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Abstract Correspondence analysis is a widely used tool for obtaining a graphical
representation of the interdependence between the rows and columns of a contin-
gency table, by using a dimensionality reduction of the spaces. The maximum in-
formation regarding the association between the two categorical variables is then
visualized allowing to understand its nature. Several extensions of this method take
directly into account the possible ordinal structure of the variables by using different
dimensionality reduction tools. Aim of this paper is to present an unified theoreti-
cal framework of several methods of correspondence analysis with ordinal variables.

Abstract L’analisi delle corrispondenze ottiene una rappresentazione grafica della
interdipendenza tra le righe e colonne di una tabella di contingenza mediante una
riduzione della dimensionalità degli spazi. La massima informazione riguardante
l’associazione tra le due variabili viene allora visualizzata in un sottospazio di
dimensione ridotta per coglierne la natura. Diverse estensioni di tale approccio
considerano anche la possibile struttura ordinale delle variabili, utilizzando diversi
metodi di riduzione della dimensionalità. Scopo di questo lavoro è quello di pre-
sentare un quadro teorico unitario di alcuni estensioni dell’analisi delle corrispon-
denze in presenza di variabili ordinali.
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1 Introduction

Correspondence analysis is a widely used tool for obtaining a graphical representa-
tion of the interdependence between the rows and columns of a contingency table,
and it is usually performed by applying a generalized singular value decomposition
to the standardised residuals of a two-way contingency table obtaining a dimension-
ality reduction of the space. This decomposition ensures that the maximum informa-
tion regarding the association between the two categorical variables are accounted
for in a factorial plane of a correspondence plot, enabling us to visually understand
the nature of this association. There are many ways in which the graphical dis-
play may be obtained and, usually, they use a dimension reduction of the global
space. Dimension reduction can be achieved via a suite of interrelated methods for a
two-way contingency table. We draw our attention to singular value decomposition
(hereafter SVD), generalised singular value decomposition (GSVD), bivariate mo-
ment decomposition (BMD), and hybrid decomposition (HMD). Aim of this paper
is to present an unified approach to several methods of correspondence analysis of
a two way contingency table with ordinal categorical variables.

2 Basic notation

We consider samples from I different populations (A1, . . . ,AI), each of which is di-
vided into J categories (B1, . . . ,BJ). We assume that the samples of sizes n1, . . . ,nI
from different populations are independent and that each sample follows a multi-
nomial distribution. The probability of having an observation falls in the i-th row
and j-th column of the table is denoted πi j. An I× J contingency table N of the
observations ni j (i = 1, ..., I; j = 1, . . . ,J) is considered with n = ∑

I
i=1 ∑

J
j=1 ni j. The

(i, j)-th element of the relative frequencies matrix P is defined as pi j = ni j/n such
that ∑

I
i=1 ∑

J
j=1 pi j = 1.

Finally, let’s suppose that N has one ordered set of categories (column) with
row and column marginal frequencies given by pi. = ∑

J
j=1 pi j and p. j = ∑

I
i=1 pi j,

respectively. Moreover, let DI and DJ represent the diagonal matrices of row and
column marginal relative pi. and p. j, respectively, with r = DI1 and c = 1T DJ .

3 Correspondence analysis and its extensions based on SVD

3.1 Correspondence analysis

Correspondence analysis (hereafter CA) of cross-classifications between two cat-
egorical variables is usually presented as a multivariate method that decomposes
the chi-squared statistic associated with a contingency table into orthogonal fac-
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tors. Row and column categories are usually displayed in two-dimensional graphi-
cal form. This approach has been described can be described from other points of
view. For instance, Goodman [14] shows that CA can be performed by applying the
Singular Value Decomposition (SVD) on the Pearson’s ratios table [14]. That is, for
the I× J correspondence matrix P then its Pearson ratio αi j is decomposed so that
αi j =

pi j
pi.p. j

= 1+∑
K
m=1 λmaimb jm with aim and b jm {m = 1, . . . ,K = min(I,J)−1}

singular vectors associated with the i’th row and j’th column category, respectively,
and λm is the m’th singular value of the ratio. Moreover, these quantities are such to
satisfy the conditions ∑ j p. jb jm = ∑i pi.aim = 0 and ∑ j p. jb jmb jm′ = ∑i pi.aimaim′ =
1 for m = m′, 0 otherwise.

Using the matrix notation, the above least squares estimates are obtained by a
generalized singular value decomposition (GSVD) of matrix Ω

Ω = D−1
I (P−DI11T DJ)D−1

J = ADλ BT

with AT DIA = I, BT DJB = I and where Dλ is a diagonal matrix with all singular
values λm in descending order. It is well known that

φ
2 =

χ2

n
= trace(D−1/2

I (P−DI11T DJ)D−1
J (P−DI11T DJ)

T D−1/2
I ) =

K

∑
m=1

λ
2
m

where χ2 is the Pearson’s chi squared statistic. See [5] for a bibliographic review,
and for the new theoretical advances in this topic that have been made over the last
20 years.

3.2 Non symmetrical correspondence analysis

In two-way contingency tables, rows and columns often assume an asymmetric role.
This aspect is not taken into account by correspondence analysis where it is sup-
posed a symmetric role between the categorical variables with the decomposition
of the Pearson’s chi squared statistic. When the variables are asymmetrical related
D’Ambra and Lauro [10] introduced a new approach named non symmetrical corre-
spondence analysis which aim is to examine predictive relationships between rows
and columns of a contingency table for which it is assumed that columns depend on
rows, but not vice versa. This approach provides a visualisation of the magnitude of
the measure of increase in predictability of a categorical response variable J given a
categorical predictor variable I.

Non symmetrical correspondence analysis (NSCA) amounts to the following
GSVD

D−1
I (P−DI11T DJ) = ADλ BT

with AT DIA = I, and BT B = I. This GSVD leads to decompose the following quan-
tity
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Nτ = n× trace(D−1/2
I (P−DI11T DJ)(P−DI11T DJ)

T D−1/2
I ) = n×

K

∑
m=1

λ
2
m

where Nτ is the numerator of the Goodman-Kruskal’s tau index [15]

τ =
∑

I
i=1 ∑

J
j=1 pi.

(
pi j
pi.
− p. j

)2

1−∑
J
j=1 p2

. j
=

Nτ

1−∑
J
j=1 p2

. j

that is a measure of predicability power of the the rows on columns. The conditional
probability of j given row i is given by p j|i = pi j/pi. and the unconditional prob-
ability of column j by the marginal probability p. j. The predictive power of row i
on column j is thus computed by pi j/pi.− p. j. When, for each column, the distri-
bution of the response categories across each of the rows is identical to the overall
marginal proportion there is no relative increase in predictability and thus τ is zero.
Similarly, τ = 1 only when there is perfect predictability of the response categories
(columns) given the predictor categories (rows). A test criterion called C has been
developed by Light and Margolin (1971) to assess the statistical significance of de-
pendence. It is asymptotically approximated as a χ2

(I−1)(J−1) random variable under
the null hypothesis that the joint probabilities πi j are equal to the column marginal
probabilities π. j, i.e. H0 : πi j = π. j.

3.3 The decomposition of cumulative chi squared statistic
(columns)

Beh, D’Ambra and Simonetti [3, 4] perform CA when one of the cross-classified
variables has an ordered structure. They take into account the presence of an ordinal
categorical variable by considering the cumulative sum of cell frequencies across the
variable. Main aim of this approach is to determine graphically how similar cumula-
tive categories are with respect to nominal ones. Let zik =∑

k
j=1 ni j be the cumulative

frequency of the i-th row category up to the k-th column category providing a way
of ensuring that the ordinal structure of the column categories is preserved. Simi-
larly, let dk = ∑

k
j=1 n. j/n = ∑

k
j=1 p. j be the cumulative relative frequency up to the

k-th column category. Moreover, let W be the ((J−1)× (J−1)) diagonal matrix of
weights w j and M a ((J−1)×J) lower triangular matrix of ones. CA of cumulative
frequencies (TA) amounts thus to the GSVD

D−I (P−DI11T DJ)MT W
1
2 = UDλ VT

with UT DIU = I and VT V = I. It can be shown that

T = n× trace(D−
1
2

I (P−DI11T DJ)MT WM(P−DI11T DJ)
T D−

1
2

I ) =
I

∑
i=1

λ
2
i
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where T = ∑
J−1
j=1 w j

[
∑

I
i=1 ni.(

zi j
ni.
−d j)

2
]

is the Taguchi’s statistic [25, 26], with
0 ≤ T ≤ [n(I− 1)] where w j’s are suitable weights. Possible choices for w j could
be to assign constant weights to each term (w j = 1/J) or assume it proportional
to the inverse of the conditional expectation of the k-th term under the hypothe-
sis of independence (w j = 1/[d j(1− d j)]). Taguchi’s statistic is a measure of the
association between categorical variables. It performs better Pearson chi-squared
statistic when there is an order in the categories on the columns of the contingency
table and it is more suitable in studies (such as clinical trials) where the number of
categories within a variable is equal to, or larger than 5 [17]. The Taguchi’s statis-
tic was originally developed for the one-way Anova model for industrial experi-
ments to test the hypothesis of homogeneity against monotonicity in the treatment
effects. An I × J contingency table with row multinomial model with equal row
totals (ni. = K observations per level of a factor A with I levels) has been then ob-
tained. For this model, Nair [21] shows that the sum of squares for the factor A is
given by SSA = n∑

J−1
j=1 ∑

I
i=1(zi j/K−d j)

2/(d j(1−d j)) which is the Taguchi’s CSS
statistic T with fixed and equal rows totals. Correspondence analysis of cumulative
frequencies is then valid also for this special case of contingency table.

Nair [21] highlighted the link between the Pearson chi-squared statistic and the
Taguchi’s statistic: T = ∑

J−1
j=1 χ2

j where χ2
j is the Pearson chi-squared for the I× 2

contingency tables obtained by aggregating the first j column categories and the re-
maining categories ( j+1) to J, respectively. For this property, Taguchi’s statistic T
has also been referred as the ”Cumulative Chi-squared Statistic” (CSS) by Takeuchi
and Hirotsu [27]. Moreover, Nair [21] showed that the distribution of T can be ap-
proximated using the Satterthwaites method [24].

We highlight that the above Taguchi statistic can be generalized to give the class
of CSS-type tests given by Tα j = ∑

J−1
j=1 α jχ

2
j . If α j = 1 then Tα j = T , while Tα j

subsumes the simple alternative to the Taguchi CSS statistic proposed by Nair [21]
with α j = [d j(1− d j)]/J. Beh et al. [3] show also that if MT WM = I then the
Taguchi’s statistic T amounts to the numerator of the Goodman-Kruskal τ index
[15] and, for this reason, the Taguchi’s statistic T can be viewed as the cumulative
version of the τ index.

It is also interesting to highlight the relationship between the coordinates of
the cumulative CA (CumCA) and those of ordinary CA. For cumulative CA the
row coordinates are given by OCumCA = (D−1

I P− 1IcT )MT W1/2V and by OCA =
(D−1

I P− 1IcT )B for ordinary CA, where V and B are the matrices containing
the right singular vectors for cumulative CA and ordinary CA, respectively. It
can be shown that cumulative CA coordinates can be directly computed from
those of ordinary CA as OCumCA = OCABT MT W1/2V. In the same way we have
OCA = OCumCAVT (MT W1/2)−1B.

Nair [21, 22] showed also several properties of CSS test decomposing this statis-
tics into orthogonal components by first providing it a matrix form. Let D̃ be the
((J−1)× J) matrix involving the cumulative column relative marginal frequencies
d j, respectively, with



6 Luigi D’Ambra, Pietro Amenta, Antonello D’Ambra

D̃ =


1−d1 −d1 −d1 −d1
1−d2 1−d2 −d2 −d2
.... ... .... ....

1−dJ−1 1−dJ−1 1−dJ−1 −dJ−1


In addition, let M be a ((J− 1)× J) lower triangular matrix of ones, and yi =

[ni1, . . . ,niJ ]
T be a vector of observed frequencies for the i-th row. Then, the CSS

statistic can be written as T =∑
I
i=1 yT

i D̃T WD̃yi/ni.= trace(D−1/2
I ND̃T WD̃NT D−1/2

I ).
The matrix D̃T WD̃ could be then decomposed such that D̃T WD̃ = QDλ QT . Un-
der the assumption of equiprobable columns (w j = J/[ j × (J − j)]−1 with j =
1, . . . ,J− 1), the eigenvectors are linked to the j-th degree Chebychev polynomial
on the integers {1, . . . ,J}. In this case the first (linear) and the second (quadratic)
component are equivalent to the Wilcoxon statistic for the 2× J table and to the
Moods test [20], respectively.

Let πc
i j = ∑

j
t=1 πit be the cumulated probability of that an observation falls into

the cumulated (i, j)-th cross-category, with πc
. j = ∑

I
i=1 πc

i j (common cumulative
probability), and consider the null hypothesis H0 : πc

i j = πc
. j. Denote with l j the

log-likelihood function (free model) of the j-th I× 2 table obtained by aggregat-
ing the first j column categories and the remaining ( j + 1) to J, and with lH0

j the
log-likelihood function of the same table under the null hypothesis (null model).
Let’s consider the following quantity T LR

α j
= ∑

J−1
j=1 α jLR j with LR j = 2(l j/lH0

J ) and
where it is possible to show that LR j is asymptotically conformable to a χ2

j using
a finite number of terms of a Taylor expansion. If α j = 1 then T LR

α j
= T , while T LR

α j
subsumes the simple alternative to the Taguchi CSS statistic proposed by Nair [21]
with α j = [d j(1−d j)]/J.

3.4 The decomposition of cumulative chi squared statistic (rows
and columns)

Taguchi’s statistic has been developed to measure the association between categori-
cal variables when there is an order in the categories on the columns of the contin-
gency table. Beh, D’Ambra and Camminatiello [9] proposed a generalisation of the
Taguchi decomposition based on cumulative frequencies for the rows and columns
(HDA). This approach introduces two suitable cumulative matrices R and C to pool
the rows and columns of contingency table.

Let R be a 2(I− 1)× I matrix formed by alternating the rows of an (I− 1)× I
lower triangular matrix of ones with the rows of an (I − 1)× I upper triangular
matrix of ones (by first removing the row consisting of all ones in both matrices).
Similarly, C is a J × 2(J − 1) matrix obtained by alternating the columns of an
J× (J−1) upper triangular matrix of ones with the columns of an J× (J−1) lower
triangular matrix of ones (by first removing the column consisting of all ones in both
matrices). That is
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R =



1 0 0 . . . 0
0 1 1 . . . 1
1 1 0 . . . 0
0 0 1 . . . 1
. . . . . . . . . . . . . . .
1 1 1 . . . 0
0 0 0 . . . 1


and C =


1 0 1 0 . . . 1 0
0 1 1 0 . . . 1 0
0 1 0 1 . . . 1 0
. . . . . . . . . . . . . . . . . . . . .
0 1 0 1 . . . 0 1

 .

Moreover, PR and PC (D̃R and D̃C) are the diagonal matrices with the marginal
relative (absolute) frequencies hi. and h. j of the doubly cumulative table H = RPC
(H = RNC), respectively.

The approach suggested by D’Ambra et al. [9] amounts to the SVD of the matrix

D−
1
2

R R(P−DI11T DJ)CT D−
1
2

C or to GSVD[D̃−R R(P−DI11T DJ)CT D̃−C ]D̃R,D̃C
.

They show that this approach leads to consider the decomposition of Hirotsu’s
index χ∗∗2 = ∑

I−1
i=1 ∑

J−1
j=1 χ∗∗2i j [17]

χ
∗∗2 =n(I−1)(J−1)trace(D−

1
2

R R(P−DI11T DJ)CT D−1
C C(P−DI11T DJ)

T RT D−
1
2

R )

=n(I−1)(J−1)
K

∑
k=1

λ
2
k .

Hirotsu [17] introduced the doubly cumulative chi-squared statistic χ∗∗2 in or-
der to measure the association between two ordered categorical variables in a
two-way contingency table, where χ∗∗2i j is the chi-squared statistic for the 2× 2
contingency table obtained by pooling the original table I × J data at the i−th
row and j-th column. This index can be then viewed like a natural extension of
Taguchi’s statistic T for two ordered categorical variables. Hirotsu [18] showed
also that the null distribution of the statistic χ∗∗2 is approximated by dχ2

v with d =
d1×d2 and v = (I−1)(J−1)/d, where d1 = 1+2(J−1)−1[∑J−2

k=1(∑
k
s=1 λs)/λk+1]

e d2 = 1+2(I−1)−1[∑I−2
=1 (∑k

s=1 γs)/γk+1] con λs = (∑s
h=1 n.h)/(∑J

g=s+1 n.g) e γs =

(∑s
h=1 nh.)/(∑

I
g=s+1 ng.). See [9] for deeper theoretical aspects.

Another approach to deal with the study of the association between ordered
categorical variables has been suggested in literature by Cuadras and Cuadras [6]
named CA based on double accumulative frequencies. The Cuadras and Cuadras’s

method (DA) is based on the SVD of the matrix D−
1
2

I L(P−DI11T DJ)MT W
1
2 which

amounts to GSVD[D−I L(P−PI11T PJ)MT W
1
2 ]DI ,I where L is a upper triangular

matrix of ones. Main remark of this approach are that it does not seem to lead to
the decomposition of any known association index, and matrices L and M pool the
rows and the columns of table in a successive manner such that they do not provide
the necessary 2(I−1)×2(J−1) 2×2 tables to compute Hirotsu’s index χ∗∗2.
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4 Correspondence analysis of ordinal cross-classifications based
on the bivariate moment decomposition

Consider the rectangular matrix Ω = D−1/2
I (P−DI11T DJ)D

−1/2
J of size I× J with

R = ΩΩ T and C = Ω T Ω . It is well known [5] that the generalised singular value
decomposition of the matrix of Pearson contingencies yields results that are equiv-
alent to those obtained by performing an eigen-decomposition on the matrices R
and C, as considered in Hills [16] description of reciprocal averaging. The Hill’s
reciprocal averaging procedure utilises the Gram–Schmidt orthogonalisation pro-
cess for ensuring that the set of row and column scores, treated as the basis vectors,
are orthogonally constrained with respect to pi. and p. j. An alternative and reliable
method of calculating the orthogonal vectors using the Gram–Schmidt process is
to use the recurrence formulae of Emerson [13]. Emersons formulae require calcu-
lation of only the previous two polynomials and are especially well suited for the
analysis of categorical variables that are ordinally structured. To reflect this ordinal
structure, a set of ordered column scores s j(J) ( j = 1, . . . ,J) is usually used.

Using Emerson’s orthogonal polynomials it is possible to decompose the total in-
ertia φ 2 in different components, each of which represents a different power of the
supposed relationship between row and column (linear, quadratic etc,). The advan-
tage of using orthogonal polynomials relies in the fact that the power information
is considered in the analysis and the resulting scoring scheme allows a clear inter-
pretation of the linear, quadratic or higher order trend components. This kind of
decomposition of the total inertia is at the core of several CA extensions [5].

4.1 Double Ordered Correspondence Analysis

Double Ordered Correspondence Analysis [1] (DOCA) decomposes the (i, j)-th
Pearson ratio αi j so that αi j = 1+∑

I−1
u=1 ∑

J−1
v=1 au(i)bv( j)zuv. For this method of de-

composition, zuv =
√

n∑i, j au (i)bv ( j) pi j is the (u,v)th generalised correlation [12]
where {au(i) : u = 1, . . . , I− 1} and {bv( j) : v = 1, . . . ,J− 1} are the orthogonal
polynomials [13] for the i-th row and j-th column respectively. The bivariate as-
sociation zuv are collected in Z = AT

∗ PB∗ where A∗ contains the I− 1 non-trivial
row orthogonal polynomials and B∗ is the J× (J−1) matrix of the J−1 non-trivial
column orthogonal polynomials. The matrix Ω can be then rewritten as

D−1/2
I (P−DI11T DJ)D

−1/2
J = A∗ZBT

∗

with AT
∗DIA∗ = I and BT

∗DJB∗ = I. This kind of decomposition of matrix Ω has
been named ”Bivariate Moment Decomposition”.

It is possible to show [1] that the elements of Z (that is, the bivariate associa-
tions zuv) are asymptotically standard normal and indipendent. Moreover, Rayner
and Best [23] showed that the Pearson chi-squared statistic can be decomposed into
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the sum of squares of the generalized correlations so that φ 2 = χ2/n=∑
I−1
u=1 ∑

J−1
v=1 z2

uv
and sources of variation for the row and column profiles can be obtained. Observe
that the above chi-squared index is partitioned into (I−1)(J−1) terms, where the
significance of each term can be compared with the χ2 with one degree of freedom
(dof). Sources of variation for the row and column profiles can be easily obtained.
For instance, any difference in the row profiles in terms of their location is computed
by ∑

J−1
v=1 z2

1v while the row dispersion component is given by ∑
J−1
v=1 z2

2v .The signifi-
cance of each component can be compared with the χ2 with (J−1) dof. Similarly,
location and dispersion column components can be computed.

This approach to correspondence analysis uses then the bivariate moment de-
composition to identify linear (location), quadratic (dispersion) and higher order
moments. Note that this feature is not readily available by using classical SVD.

4.2 Double ordered non symmetric correspondence analysis

For the analysis of the cross-classification of two ordinal variables, Lombardo, Beh
and D’Ambra [19] propose the BMD decomposition of the Goodman and Kruskal
index and the graphical visualization of the data association structure for a two-
way data matrix. The methodology named doubly ordinal non symmetric corre-
spondence analysis (DONSCA) is designed to allow the user to visualize the de-
pendence relationship between categories of a response and a predictor variable
in terms of components that reflect sources of variation in terms of the location
(mean), dispersion (spread) and higher order moments. Rather than considering
the singular value decomposition of the matrix D−1

I (P−DI11T DJ) after comput-
ing orthonormal polynomials, an alternative strategy is to apply bivariate moment
decomposition to the centred row profiles such that D−1

I (P−DI11T DJ) = A∗ΛB∗
where Λ = AT

∗DIPB∗ with AT
∗DIA∗ = II−1 and BT

∗B∗ = IJ−1. Lombardo et al. [19]
showed that the numerator of the Goodman–Kruskal τ index can be decomposed
into the sum of squares of the generalized correlations so that Nτ = ∑

I−1
u=1 ∑

J−1
v=1 λ 2

uv.
Each term λ 2

uv shows the quality of the symmetric/asymmetric association of the
ordered categorical variables. For example, the linear component for the row vari-
able is given by λ 2

1., while the relevance of the linear component for the column
variable is showed by can be found by λ 2

.1. The significance overall predicabil-
ity can be tested by the C statistics given by C = ∑

I−1
u=1 ∑

J−1
v=1 λ̃ 2

uv where each term
λ̃ 2

uv = λ 2
uv[(n−1)(J−1)/(1−∑

J
j=1 p2

. j)]
1/2 is a random variable from an asymptoti-

cally standard normal distribution [8, 11] and C∼ χ2
(I−1)(J−1) and each λ̃ 2

i. ∼ χ2
(J−1).
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5 Correspondence analysis based on the hybrid moment
decomposition

5.1 Singly ordered correspondence analysis

An alternative approach to partitioning the Pearson chi-squared statistic for a two-
way contingency table with one ordered set of categories is given by the Singly
Ordered Correspondence Analysis [1] (SOCA). This method combines the ap-
proach of orthogonal polynomials for the ordered columns and singular vectors
for the unordered rows (named hybrid moment decomposition), such that χ2 =

∑
M∗
u=1 ∑

J−1
v=1 Z2

(u)v with M∗ ≤ I−1 and where z(u)v =
√

n∑i, j pi jaiubv ( j) are asymp-
totically standard normally distributed random variables. The parentheses around u
indicates that the above formulas are concerned with a non-ordered set of row cat-
egories. Quantities z(u)v can be written in matrix notation as Z = AT PB∗ where A
is the I× (I−1) matrix of left singular vectors. The value of z(u)v means that each
principal axis from a simple correspondence analysis can be partitioned into column
component values. In this way, the researcher can determine the dominant source of
variation of the ordered columns along a particular axis using the simple correspon-
dence analysis. The Pearson ratio is given by αi j = ∑

M∗
u=0 ∑

J−1
v=0 aiu(z(u)v/

√
n)bv ( j).

Eliminating the trivial solution, the matrix Ω can be also rewritten as

D−1/2
I (P−DI11T DJ)D

−1/2
J = AZBT

∗

with AT DIA = I and BT
∗DJB∗ = I. For deeper information refer to [1] [2].

5.2 Singly ordered non symmetric correspondence analysis

When a two-way contingency table consists of only one ordered variable, a hybrid
decomposition using a combination of singular vectors for the nominal variable and
orthogonal polynomials for the ordered variable can be applied. Lombardo, Beh
and D’Ambra [19] suggested a methodology, named singly ordinal non-symmetric
correspondence analysis, that allows to combine the summaries obtained from SVD
and BMD of the data. It allows to visualize and identify the primary causes of the
dependent relationship between the categories of two variables where one of them
is assumed to be an ordinal categorical variable. The total inertia as well as the
partial inertia can be expressed by components that reflect within- and between-
variable variation in terms of location, dispersion and higher-order moments. For
this approach, the numerator of the Goodman–Kruskal tau index Nτ , is partitioned
using generalised correlations. Authors illustrate two distinct approaches: one when
the predictor variable consists of ordered categories (SONSCA1) and another when
the response variable consists of ordered categories (SONSCA2).
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In SONSCA1 hybrid decomposition uses orthogonal polynomials for the ordinal
row categories and singular vectors for the nominal column categories such that

D−1
I (P−DI11T DJ) = A∗ΛB

where Λ =AT
∗DIPB with AT

∗DIA∗ = II−1 and BT B= I. Lombardo et al. [?] showed
that Nτ is decomposed as Nτ = ∑

I−1
u=1 ∑

M
m=1 λ 2

um. The significance overall predicabil-
ity can be tested by the C statistics given by C = ∑

I−1
u=1 ∑

M
m=1 λ̃ 2

um where each term
λ̃ 2

um = λ 2
um[(n− 1)(J− 1)/(1−∑

J
j=1 p2

. j)]
1/2 is a random variable from an asymp-

totically standard normal distribution.
Similarly, In SONSCA2 hybrid decomposition uses instead singular vectors for

the nominal row categories and orthogonal polynomials for the ordinal column cat-
egories such that

D−1
I (P−DI11T DJ) = AΛB∗

where Λ = AT DIPB∗ with AT DIA = I and BT
∗B∗ = IJ−1. Lombardo et al. [19]

showed that Nτ is decomposed as Nτ = ∑
M
m=1 ∑

J−1
v=1 λ 2

mv. The significance overall
predicability can be tested by the C statistics given by C = ∑

M
m=1 ∑

J−1
v=1 λ̃ 2

mv where
each term λ̃ 2

mv = λ 2
mv[(n−1)(J−1)/(1−∑

J
j=1 p2

. j)]
1/2 is a random variable from an

asymptotically standard normal distribution.

5.3 Hybrid cumulative correspondence analysis

D’Ambra [7] extends the properties of orthogonal polynomials to the Cumulative
Correspondence Analysis with the aim to identify the linear, quadratic and higher
order components of rows with respect to the aggregate columns categories. The
joint effect of these methods leads to the decomposition of the Taguchi’s index in
power components. In hybrid cumulative correspondence analysis (HCCA) both
variables present an ordinal structure and only for the response one (column) it has
been considered the cumulative sum of cell frequencies across this variable.

In HCCA hybrid decomposition uses orthogonal polynomials for the ordinal row
categories and singular vectors for the cumulative column categories such that

D−1
I (P−DI11T DJ)MT W

1
2 = A∗ΛB

where Λ = AT
∗DIPB∗ with AT

∗DIA∗ = II−1 and BT B = I. D’Ambra [7] shows that
Taguchi’s index T is decomposed as T = n∑

I−1
u=1 ∑

M
m=1 λ 2

um. Moreover, let P j be the
I×2 contingency table obtained by aggregating the first j column categories and the
remaining categories ( j+1) to J of table P. It can be shown that the linear, quadratic
and higher order components of T can be written as sum of the correspondence com-
ponents of rows computed for each matrix P j, respectively. For example, the linear
components of TL can be decomposed according to the sum of the linear components
jχ2

L of matrices P j with j = 1, . . . ,J−1: TL = n∑
J−1
v=1 z2

1v =
1χ2

L +
2χ2

L + · · ·+ J−1χ2
L .
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Similarly, the quadratic and higher order components of T can be obtained. The
T statistics can be also written as T = ∑

J−1
j=1 ∑

I−1
i=1

jλ̃ 2
i where each element jλ̃i is

a statistical variable that follows an asymptotically standard normally distribution.
Moreover, each jλ̃ 2

i follows a chi-square distribution with 1 degree of freedom.

6 A unified approach

All these approaches can be unified in a single theoretical framework. Let’s consider
the following factorization of a matrix into a product of matrices that we name
”generalized factorization of a matrix” (GFM).

Let Γ and Φ be given positive definite symmetric matrices of order (n×n) and
(p× p), respectively. The GFM of matrix X is defined as X = UΛVT where the
columns of U and V are orthonormalized with respect to Γ and Φ (that is UT Γ U= I
and VT ΦV = I), respectively, and Λ is a positive definite matrix. It is noted as
GFM(X)Ω ,Φ . GFM can take several forms. For instance, if the used GFM is the
GSVD then matrices U and V are given by A and B that are orthonormalized with
respect to Γ and Φ (that is AT Γ A = I and BT ΦB = I), respectively, with Λ = Dλ

is a diagonal and positive definite matrix containing the generalized singular values,
ordered from largest to smallest. They can be obtained by means the ordinary SVD.
Similarly, if the used GFM is instead the BMD then matrices U and V are given
by the the vectors of A∗ and B∗ orthonormalized with respect to Γ and Φ (that is
AT
∗Γ A∗ = I and BT

∗ΦB∗ = I), respectively, with Λ = AT
∗ PB∗ (Λ in this case is not

a diagonal matrix).
In order to represent the rows and columns of N we can consider the following

unifying expression

GFM[D−(R)R̂(P−PI1I1T
J PJ)ĈT W

1
2 D−(C)]D(R),D(C)

(1)

that is equivalent to write D−1/2
(R) R̂(P−PI1I1T

J PJ)ĈT W
1
2 D−1/2

(C)
= UΛVT .

According to type of factorization used (GSVD/SVD, BMD and HMD), this
GFM let us to subsume all the previous approaches according to the structure of the
matrices concerned (see Table 1). Methods for which the ordinal structure of a cat-
egorical variable is directly taken into account in their formulations and calculation
are listed in bold character in Table 1.

For instance, if D(R) = DI , R̂ = I, Ĉ = I, W = I and D(C) = DJ , with U = A, V =

B and Λ = Dλ , then GFM[D−
(R)R̂(P−PI1I1T

J PJ)ĈT W
1
2 D−

(C)
]D(R),D(C)

amounts to
ordinary Correspondence Analysis (CA). Double Ordered Correspondence Analysis
(DOCA) is instead obtained by using in (1) D(R) = DI , R̂ = I, Ĉ = I, W = I and
D(C) = DJ , with U = A∗, V = B and Λ = AT

∗ PB∗.
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In the same way, if D(R) = DI , R̂ = I, Ĉ = M, W = W and D(C) = IJ−1, with U =

A∗, V = B and Λ = AT
∗DIPB, then GFM[D−

(R)R̂(P−PI1I1T
J PJ)ĈT W

1
2 D−

(C)
]D(R),D(C)

amounts to Hybrid Cumulative Correspondence Analysis (HCCA).

Table 1 A unified framework of CA with ordinal categorical data.

GFM[D−
(R)R̂(P−DI1I1T

J DJ)ĈT W
1
2 D−

(C)
]D(R),D(C)

D−1/2
(R) R̂(P−DI1I1T

J DJ)ĈT W
1
2 D−1/2

(C)
= UΛVT

Method Row Column D(R) R̂ Ĉ W D(C) U Λ V GFM Statistic

CA Nom-Ord Nom-Ord DI II IJ IJ DJ A Dλ B SVD φ 2

NSCA Nom-Ord Nom-Ord DI II IJ IJ IJ A Dλ B SVD Nτ

TA Nom Ord DI II M W IJ−1 A Dλ B SVD T

HDA Ord Ord DR R CT I2×(J−1) DC A Dλ B SVD χ∗∗2

DA Ord Ord DI L M W IJ−1 A Dλ B SVD −

DOCA Ord Ord DI II II IJ DJ A∗ AT
∗ PB∗ B∗ BMD φ 2

DONSCA Ord Ord DI II II IJ IJ A∗ AT
∗DIPB∗ B∗ BMD Nτ

SOCA Nom Ord DI II II IJ DJ A AT PB∗ B∗ HMD φ 2

SONSCA1 Ord Nom DI II II IJ IJ A∗ AT
∗DIPB B HMD Nτ

SONSCA2 Nom Ord DI II II IJ IJ A AT DIPB∗ B∗ HMD Nτ

HCCA Ord Ord DI II M W IJ−1 A∗ AT
∗DIPB B HMD T

where ”Nom” and ”Ord” stand for Nominal and Ordinal variable, respectively.
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