI), catalytically inactive. Catalytically
active hCAs have different cellular localization; in particular, 5 are
cytosolic (CAs I-ll, VII, and Xlll), 4 are membrane-associated (CAs
IV, IX, Xll, and XIV), 2 are mitochondrial (CAs VA and VB), and 1 is
a secretory protein present in milk and saliva (CA VI)"">7.

CAs catalyze a very simple reaction: the hydration of carbon
dioxide to bicarbonate and proton. These enzymes are expressed
in many tissues where they participate in numerous physiological
processes such as acid-base balance, respiration, ureagenesis,
dioxide and ion transport, bone resorption, gluconeogenesis, body
fluid generation, and lipogenesis'”’. Interestingly, apart from these
biological activities, CAs are also associated to several pathological
processes when abnormal levels and/or activities are registered.
For instance, glaucoma and epilepsy are CA-related diseases where
CA Il and CA VIl are involved®®. Other CAs, such as CA IX and CA
Xll, have been associated to tumors where they cause extracellular
pH lowering, thus helping the progression of malignant cells'®'".

CA Ill and CA VIl are two of the least understood CA isoforms.
These two cytosolic enzymes are both localized in tissues that
have a high oxygen consumption rate, such as skeletal muscle,
liver, and brain; moreover, they share 49% sequence identity and
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present a very similar three-dimensional structure'®'3, Despite

these similarities, these isoforms present a very different catalytic
efficiency for CO, hydration reaction, being CA VIl one of the
more efficient isoforms and CA lll the least efficient (CA Ill activity
is 0.35% compared to CA VII activity)'®. Recently it has been sug-
gested that these enzymes could participate in defense processes
in cells where oxidative damage occurs upon the generation of
reactive oxygen species (ROS)'>""”. ROS are generated by normal
metabolic activity, as well as lifestyle factors such as smoking,
exercise, and diet. Their overproduction can be induced by differ-
ent factors and perturb the normal cell redox balance, shifting
cells into a state of oxidative stress. Since in conditions of severe
stress, survival of the cells depends on their ability to adjust or
resist to stress'®2°, cells have developed an antioxidant defense
system, involving gluthathione, antioxidant vitamins, sulfhydryl
groups, and antioxidant enzymes®'. Recently, it has been sug-
gested that CA Il and CA VIl could be part of this antioxidant
defense system. Indeed, the comparative analysis of the amino
acid sequence of CA Il and CA VII with that of the other cytosolic
hCAs clearly showed the presence of a higher number of cysteine
residues (Figure 1). Biochemical and structural studies have indi-
cated for some of these cysteines a particularly high reactivity,
thus suggesting that both enzymes could have a role in scaveng-
ing reactive species through their reactive sulfhydryl
groups'*'7?>23 This is a new interesting finding considering that
CA VII has been principally studied as an antiepileptic target being
involved into the GABAergic transmission®”.

In this review, by examining CA Il and CA VII functional and
structural features, we will provide insights into their newly pro-
posed protective role against oxidative stress.
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2 D. M. MONTI ET AL.
hCA I 0 -MASPDWGYDDKNGPEQWSKLYPIANGNNQSPVDIKTSETKHDTSLKPISVSYNPATAKEIINVGHSFHVNF
hCA II 1 --MSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLKPLSVSYDQATSLRILNNGHAFNVEF
bCA III 1 --MAKEWGYADHNGPDHWHELFPNAKGENQSPIELNTKEISHDPSLKPWTASYDPGSAKTILNNGKTCRVVE
rCA III 1 --MAKEWGYASHNGPEHWHELYPIAKGDNQSPIELHTKDIRHDPSLQPWSVSYDPGSAKTILNNGKTCRVVF
heA. TIT 1 --MAKEWGYASHNGPDHWHELFPNAKGENQSPVELHTKDIRHDPSLQPWSVSYDGGSAKTILNNGKTCRVVFE
hCA VII 1 MTGHHGWGYGQDDGPSHWHKLYPIAQGDRQSPINIISSQAVYSPSLQPLELSYEACMSLSITNNGHSVQVDF
hCA XIII 0 -MSRLSWGYREHNGPIHWKEFFPIADGDQQSPIEIKTKEVKYDSSLRPLSIKYDPSSAKIISNSGHSFNVDF
* *
hCA I 71 EDNDNRSVLKGGPFSDSYRLFQFHFHWGSTNEHGSEHTVDGVKYSAELHVAHWNSAKYSSLAEAASKADG
hCA II 71 DDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTVDKKKYAAELHLVHWNT-KYGDFGKAVQQPDG
bCA III 71 DDTYDRSMLRGGPLAAPYRLRQFHLHWGSSDDHGSEHSVDGVKYAAELHLVHWNS-KYNSYATALKHADG
rCA III 71 DDTFDRSMLRGGPLSGPYRLRQFHLHWGSSDDHGSEHTVDGVKYAAELHLVHWNP-KYNTFGEALKQPDG
hCA III 71 DDTYDRSMLRGGPLPGPYRLRQFHLHWGSSDDHGSEHTVDGVKYAAELHLVHWNP-KYNTFKEALKQRDG
hCA VII 71 NDSDDRTVVTGGPLEGPYRLKQFHFHWGKKHDVGSEHTVDGKSFPSELHLVHWNAKKYSTFGEAASAPDG
hCA XIII 71 DDTENKSVLRGGPLTGSYRLRQVHLHWGSADDHGSEHIVDGVSYAAELHVVHWNSDKYPSFVEAAHEPDG
hCAa I 141 LAVIGVLMKVGEANPKLQKVLDALQAIKTKGKRAPFTNFDPSTLLPSSLDFWTYPGSLTHPPLYESVTWI
hCA II 141 LAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSADFTNFDPRGLLPESLDYWTYPGSLTTPPLLECVTWI
bCA III 141 IAVVGVFLKIGREKGEFQLLLDALDKIKTKGKEAPFNNFNPSELFP YWITYHGSFTTPPCEECIVWL
rCA TIT 141 IAVVGIFLKIGREKGEFQILLDALDKIKTKGKEAPFNHFDPSELFP YWTYHGSFTTPPCEECIVWL
HCA TIT 141 IAVIGIFLKIGHENGEFQIFLDALDKIKTKGKEAPFTKFDPSELFP YWTYQGSFTTPPCEECIVWL
hCA VII 141 LAVVGVFLETGDEHPSMNRLTDALYMVRFKGTKAQFSCFENP; LPASRHYWTYPGSLTTPPLSESVTWI
hCA XIII 141 LAVLGVFLQIGEPNSQLOKITDTLDSIKEKGKQTRFTNFDLLSLLPPSWDYWTYPGSLTVPPLLESVTWI
* * * * *

hCA I 211 ICKESISVSSEQLAQFRSLLSNVEGDNAVPMQHNNRPTQPLKGRTVRASF--

hCA II 211 VLKEPISVSSEQVLKFRKLNFNGEGEPEELMVDNWRPAQPLKNRQIKASFK-

bCA III 211 LLKEPITVSSDQIAKLRTLYSSAENEPPVPLVRNWRPPQPIKGRIVKASFK-

rCA-III 211 LLKEPMTVSSDQMAKLRSLFASAENEPPVPLVGNWRPPQPIKGRVVRASFK-

hCA IIT 211 LLKEPMTVSSDQMAKLRSLLSSAENEPPVPLVSNWRPPQPINNRVVRASFK-

hCA VII 211 VLREPIIISERQMGKFRSLLFTSEDDERIHMVNNFRPPQPLKGRVVKASFRA

hCA XIII 211
* * *

VLKQPINISSQQLAKFRSLLCTAEGEAAAFLVSNHRPPQPLKGRKVRASFH-

Figure 1. Multiple sequence alignment of cytosolic CAs. All cysteine residues are indicated with an asterisk; the reactive cysteines of isoforms Ill and VIl are highlighted
in dark gray, whereas those involved into hCA VII intramolecular disulfide bridge are highlighted in light gray. The sequence of bovine (b), rat (r) and human (h) CA Ill
are reported showing that all cysteine residues are conserved. The alignment has been performed using Clustal Omega server®,

CA lll biochemical and functional features

The distribution pattern of CA Il in the different tissues has been
largely investigated by means of both Western blotting and immu-
nohistochemistry experiments®>, showing that CA Il is abundantly
expressed in liver and skeletal muscle. Several other tissues con-
tain detectable quantities of CA Il although in a smaller quan-
tity>> 3. The great amount of CA Il in tissues with a great
oxidation potential suggested that this protein could function in
vivo as an oxyradical scavenger, protecting cells from oxidative
damage. In agreement with this hypothesis, it was demonstrated
that in NIH/3T3 cells, transfected with rat CA Ill cDNA, the intracel-
lular steady-state level of ROS was lower with respect to the par-
ental cells, and addition of exogenous hydrogen peroxide (H,0,)
did not induce an increase of ROS contrary to what observed for
not transfected cells. Moreover, in proliferation assays CA lll over-
expressing cells grew faster and were more resistant to cytotoxic
concentration of H,0, with respect to not-transfected cells>*,

The involvement of CA Ill in the response to the oxidative
stress was also supported by the observation that among the five
cysteines present in its sequence (Figure 1), two of them, i.e.
Cys183 and Cys188, were shown to form in vivo a disulfide link
with glutathione (GSH)** in a process referred as S-glutathiola-
tion®. Reversible protein S-thiolation is an early cellular response

towards oxidative stress due to the partial oxidation of cysteines
to sulfenic acid or thiol radicals, which subsequently react with
cellular GSH or GS radicals to form disulfide adducts®® (see
Scheme 1). The analysis of the 3D structure of S-glutathiolated CA
Il suggested that the forming bonds between CA Il reactive cys-
teines and GSH moiety were not to be ascribed to a specific rec-
ognition of GSH, but rather to the high reactivity of Cys183 and
Cys188 and the great abundance of GSH in cell*’, which reaches
in vivo millimolar concentration®3%39,

The behavior of the two reactive sulfhydryl groups of CA I,
upon exposure to H,0,, peroxy radicals, or hypochlorous acid
(HOCI) in presence or absence of GSH, was investigated in detail
by Mallis and coworkers®’. These authors found that irreversible
oxidation was prevented only when GSH was approximately equi-
molar to protein thiols, thus allowing the S-gluthathiolation pro-
cess®®. Accordingly, at low GSH concentration, sulfenic acids
(cysteine SOH) were irreversibly oxidized to sulfinic or sulfonic acid
(cysteine SO,H and SOsH, respectively) which were not reducible
by S-disulfide exchange (see Scheme 1). Similar results were
obtained in cultured rat hepatocytes when treated with diethyl
maleate for GSH depletion and menadione as oxidative agent®. In
agreement with these data, protein extracts from liver of aged
rats, which presented reduced levels of GSH, contained increased
amounts of irreversibly oxidized CA 1II*%*",
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Scheme 1. Schematic representation of reversible and irreversible oxidation of CA Ill reactive cysteines.

Subsequent investigations on the putative antioxidant role of CA
Il were performed in 2004 by Zimmerman and coworkers; these
authors analyzed the S-glutathiolation and the irreversible oxidation
of CA lll in skeletal muscle subjected to ischemia or exhaustive exer-
cise. These studies showed that the two reactive sulfhydryl groups
of CA Il were differentially and progressively oxidized in skeletal
muscle when it was exposed to oxidative insult. Under a mild or
brief stress, reversible S-glutathiolation of one of CA Il reactive cys-
teines was observed, involving only 20% of skeletal muscle protein,
whereas under prolonged or harsh stress both sulfhydryl groups
were irreversible oxidized. These results suggested that the high
content of CA Ill in skeletal muscle might serve as a reservoir of
reactive sulfhydryl groups able to repair acute and chronic insults. It
is worth noticing that less than 10% of S-glutathiolated enzyme was
detected in resting skeletal muscle indicative of a regulative physio-
logical function??. The same authors analyzed, by microarray, ca3
knockout and wild-type mice and identified a transcriptional alter-
ation of about 500 genes (out of 12 000), all associated to the GSH
mediated anti-oxidative system. However, the ca3 knockout mice
exhibited a normal development, fertility, and life span, at least
under the standard laboratory conditions used*2.

Finally, interesting data were presented on the repression of
transcription of CA Ill gene driven by EVI1%. EVI1, a multi-domain
protein belonging to cys2hys2 zinc finger family****, is involved
into cancer progression through several mechanisms, including
enhanced cell proliferation, impaired differentiation, and evasion
of apoptosis®. It has been shown that high levels of EVI1 expres-
sion in Rat1 cells induce an enhanced sensitivity to H,0,-induced
apoptosis due to the down-regulation of CA Ill gene expression.
However, the molecular mechanism by which EVIT acts as CA llI
repressor has not yet been understood. Authors hypothesized a
direct binding of EVIT to CA Il promoter sequence, which was
shown to contain cis-regulatory elements necessary for EVI1-medi-
ated transcriptional repression®®. Since EVI1 is overexpressed in
some human cancers*’*8, it would be interesting to assess
whether these types of tumors present reduced levels of CA lll. If
this is the case, a novel strategy could be developed for the treat-
ment of tumors overexpressing EVI1 as they might be vulnerable
to therapeutic agents that induce oxidative stress®,

CA VII biochemical and functional features

CA VIl is known to be predominantly expressed in the cytosol of
rat* and mice neurons starting around postnatal day 10°°.

In humans, CA VIl is expressed in several normal tissues, including
liver, brain, colon, and skeletal muscle®’™3, and only few years
ago Parkkila's group found high CA VIl expression levels in brain
tumor cells, allowing them to suggest CA VIl as a tumor marker®”,
On the other side, Yang and coworkers, by using gPCR and
Western blot analysis, recently found that CA VIl mRNA and pro-
tein  levels were down-regulated in colon  tumors.
Immunohistochemical staining also showed a weak signal in colon
tumors with respect to normal colon tissues. Moreover, a correl-
ation between reduced CA VIl protein levels and shorter disease-
specific survival was also found®>. These results confirmed those
already obtained by others who, analyzing different samples from
colon (normal and tumor tissues) by a gene expression profiling
study and a bioinformatics-based analysis, noted that CA VI
mRNA was down-regulated in colorectal carcinoma clinical speci-
mens>®>’, Altogether, these data provided evidence for the poten-
tial utility of CA VIl as a prognostic marker for patients with
colorectal carcinoma®®.

A recent study from our group unveiled for this enzyme
another potential role as an oxygen radical scavenger for protect-
ing cells from oxidative damage'’. Indeed, we found that among
the 4 cysteine residues present in the amino acid sequence of the
enzyme (Figure 1), those in position 183 and 217 were particularly
reactive, being quantitatively S-glutathiolated during the in vitro
purification'®. The glutathiolated protein, as well as a variant in
which the two reactive cysteine residues were substituted by ser-
ines (C183S/C217S), showed an enzymatic activity similar to that
reported for the wild-type protein (K../Ky of 6.5 x 107 M~ 's™" for
the variant, 8.0 x 10° M~ 's™" for the glutathiolated protein and
7.2 x 10 M~'s™" for the wild-type enzyme). The same results were
obtained for the inhibition constants using sulfonamide inhibitor
acetazolamide (K, of 2.8, 3.0, and 2.7nM for wild-type, C183S/
C217S and the glutathiolated protein, respectively). Altogether
these results were indicative of two sulfhydryl groups very reactive
and not involved in the enzyme catalytic mechanism, thus sug-
gesting, in analogy with what observed for CA IlI, that CA VIl could
function in vivo as an oxygen radical scavenger through its react-
ive cysteines, protecting cells from oxidative damage. To verify
this hypothesis, the CA VIl ability to protect human cells from oxi-
dative stress was investigated'’. In particular, Hela cells, that do
not express endogenous CA VII, were transiently transfected with
a plasmid encoding the wild-type protein and then stressed by
using sodium arsenite (SA). It was observed that CA VI
was able to protect cells from death, as the induction of
apoptosis was lower in cells expressing CA VIl with respect to
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Figure 2. Quantitative analysis of apoptotic marker levels in transfected Hela
cells after treatment with SA for 16h. In each histogram, the protein intensity
level was normalized to endogenous actin and expressed as percentage with
respect to untreated cells. Black histograms refer to procaspase-3 levels, gray his-
tograms to Bcl-2 and white histograms to Bax levels.

mock-transfected cells'”. In particular, in mock-transfected cells
the percentage of apoptotic cells increased from 15% to 49% after
SA treatment, whereas cells expressing CA VIl showed a lower per-
centage of apoptotic cells after induction of oxidative stress (from
18% to 39%). The activation of apoptosis mediated by mitochon-
dria was then analyzed by Western blotting, showing that CA VII
was able to protect Hela cells from oxidative stress (Figure 2). In
fact, levels of both Bcl-2 (Figure 2, gray bars) and Bax (Figure 2,
white bars), which are, respectively, anti- and pro-apoptotic
markers involved in mitochondria-mediated apoptosis, were
almost unchanged in SA-treated cells expressing WT-CA VIl with
respect to untreated cells (86% and 93%, respectively, bars in the
middle of Figure 2). By contrast, mock-transfected cells showed a
significant alteration in Bcl-2 and Bax levels after induction of oxi-
dative stress (50% and 336%, respectively, left side of Figure 2), as
well as in the decrease of procaspase-3 levels, one of the final
effectors of apoptosis (47% and 68%, for mock-transfected and CA
Vll-expressing cells, black bars in Figure 2). It is worth to note that,
after treatment with SA, a stronger CA VIl signal was observed
probably due to a protective attempt of the cell to contrast oxida-
tive stress injury'’.

The importance of cysteine residues was validated by perform-
ing the same set of experiments in cells transfected with a CA VII
mutant (TM-CA VII), in which all the cysteines present in the amino
acid sequence (Cys54, Cys178, Cys183, and Cys217) were replaced
by serine residues. Noteworthy, it was observed that cells express-
ing the TM-CA VII were susceptible to oxidative stress, as the
increase in Bax levels as well the decrease in Bcl-2 and procas-
pase-3 levels were similar to those reported for mock-transfected
cells (267%, 49%, and 45%, respectively, right side of Figure 2).
These findings indicated lack of protection from oxidative stress in
the presence of the mutated protein. Since this mutated enzyme
possessed the same catalytic activity as the native protein
(see above), it was possible to conclude that the protective role of
CA VII against oxidative stress was not related to the enzyme cata-
lytic activity, but rather to the presence of very reactive cysteine
residues, which could act as oxygen radical scavenger.

A great amount of data support the idea that in vivo oxidative
stress and the accompanying ROS are genotoxic and contribute to
the development of several human cancers including colorectal
carcinoma®®®, Since the latter presents a reduced CA VIl expres-
sion®®, it is tempting to speculate that the absence of the

Figure 3. Ribbon representation of the overall fold of CA IIl.

antioxidant action of CA VII could be responsible of a higher sens-
ibility to the oxidative stress and consequently of the disease pro-
gression. Thus, the reported protective role of CA VII might
suggest a novel tumor-suppressing function for this enzyme.

X-ray structural studies on CA Ill and CA VII

Several crystallographic structural studies have been reported on
CA III'>376283  the first one being on the bovine isoform which
was solved in 1993'%, showing that the enzyme three-dimensional
structure presents the typical a-CA fold'*®*72, characterized by a
central 10-stranded [-sheet surrounded by several helices and
additional B-strands (Figure 3). Structural data on the human iso-
form have been reported later, together with different site-specific
variants aimed at identifying which residues were responsible for
the low catalytic efficiency of CA I115%3,

In particular, McKenna's group reported a kinetic and structural
characterization of three hCA Il mutants where an active site resi-
due was substituted by a histidine one, namely mutants K64H,
R67H, and K64H-R67N®. It is well known that the rate-limiting
step of CO, hydration reaction, catalyzed by o-CAs, is the proton
transfer reaction from the zinc-bound water molecule to the exter-
nal medium, to regenerate the zinc-bound hydroxide which is the
reactive species'. This reaction is assisted by the proton shuttle
His64 in hCA 1”3, the most catalytically active member of a-CA
class. Interestingly, the same position is occupied by a lysine in
hCA 1ll enzyme, thus suggesting that restoring a histidine in such
position could greatly improve the CA Il catalytic efficiency.
Surprisingly, the kinetic data of K64H variant revealed only a small
increase in the rate constant for proton transfer from proton
donors to the zinc-bound hydroxide (kg values were 3.0 and
20ms™' for native hCA Il and K64H variant, respectively)®.
Moreover His64 in K64H variant had a capacity for proton transfer
that was only 2.5% that of His64 in hCA Il. Comparison of the crys-
tal structures of K64H hCA Il mutant and hCA Il suggested that
the different ability in proton transfer could be related, at least in
part, to the limited conformational mobility of His64 observed in
the mutant compared to hCA Il, where His64 adopts two different
conformations (referred to as inward and outward)’>. In agreement
with this hypothesis, it was previously reported that the high
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Cys183/GSE
(Conformer 2)

Figure 4. Schematic representation of (A) Cys188-GSH adducts and (B) Cys183-GSH. The two Cys183 conformers are indicated as 1 and 2. Surface representation of CA
Il is also reported showing the positive charged residues (Lys and Arg) colored light gray, while negative ones (Asp and Glu) colored black.

conformational mobility of His64 in hCA Il would be an important
feature for its ability in proton transfer’*.

A higher reaction rate for proton transfer was achieved with
R67H and K64H-R67N mutants (kg value of 81 and 100ms™' for
R67H and K64H-R67N, respectively), indicating that other residues
of the active site cavity can be involved into catalytic mechanism.
Additional site-specific mutagenesis studies also showed the influ-
ence of amino acid replacement at position 198, suggesting that
the hydrophobicity of Phe198 can affect the pK, of the zinc-bound
water lowering CA Il catalytic efficiency”.

The X-ray structure of CA Ill extracted from rat liver was also
solved providing very interesting data for understanding the
molecular determinants responsible for the above described high
reactivity of Cys183 and Cys188*”. These two residues are located
on the molecular surface of the protein and were found S-gluta-
thiolated in the crystal structure. The analysis of the structure
revealed that the presence of disulfide linkages between cysteine
residues and GSH molecule did not alter the overall structure of
the protein, nor the conformation of residues located near to
Cys183 and Cys188. This observation was in agreement with the
experimental data that S-glutathiolation has no effect on the cata-
lytic activity of the enzyme, as the GSH moieties are distant from
enzyme active site®”. Moreover, the analysis of electron density in
correspondence of Cys-GSH adducts indicated conformational
flexibility of the glutathionyl moieties, with the disulfide bridge
involving Cys183 adopting two different conformations (conform-
ation 1 and 2), and that involving Cys188 with only one orienta-
tion observed.

Previously reported data indicated Cys188 as the most reactive
cysteine’®; this was explained by the examination of S-glutathio-
lated CA Il structure. In fact, Cys188 was located in an environ-
ment characterized by a lower negative charge that could justify
its greater propensity to react with uncharged or charged species
(Figure 4)*>7%77_On the contrary, Cys183 was located in a depres-
sion of the surface showing a greater negative charge making this
residue less reactive. Further clarifications on the Cys188 high
reactivity were obtained from site-specific mutagenesis studies’®.
Oxidation of a thiol group involves its ionization to the thiolate.
As the pK, of free cysteine is approximately 8.5, it was expected
that, at physiological pH, cysteine was almost completely in its
protonated form. However, within a protein 3D structure, the cyst-
eine pK, can be altered and, in particular, lowered by the

Figure 5. Structural superposition of all cytosolic a-CAs. The zinc ion coordination
and intramolecular disulfide bridge of hCA VIl are also depicted.

interaction with basic amino acids. Several charged residues were
identified from CA lll crystal structure that could affect the pK, of
Cys188 (i.e. Lys213, Arg189, Asp190, and Glu214, numbering refer-
ring to that used for the crystal structure of CA Il from rat liver).
In order to elucidate their role, site-specific mutants were pro-
duced and characterized showing that Lys213 was the major
responsible for the lowering of the pK, , whereas Arg189 seemed
not to affect it. Notably, the acidic Asp190 and Glu214 reduced
the reactivity of Cys188, thus suggesting that their conformational
rearrangement could serve to modulate the CA Il propensity to
glutathiolation’®,

The crystal structure of hCA VII, solved in 2010 by our group'?,
showed structural features similar to those previously reported for
other cytosolic CAs (Figure 5)'*5*%57! |ndeed, the protein was a
monomer characterized by a central 10-stranded anti-parallel
B-sheet surrounded by additional B-strands and three o- and four
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310 helices. The hCA VII active site was located in a conical cavity
about 15A wide and 15 A deep, which extended from the surface
of the protein to the center of the molecule. The catalytic zinc ion
was located at the bottom of this cavity, coordinated by three his-
tidine residues and the deprotonated nitrogen atom of sulfona-
mide moiety of acetazolamide molecule, which co-crystallized with
the enzyme. The active site cavity was divided in two very differ-
ent portions delimited by hydrophobic or hydrophilic amino acids.
In particular, Val121, Leu198, Ala135, Leu141, Val143, Val207, and
Phe131 delineated the hydrophobic region, while Asn62, His64,
GIn67, Lys91, and GIn92 identified the hydrophilic one. This pecu-
liar active site arrangement, already observed for other members
of the o-CA family, was directly correlated to the catalytic mechan-
ism of the enzyme. In particular, the hydrophobic region was sup-
posed to be involved in the sequestration of the CO, substrate
and its opportune orientation for nucleophilic attack by the zinc-
bound hydroxide”®, whereas the hydrophilic region was supposed
to be involved in the formation of a well ordered hydrogen-
bonded solvent network, which assists the proton transfer
reaction’*8%81,

An intramolecular disulfide bond was observed in hCA VI
structure between Cys54 and Cys178 (Figure 5). However, the
observation that these two cysteines are not conserved within
the o-CA family®? and that disulfide bonds are extremely rare in
cytosolic proteins®®, suggested that this disulfide bond could be
a result of the oxidizing conditions that arise during protein
handling.

No structural data were available on the two cysteines (Cys183
and Cys217) involved into S-glutathiolation in vitro'?, as a variant
form, containing the substitution of these cysteines with serines,
was used for the structural studies. However, the analysis of the
structure of this variant showed that these residues were located
on the protein surface and were completely accessible to the solv-
ent. Molecular modeling studies, corroborated by site-specific
mutagenesis, should be performed in order to clarify the structural
determinants of the high chemical reactivity of these two sulf-
hydryl groups.

Conclusion

To respond to oxidative stress cells have developed antioxidant
defense systems, including gluthathione, antioxidant vitamins, sulf-
hydryl groups, and antioxidant enzymes. CA lll and CA VIl have
been proposed to be involved in these antioxidant defense sys-
tems, acting, through their reactive cysteines, as scavenger
enzymes of reactive species in cells where oxidative damage
occurs. Biochemical and structural studies of CA Ill allowed identifi-
cation of the molecular determinants responsible for the high
reactivity of cysteine residues involved in the proposed scavenger
function and confirmed the critical role of the charged residues to
modulate the reactivity of such residues.

On the other hand, fewer data are available for CA VII, which
presents many similarities with CA lll, starting from its propensity
to undergo S-glutathiolation in vitro, ending with its ability to pro-
tect cells from oxidative insults. Interestingly, available data clearly
indicate that the protective role of CA VIl is not related to the
enzyme catalytic activity, since a CA VIl variant, in which the cyst-
eine residues were replaced by serines, showed the same catalytic
activity of the wild-type protein, but was not able to protect cells
from oxidative stress injury. Further studies are needed to investi-
gate the influence of the residues surrounding the reactive cys-
teines in order to highlight the molecular mechanisms regulating
this phenomenon.
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