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Abstract

From the emergence of the Web onward new learning modes such as distance learning
and blended learning have developed. At the same time, Artificial Intelligence (AI)
has taken hold in most areas including education.

This dissertation focuses on the application of AI (i) to predict the student’s exam
outcome and (ii) to enrich learning resources.

Student outcome prediction is a topic of great interest in the learning analytics
literature. Two methodologies were proposed to address (a) early prediction, i.e.
make predictions at di↵erent time instants from the beginning of the course, and
derive (b) explainable models, i.e. its output can be explained in a way that “makes
sense” to a human being at an acceptable level. The combination of these two
characteristics provides insight into why a student is at risk of failure and enables to
intervene as soon as possible. The first methodology is based on Lazy Associative
Classifier L3; associative algorithms enable the derivation of human-readable rules to
explain the prediction reasons and extract student profiles. The second methodology
named VESPE integrates di↵erent machine learning models and allows determining
the impact of each variable through SHapley Additive exPlanations (SHAP), a state-
of-the-art explainable method based on game theory. Both techniques were validated
in two case studies involving university courses. In addition UNIFORM, a method for
integrating di↵erent educational datasets, used by other studies for student outcome
prediction, has been proposed.

To enrich learning resources material, two AI techniques based on named entity
linking were discussed; the first one, called VISA, performs video-lecture indexing
with semantic annotations enabling students to search more easily for specific content,
a practice especially beneficial for reviewing before the exams. VISA outperformed
competing algorithms on a dataset inherent to an undergraduate Database course.
The second technique, called TVREM, address video to text and text to video retrieval



v

of educational resources: it allows searching for a video from a text and vice-versa
to align di↵erent resources related to the same topic. TVREM was validated with two
datasets containing educational vid +s and textual content achieving significantly
higher results than baselines and competitors. In addition, an application based on
TVREM has been proposed to automatically derive educational Youtube videos from
textbook paragraphs. The introduction of VISA and TVREM is beneficial to learning
since literature revealed that both video-lecture indexing and cross-media retrieval of
educational resources increase student engagement and lead to higher achievement
on exams.
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Chapter 1

Introduction

The pre-digital era is mainly characterized by the traditional educational model where
instructors share new knowledge with students who possess basic competencies;
learning was mainly verified through exams and homework. The only modes of
distance education involved TV programs and recorded audio/videos. Professors
provide assistance to students via phone and email.

One of the earliest use of computers for teaching dates back to 1954 for an
educational program implemented at Harvard university by F. Skinner and J. G.
Holland, where students experienced self-directed and self-administered instruction.

A gradual emphasis on the investigation of learning patterns emerged shortly
after. In 1963, the term “criterion-referenced measures” was introduced by Robert
Glaser to evaluate learners’ behavior according to the identified learning objectives.

Yet the emergence of the Internet leads to enrichment and diversification in
learning modes since the 1990s. Di↵erent modalities, such as e-learning and blended
learning, have been adopted for university courses; for example, the first open-
source learning management system, i.e. Moodle, was introduced in 2002. Shortly
thereafter large-scale online education arose in 2008 with Massive Open Online
Courses (MOOCs), e.g. Udacity, EdX, and Coursera; they reinforce traditional
learning practices such as mastery learning with interactive exercises. Learners
started to dispose of a wide variety of channels and workspaces to share information,
encouraging peer-to-peer collaboration. Professors in turn enjoyed new ways to
engage students, e.g., discussion forums, video pills, and social networks.



2 Introduction

The rise of online learning and digital support facilitated the collection of data
about student learning and contributed to the emergence of two research communities:
Educational Data Mining (EDM) and Learning Analytics and Knowledge (LAK).
The former defined Educational Data Mining on its website 1 as “a discipline
that aims at developing methods for better understanding learners and the learning
context by exploring unique and large scale educational data.” The first international
conference on educational data mining was held in 2008.

A few years later, in 2011, the first International Conference on Learning Analyt-
ics & Knowledge took place in Canada and Learning Analytics (LA) was defined
as “the measurement, collection, analysis and reporting of data about learners and
their contexts, for the purposes of understanding and optimizing learning and the
environments in which it occurs.”

EDM and LA have the same goal: “improving education quality by analyzing
huge amounts of data to extract useful information for stakeholders” [152]. The
overlap between these two issues is significant, and the communities were encouraged
to converge since there is little support for a clear demarcation between the two
disciplines [122].

However, some distinctions can be outlined(see Table 1.1) [127, 192]. EDM aims
more at automatic discovery, while LA aims more at exploiting human judgment
using automated discovery in the service of informing instructors/learners who make
final decisions. In addition, the origin of learning analytics is more related to the
semantic web.

The presented methodologies make extensive use of Artificial Intelligence (AI)
which has been gradually applied in more and more areas over the past century.
In education, it has been adopted mainly to support (i) administration tasks, (ii)
instruction, and (ii) learning [48]. Table 1.2 shows some usage scenarios for each of
the three categories.

A large proportion of LA topics rely on AI, including the automatic prediction
of student outcomes which is the first main topic of this dissertation; Chapter 2
presents (i) a detailed literature review and (ii) the proposal of artificial intelligence
explainable methodologies to early predict student outcome validated in two case
studies.

1www.educationaldatamining.org

www.educationaldatamining.org
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Table 1.1 Main distinctions between Learning Analytics (LA) and Educational Data Mining
(EDM)

The content of this table is derived from [127, 192]

LA EDM

Discovery Leveraging human judgement is key;
automated discovery is a tool to ac-
complish this goal

Automated discovery is key; lever-
aging human judgment is a tool to
accomplish this goal

Reduction & Holism Stronger emphasis on understanding
systems as wholes, in their full com-
plexity

Stronger emphasis on reducing to
components and analyzing individ-
ual components and relationships be-
tween them

Origins LAK has stronger origins in seman-
tic web, “intelligent curriculum”,
outcome prediction, and systemic in-
terventions

EDM has strong origins in educa-
tional software and student model-
ing, with a significant community in
predicting course outcomes

Adapation & Personalization Greater focus on informing and em-
powering instructors and learners

Greater focus on automated adap-
tion (e.g. by the computer with no
human in the loop)

Techniques &Methods Social network analysis, sentiment
analysis, influence analytics, dis-
course analysis, learner success pre-
diction, concept analysis, sense-
making models

classification, clustering, Bayesian
modeling, relationship mining, dis-
covery with models, visualization

The second contribution of this dissertation (Chapters 3 and 4) concerns the
adoption of artificial intelligence to enrich learning resources. In particular, Chapter
3 presents a method for automatic indexing of video lectures that can help students
safeguard time in searching for the desired content, an action especially helpful
in a pre-exam review. Chapter 4, on the other hand, focuses on the video-to-text
and text-to-video retrieval for creating educational resources that link educational
media of di↵erent types (e.g., e-book chapters with videos); numerous studies
have investigated cross-media retrieval, however only a couple have focused on its
application in the educational domain.

The literature states that learners can benefit from both the indexing of video lec-
tures and the use of multimodal educational resources to improve their engagement
and their performance. Consequently, the combination of the two previously men-
tioned contributions converges in the title of this dissertation: Artificial Intelligence
methodologies to early predict student outcomes and improve learning resources.

Finally, the conclusions (Chapter 5) detail a summary of the main findings of
the thesis and present a methodology to be tested in future work to combine video
indexing, cross-media retrieval for educational resources and a student alert system.
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Table 1.2 Classification of Artificial Intelligence uses for education
The content of this table is derived from [48]

Administration

• Perform the administrative tasks faster that consume much of instructors’
time, such as grading exams and providing feedback.

• Identify the learning styles and preferences of each of their students, helping
them build personalized learning plans.

• Assist instructors in decision support and data-driven work.
• Give feedback and work with students timely and directly.

Instruction

• Anticipate how well a student exceeds expectations in projects and exercises
and the odds of dropping out of school.

• Analyze the syllabus and course material to propose customized content.
• Allow the instruction beyond the classroom and into the higher-level educa-

tion, supporting collaboration.
• Tailor teaching method for each student based on their personal data.
• Help instructors create personalized learning plans for each student.

Learning

• Uncover learning shortcomings of students and address them early in educa-
tion.

• Customize the university course selection for students.
• Predict the career path for each student by gathering studying data.
• Detect learning state and apply the intelligent adaptive intervention to stu-

dents.

To facilitate readers’ understanding, Appendix A includes background knowledge
related to the semantic web, evaluation metrics and explainable AI.



Chapter 2

Student Outcome Prediction in higher
education

In higher education, a growing number of studies in the area of learning analytics are
focusing on student outcome prediction using machine learning. This allows to derive
models able to forecast students’ performance with varying accuracy according to
the point of time at which the prediction occurs; indeed, early prediction allows for
intervention in advance, e.g. alerting the students at risk.

Caring model explainability, i.e. examining the features that contributed the most
to the forecast, is also a major advantage in understanding students’ most influential
behaviors and providing accurate interventions.

This chapter focuses on these issues; section 2.1 reviews various studies in the
literature by answering some key questions to understand the developments in the
research topic. Section 2.1 and 2.3 present two case studies in which explainable ML
models have been applied to predict student outcomes; the first focuses on the first
year of university to identify the key factors for success/failure, the second examines
a programming course to analyze how tracking student activity through Version
Control Systems is beneficial to early predict dropout, success/failure and grade.
Section 2.4 outlines a method for automatically aligning di↵erent open learning
datasets that may be used to assess the transferability of prediction models and to
help distinguish context-specific from general findings. Finally, Section 2.5 draws
conclusions and specifies future directions.



6 Student Outcome Prediction in higher education

2.1 Literature review

This section considers several studies from the literature. Most of them have been
extracted from the following surveys: [56, 166] reviews the most important research
about dropout prediction, while [11, 121] focus on student exam grades.

Further literature was extracted by looking at cross citations and querying Google
Scholar 1 with the following keywords : “student outcome prediction”, “student
dropout prediction”, “student performance prediction” and “student grade predic-
tion”. The results were limited to the first two pages for each query.

Table 2.1 Student Outcome Prediction literature by year

Year Papers

2003 [113]

2005 [116]

2006 [7, 97]

2009 [59, 131, 132]

2010 [112, 114, 117, 209]

2012 [1, 74, 77, 155, 200]

2013 [15, 21, 115, 187, 235]

2014 [13, 17, 19, 90, 96, 107, 137, 175, 189, 193, 194, 208]

2015 [3, 34, 37, 45, 60, 69, 91, 106, 108, 204, 218, 225, 239]

2016 [5, 12, 14, 57, 124, 125, 126, 169, 179, 202, 221, 231, 232, 240]

2017 [8, 9, 53, 121, 147, 163, 181, 223, 226, 227, 237]

2018 [6, 56, 63, 80, 84, 129, 140, 148, 162, 174, 241]

2019 [28, 38, 44, 52, 71, 83, 151, 161, 170, 172]

2020 [51, 166, 210, 217, 222]

2021 [11, 128, 234]

2022 [149, 150, 168]

The complete list of papers (see Table 2.1) was examined from di↵erent perspec-
tives by answering the following questions:

Q1) Which targets (outcomes) are predicted?
1https://scholar.google.com/

https://scholar.google.com/
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Q2) Which learning modes were considered in the analyzed studies?

Q3) Which is the deeper sense of “prediction”? Which data are used to train
models, and which for testing?

Q4) Which student features are used to predict their achievement?

Q5) Which are the most widely adopted AI algorithms?

Q6) In which ways could the contribution of features be established?

Q7) Which studies address early prediction?

Q8) Which are the major challenges of student outcome prediction?

Each of the following subsections focuses on one of these issues.

2.1.1 Predicted outcomes

Two main targets related to exam outcome can be identified: success/failure target is
a binary classification problem that distinguishes students who pass the exam from
those who fail it, while the grade target determines the student’s grade; in most cases,
grades are discretized to form grade bands turning the task from regression into a
multiclass classification. Consider a grade scale from 1 to 21 where 1 to 9 denote a
failure (class fail) and grades 10 and up a success (class pass); it could be uniformly
split into the following ranges: poor (10 to 13), average (14 to 17), good (18 to 21).
Uniform discretization is only one of the possible strategies used to define the bins’
widths.

A further target is dropout that identifies who abandons an attempt, activity, or
chosen path; more specifically in higher education it refers to either leaving the entire
learning pathway [4, 28, 59, 196], such as leaving study, or quitting a single class,
i.e. course dropout; only the latter is considered in this dissertation.

Since a minority of studies have directly gathered students’ responses that stated
whether or not they had left a class [106], dropout lacks of a strict and unique
definition ([230]). Most research [21, 21, 34, 107, 175, 189, 194, 208, 231, 235, 235]
defined it as stout, i.e. lack of interaction from a certain point (e.g. week) onwards
in the course; other studies [13, 69], on the other hand, denoted it as a momentary
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departure, i.e. students don’t do activities in the next phase of the course regardless of
whether they take it back in the future. The measure of the activity varies according
to the context; [194] takes into account the viewing of video lectures, [235] the
participation in discussion forums and [12, 208] the submission of assignments and
quizzes.

Other less common dropout definitions emerged in other research. In [90]
students marked as dropout have been absent from the course for more than 1 month
and/or have fewer than 50% of the videos in the course. In [108] stop submitting
quizzes or non-participation in the final exam has been accounted for by the authors as
a dropout indicator. Other studies have looked at non-completion of the certification
module [179, 223], sometimes in conjunction with a lack of interaction in the final
phase of the course [225]. Finally [8] held future educational advances, labeling as
dropouts students who did not take any more MOOCs courses in the future after the
one considered.

It is also common in the literature to find the label at-risk, which in most cases
indicates students predicted to fail the exam, but it sometimes merges dropout
students as well.

2.1.2 Learning modes

The considered studies cover three learning modes:

• In-class learning: it refers to courses in which the lesson is typically delivered
via a speech or presentation by the instructor.

• Blended learning: it combines the traditional frontal classroom method with
computer-mediated activity. However, just using the Internet or technology
in some way does not mean the learning is blended [82]: assessments and
modality of learning has to align with the course’s learning objectives [219].

• Massive Open Online Courses (MOOCs): free online courses available for
anyone to enroll. MOOCs provide an a↵ordable and flexible way to learn
new skills, advance your career and deliver quality educational experiences at
scale.
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2.1.3 Prediction meaning

[34] presents two main formulations to generate models for dropout prediction that
are here generalized to student outcome prediction, that is, targets success/failure
and grade are also included:

• Entire history: all the information available regarding the student up until time
instant ti for making predictions beyond ti is used.

• Moving window: a fixed amount of historical information of the learner (param-
eterized by the window size) is used to make predictions. That is, if window
size is set to 2, only the information from time instants ti�1 and ti�2 will be
used for the prediction at time instant ti.

Since most studies use supervised algorithms, a further distinction is related to
the data used for training [226]:

• Train on same course o↵ering: the model is trained and tested using features
and target labels from the same course instance; hence data are split into
training and test sets not taking into account time constraints since training
target labels become available only after the course ends. This approach
implies that the future course o↵ering has the same or similar distribution
of data. This is a strong assumption that is not always true or verifiable.
Nevertheless, the vast majority of considered approaches adopt this technique
as shown in Figure 2.2.

• Train on a di↵erent o↵ering of the same course: the model is trained on a past
course o↵ering and tested on the current one. In this case, the time constraints
of prediction are met since the training labels are available before the course
starts. Consequently, this training mode is a more reliable simulation of a real
condition than the previous one.

• Train on a di↵erent course: the model is trained on another course (usually
from the same field) and tested on the one considered.

• Train on multiple di↵erent courses: multiple di↵erent courses from the same
field are considered and one model is trained for each of them finally averaging
the classifiers’ hyperplanes together.
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• Train using proxy labels (in situ): this is valid only for the dropout target as
it means reaching the end of the course and obtaining a certification. When
predicting for a given week wi which students from the course will drop
out, train using proxy labels corresponding to whether each student persisted
within the previous week wi�1. The test and train labels have di↵erent semantic
meanings and this may impact the prediction performance on the test set.

Table 2.2 Student Outcome Prediction literature categorized by data used for training

Training mode
Target Dropout Success/Failure Grade

Same course o↵ering [8, 9, 12, 13, 21,
28, 44, 45, 52, 58,
59, 69, 106, 107,
140, 147, 148,
150, 161, 162,
169, 189, 194,
208, 223, 225,
226, 227, 231,
235]

[38, 51, 96, 112,
117, 129, 155,
172, 202, 239,
240, 241]

[1, 3, 5, 6, 7, 14,
15, 17, 19, 37, 53,
63, 74, 83, 106,
115, 125, 128,
151, 163, 168,
174, 187, 209,
218, 221, 222,
232, 234, 237]

Di↵erent o↵ering of the
same course

[34, 132, 226] [91]

Di↵erent course [90, 225, 226,
227]

[7, 106]

Multiple di↵erent courses [226]

In situ [226, 227]

2.1.4 Feature families

Because the studies analyzed consider various educational settings, many di↵erent
features are adopted for student outcome prediction (see Table 2.3). Indeed, it is very
unlikely to find a pair of studies that use exactly the same features, although some
predominant practices can be identified regarding MOOCs, such as the adoption of
clickstream data related mostly to videos, quizzes, and discussion forums as well
as other navigation indicators [9, 166, 194, 225, 227]. In many research, regardless
of the delivery mode, demographic data are used [3, 7, 69, 155, 169, 187, 208, 231],
sometimes coupled with social characteristics [13, 162, 174].

The other feature families have been used in fewer studies, although they con-
tributed the most to prediction since studies address specific behaviors and, given
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the variety of learning contexts, it is critical to focus on the course domain to exploit
all available information.

Table 2.3 Features employed for Student Outcome Prediction in the literature

Feature family Feature

Demographics Gender, Age, Sex, Race, First-generation immigrant, Second-generation immigrant, Occu-
pation, Residence, Accommodation type, Working experience, Health insurance, Taken
care by, Cohabitation status, Family size, Family expenditure, Family income, Family
assets, Father’ higher education qualification, Mother’ higher education qualification,
Father’s occupation, Mother’s occupation, Parents’ annual income, Parental status

Social Have mobile, Computer/laptop at home, Net access, Social network id, Volunteer work,
Travelling way, Travelling time, Number of children, Planned and unplanned pregnancies,
Maleness / Feminism, Bulling, Vices of the student, Commitment for being a firstborn
child

Prior education Entrance qualification, Grade of entrance qualification, City of entrance qualification,
English language level, High school grade, High school guidance/type, Prior experience
with the topic, Prior experience with learning modality, Grades in other courses

Current career Grade point average (GPA), Number of exams taken, Number of exams not participated,
Number of exams succeeded, Preliminary test grade, Reason to choose this college,
Enrollment year, Study Interest, Field of study, Department, Career development, Fund
Funding, Study hours, Perception of the student about the insertion into the labor field

In-class Class absence, Class early leave, Lateness

Connection Web connection country, Browser, Number of devices, Device, OS

Navigation Number of requests, Browser opening count, Number of clicks, Sessions count, Number of
module/chapters views, Number of page views, Number of times the course progress page
was checked, Number of forwards, Number of backwards, Number of touches, Number of
active days, Total time spent, Last interaction

Video-lectures Number of streaming plays, Percentage of watched video, Number of rewatched, Number
played videos without any jump, Number of starts/stops during video playing, Number of
pauses, Number of skip ahead, Number of skips, Number of relisten/check back, Number
of seek forward/ seek backward, Seeks time, Number of show/hide subtitle actions, Speed
changes, Number of slow/high play rate use, Total watch time, Number of downloads

Intermediate quizzes Number of views, Number of submissions, Number of correct submissions, Resolution
time, Resolution time per correct submissions

Assignments Number of submissions, Number of correct submissions, Predeadline submission time,
Number of homework views, Assignment grade, Resolution time per correct submissions,
Project grade, Project submission date, Number of logical lines for each submitted code,
Laboratory grade

Forum activity Number of views, Number of threads, Number of posts, Number of replies received from
well-performed students, Average post length, Number of comments

Books Total time spent

External resources Wiki view count, Wiki edits, Time spent on Wiki resources, Extra college support, Ex-
tracurricular activities

Peer collaboration Total count of collaborations, Club activity, Number of edges on social network the students
have each week

Lecturer Lecturer department, Commitment of the teacher to the student, Instructors ability to
awaken your interest, Instructor enthusiasm, Instructor facilitation, Evaluation fairness,
Feedback promptness, Feedback usefulness in clarifying debts

Impressions about the
course

Course intellectually stimulating, Clarification of evaluation criteria, Self-confidence
improvement, Communication skills improvements, Course satisfaction, Degree aspiration
improvement, Sentiment
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2.1.5 AI algorithms

Table 2.4 shows the ML algorithms used in the reviewed literature categorized by
target and learning mode. The most common techniques are Logistic Regression,
Naive Bayes, Decision Tree, Random Forests, Support Vector Machines and Neural
Networks. In particular for dropout prediction Logistic Regression is the most widely
adopted approach, especially in MOOCs, for success and failure detection there are
no approaches that clearly outperform the others, and Neural Networks and Decision
Trees are the most widely used algorithms for grade forecasting, although the latter
is especially employed for the classroom mode and not for MOOCs.

2.1.6 Model explainability

Many approaches have tried to analyze the contribution of variables on the target at
di↵erent levels:

• Correlation of features with output: several studies have determined correlation
scores (e.g. Pearson P-value and Chi-square) [117, 155, 162, 232, 234].

• Feature salience by feature selection: other research has adopted feature
selection methods before training models [83, 225, 241].

• Train algorithms with di↵erent feature sets: some approaches train and test
models with varying numbers of features, often breaking them down into
families (see Table 2.3) to assess which types of data are most useful in
predicting the target [9, 12, 13, 21, 52, 58, 169, 221].

• Feature importance: the feature contributions were determined based on their
impact on predictions [28, 91, 106, 147, 148, 151, 161, 189, 217, 218, 222,
237, 239, 240]; e.g. decision trees based methods allow to determine Infor-
mation Gain, Gain Ratio and Gini Index of each feature [28, 96, 147], while
logistic and hierarchical regression enables derive coe�cients significance
[162, 222].

• Explainable AI: some algorithms such as decision trees and associative clas-
sifiers are inherently explainable because allow rules derivation [1, 3, 5, 6, 7,
14, 15, 17, 19, 96, 115, 117, 140, 155, 162, 174, 187, 202, 209]. The rules are
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automatically extracted from a labeled dataset, filtered and sorted by relevance,
and then applied to unlabeled data. Since the rule related to a given data
sample can be deduced, decision trees and associative classifiers provide local
explanations. Due to their readability rules can be manually explored and
validated by domain experts, who, looking simultaneously at the predictions’
accuracy and explanation, could decide whether or not to trust the data-driven
model, to choose whether to collect new data or not, and tailor the subsequent
actions to specific student profiles.

2.1.7 Early prediction

Early prediction implies deriving models at di↵erent time instants t1, t2...tn from the
beginning of the course onward and not only at the end, in order to early intervene.
For each time instant, only features derived from the data collected up to that point
are available for prediction.

Early prediction allows to establish how the prediction accuracy varies over time
and, accompanied by model explainability, it gives the educator a comprehensive
view of the major determinants of student outcomes.

For example, consider two models mi and m j, mi related to time instant ti and
m j related to time instant t j, where i > j. Assume that the two models achieve the
same prediction performance. However, they employed di↵erent features both by
values, e.g., counts of a given student action change between ti and t j, and by type,
e.g., a given course activity is started after instant t j. The instructor can detect at-risk
students as early as possible, that is, at instant t j, and alert them based on the causes
that influenced their classification, estimated by model explainability. Then she/he
can examine the predictions at instant ti to determine whether students are classified
again as at-risk or not, revealing whether the alerts were helpful in stimulating them
to greater e↵ort. In addition, the mi explanations can reveal which behaviors the
student has adopted to improve her/his outcome.

Table 2.5 distinguishes papers that address student outcome prediction from
those that do not. Only 30% of them address early prediction while the other limit
prediction to the end of the lectures using all data collected over the entire course
duration.
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Table 2.5 Early prediction of student outcome literature

Papers that address early prediction [13, 21, 28, 53, 69, 83, 91, 96, 107, 112, 129, 132, 147, 172,
189, 194, 217, 221, 225, 227, 231, 234]

Papers that do not address early prediction [1, 3, 5, 6, 7, 8, 9, 12, 14, 15, 17, 19, 34, 38, 45, 51, 52, 58, 59,
63, 74, 106, 106, 115, 117, 128, 140, 148, 150, 151, 155, 161,
162, 168, 169, 174, 187, 202, 208, 209, 218, 222, 223, 232,
235, 237, 239, 241]

2.1.8 Major challenges

Based on [56] and [166] that focus only on dropout prediction, the main challenges
of students outcome prediction are here listed:

• Lack of enough data: the majority of datasets are small and related to a single
course o↵ering; as a result, the findings are limited to individual case studies.

• Data heterogeneity: generalizing strategies and models turns out to be tricky
because di↵erent studies consider di↵erent learning contexts, hence the avail-
able data and features di↵er; models that fit on one dataset are generally not
applicable to the others, revealing limited transfer learning applicability.

• High classes imbalance: in most cases, the total number of samples between
classes di↵ers greatly; for example, the ratio between students who pass and
fail an exam could be unbalanced; some algorithms, e.g. Support Vector
Machines and Naive Bayes, su↵er more than others unbalanced classes.

• High feature values variance: students have the freedom to decide if, what,
when, and how to study. This might lead to considerable data variance, which
may produce less accurate and reliable ML models.

• Unstructured data: detecting and recording student activity (e.g. clickstreams)
lack of pre-defined data model. For example, filling missing values is essential
since most approaches do not handle it; however, the proper manner of achiev-
ing this depends on the given variable, that may be specific to a particular
study.

• Unavailability of publicly accessible dataset: most datasets are private; in
other cases, they omit user-provided data that are, however, indispensable for
replicating experiments or studying patterns.
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• Lack of standard benchmark: there are no standard formats for sharing data
and naming features, as a result, it is tricky to automatically align di↵erent
datasets even when they consider the same features.

2.2 Predicting student academic performance by Lazy

Associative Classifier

Given the high explainability of associative models demonstrated in [1, 3, 15, 17, 19,
44], this section presents the first attempt to apply the Lazy Associative Classifier L3

[22] to early predict students’ performance in the 1st-year bachelor’s degree courses
in engineering. The primary goal is to identify at-risk students in order to understand
the causes of their failure and to early take action.

The following research questions were addressed:

RQ1) Are associative models as accurate as the best performing classifiers in pre-
dicting the exam success of university-level students?

RQ2) What are the most discriminating features to forecast exam success at di↵erent
time points?

RQ3) Which combinations of feature values have frequently been used to assign the
exam success?

An extended version of this section’s content is published in [41].

2.2.1 Learning context

This study was conducted at the Polytechnic University of Turin, considering students
enrolled in the first year of a bachelor’s degree in the year 2018-2019.

All mandatory courses in the first year of study were included: Mathematical
Analysis (MA), Chemistry (CH), Computer Science (CS), Linear Algebra (LA),
and Physics (PH). Besides them, students attend an elective course which is not
considered in the present analysis.
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The course was held through in-class lectures. Learning Management System
(LMS) provides students with the following resources:

• In-class lectures video recordings which can be either related to the current
instance of the course or to that of previous years; they can be either streamed
or downloaded to their personal computers.

• Educational materials (e.g., slides, lecture notes, exam simulations) that can
be downloaded by students.

MA, CH, and CS courses were o↵ered in the first semester (October 1, 2018
to January 15, 2019), while LA and PH courses were held in the second semester
(March 1, 2019 to June 15, 2019).

Three examination sessions were scheduled within the academic year: (i) the
winter session, which is held at the end of the first semester (i.e., from 22nd January
2019 to 28th February 2019), (ii) the summer session, which is held at the end of
the second semester (i.e., from 16th June 2019 to 22nd July 2019), (iii) the autumn
session, which is held after the summer break (i.e., from 1st September 2019 to 30th
September 2019).

In the winter session, students can only register for exams related to first semester
courses, namely MA, CH and CS, while in the following sessions they can attempt
all exams.

Students could choose which exam session to attend, with the option to reject
the grade and to re-register in a later exam session as long as the grade has not been
already accepted and recorded.

2.2.2 Predicted targets

The target considered in this study is success/failure: students are classified as either
pass or fail. Note that students who did not register or did not attend the exam were
labeled as fail.

The prediction occurred at di↵erent time instants, listed in Table 2.6.

More specifically, the success/failure of the winter session exam was predicted
from t0 to t5, the success/failure of the summer session exam was predicted from t6
to t9 and the success/failure of the autumn session was predicted at t10 and t11.
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The target values per time point are reported in Table 2.6.

Table 2.6 Time points regarded for predicting student academic performance

Id Time Point Description
t0 31 August 2018 Before entry test
t1 7 September 2018 After entry test
t2 30 October 2018 Early 1st semester
t3 31 November 2018 Mid-way 1st semester
t4 15 January 2019 Close to 1st semester exams
t5 22 January 2019 Start of 1st semester exam session
t6 28 February 2019 End of 1st semester exam session
t7 31 March 2019 Early 2nd semester
t8 30 April 019 Mid-way 2nd semester
t9 15 June 2019 Start of 2nd semester exam session
t10 22 July 2019 End of 2nd semester exam session
t11 31 August 2019 After summer break

Table 2.7 Target values per time point regarded for predicting student academic performance
t0 � t5 t6 � t9 t10 � t11

Pass Fail Pass Fail Pass Fail
MA 1515 2577 1183 332 1035 148
CS 1786 2307 1427 359 1127 300
CH 2697 1394 2397 300 2135 262
PH 2823 1270 2823 1270 2431 392
LA 1245 2848 1245 2848 1018 227

2.2.3 Features engineering

Based on the data recorded on the Learning Management System and those released
by the institution were considered both features related to the student demographics
(Gender, Age, BH-loc, HM-loc), prior education (HS-loc, HS-gr), current career
(GRE-gr, BS course) and features dependent on the student course activity as the
educational materials downloads (C-mat) and the video-lectures activity (C-down,
C-str). They are respectively listed in Table 2.8 and Table 2.9.

As the course progresses, the number of student interactions with the LMS varies;
hence the values of features related to course activity change at each time instant.

To predict summer session outcomes the success/failure outcome of the winter
session exams outcomes was added to the features set: MA-gr, CH-gr and CS-gr
respectively indicate whether the student passed or failed the Mathematical Analysis
(MA), Chemistry (CH) and Computer Science (CS) exams. Students’ performance
on previous exams may be helpful in predicting future exam outcomes.
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Table 2.8 Student background features employed for predicting student academic perfor-
mance

Feature Description Data Type Domain

Gender gender categorical {M = male,F = female}

Age student’s age—average
students’ age ordinal {�1,1,2,3}

BH-loc country of birth identi-
fier categorical {AF,AL,...}

HM-loc home country identifier categorical {AF,AL,...}

HS-loc high school country
identifier categorical {AF,AL,...,}

HS-gr high school grade band ordinal {1 = low, 2 = low average, 3 = average, 4 =
average high, 5 = high}

GRE-gr entry test grade ordinal {1 = low, 2 = low average, 3 = average, 4 =
average high, 5 = high}

BS course bachelor’s degree track categorical {mechanical engineering, computer engineer-
ing...}

2.2.4 Associative Model Learning

The Live and Let Live (L3) classifier [22], an associative algorithm, was employed
to derive the student outcome predictions. The use of L3 is a novel contribution of
this work with respect to the previously mentioned studies since none of them apply
this algorithm for student performance prediction.

L3 consists of a subset of high-quality association rules, hereafter denoted as
strong classification rules.

Table 2.9 Course activity features employed for predicting student academic performance

Feature Description Data Type Domain

C-Mat
discretized frequency of learning mate-
rial’ downloads normalized to the maxi-
mum number of downloads made up to
that point in time for course C

categorical {H = high, F = average, L =
little, N = no use}

C-down
discretized frequency of video lectures’
downloads normalized to the maximum
number of downloads made up to that
point in time for course C

categorical {H = high, F = average, L =
little, N = no use}

C-str
discretized frequency of video lectures’
accesses normalized to the maximum
number of accesses up to that point
in time for course C

categorical {H = high, F = average, L =
little, N = no use}
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An association rule is an implication X ! Y , where X and Y are denoted as
antecedent and consequent of rule X! Y . .

For example, {(Entry test, [60,70]), (Video-lectures accessed, <5%)}! (Out-
come, fail) is an association rule where {(Entry test, [60,70]), (Video-lectures ac-
cessed, <5%)} is the antecedent and (Outcome, fail) is the consequent. It indicates
that the co-occurrence of two specific conditions, i.e., passing the entry test with
a grade between 60 and 70 and accessing less than 5% of the video-lectures, is
correlated with an exam fail.

Association rule extraction is commonly driven by support (sup), confidence
(conf), and correlation (corr) quality indexes [2].

The support (sup) of a rule R is defined as sup(R) = sup(X [Y) and indicates
its frequency of occurrence in the source dataset; sup(X) refers to the frequency of
occurrence of the antecedent, while sup(Y) to the frequency of occurrence of the
consequent.

The confidence (sup) of a rule R is defined as con f (R) = sup(X[Y)
sup(X) and indicates

the rules strength.

For example, the association rule {(Entry test, [60,70]), (Video-lectures accessed,
<5%)}! (Outcome, fail) has support equal to 33% and confidence equal to 100%,
because in all the records in which the antecedent occurs the consequent occurs as
well, i.e. if the entry test grade is between 60 and 70 and the number of video-lectures
accessed is very low, the outcome is always fail.

When the rule consequent is characterized by relatively high support value, the
confidence could be high even if its actual strength is relatively low [205]. For
this reason correlation (corr) is considered; it is the ratio between how often the
antecedent and the consequent are observed together and how often they would
be expected to be observed together, given their individual support: corr(X,Y) =
conf(X!Y)

sup(Y) =
sup(X!Y)

sup(X)sup(Y) .

If corr(X,Y) is equal to or close to 1, itemsets X and Y are not correlated with each
other. Correlation values significantly below 1 show negative correlation, whereas
values significantly above 1 indicate a positive correlation between itemsets X and Y ,
i.e., X and Y co-occur more than expected.
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For example, the correlation of rule {(Entry test, [60,70]), (Fraction of video-

lectures accessed, <5%)}! {(Outcome, fail)} is
2
6

2
6⇤

3
6
= 2. Hence, the rule correlation

is positive.

A classification rule is strong if its support, confidence, and correlation values
are above (analyst-provided) thresholds.

2.2.5 Profile Extraction and Ranking

The associative models generated by the L3 classifier at di↵erent time points are
collected and analyzed to gain knowledge about the classifiers’ decisions.

Classification rules related to rate fail describe at-risk student profiles. For
example, rule {(Entry test, [60,70]), (Fraction of video-lectures accessed, <5%)}
! {(Outcome, fail)} describes a profile of students who have achieved fairly good
test outcomes and who have not downloaded the video-recordings of the in-class
lectures. Conversely, classification rules related to rate pass describe successful
student profiles.

Profiles can be classified as (i) at-risk profiles, if they are peculiar to the success
fail, or (ii) successful profiles, if they are peculiar to success pass. Note that student
profiles are related to a given course and period of time. Hence, they may change
while considering di↵erent courses and periods.

Another advantage of using an associative classifier is that it deals with missing
data since even when some features values are null the rules that do not contain them
can be used to derive profiles.

2.2.6 Experimental settings

1.2.6.1 Competitors

To answer RQ1, the following classifiers were considered as competitors: Decision
Trees(DT), Multi-Layer Perceptron (MLP), Support Vector Machines (SVM), Naive
Bayes (NB), K-Nearest Neighbors (K-NN) and Random Forests (RF).

Decision trees, as well as L3, allow the derivation of association rules. However
while associative classifiers perform a global search to extract rules satisfying some
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quality constraints (i.e., minimum support), DT relies on a greedy (local) search that
selects the most important attributes in turn based on the Information Gain or Gini
Index and may discard important rules [220]. In addition, while DT derives the rules
a posteriori by retracing the path of the tree (implying a hierarchy between items),
associative classifiers extract, filter and order rules before including them in the
classification model.

1.2.6.2 Training specifications

The data were trained using the same course o↵ering and applying a stratified 5-fold
cross-validation strategy.

The time complexity for training and testing the classification models ranged
from a few seconds on simpler datasets to approximately one hour in the worst cases.
However, most prediction models were generated in less than 60s.

1.2.6.3 Evaluation metrics

The models were evaluated by computing (i) Precision, (ii) Recall and (iii) F1-Score
of the class fail and (iv) Balanced Accuracy. All considered metrics, except Balanced
Accuracy, are specific to the class fail, since the main goal of this case study is to
early detect at-risk students.

2.2.7 Results

RQ1) Are associative models as accurate as the best performing classifiers in
predicting the success of university-level students?

Figure 2.1 shows for each course the scores achieved by the algorithms at various
time instants. Examination sessions are denoted by the vertical dashed lines.

Algorithms scores do not increase before the autumn session for both first-
semester (MA, CS, CH) and second-semester exams (PH, LA); both features related
to educational material accesses and video-lectures streaming/downloads do not
improve performance and predictions primarily rely on entry test and high school
grades. At the beginning of the second semester, the performance trends experience
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sharp growth for CS, MA and LA and lighter improvement for CH and PH because
the autumn session exam outcomes are helpful in predicting summer session exam
outcomes. Similarly spring session LA outcomes predictions benefit from summer
session exam outcomes.

In order to assess the statistical significance of the performance variations, the
Wilcoxon signed-rank t-test [88] was applied using a significance level equal to
0.5%. The results show that L3 performed significantly better than DT at specific
time points for the majority of the analyzed courses, while it performed as well as
the best performing approaches (K-NN, MLP). Hence, the L3 associative model could
be deemed as a reliable model for early predicting student performance.

RQ2) What are the most discriminating features to forecast exam success at
di↵erent time points?

The frequency of occurrence of the single features was inspected.

Figure 2.2 shows the percentage of rules including specific features in their
antecedent at three representative time points: t0, before the entry test when only
features related to students’ background are available, t1, before the beginning of the
semester when students have already taken the entrance test and chosen the course
of study, and t5, at the end of the first semester when data on students’ activity on
the educational material and video-lectures are also available.

Figure 2.3 instead focuses on features contribution to LA course in the second
half of the year grouping them into di↵erent categories (personal data and scholastic
history, entry test and BS course choice, activity in two sample courses, MA and CS,
educational material download and exam success) and their frequency of occurrence
is compared at all the time points (from 0 to 9).

Some major findings were derived by looking at the figures:

• The high school degree heavily influences students’ performance: the high
school grade (HS-gr) is the most important feature at t0 and it continues to be
relevant during the whole academic year for most courses.

• Age has a strong impact at the beginning of the year but gradually decreases:
this is due to a correlation with high school grades since older students gen-
erally have a lower school grade and they are also more likely to work while
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Figure 2. Algorithms’ comparison in terms of F1-score, precision, recall and balanced accuracy of class fail
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Fig. 2.1 Algorithms’ comparison in terms of F1-Score, Precision, Recall of class fail and
Balanced Accuracy for predicting student academic performance

studying. The influence of this feature decreases during the time because
motivated students learn to react by putting extra e↵ort into the study and
features related to student course interactions, as the use of video lectures or
educational material and previous exams, grades, impact predictions.

• The entry test grade (GRE-gr) is another determining factor: from time instant
t1 onward is one of the most relevant features. The entry test assesses whether
the student has basic skills in logic, mathematics and physics. Its impact
on passing first-year exams may lead the university to alarm students who
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Fig. 2.2 Frequency of occurrence of the features appearing in the rule antecedents at di↵erent
time points for predicting student academic performance

show more gaps, suggesting that they participate in remedial classes from
the beginning of the year. In turn, professors can intervene by preparing
teaching materials consisting of theoretical background and exercises on the
prerequisites of their courses.

• The BS course choice is also relevant: the attitude of the students towards the
di↵erent disciplines may depend on the perceived importance in their future.

• The activities carried out in one course may influence other courses: for
example, activity in the MA course a↵ects both the CS exam grade and second-
semester exams grades, such as PH and LA.

• The outcome of winter session exams a↵ects the results of summer session
exams: for example, graph (f) from Figure 2.3 shows that passing the 1st-
semester exams (MA-gr, CH-gr, CS-gr) has a strong influence on passing LA
in the second semester.
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Table 2.10 High-quality rules for predicting student academic performance

The rules are mined from Mathematical Analysis (MA) course training L3 with the following parameters: minsup
= 1%, minconf = 50%, mincorr = 2. Support and confidence values of each rule are averaged over the 5
cross-validation folds. “Before entry test”, “Early 1st semester”, “Mid-way 1st semester”, “Close to 1st semester”
exams indicate when the prediction had been carried out.

Num Time ID Body Head Support (%) Confidence (%) Lift Description

Before entry test

1 t0
HS-loc = Italy,
HS-gr = 5,
gender = F

pass 10.0 ± 0.3 86.5 ± 0.7 7 Very good high school grade, high school in
Italy, female (independently of age)

2 t0
HS-loc = Italy,
HS-gr = 4, age = 0 pass 30.4 ± 0.2 79.2 ± 1.3 8 Good high school grade, high school in Italy,

average age

3 t0
HS-gr = 5,
gender =M,
age = �1

pass 14.1 ± 0.2 87.9 ± 1.0 4
Good high school grade, male, younger than
average (independently of the high school
country)

4 t0
HS-gr = 1,
gender =M,
age = 3

fail 3.0 ± 0.1 90.7 ± 1.2 3 Very low high school grade, male, much older
than average

5 t0 HS-gr = 2, age = 1 fail 3.9 ± 0.1 89.7 ± 1.3 8 Low grade, older than average (independently
of gender and high school country)

Early first semester

6 t2 MA-mat = F pass 14.9 ± 0.3 75.2 ± 0.7 8 Average use of MA material

7 t2 MA-str=L pass 24.2 ± 0.2 70.0 ± 0.7 6 Little use of MA videos, but soon (october), co-
herent with MA material

8 t2

CH-str = L

pass

20.1 ± 0.2 71.7 ± 1.2 4 Streaming of other courses has positive impact
even if no MA videos (shows students’ engage-
ment)

MA-str = N,
CH-str = L 7.6 ± 0.3 72.5 ± 0.3 5

MA-str = N,
CS-str = L 5.5 ± 0.2 70.9 ± 0.9 8

Mid-way 1st semester

9 t3 MA-mat = H pass 7.5 ± 0.3 78.9 ± 1.3 7 High use of MA material

10 t3 MA-mat = F pass 12 ± 0.2 76.1 ± 0.8 7 Average use of MA materials, confirms t2

11 t3 MA-mat = L fail 14 ± 0.2 64.4 ± 0.5 7 Little use of MA material is not enough now
(cfr t2)

12 t3
MA-mat = N,
CS-mat = N,
CH-mat = N

fail 17.2 ± 0.2 87.4 ± 1.3 8 No use of material (inactive) , confirms t2

13 t3
MA-str = L,
CH-str = L pass 15.2 ± 0.1 70.6 ± 0.9 7 Little of MA videos is enough, with or without

other courses. Di↵erent from MA material:
just-enough approach for video streamingMA-str = L,

CS-str = L,
CH-str = N

10.4 ± 0.1 70.2 ± 0.2 7

14 t3 CH-str = L pass 24.9 ± 0.3 70.6 ± 1.3 4 Streaming of other courses has positive impact,
confirms t2

Close to 1st semester exams

15 t4 MA-mat = F pass 19 ± 0.1 78.2 ± 1.1 7 Average use of MA material, confirms t2 and
t3

16 t4 MA-mat = L fail 21 ± 0.1 73.9 ± 0.8 8 Little use of MA material, confirms t3

17 t4
MA-mat = N,
CS-mat = N,
CH-mat = N

fail 13.2 ± 0.1 95.7 ± 0.6 7 No use of material (inactive) , confirms t2 and
t3

18 t4 CH-mat = H fail 3.9 ± 0.1 78.8 ± 0.8 8 High use of another course material

19 t4
MA-str = F,
CH-str = F pass 28.9 ± 0.2 70.2 ± 0.7 4 Streaming of other courses has positive impact,

confirms t2 and t3

20 t2
MA-mat = N,
MA-str = L pass 7.5 ± 0.1 90.2 ± 0.9 45 Streaming is e↵ective even without access to

material
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Fig. 2.3 Analysis of the relevance of single features for predicting student academic perfor-
mance

RQ3) Which combinations of feature values have frequently been used to assign
the exam success rates?

While analyzing the recurrence of features individually is useful to learn which ones
impacted the prediction models the most, the rules inspection allows in understanding
which prediction classes the feature values are associated with and in co-presence
with which other features.

Table 2.10 shows samples of rules for predicting student outcomes in the first
exam session of the Mathematical Analysis (MA) course.

Some rules reinforce and deepen previous findings: rules 1-5 confirm that the
higher the high school grade the greater the chance of passing the exam, as well as
the older the student the greater the risk of failure; rule 8, 14 and 22 support that
the activities carried out in one course may influence other courses clarifying that
putting e↵ort on other subjects is a strategy that pays at the beginning of the semester
but not close to the exam session: rule 8 highlights that working on other courses
at t2,t�3 increases the chance to pass the MA course, while rule 22 shows that the
same behavior at t4 yields opposite e↵ects. Students should therefore be invited to
work hard from the beginning of the semester, but they should also be warned that
they should focus on a specific course when they are close to the exam.

In addition, new discoveries can be inferred:
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1. Students who start from the beginning of the course using the educational
material have a good chance of passing the exam (rule 6), while those in the
later stages of the course who do not use or poor use it are likely to fail (rules
15,16,17). However, if the lack of access to lecture material is compensated by
streaming video lectures the student has a good chance of passing the exam
(rule 20).

2. The use of the video-lecture streaming service is always positive, even if
limited. This is valid for the use of MA video-lectures (rule 13), but also
for the use of other course video-lectures (rules 8). Encouraging students to
actively use the service is another fruitful action to prevent failure and dropout.

Rule analysis also allows for specific intervention in even less representative
student profiles (that is, when the rule support is low) when the confidence and
correlation of the rule are high (e.g. rules 4,18,20).

2.2.8 Remarks and future improvements

This section demonstrates that the use of associative algorithms can help accurate
early prediction of student outcomes, revealing which are the most successful and
most at-risk behaviors. Some additional factors could be analyzed in the future:

• Test other associative algorithms to assess which is best at employing rules for
classification.

• Set higher confidence values for rule selection to increase precision even if
some students are unclassified.

• Apply the method to other courses in the following years to check whether the
impact of the entry test and high school grade is still that significant.

• Test the quality of predictions on the same courses in di↵erent o↵erings in
successive academic years to test whether performance remains the same.

Finally, since this study looks at several heterogeneous courses, features peculiar
to the course topics were not taken into account; in the next section, on the contrary,
a study will be presented where features used for prediction are related to the
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students’ activity on Version Control Systems, that is specific to the case study, i.e. a
Java programming course, and to learning settings since data were recorded from
laboratory sessions.

2.3 Time dependence analysis of exam performance
predictors based on Version Control System fea-
tures

Version control systems (VCS) are tools responsible for managing changes to com-
puter programs and are used by programmers to share and track code changes over
time.

GitHub collaborative platform is one of the most popular VCSs. Its potential
to enrich the educational experience has already been established [242]. It can
foster collaboration among students during university projects [70, 244] as well as
individual learning [26, 85].

VCS are also excellent resources for collecting data on student activity (e.g.,
number of commits, number of days on which there was at least one commit oper-
ation, the average number of commit operations per date, number of lines of code
added during the assignment completion) to derive statistical correlations with exam
grades [95, 199, 214].

Other research [86, 87, 142, 253] formed VCS-based features from the log files
containing students’ interactions with VCS and used them as input for ML algorithms
to predict students’ performance.

Similarly, this section presents a case study on a university-level Object-Oriented
Programming course in which students’ activities in lab assignments were tracked
via Github and the recorded data were used to early predict student outcomes.

The main contributions of this work are here summarized:

• Time-dependent ML model training. existing approaches are time-invariant,i.e.
they are trained on all data recorded during the course. However, the student-
VCS interactions are inherently time-dependent. To e↵ectively support the
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early prediction, di↵erent ML models were trained at various points in time on
an intermediate set of statistics.

• ML models’ comparison based on visual explanations. ML models trained
on VCS usage data are typically used as black boxes. Conversely, the ML mod-
els were inspected by exploiting a state-of-the-art explainability AI method,
namely SHapley Additive exPlanations (SHAP) [130]. The adopted imple-
mentation of SHAP provides a visual explanation.

2.3.1 Learning context

The data were derived from an Object-Oriented (OOP) programming course in
the second year of the Computer Engineering B.S. degree, held at the Polytechnic
University of Turin in the spring 2020. The lecturer chose Java as the programming
language.

Most students are first-time attendees.

The course consists of over 70 hours in the classroom, including both lectures
introducing the topics and live coding sessions presenting and discussing program-
ming assignment solutions, and 20 hours in the lab dedicated to the development of
programming assignments.

During the semester, students are presented with intermediate lab assignments,
which are not graded. The intermediate assignments exhibit an increasing di�culty
level and focus on the topics covered up to that moment in the lectures. The evaluation
process adopted for such assignments includes the following steps:

1. The teacher prepares an initial project and uploads it on the VCS.

2. The student develops a small program at the end of which they must submit
written code on the VCS.

3. Tests prepared by professors are automatically performed on the submitted
code via JUnit automated testing framework. The following outcomes are
possible for each test:

• Success: the execution of the tests method reached the end and all
assertions were verified.
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• Failure: one assertion was not verified and the execution of the test
method is then interrupted.

• Error: during the execution of the tests method an unexpected exception
is thrown (e.g. NullPointerException that signals the attempt to use
a null reference), also in this case the execution is interrupted.

Similarly, the student’s course outcome was determined by a final computer-
based exam in which students submit an initial version of the code after their work
in class; then they receive test output and are given the opportunity to review the
code at home before the final submission. The teacher assigns grades ranging from
18 to 30; for this study, they were discretized into three categories: C (18 to 21), B
(22 to 26), and A (27 to 30).

In the considered course o↵ering, four exam calls were available. Students can
reject an exam grade and retake it at a later call. Students enrolled in the course who
do not participate in any exam calls are labeled as dropout.

2.3.2 Research Methodology

Fig. 2.4 The VESPE architecture
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Prediction of student outcome is achieved through Visual Explainable Student
performance PrEdictor (VESPE) 2, a Python-based application that allows end-users
to automatically train di↵erent machine learning models at di↵erent course stages.

VESPE architecture is depicted in Figure 2.4.

It consists of two main user interfaces (UI), namely the input UI and output UI,
and of a core engine.

Input UI

Input UI allows end-users to specify via a csv file the input features and the prediction
targets and to set via a json file the specification of the algorithm setup, i.e.:

• Target type, which details whether the input data has to be employed for
classification or regression.

• Feature categorization, which allows di↵erent feature sets to be specified to
train the prediction model both for each of them and overall. Features sets
serve to di↵erentiate features both semantically (in this study, for example,
those related to the number of commits from those related to the commit
quality) and temporally (to specify those to be considered for a given time
instant). Categories are not exclusive, i. e. a feature may belong to more than
one category.

• A set of hyper-parameters that are used to set up the ML algorithms; if they
are not specified an automatic optimization is performed in the core engine
phase.

Core engine

The core engine consists of two components:

• A feature selection step in which k best features are selected using various
criteria: Chi-2 [157], Mutual Information [118] and F-test ANOVA [201]. k
ranges from 5 to N with an o↵set of 5, where N is the total number of features.

2https://github.com/Loricanal/VESPE.git
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• The classification phase that relies on various ML algorithms with automatic
hyper-parameters optimization using grid search. Only the following classifiers
were considered in this study: K-Nearest Neighbors (K-NN), Support Vector
Machines (SVM), Decision Tree (DT), Random Forest (RF), Gaussian Process
(GP), Multilayer Perceptron(MLP), Logistic Regression (LR), Linear Regression
(LNR), and Gaussian Naive Bayes (GNB). The list of hyper-parameters used for
grid search is reported in Table 2.11.

Table 2.11 Hyper-parameters for grid search in VESPE.

The following algorithms are implemented with the Python library Scikit-learn (link:https://scikit-learn.org/
stable/)

Hyper-parameter Set of possible values

K-Nearest Neighbors

number of neighbors 2, 3, 4, 5, 6, 7, 8, 9

Decision Tree

maximum depth 2, 3, 5, 7, 10, None

minimum number of samples split 2, 4, 6

minimum number of samples leaf 1, 3, 5

maximum number of features for split None, auto, sqrt, log2

Random Forest

maximum depth 2, 3, 5, 7, 10, None

minimum number of samples split 2, 4, 6

minimum number of samples leaf 1, 3, 5

maximum number of features for split None, auto, sqrt, log2

number of estimators 10, 50, 100

Support Vector Machines

kernel RBF, linear

regularizer 0.025, 0.05, 0.01, 1, 10, 100, 1000

Default configurations for Gaussian Naive Bayes, Gaussian Process, Multilayer Perceptron,
Logistic Regression, Linear Regression

Output UI

VESPE employs SHapley Additive exPlanations (SHAP) [130] to explain the models
since SHAP Values measures the features contributions on predictions 3. The output

3Further clarifications on SHAP are given in the Appendix A.

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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UI provides end-users with visual explanations of the ML outcomes including
multiple plots, of which the following were considered for this study:

• Summary bar plot: It shows the impact of the twenty features with the
highest impact on the predicting model. It averages the SHAP Values achieved
across all students thus providing a global explanation of the ML model. If the
color of the bars is red then the impact of the feature is positive with respect to
the target considered. Conversely, if the color is blue the impact is negative.

• Force plot: it supports the explanation of classification for a single sample
data (one student) and hence it provides a local explanation. It shows the
model output value for a specific class, the base value, i.e. the value that would
have been predicted if we did not know any features for the current output,
and the impact of each feature on the output. More specifically, it draws red
and blue arrows associated with the features. Each of these arrows indicates
how much the feature impacts the model (the longer the arrow, the bigger
the impact) and how the feature impacts the model (a red arrow increases the
model output value while a blue arrow decreases the model output value) for a
specific class.

2.3.3 Predicted targets

Table 2.12 Target values for student performance prediction using Version Control System
features in an Object-Oriented programming course

Target Exam 1 Exam 2 Exam 3 Exam 4 Summary

Registered 379 196 107 42 650

Dropout - - - - 173

Pass 364 166 103 42 636

Fail 15 30 4 0 14

Grade A 164 64 21 8 251

Grade B 147 47 39 24 246

Grade C 53 55 43 10 139

Reject 35 20 13 0 -

The considered targets are listed here:

• Success: it discriminates between the students who passed the exam in at least
one of the four calls (Pass class) and those who did not (Not Pass class); the
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latter may be divided into two subclasses: Fail class formed by students have
never passed the exam and Dropout class comprising students who performed
a course dropout, i.e. who have never registered for any examination call. Note
that failure indicates that the student at least attempted to complete the course
while dropout who “threw in the towel”.

• Success Exam 1: it di↵erentiates the students who passed the exam at the first
call (Pass Exam 1 class) from those who did not pass (Not Pass Exam 1 class),
i.e. those who failed it or did not register.

• Success Exam 2: it di↵erentiates the students who passed the exam at the
second call (Pass Exam 2 class) from those who did not pass (Not Pass Exam
2 class), i.e. those who failed it or did not register. This target is useful
to determine the contribution of the first exam attempts, and specifically in
determining the contribution of the attempts with respect to the features derived
from the labs.

• Grade: it takes into account students who passed the exam in at least one of
the calls (636 students out of 823) and it denotes the higher grade (A, B, or C)
achieved, distinguishing the following classes: Grade A, Grade B, Grade C.

Table 2.12 shows some statistics related to exam outcomes.

2.3.4 Feature engineering

The data recorded through the VCSs describe the student’s activity in the labs (Lab
features). In addition, attempts to succeed in the first examination were consid-
ered (Attempts features) to assess whether they contribute to improvements in the
prediction for the second call. Tables 2.13 and 2.14 provide the complete list of
features and their categorization. The categorization is useful for training VESPE
core engine with di↵erent feature sets in order to understand which features have the
greatest impact on predictions. Conversely, training the algorithms with all features
allows deriving models that combine features from di↵erent categories and evalu-
ating which features individually impact the most. Commit count, Commit quality,
Commit frequency, Submitted labs and Active days categories have already been
adopted in previous research (see, for example, [86] for further details).+ Conversely,
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categories Lab dropout and Exam attempts were defined for the first time in this
study. Lab dropout should not be confused with course dropout. The former (e.g.
Dropout#LabN) is a persistence indicator that the student stopped taking labs after
the N-th; the latter indicates lack of willingness to complete the course and earn
certification [51, 179, 223].

Table 2.13 Lab features recorded through Version Control System employed for predicting
student exam performance in an Object-Oriented programming course

Feature Description

Commit numbers (D = 6)

CommitCount#Lab{1,2,3,4,5} Number of commits for each lab

CommitCount#Total Total number of commits

Commit quality (D = 18)

Passed#Lab{1,2,3,4,5} Number of tests passed for each lab

Passed#Total Total number of passed test

Error#Lab{1,2,3,4,5} Number of tests that raised errors for each lab

Error#Total Total number of tests that raised errors

Failed#Lab{1,2,3,4,5} Number of tests failed for each lab

Failed#Total Total number of failed tests

Commit frequency (D = 6)

CommitsPerDay#Lab{1,2,3,4,5} Average number of commits per day for each lab

CommitsPerDay#Total Average number of commits per day

Active days (D = 6)

ActiveDays#Lab{1,2,3,4,5} Number of days in which at least 1 commit was done
for each lab

ActiveDays#Total Total number of days in which at least 1 commit was
done

Submitted labs (D = 6)

Done#Lab{1,2,3,4,5} Lab were submitted or not

DoneLab#Total Total number of submitted lab

Dropout (D = 4)

Dropout#Lab{2,3,4,5} Dropout#LabN: the student submitted labs 1...N-1
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Table 2.14 Exam attempts features employed for predicting student exam performance in an
Object-Oriented programming course

Feature Description

PreviousAttempt The feature indicates whether the examination was
already attempted by the student in the first call; it
takes the value 1 if it was attempted (regardless of
the outcome), and takes the value 0 if it was not
attempted.

PreviousAttemptPass The feature indicates whether the examination had
already been attempted by the student in the first call
and passed (0 if it was not attempted or failed, 1 if it
was attempted and passed). In practice, this indicates
the students who refused the grade.

PreviousAttemptFail The feature indicates whether the examination had
already been attempted by the student in the first
call and failed (0 if not attempted or attempted and
passed, 1 if attempted and failed).

2.3.5 Experimental settings

Time-dependent ML training

Separate ML models were trained after each laboratory session. The available
feature set changes over time because the values of some of the VCS-based features
in Tables 2.13 are missing (e.g., Passed#Lab5 after the first laboratory session),
whereas other features take temporary values (e.g., Failed#Total derive the total
count after the second laboratory session, Lab dropout features after Lab n consider
the course to be finished after that session). For each target, the data were split in
half to form the training and test sets using the same course o↵ering.

Evaluation metrics

The classifier performance in predicting an arbitrary class c was evaluated using
the following metrics: (i) Precision (Pr), (ii) Recall (Rc), F1-Score (F1) and (iv)
Balanced Accuracy (Ab).of class c.
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2.3.6 Results and discussion

The results were presented by answering the following questions:

RQ1) At which course stage does the exam outcome get predictable? What are the
most discriminating VCS-based features?

RQ2) Is it possible to predict the course dropout based on VCS usage data, to prevent
it?

RQ3) What is the impact of laboratory activities on the exam grades?

RQ4) What is the impact of the previous exam attempts on the upcoming exam
success?

RQ5) Which strategies can educators put into practice based on the results achieved
on di↵erent targets?

RQ1) At which course stage does the exam outcome get predictable? What are
the most discriminating VCS-based features?

Table 2.15 Prediction performance for class Pass using Version Control System features in
an Object-Oriented programming course

Features category Algorithm Pr Rc F1 Ab

Commit count GP 0.98 0.95 0.96 0.94

Commit quality RF 0.98 0.95 0.96 0.94

Commit frequency DT 0.98 0.95 0.97 0.94

Active days GNB 0.98 0.95 0.97 0.94

Submitted labs GNB 0.98 0.77 0.80 0.86

Dropout labs GNB 0.97 0.11 0.20 0.55

Lab MLP 0.98 0.95 0.97 0.94

Lab with feature selection GNB 0.85 1.00 0.92 0.98

features in an Object-Oriented programming course.

Classifier performance for class Pass on targets Success and Success Exam 1
were reported in Tables 2.15 and 2.16 .

High-quality performance was achieved by ML algorithms for the target Success
(e.g., balanced accuracy above 90% with all the features), whereas it was fairly high
on target Success Exam 1 (e.g., balanced accuracy above 70% with all features).
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Table 2.16 Prediction performance for class Pass Exam 1 using Version Control System
features in an Object-Oriented programming course

Features category Algorithm Pr Rc F1 Ab

Commit count RF 0.83 0.57 0.66 0.71

Commit quality DT 0.75 0.65 0.69 0.70

Commit frequency MLP 0.81 0.58 0.67 0.71

Active days DT 0.82 0.54 0.65 0.70

Submitted labs RF 0.95 0.46 0.62 0.71

Dropout labs GP 0.60 0.79 0.68 0.59

Lab SVM 0.86 0.51 0.63 0.70

Lab with feature selection SVM 0.86 0.51 0.63 0.70

(a) Early prediction for class Pass. (b) Early prediction for class Pass Exam 1.

Fig. 2.5 Early prediction performance for classes Pass and Pass Exam 1 using Version
Control System features in an Object-Oriented programming course

(a) Summary bar plot for class Pass. (b) Summary bar plot for class Pass Exam 1.

Fig. 2.6 Classes Pass and Pass Exam 1 global explanation with the model estimated before
the first exam call for student exam performance prediction using Version Control System
features in an Object-Oriented programming course

Classifiers’ performances appear to be rather similar for all the considered feature
sets, except Dropout labs features which achieved the worst performance and are
unsuitable for discriminating the exam success by itself.
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(a) Summary bar plot for class Pass. (b) Summary bar plot for class Pass Exam 1.

Fig. 2.7 Classes Pass and Pass Exam 1 global explanation with the models estimated after
lab 2 for student exam performance prediction using Version Control System features in an
Object-Oriented programming course

The quality of the predictions is fairly high even at the early course stages (see
Figures 2.5a and 2.5b).

Figures 2.5a and 2.5b show the time dependence of the performance measures.
The quality of the predictions is fairly high even at the early course stages.

To better inspect this phenomenon, feature contributions were examined both
on the model obtained after finishing all labs (Figure 2.6) and on the model derived
after the second lab (Figure 2.7a). In both cases, the most significant features are
related to the first two labs: however, the explanation related to the last time point
reveals that it is enough to carry out the first two labs independently of past tests
(almost only Submitted labs features related to the first two labs); moreover, features
related to later time instants appear with minor contributions (i.e. Done#Lab3,
Done#Lab5, Done#Total). Dropout#Lab2, which identifies the students who stopped
doing the labs starting from the second one, has also a significant positive impact.
The reason is that Dropout#Lab2 is implicitly related to the student participation in
Lab1, which appeared to be the most discriminating feature (Done#Lab1). In contrast,
the model derived in the second time instant performed the prediction relying more
on the Commit quality features related to the first two labs, i.e. Passed#Lab2 and
Passed#Total (note that Passed#Total considers only the first two labs at this time
instant).

Hence, it is enough to do a few labs to pass the exam (sometimes only the first
with many tests passed).
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Figure 2.8a compares two examples of students after laboratory 2: the first one is
an at-risk student: she/he was marked as Not Pass for target Success because she/he
is a moderately engaged student who only submitted the first lab passing a few tests.
The instructor may act preventively at this point of time by alerting the student and
inviting her/him to continue with the labs, putting higher e↵ort. The second one was
classified as Pass for target Success Exam 1 and shows an average positive attitude:
she/he is highly engaged up to this point of the course because he took both the first
two labs passing an average high number of tests, working an average number of
days with a medium-high frequency of commits.

RQ2) Is it possible to predict the course dropout based on VCS usage data, to
prevent it?

Table 2.17 Prediction performance for class Dropout using Version Control System features
in an Object-Oriented programming course

Features category Algorithm Pr Rc F1 Ab

Commit count GP 0.84 1.00 0.91 0.97

Commit quality RF 0.84 1.00 0.91 0.97

Commit frequency DT 0.85 1.00 0.92 0.98

Active days GNB 0.85 1.00 0.92 0.98

Submitted labs GNB 0.84 1.00 0.91 0.97

Dropout labs GNB 0.29 1.00 0.46 0.68

Lab MLP 0.85 1.00 0.92 0.98

Lab with feature selection GNB 0.85 1.00 0.92 0.98

Table 2.17 shows the classifier achieved good results on class Dropout. The
performance was fairly good even at the early course stages (see Figure 2.9), then
they increased until the third laboratory. After that, we did not observe any further
performance improvements.

The visual explanations for dropout are depicted in Figure 2.10. All lab features
are negatively correlated with the classifier outcomes; hence students who do not
attend any laboratory or only the first laboratory with little e↵ort are marked as
dropout.

This assumption is confirmed by the sample student in Figure 2.8b. She/he was
classified as Dropout because she/he was not engaged: she/he did not take the first
two laboratories.
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Fig. 2.9 Early prediction performance for class Dropout using Version Control System
features in an Object-Oriented programming course

Fig. 2.10 Class Dropout global explanation for student exam performance prediction using
Version Control System features in an Object-Oriented programming course

RQ3) What is the impact of laboratory activities on the exam grades?

Classifier performance on classes Grade was fairly low (see Table 2.18). As for
previous classes, the contributions of the features were inspected to figure out which
factors were used by the model to discriminate between classes (Figures 2.11). They
are quite diversified and noisy:
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Table 2.18 Prediction performance for class Grade using Version Control System features in
an Object-Oriented programming course

Features category Algorithm
Class Grade C Class Grade B Class Grade A

Pr Rc F1 Ab Pr Rc F1 Ab Pr Rc F1 Ab

Commit count RF 0.77 0.49 0.59 0.72 0.58 0.70 0.63 0.69 0.68 0.66 0.67 0.73

Commit quality GNB 0.58 0.60 0.56 0.73 0.66 0.59 0.61 0.69 0.68 0.68 0.68 0.73

Commit frequency KN 0.55 0.65 0.59 0.75 0.61 0.63 0.62 0.69 0.66 0.57 0.61 0.69

Active days GNB 0.54 0.71 0.60 0.76 0.65 0.57 0.60 0.68 0.67 0.59 0.63 0.70

Submitted labs GNB 0.54 0.71 0.62 0.77 0.89 0.50 0.63 0.73 0.60 0.75 0.66 0.71

Dropout labs SVM 1.00 0.43 0.60 0.71 0.97 0.34 0.50 0.66 0.51 0.99 0.67 0.68

Lab GNB 0.49 0.74 0.59 0.76 0.75 0.48 0.58 0.69 0.65 0.68 0.66 0.72

Lab(feature selection) GNB 0.49 0.74 0.59 0.76 0.75 0.48 0.58 0.69 0.65 0.68 0.66 0.72

• Students labeled as Grade A submitted many labs (Done#Total has a positive
impact) with an e↵ort specifically in Lab 4. Note that the feature Error#Lab4
(that represents the commit errors related to Lab 4) has a positive impact on
the A class: the students adopted a trial-and-error approach ( ActiveDays#Lab4
has also positive impact), which is quite common in programming language
courses. The other features that are positively correlated with this target
group are those highlighting intense and high-quality commits (students who
made many commits - CommitCount#Total, and who have passed many tests,
especially in laboratory 3 - Passed#Total and Passed#Lab3), and those empha-
sizing durable e↵ort, especially for laboratories 3 and 4 (ActiveDays#Total,
ActiveDays#Lab3, ActiveDays#Lab4).

• Students labeled as Grade B consists of (i) students who have done at least the
first 3 labs and have not done the remaining ones (feature Dropout#Lab4 has a
positive impact) and (ii) students who did activities on the last but making a
relatively high number of errors (Error#Lab4 and Error#Lab5 have a positive
impact on this class) and did not show much e↵ort on lab 4 (CommitPer-
Day#Lab4 and CommitCount#Lab4 have a negative impact).

• Students labeled as Grade C consists of (i) students who did few laborato-
ries (Done#Total has a negative impact), especially in the first part of the
course (Done#Lab5, Done#Lab4, Done#Lab3 have a negative impact, whereas
Dropout#Lab5 has a positive impact). In case they did the last lab, they were
not very active in it: they devoted just a few days to it and failed many tests
(Passed#Lab5, ActiveDays#Lab5).
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(a) Summary bar plot for Grade A (b) Summary bar plot for Grade B

(c) Summary bar plot for Grade C

Fig. 2.11 Class Grade global explanation for student exam performance prediction using
Version Control System features in an Object-Oriented programming course

RQ4) What is the impact of the previous exam attempts on the upcoming exam
success?

Table 2.19 shows the impact of the Exam attempts features category on the classifier
performance. The quality of the ML model trained only on Exam attempts was rather
low. Tracing past exam attempts is not su�cient to predict the outcome of the next
exams. Conversely, the results greatly increased by mixing Exam attempts and Lab
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Table 2.19 Prediction performance for class Success Exam 2 using Version Control System
features in an Object-Oriented programming course

Features category Algorithm Pr Rc F1 Ab

Attempt GNB 0.00 0.00 0.00 0.50

Lab GNB 0.72 0.51 0.60 0.70

Lab + Attempt RF 0.56 0.98 0.72 0.79

Lab + Attempt with feature selection RF 0.56 0.98 0.72 0.79

features compared to the model trained on Lab features alone; hence attempts data
are useful for complementing the other VCS-based features.

Table 2.20 Recommended strategies for student exam performance prediction in an Object-
Oriented programming course

Class Early prediction time Classification reliability Behavioural features Educator suggestion

Pass At the end of lab 2 Very High Students who did the first two labs
passing most tests

Good job, but keep working to get a
high-grade

Pass Exam 1 At the end of lab 2 High Students who did the first two labs
passing most tests

Good job, but keep working to get a
high-grade

Not Pass At the end of lab 2 Very High Students who have taken only one of
the first two labs or who have taken
both but with little e↵ort

Warning! You are not putting
enough e↵ort into this course

Not Pass Exam 1 At the end of lab 2 High Students who have taken only one of
the first two labs or who have taken
both but with little e↵ort

Warning! You are not putting
enough e↵ort into this course

Dropout At the end of lab 3 High Student that has not taken any labs
or has taken only the first one with
little e↵ort

Warning! Do not forget this course!

Grade A At the end of all labs Fair Many submitted laboratories, in-
tense and high quality commits,
durable e↵ort in terms of active days

Revise the work you have done, pay-
ing particular attention to labs 2 and
5

Grade B At the end of all labs Fair Students who dropout labs after mid-
course or who did all labs but made
many errors in the last two or who
did not show much e↵ort on lab 4

Don’t be satisfied with the work
done in the first few lab sessions but
do the others, paying particular at-
tention to the last labs.

Grade C At the end of all labs Fair Students who did not take labs or put
little e↵ort from the third lab onward

Don’t be satisfied with the work
done in the first few lab sessions but
do the others as well, paying partic-
ular attention to the last labs.

RQ5) Which strategies can educators put into practice based on the results
achieved on di↵erent targets?

Table 2.20 summarizes the targeted interventions that teachers can put into practice
for each student category. Specifically, it reports the earliest prediction time, the
classifier reliability estimated through standard metrics (see previous research ques-
tions), the behavioral features associated with the particular student type, and the
suggested recommendation.
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The recommended strategies summarize the main achievements of the empirical
study and provide actionable knowledge about how to use VESPE in a real-life
scenario. Notice that educators can conveniently exploit VESPE to tailor the level
of complexity of both the laboratory activities and the exam. For example, if the
ML model trained on target Grade A turns out to be highly accurate after the first
laboratory then the di�culty of the past exam needs to be revised.

2.3.7 Remarks and future improvements

This section presented VESPE, a new method for deriving explainable models to
early predict student outcomes in order to o↵er customized support depending on the
predicted target. The method was tested in an Object-Oriented programming course.
The results revealed that students who fail can be early detected based on the activity
in the labs (e.g. commit count, commit quality... ). The use of SHAP further enabled
the derivation of feature importance on each individual prediction and outcome class.
In the future work the feature set could be enriched, for example, JUnit tests in the
labs may be categorized based on the learning topic, to derive features that take into
account how many tests students passed for each topic. This will allow establishing
which course contents are most critical in achieving a successful outcome and early
alert students who show little e↵ort on it.

2.4 UNIFORM: Automatic Alignment of Open Learn-
ing Datasets

Public educational datasets su↵er from data heterogeneity, i.e. they hold di↵erent
types of data (see the previous section 2.1.8). For example, some of them mainly
focus on the students’ interactions with the Learning Management System, others on
the exam outcomes, still others on the student-teacher or peer-to-peer interactions.
In addition, even when they are homogeneous, automatic integration is often not
feasible, since even when two features from two di↵erent datasets have the same
semantics they can be named di↵erently. This section describes UNIFORM, already
presented in [40], an integrated relational database schema that includes tables and
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attributes able to handle heterogeneous data and automatically align new datasets via
machine learning support. UNIFORM was evaluated on 11 open learning datasets.

2.4.1 Datasets description

The public educational datasets are listed below.

• OULAD4 (Open University Learning Analytics Dataset), which contains data
about student interactions with the learning management system. It was used
for student dropout, at-risk and grade prediction [101].

• HARVARDX5 and MITX6, which contain the descriptions of the student
activities in one edX platform course. They were used for student dropout
prediction [206].

• COURSERA 7, which contains discussion threads presented in the forums of
Coursera MOOCs. It was used for student at-risk prediction [92].

• PORT dataset8, which collects student behavioral and lifestyle information
as well as parent education level to perform student grade prediction in two
secondary schools in Portugal.

• xAPI-Edu-Data9 (XAPI), which consists of data about student behavior ac-
quired in the University of Jordan and is used for student grade prediction.

• EPM10, which contains information about student interactions with the online
resources at the University of Genova and the exam grades.

• EDSA11, which contains data about students’ interactions with the online
resources of the European Data science Academy portal.

4https://bit.ly/2m4a0NF
5https://bit.ly/2FLEz3f
6https://bit.ly/314niIv
7https://bit.ly/2mVuOas
8https://bit.ly/2lmoFDC
9https://bit.ly/2lmp2y0

10https://bit.ly/2ltgwgU
11https://bit.ly/2mc0NTG

https://bit.ly/2m4a0NF
https://bit.ly/2FLEz3f
https://bit.ly/314niIv
https://bit.ly/2mVuOas
https://bit.ly/2lmoFDC
https://bit.ly/2lmp2y0
https://bit.ly/2ltgwgU
https://bit.ly/2mc0NTG
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• ISTM12, which contains students’ answers to survey questions about time
management at Nottingham Trent International College.

• UoJ13, which contains data about student performance.

• OUD (Our Institution Dataset), i.e. the one adopted in 2.2 for students aca-
demic performance prediction.

Details of the features included in each dataset as well as some relevant statistics
about data size and schema complexity are given in Table 2.21.

Table 2.21 Statistics of public available educational datasets
The datasets are analyzed by exploiting the following data descriptors: (a) SPD (Student Personal Data), e.g.
personal ID, age, gender, ethnicity; (b) SCD (Student Career Data), e.g. school degrees, entry test grades,
educational modules enrollment; (c) EMD (Educational Module Data), e.g. available courses, course description,
course prerequisites; (d) SAD (Student Assessment Data), e.g. exam grades, intermediate assessment evaluations;
(e) ERA (Educational Resource Access), e.g. activities within a learning management system, online resources
access, video-lectures streaming; (f) IAD (Interaction Activity Data), e.g. forum posts, peer-to-peer interactions,
student-teacher interactions.

OID
(1)

EDSA
(2)

EPM
(3)

HARV
(4)

ISTM
(5)

MITX
(6)

OULAD
(7)

COURSERA
(8)

PORT
(9)

XAPI
(10)

UOJ
(11)

Data types SPD,
SCD,
EMD,
SAD,
ERA

ERA SAD,
ERA

SPD,
SCD,
SAD,
ERA,
IAD

SPD,
SCD,
SAD

SPD,
SCD,
SAD

SPD,
SCD,
SAD,
ERA

IAD SPD,
SCD,
SAD

SPD,
SCD

SPD,
SCD

Dimensions (MB) 122.6 7.7 19.3 70.2 0.2 12.5 464.4 70.5 0.1 0.1 5.0

Number of tables 7 1 5 1 2 1 7 3 2 1 13

2.4.2 The UNIFORM schema

UNIFORM generalizes the data types provided by the open learning datasets previ-
ously discussed. Only a portion of them were looked at during the schema design:
OID, EPM, HARVARDX, OULAD, COURSERA, PORT, xAPI-Edu-Data. The
complete list of tables is reported in Table 2.22. The remaining ones (i.e., EDSA,
ISTM, MITX, UOJ) will be employed to test the ability of the schema to handle new
information; to guarantee the generality and flexibility, some attributes are supersets
of the attributes in the original tables.

The USER table describes the demographics (e.g., gender, age, place of birth)
including also the free time activities (e.g. alcohol week consumption). To discern

12https://bit.ly/2me1HyT
13https://bit.ly/2mxrq5L

https://bit.ly/2me1HyT
https://bit.ly/2mxrq5L
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Table 2.22 The UNIFORM schema

Table name Attributes

INSTITUTE Institute_Id, EduLevel, EntryGradeBase, FinalGradeBase, Name, Place, Type

USER User_Id, AlchoolWeekendConsuption, AlchoolWorkdayConsuption, Birth_Place,
Birth_Place_Type, Birth_Time, Disability, Education_Level, FamilyRelQual-
ity, Familysize_Count, Father_Education_Level, Father_Job, FreeTimeQuan-
tity, Gender, GoingOut_Duration, HealtStatus, ImdBand, InternetHomeAccess,
Mother_Education_Level, Mother_Job, Nationality, NurseryAttendence, Par-
entStatus, Residence_Place, Residence_Place_Type, RomanticStatus

USER-INSTITUTE Institute_Id, User_Id, Cds, ChoiceReason, Entry_Grade, ExtraEduSupport,
Familysupport, Final_Grade, Guardian, HToSTravel_Duration, Higher, ParentAn-
sweringSurvey, ParentschoolSatisfaction, Registration_Time, StudentLevel, Stud-
iedCredits, Unregistration_Time, User_Grade, User_Type

USER-COURSE Course_Id, User_Id, Certified, DiscussionGroups_Count, Events_Count,
Failures_Count, ForumPosts_Count, InteractingChapters_Count, Interacting-
Days_Count, MandatoryPosts_Count, PlayVideo_Count, ViewedAnnounce-
ments_Count, ViewedCourseContent_Count, ViewedDashboard

USER-PRESENTATION Presentation_Id, User_Id, Absences_Count, DiscussionGroups_Count,
Events_Count, Explored, ExtraCVActivitiies, ExtraPaidClasses, Fo-
rumPosts_Count, Group, InteractingChapters_Count, InteractingDays_Count,
LastInterction_Time, PartecipationSessions_Array, PlayVideo_Count, Registra-
tion_Time, Unregistration_Time, ViewedAnnouncements_Count, ViewedCour-
seContent_Count, ViewedDashboard, WeeklyStudy_Duration

COURSE Course_Id, Credits, Institute_Id, Name, Typology

PRESENTATION Presentation_Id, Course_Id, Duration, End_Time, Lang, Lectures_Count,
Semester, Start_Time, User_Id

ASSESSMENT Assessment_Id, Course_Id, Expiration_Time, GradeBase, Institute_Id, Lec-
ture_Id, Presentation_Id, Start_Time, Type, Weight

USER-ASSESSMENT Assessment_Id, User_Id, Grade, IsBanked, Submission_Time

USER-EXERCISE Exercise_Id, User_Id, Grade

EXERCISE Exercise_Id, Assessment_Id, GradeBase

LECTURE Lecture_Id, Lecture_Type, Order, Presentation_Id, User_Id

USER-LECTURE Lecture_Id, User_Id Participation, RaisedHands_Count

VIDEOLECTURE Videolecture_Id, Lecture_Id, Presentation_Id, Recording_Time, User_Id

FORUM Forum_Id, Course_Id, Depth, File_Id, Forum_Chain, Lecture_Id, OgFo-
rum_Id, Og_Forum_Title, ParentForum_Id, ParentForum_Title, Presentation_Id,
Threads_Count, Title, TitleTags_Count, Users_Count, Videolecture_Id

THREAD Thread_Id, Forum_Id, Views_Count

POST Post_Id, NormalizedPost_Time, Order, ParentPost_Id, Post_Time, Thread_Id,
User_Id, Votes_Count, Words_Count

FILE File_Id, Course_Id, Format, Lecture_Id, Presentation_Id, Title, User_Id

ACTIVITY Activity_Id, ActionType, Activity_Time, Assessment_Id, End_Time,
Exercise_Id, File_Id, Forum_Id, Idle_Time, Keystroke, Lecture_Id,
Mouse_Click_Left, Mouse_Click_Right, Mouse_Movement, Mouse_Wheel,
Mouse_Wheel_Click, Post_Id, Start_Time, Sum_Click, Thread_Id, Type,
User_Id, Videolecture_Id

between student users, teacher users, or others the attribute User_Type was intro-
duced. Table COURSE saves course information (e.g. number of credits), while
table PRESENTATION svaes data related to course o↵ering (e.g semester, start
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time, duration, language). Student assessment data are stored in ASSESSMENT
that generalizes di↵erent types of assessments (e.g, final exams, ongoing tests, etc.).
Table LECTURE records data related to the exercises assigned during an assess-
ment procedure. The video-lectures and the other related teaching materials data
are respectively saved in VIDEOLECTURE and FILE, while information related
to forums and posts in FORUM, THREAD, POST. Finally, the online activities
indicators (e.g. clicks, mouse movements) are saved in Table ACTIVITY.

2.4.3 Manual alignment

Each attribute in the original dataset was linked to an attribute from UNIFORM. The
percentage of matched features per UNIFORM table is reported in Table 2.23. The
results show that UNIFORM integrates most of the original data attributes, but the
percentage of matching per facet is relatively low due to the high heterogeneity of
the input data.

2.4.4 Automatic alignment

ax denotes an attribute of the dataset x; ao is an attribute in the original dataset, while
au is an attribute in the uniform one. Each attribute is described by:

• lax : the attribute name.

• dax : a small description.

• Wax : a bag-of-words related to the attribute.

• Eax : a set of Wikipedia pages links related to the attribute.

lao , dao are given by the original dataset authors, while Wao was derived by
extracting the keywords from dao using TextRank [24, 143]. The same information
for UNIFORM (i.e. lau , dau and Wau) were manually set. In both cases Eax is
computed from dax using a variation of Ensemble Nerd [42] which keeps all named
entities extracted from the NEL extractors used in Ensemble Nerd, maximizing
recall.
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Table 2.23 Comparison of publicly available educational datasets based on the percentage of
matched attributes per UNIFORM’s table

OID (1) EDSA (2) EPM (3) HARV (4) ISTM (5) MITX (6)

LECTURE 60.0% 0.0% 40.0% 0.0% 0.0% 0.0%
PRESENTATION 55.6% 0.0% 22.2% 22.2% 0.0% 33.3%
USER-EXERCISE 0.0% 0.0% 100.0% 0.0% 100.0% 0.0%

POST 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
ASSESSMENT 50.0% 0.0% 40.0% 40.0% 30.0% 40.0%

EXERCISE 0.0% 0.0% 66.7% 0.0% 100.0% 0.0%
THREAD 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

USER-ASSESSMENT 60.0% 0.0% 60.0% 60.0% 40.0% 60.0%
USER-LECTURE 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

ACTIVITY 21.7% 26.1% 65.2% 0.0% 0.0% 0.0%
COURSE 80.0% 0.0% 40.0% 40.0% 60.0% 40.0%

VIDEOLECTURE 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%
USER 19.2% 3.8% 3.8% 19.2% 15.4% 19.2%

FORUMs 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
USER_INSTITUTE 31.6% 15.8% 10.5% 10.5% 15.8% 10.5%

INSTITUTE 42.9% 14.3% 14.3% 14.3% 14.3% 14.3%
USER-COURSE 14.3% 0.0% 14.3% 21.4% 14.3% 14.3%

FILE 42.9% 28.6% 0.0% 0.0% 0.0% 0.0%
USER-PRESENTATION 19.0% 0.0% 14.3% 52.4% 9.5% 52.4%

OULAD (7) COURSERA (8) PORT (9) XAPI (10) UOJ (11)

LECTURE 0.0% 0.0% 0.0% 40.0% 0.0%
PRESENTATION 33.3% 66.7% 22.2% 33.3% 55.6%
USER-EXERCISE 0.0% 0.0% 0.0% 0.0% 0.0%

POST 0.0% 100.0% 0.0% 0.0% 0.0%
ASSESSMENT 70.0% 0.0% 40.0% 0.0% 60.0%

EXERCISE 0.0% 0.0% 0.0% 0.0% 0.0%
THREAD 0.0% 100.0% 0.0% 0.0% 0.0%

USER-ASSESSMENT 100.0% 0.0% 60.0% 0.0% 60.0%
USER-LECTURE 0.0% 0.0% 0.0% 75.0% 0.0%

ACTIVITY 21.7% 0.0% 0.0% 0.0% 0.0%
COURSE 40.0% 80.0% 40.0% 40.0% 60.0%

VIDEOLECTURE 0.0% 0.0% 0.0% 0.0% 0.0%
USER 26.9% 3.8% 73.1% 19.2% 34.6%

FORUMs 0.0% 75.0% 0.0% 0.0% 0.0%
USER_INSTITUTE 21.1% 15.8% 42.1% 36.8% 10.5%

INSTITUTE 14.3% 14.3% 28.6% 14.3% 28.6%
USER-COURSE 21.4% 21.4% 21.4% 28.6% 14.3%

FILE 57.1% 0.0% 0.0% 0.0% 0.0%
USER-PRESENTATION 19.0% 14.3% 28.6% 33.3% 9.5%

In order to automatically align a new dataset with the UNIFORM schema, all
attributes pairs <ao,au> were represented by a similarity vector ~fao,au:

[S f uzz(lao , lau),S cos(�(dao),�(dau)), |(Wao \Wau |, |Eao \Eau |]
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Table 2.24 Hyper-parameters for grid search in UNIFORM

The following algorithm were implemented with the Python library Scikit-learn (link:https://scikit-learn.org/
stable/)

Hyper-parameter Set of possible values

Random Forest

maximum depth 2, 3, 5, 7, 10, None

minimum number of samples split 2, 4, 6

minimum number of samples leaf 1, 3, 5

maximum number of features for split None, auto, sqrt, log2

number of estimators 10, 50, 100

Default configurations for Multilayer Perceptron

S f uzz(lao , lau) denotes the similarity measure between attributes names computed
using Token Set Ratio metric defined in Fuzzywuzzy 14. S cos(�(dao),�(dau)) is the
cosine similarity between descriptions’ BERT embeddings �(dao) and �(dau) [61].
|(Wao \Wau | and |(Eao \Eau | correspond respectively to the cardinalities of the bag-
of-words’ intersection and the Wikipedia links intersection.

Using these features vectors, Multilayer Perceptron (MLP) and Random Forest
(RF) classifiers were trained for each pair of attributes <ao, au>. Records are labeled
as 1 if two attributes have the same meaning (i.e., they represent the same knowledge)
as 0 otherwise.

Default hyper-parameters were used for MLP, while they were optimized with
grid search for RF (see Table 2.24).

2.4.5 Classifier evaluation

A 70%-30% hold-out validation with oversampling of class 1 (i.e., the minority class)
was carried out to evaluate classifier performance in predicting attribute alignment.

The evaluation was conducted on the following (manually aligned) datasets: OID,
EPM, HARVARDX, OULAD, COURSERA, PORT and XAPI.

Table 2.25 shows the classifiers performance in terms of classifier (i) Accuracy,
(ii) Precision, (iii) Recall and (iv) F1-Score of class 1.

14https://github.com/seatgeek/fuzzywuzzy

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://github.com/seatgeek/fuzzywuzzy
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Table 2.25 Classification evaluation scores to assess the UNIFORM ability to automatic align
new attributes

OID EPM HARV OULAD COURSERA PORT XAPI

MLP RF MLP RF MLP RF MLP RF MLP RF MLP RF MLP RF

Accuracy 0.90 0.61 0.76 0.91 1.00 0.60 0.96 0.42 0.97 0.73 0.86 0.94 0.87 0.53

F1-Score(1) 0.07 0.74 0.35 0.94 0.08 0.72 0.03 0.58 0.06 0.81 0.35 0.97 0.12 0.70

Precision(1) 0.04 0.94 0.18 0.96 0.04 0.90 0.02 0.92 0.03 0.91 0.22 1.00 0.06 1.00

Recall(1) 0.90 0.61 0.76 0.91 1.0 0.60 0.96 0.42 0.97 0.72 0.86 0.94 0.87 0.53

The Multilayer Perceptron model is slightly more accurate than Random Forest,
but the precision is fairly low. Hence, the performance of Random Forest is globally
superior in terms of F1-Score.

2.4.6 Automatic alignment of new open datasets

To evaluate the ability of the classifiers to automatically align new datasets, the
classifier was trained on the seven aligned datasets and tested on the four datasets
excluded from the previous evaluation (i.e., MIXT, EDSA, ISTM, UOJ).

The classifier results are summarized in Table 2.26. Instead, Figure 2.12 shows
the accuracy values achieved by the Random Forest classifier on each test dataset by
varying the number of aligned datasets in the training set. As expected, the accuracy
increases while enriching the classification model with newly labeled data. An 80%
accuracy was reached by using all the seven aligned datasets in the training set.

Table 2.26 Classification evaluation scores to assess the UNIFORM ability to automatic align
new datasets

EDSA ISTM MITX UOJ
MLP RF MLP RF MLP RF MLP RF

Accuracy 0.58 0.54 0.68 0.66 0.84 0.81 0.30 0.31

F1-Score(1) 0.02 0.60 0.02 0.72 0.16 0.85 0.03 0.42
Precision(1) 0.01 0.69 0.01 0.8 0.09 0.91 0.02 0.65

Recall(1) 0.57 0.53 0.68 0.65 0.82 0.80 0.29 0.31

2.4.7 Remarks and future improvements

The section proposes UNIFORM, a new data model integrating various open learning
datasets that relies on ML models. Automated integration capabilities are promising
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Fig. 2.12 Variation in Random Forest accuracy as the number of datasets used for training
UNIFORM increases

since Random Forest Classifier reached an F1-Score on the minority class equal to
or above 70% on 6 out of 7 datasets.

The current project leaves room for further extensions, e.g. the integration of
multimodal data in the schema (e.g., video-lectures, slides). This opens new research
challenges regarding the way to process and automatically integrate data sources in
di↵erent formats and acquired from di↵erent media.

2.5 Discussion and guidance for future research

This chapter focused on student outcome prediction. While the prediction perfor-
mance is promising in most studies, the meaning of “prediction” requires clarification.
Most studies derived the supervised prediction models employing the outcomes of a
one-course o↵ering and tested them on the same o↵ering; hence they derive state-
ments related to the future using future information. This implies that the models
may have real use in a later course o↵ering or in similar courses. The two case
studies presented demonstrate the ability of AI algorithms to recognize di↵erent
classes of students. Training explainable models at di↵erent time instants allow for
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identifying at-risk students and early intervention to alert them. In addition, this
chapter presented UNIFORM, an integrated relational database schema that enables
the automatic alignment of educational datasets attributes.

The literature still lacks analysis of the prediction models’ portability and stan-
dards. Note that sharing models and source code does not imply that the data should
also be espoused, overcoming potential privacy issues. A detailed description of
data semantics is enough to figure out what type of information the models were
generated from.

With this in mind some advice for future research reproducibility is summarized
below:

• Releases data, source code, and trained models used for your experiments.

• Data must be released accompanied by the following metadata (i) a detailed
description of their semantics (ii) the type of each variable (e.g., continuous,
discrete, categorical) (iii) the maximum and minimum values of each feature
and (iv) any pre-processing information (e.g., discretization, normalization..).

• If the data cannot be provided in full release them at least partially with all
metadata even of the missing variables.

• If no data can be published release the metadata.

• Release source code via Version Control Systems (e.g. Github).

• If the code consists of many files use a simple organizational structure; alter-
natively, think about using Python or R notebooks.

• If you don’t have time to tidy up it, better to release the dirty code than nothing
at all.

• Trained models must be downloadable via a storage repository.

• Trained models must be accompanied by specifications on how to reuse them
(e.g., language, libraries).



Chapter 3

Video-lecture Indexing

Video lessons are increasingly adopted in learning, either as a recording of classroom
lectures or as additional support (e.g. in blended learning), or as the main learning
resource (e.g. in massive open courses). In order to become an e↵ective learning
resource, video lectures must respect some guidelines and requirements including
video indexing, i.e. the process of providing users a way to access and navigate
video content easily[190]; it enables quick access to the content of interest in a long
video lecture or in a whole course.

In most cases video indexing is a preliminary step for search functions, i.e.
retrieving a portion of interest from a video through a textual query. Students are
interested in watching small video portions to review specific topics, especially in
preparation for the final exam.

This chapter focuses on the value of indexing video lectures (Section 3.1), on the
need to make it automatic (Section 3.2), and on procedures for achieving it (Section
3.3), presenting a new one called VISA (Section 3.4).
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3.1 The learning value of video-lectures indexing

Both older and newer studies collected positive student feedback on video-indexing
systems and demonstrated that their use causes a positive impact on grades.

In [248] LBA (Learning By Asking) system was presented: it provides users
with a hierarchical content index for the video lecture being examined, allowing
them to directly jump to any particular video clip/slide/note by clicking a sub-topic.
Students were divided into two groups; the former operated a system with indexing
capabilities available, the latter without. Both course satisfaction and final test scores
were higher for students who have been provided with indexing features.

Similar discoveries have been presented in later studies: [212] emphasizes stu-
dents’ satisfaction with indexing, [23] evidences the search engine value and finally
[213] highlights the benefits in student learning outcomes pointing out that students
agree that video indexing was helpful for reviewing and getting the grade they hoped
for.

Table 3.1 summarizes the key statistics and major findings of these studies, that
demonstrated the usefulness of video-indexing systems for educational purposes.

3.2 The need to automate Video-lecture Indexing

Manual indexing of content is often a cumbersome process. Providing automated
support for administrative tasks is a growing need in universities [153], considering
the high number of work roles that are generally carried out by a few people,
leading to an excessive workload of distance educators [29]. Time saved through the
automation of tasks could free up them time to invest in other aspects of teaching.

Since video-lecture indexing in education requires high accuracy to discern two
video portions related to two di↵erent facets of the same macro topic, the contribution
of the following focuses more on the analysis of video-lectures methodologies and
on the proposal of a new approach based on semantic annotations.
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3.3 Video-lecture automatic indexing methodologies

Approaches to indexing video-lectures content can be manual [23, 73, 212], assisted
[78, 134, 207], or automatic [10, 16, 20, 25, 72, 79, 99, 110, 135, 136, 156, 177,
195, 211, 213]. This dissertation focuses mostly on the latter. Some of them also
integrate search functions [16, 195, 211].

The majority of automatic indexing procedures consist of a preliminary step of
extraction of a textual document from the video and in a core engine to detect the
indices from the text.

Text recognition can be accomplished through the audio channel, using Speech-to-
Text technologies [72, 135, 136, 177, 195] or manually generated transcripts/captions
[20, 25], or through the video channel, using Optical Character Recognition (OCR)
[16, 110] to extract content from slides [211, 213] or blackboard [99] frames. The
most used technology for Speech-to-Text is YouTube Data API I while Tesseract II,
JOCR III and MODI IV for OCR.

The semantic units forming the index can be di↵erent in nature. Most studies
use keywords, i.e. the most significant words or n-grams, as semantic units [16, 110,
195, 211].

A common approach selects the most frequently repeated words in the text as
keywords [195].

In [211] instead the set of keywords is formed of the words extracted from
transition points; successive frames constitute a transition point if the fraction of
pixels that are di↵erent based on the RGB criteria exceeds a minimum threshold.
In [16] the authors adopt Jaccard similarity coe�cient to eliminate the duplicate
text frames, and then stop word removal and stemming algorithms are applied to
get meaningful keywords from the scene. They were finally indexed via single-pass
in-memory indexing (SPIMI).

A more complex approach simultaneously keeps into account di↵erent variables
such as Term Frequency (TF), Inverse Document Frequency (IDF), font size, time
on screen, domain importance and rare word analysis [110].

Other works [25, 79] index the content by topic. [25] uses topic modeling to
integrate videos and blogs in a common semantic space of topics.
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A more elaborate perspective is presented in [79]; the authors don’t index content
by topics of the considered video lecture as usual but link o↵-topics concepts to
relevant video lecture segments to furnish a basic understanding of the concerned
concepts; in this way students can catch up on the basic knowledge essential to
understand the lecture contiient and on additional material to stimulate curiosity. The
methodology consists of a (i) previous step to determine a coherence score of a given
segment by cosine similarity followed by (ii) the use of TAGME V service to link the
important phrases to the associated Wikipedia articles and finally (iii) the generation
of concept similarity network to identify o↵-topic concepts. The conceptual similarity
has been defined using two Wikipedia-based semantic relatedness measures: Dice
coe�cent and Normalized Google distance.

Video-lecture indexing can also be carried out via keyphrases [10, 20].

In [20] the authors define a features set considering dispersion, local span, C-
value, cue words and Term Frequency–Inverse Document Frequency (TF-IDF) and
use them as input for a Naive Bayes classifier to extract relevant key phrases.

[10] presents SemKeyphrase, an unsupervised cluster-based approach for keyphrase
extraction from MOOC video lectures, and a ranking algorithm called PhraseRank
that (i) calculates the importance score of each candidate with regard to its subsum-
ing subtopic, (ii) computes the significance score of each cluster with regard to the
MOOC video lecture and (iii) determines the “semi-final” list of top candidates from
the ranked clusters of candidate keyphrases.

Some studies combine the previous approaches; [177] forms both topic-based
and keyphrases based indexes by using an IT-specific thesaurus as support, while
[156] presenting a complete set of model metadata for video-based learning objects:
some metadata are manually provided (Title, Authors, Language, Intended User
Role, Context, Learner’s Age Range), others are automatically inferred (Subject,
Topics, Key-terms, Semantic density, Interactivity type, Interactivity level, Learning
style, Learner suitability, Di�culty, Typical learning time, Learning resource type)
through appropriate domain ontologies.

Another promising direction is to use tag clouds as an index. For instance, in
[72] the authors proposed VLB (Video Lecture Browsing), a video lectures indexing
system based on timed tag-clouds.
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Finally [135, 136] use named entities to index lectures 1.

The main advantage of using named entities rather than keywords is that they
allow identifying di↵erent terms that refer to the same concept.

In [135] di↵erent annotators are compared: AutoMeta VI [144], CSO-Classifier
VII [183], NCBO Annotator VIII [102] and OntoText IX. The authors conduct the anal-
ysis on three Computer Science courses: Computer Network, Computer Architecture,
and Data Structure. In addition, the study considers di↵erent knowledge bases for
both general purposes (DBpedia X) and domain-specific (Computer Network Ontol-
ogy XI and Computer Science Ontology XII [182]) . A similar method was adopted
in [136] with the only use of AutoMeta in Portuguese language but considering both
DBpedia and Computer Science Ontology. In both studies an ontology related to the
specific domain achieved more precise results; however, further analysis on more
courses is required to confirm these findings. The authors [136] state that “there is
still a lack of research in specialized ontologies in the field of computer science that
adequately organize the concepts in this area”.

Given this research direction, the next section describes a new video-lecture
indexing method that relies on semantic annotations via named entities.

•

manual automatic assisted

[212], [23], [73] [134], [78], [207]

keywords topic keyphrases tag clouds named entities

[195], [211], [156], [16], [110] [177], [25], [156], [79] [177], [20], [10] [72] [135], [136],VISA

Fig. 3.1 Methodologies classification for Video-lecture Indexing

3.4 VISA: A supervised approach to indexing video
lectures with semantic annotations

The approach described in this section has been previously published in [39] and
implemented in our university for video lecture indexing.

1See Appendix A to clearify the meanings of named entity (NE), named entity recognition (NER)
and named entity linking (NEL).
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The proposed system, called VISA (Video Lecture Indexing based on Supervised
Approach), enriches segments of video lectures with semantic annotations extracted
from a knowledge base. The key characteristics of VISA can be summarized as
follows:

• It processes video recordings of the face-to-face lectures in a semi-automatic
way to generate video segments through recognition of slide changes.

• It analyzes both the text recognized in the video and the speech transcriptions
in segments.

• It relies on multilingual knowledge bases thus enabling the indexing of video
lectures in di↵erent languages.

• The supervised approach to extracting named entities combines (i) the syntactic
properties of the text, (ii) the similarity between the content extracted from
the text and the descriptors of the entities in the knowledge base, and (iii) the
pertinence of the concepts to the main subject of the video lecture (to avoid
selecting out-of-the-scope entities).

• To produce contextualized semantic annotations, the disambiguation process
relies on a supervised approach that considers not only textual similarity but
also the pertinence of the semantic concept with the main subject covered in
the video lecture.

• It combines multiple semantic models to disambiguate text meaning and to
perform Named Entity Recognition (NER) and Linking (NEL) tasks.

The method has been tested for the indexing of a database course in Italian. The
language peculiarity is not negligible, since the majority of NER and NEL research
is based on the English language, hence some findings are language-dependent and
do not necessarily lead to better results when applied to other languages [165].

The performance of the proposed system was validated on a ground truth against
the techniques available in the general entity annotation system GERBIL [216].
None of the studies from the previous session on video-lectures indexing compared
their algorithms with state of art NEL extractors and GERBIL benchmarks.

The preliminary VISA results demonstrate the e↵ectiveness and applicability of
the proposed approach.
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In addition to the contribution [39], a search engine was also tested, evaluating
the retrieval of video lesson segments by MAP score.

The remainder of this section is divided as follows: subsection 3.4.1 details the
methodology used, subsection 3.4.2 summarizes the preliminary experimental results
and subsection 3.4.3 reports the results obtained. Finally subsection 3.5 analyzes
possible future improvements.

3.4.1 Methodology

VISA is composed of di↵erent steps: segmentation, text extraction from the video
channel, text extraction from the audio channel, text tokenization, candidate entity
matching, Named Entity Recognition and Linking, and video annotation. The entire
pipeline of the proposed approach is outlined in 3.2 and each step is detailed in the
following.

Fig. 3.2 The VISA architecture

.

2.3.1.1 Segmentation

Slides transitions were considered to derive video segments through the following
process:

• One frame per second was extracted from the video.

• Extracted frames were reprocessed; for each of them, only the part of the
image corresponding to the paper used by the professor to write, or to the
projected slide, has been extracted.

• The RGB color di↵erence between consecutive frames was calculated; when a
threshold value was exceeded, the slides were considered di↵erent.
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2.3.1.2 Text extraction

The OCR-based Tesseract II library was adopted to extract text from the video
channel.

The Google service Youtube Data API 5.2 was used to generate the speech
transcription from the audio channel.

2.3.1.3 Text manipulation and tokenization

The extracted text is tokenized using the Natural Language ToolKit (NLTK) XIII in
order to split the text into units, called tokens. In our context, a token is a single
word occurring in the text. To filter out the words with little semantic meaning,
words in the NLTK stopword list are removed prior to tokenization. Furthermore,
punctuation was removed before processing the text. Since concepts can be described
by a sequence of tokens (e.g., “New York City”), n-grams were derived from the
text. N-grams are contiguous sequences of n tokens occurring in the text [32]. The
n-grams with n between 1 and 5 were extracted.

2.3.1.4 Candidate entity matching

The proposed approach relies on the use of Wikidata (WD) knowledge base to infer
semantic annotations 2.

Since VISA was tested for a database course, Computer Science Ontology (CSO)
would have apparently been a viable alternative. However, it contains only high-level
entities and more course-specific concepts are not included. In addition, the aim of
this work is to propose a framework that can be tested in multiple domains and is not
limited to computer science subjects.

2see Appendix A for an overview of Wikidata
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All Wikidata triples containing the following predicates were extracted: instance
of 3, subclass of 4, part of 5. The description 6 and associated labels 7 were then
extracted for each entity. The corresponding DBpedia and Wikipedia ones were
retrieved via sameAs 8 property and Wikimedia API, respectively.

The entire Wikidata dump has been indexed by label using Elastic Search (ES)
XIV.

The candidate entity matching step identifies the candidate entities describing the
n-grams in the text. N-grams can match an arbitrary number of entities (eventually
zero if n-gram underlying information is irrelevant). To early discard misleading
entity matches, candidate entities should satisfy a minimal quality constraint. Specifi-
cally, the similarity between the entity label and the n-gram should exceed a minimum
similarity threshold. The adopted similarity � is based on Levenshtein distance, i.e.
the minimum number of single-character edits (insertions, deletions, or substitutions)
required to change one string into the other. The formula for determining � is defined
below:

� = 0.8• ratio(a,b)+0.2• token_sort_ratio(a,b)

ratio is calculated by dividing the Levenshtein distance by the maximum of the
length between string a and string b, token_sort_ratio is a variation of ratio where
the strings are first tokenized, converted to lower case, stripped of punctuation, sorted
alphabetically and joined together.

Similarity has been implemented by defining a custom metric for ES.

2.3.1.5 Named Entity Recognition and Disambiguation

In this study, the DBpedia ontology types XV were employed as reference types for
Named Entity Recognition.

3http://www.wikidata.org/prop/direct/P31
4http://www.wikidata.org/prop/direct/P279
5http://www.wikidata.org/prop/direct/P361
6https://schema.org/description
7The main label http://www.w3.org/2000/01/rdf-schema#label and the alternative ones https:

//www.w3.org/2009/08/skos-reference/skos.html#altLabel are join to form the label sets related to an
entity

8http://www.w3.org/2002/07/owl#sameAs

http://www.wikidata.org/prop/direct/P31
http://www.wikidata.org/prop/direct/P279
http://www.wikidata.org/prop/direct/P361
https://schema.org/description
http://www.w3.org/2000/01/rdf-schema#label
https://www.w3.org/2009/08/skos-reference/skos.html#altLabel
https://www.w3.org/2009/08/skos-reference/skos.html#altLabel
http://www.w3.org/2002/07/owl#sameAs
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This ontology is generated from the manually created specifications in the DB-
pedia Mappings Wiki. Each release of this ontology corresponds to a new release
of the DBpedia data set which contains instance data extracted from the di↵erent
language versions of Wikipedia. For information regarding changes in this ontology,
please refer to the DBpedia Mappings Wiki.

For each n-gram that is associated with multiple candidate entities, the disam-
biguation step aims at selecting the best candidate entity in the knowledge base. A
decision tree model was adopted to perform this task. The model is trained on a
training dataset collecting all the pairs (candidate entity, token) for which a correct
matching is known. The class label attribute of the dataset indicates whether the
entity assignment for the token is correct or not. To take its decision, the classifi-
cation model analyzes the values of a set of additional features describing (i) the
entity characteristics, (ii) the context of use of the token in the text, (iii) the similarity
between token and label of the candidate entity. More specifically, the additional
features used to characterize entities and tokens are summarized in Table 3.2.

Data features are classified into the following categories:

1. Similarity: textual similarity between n-grams and candidate entity label;

2. Pertinence: pertinence of the candidate entity to the main subject of the video
lecture;

3. Overlap degree: overlap between the candidate entities of the tokens in the
same n-gram or in close n-grams;

4. POS property: property of the token as a Part-Of-Speech [31].

Features of category Similarity are used to measure the similarity between the
textual content of the tokens in the n-grams and the textual content of the entity
labels. The more similar the token with textual information related to the entity,
the more appropriate the matching with the entity. For each language used in the
video lecture and supported by the knowledge base, a distinct copy of each Similarity
feature is available.

Features of category Pertinence indicate the extent to which the candidate entity
is semantically related to the context of the video lecture. To this aim, a reference
entity describing the main subject of the lecture was selected in a semi-automatic
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Table 3.2 Features characterizing the token-candidate entity relationship in VISA system

FEATURE ID FEATURE NAME DESCRIPTION
Category 1: Similarity between n-gram and candidate entity label
1 Label similarity Similarity score between the entity label

and the n-gram
2 Alternative label

similarity
Similarity score between the alternative
label most similar to the n-gram and the
n-gram

3 Matching label
similarity

Similarity score between the matching
label and the n-gram. The matching
label is the most similar to the n-gram
and it could be the entity label or one of
the alternative

Category 2: Pertinence of the candidate entity with the subject
4 Wikidata graph

similarity
1/dist(wkdt) where dist(wkdt) is
the distance between the reference and
candidate entities in the Wikidata entity
graph

5 Wikipedia graph
distance

1/dist(wkp)where dist(wkp) is the
distance between the reference and can-
didate entities in the Wikipedia content
graph

Category 3: Overlap between candidate entities
6 Under number of candidate entities whose

matching n-gram is nested into the n-
gram under analysis

7 Over number of candidate entities whose
matching n-gram include the n-gram un-
der analysis

8 Concurrency total number of concurrent candidate
entities

Category 4: Token-specific properties
9 Token position relative position of the token in the n-

gram
10 POS1 NLTK POS tagger of the considered to-

ken
11 POS2 Polyglot POS tagger of the considered

token
12 POS1 after NLTK POS tagger of the following to-

ken
13 POS2 after Polyglot POS tagger of the following

token
14 POS1 before POS tagger of the previous token com-

puted with NLTK
15 POS2 before Polyglot POS tagger of the previous to-

ken
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way. Specifically, the teacher submits a keyword-based query (e.g., “Introduction to
databases”) through Wikidata or Wikipedia and automatically retrieves a list of the
most pertinent entities, among which she/he can choose the reference one.

Given a reference Wikidata entity, a graph is built linking the reference entity
to the other Wikidata entities through their part of, instance of, and subclass of
properties. Similarly, using the Wikipedia encyclopedia a graph considering the links
to other pages mentioned in the text was built. For instance if the page of “Structured
Query Language” 9 contains a link to the page related to the JOIN statement 10 an
arc in the graph has been added. The Wikipedia pages were aligned with Wikidata
entities by means of the Wikimedia API XVI. For both graphs, the recovered entities
at a distance greater than a specific threshold from the reference entity have been cut
out because they would have been so many that the graph would not fit in RAM.

The Wikimedia REST API o↵ers access to Wikimedia’s content and metadata in
machine-readable formats. Focused on high-volume use cases, it tightly integrates
with Wikimedia’s globally distributed caching infrastructure. As a result, API users
benefit from reduced latencies and support for high request volumes.

The pertinence relationship between a candidate entity and a reference entity is
modeled as a distance between the corresponding nodes in the graphs (expressed
in terms of the number of ops to move from one entity to the other). The higher
the distance value, the less similar are the candidate and reference entities. As
an example, a teacher of a database course may select the Wikidata entity labeled
as “Database” 11 as a reference entity. Candidate entity with labels “SQL” and
“Structured Query Language” 12 has a distance equal to 2 in the Wikidata graph,
while the entity labeled as “Programming language” 13 has a distance equal to 4
(similarity 0.6) from the reference entity. Hence, the former candidate entity is
deemed as more pertinent than the latter one to the main subject of the course.

Features of category Overlap degree consider the textual overlap between multi-
ple n-grams (e.g., “New York” and “New York City” ). Since nested n-grams may
be associated with di↵erent (potentially overlapped) sets of candidate entities, the
degree of overlap between nested entities was taken into account. For example,

9https://it.wikipedia.org/wiki/Structured_Query_Language
10https://it.wikipedia.org/wiki/Join_(SQL)
11https://www.wikidata.org/wiki/Q8513
12https://www.wikidata.org/wiki/Q47607
13https://www.wikidata.org/wiki/Q9143

https://it.wikipedia.org/wiki/Structured_Query_Language
https://it.wikipedia.org/wiki/Join_(SQL)
https://www.wikidata.org/wiki/Q8513
https://www.wikidata.org/wiki/Q47607
https://www.wikidata.org/wiki/Q9143
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Table 3.3 reports the feature values related to the phrase The Freddy Mercury Tribute
Concert.

Table 3.3 Example of overlapped n-grams

N-GRAM
WIKIDATA

ENTITY
OVER UNDER CONCURRENCY

The Freddy Mercury Tribute Concert 0 0 4 4
Freddy Mercury 2 2 1 1

Mercury 3 3 0 4
Tribute 1 1 0 4

Features of category POS property indicate the information about part of speech
corresponding to the token (e.g., noun, verb, adjective) and the relative position of
the token in the n-gram. POS information is commonly used in Natural Language
Processing to identify the parts of the text that are most likely to be correlated with
semantically relevant concepts [31]. The output of the classification algorithm is
a set of (candidate entity, token) labeled as Correct or Incorrect. For each n-gram,
the candidate entities associated with the maximal number of correct tokens were
selected as the most pertinent. For example, let us consider the n-gram “Query
language”.

Let us suppose that its corresponding tokens, i.e., “Query” and “Language”, have
two candidate entities each, i.e., the entities labeled as “SQL” and as “Programming
language”, respectively. The classifier assigns label Correct to the following pairs:
(token “Query”, entity labeled as “SQL”), (token “language”, entity labeled as
“Programming language”), (token “language”, entity labeled as “SQL”) while it
assigns label Incorrect to the pair (token “Query”, entity labeled as “Programming
language”). Hence, the entity labeled as “SQL” gets three Correct labels, while the
entity labeled as “Programming language” just one. Therefore, entity labeled as
“SQL” is used to annotate the n-gram “Query language”.

2.3.1.6 Video annotation

Each segment of the video recordings is annotated with the semantic information
extracted from the knowledge base. Specifically, the annotated text was aligned to
the video. In this way, the student can browse the semantic annotation of the video
lectures to choose which segments of the video are worth considering in her/his study
or revision. For example, if she/he is interested in the part of the lecture covering the
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SQL topic, she/he can navigate the semantic annotation and watch only the segment
annotated with the corresponding entity. In addition, they can query for a specific
concept and can retrieve segments in which the corresponding entity is mentioned
from the entire corpus of video lectures.

Note that the same entity may be present at several points, as the same concept
may be taken up multiple times throughout the video lectures. When it is mentioned
so many times in close proximity the student can infer that that part of the video
lecture is narrowly focused on that content. Conversely, when a single occurrence
of an entity is mentioned, it does not correspond to the main content of that portion
of the video; however, students could be interested in understanding how the entity
relates to other topics.

2.3.1.7 Search function

The system allows for a text query to enable students to retrieve video snippets
of interest. The NEL algorithm previously described is employed to extract the
entities from the query text; they are ordered on the basis of the value assumed by the
Matching Label Similarity feature defined in Table 3.2. For each entity, the system
returns the list of all the video fragments in which they appear.

3.4.2 Experimental settings

2.3.2.1 Competitors

The competitor frameworks considered in this study are AGDIST [215], AIDA [94],
Babelfy [146], DBpedia Spotlight [55], FOX [197], PBOH [75]. These state-of-the-
art NEL extractors provide multilingual support (including Italian) and had never
been considered in previous studies that indexed video lessons with named entities,
e.g. [135, 136].

2.3.2.2 Dataset

A preliminary evaluation of the e↵ectiveness of the video indexing was carried out
on a set of the 43 video lectures of a Database course. Each video has a duration of
70 minutes approximately. To generate the ground truth, 10 video segments were
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randomly picked, the corresponding text (consisting of approximately 30 tokens
each) was automatically extracted via Youtube API, and domain experts were asked
to annotate it with Wikidata entities.

Overall, videos in the training data were enriched with 353 di↵erent entities
(2,148 annotations overall, 50 annotations per lesson on average). The entities
considered for ground truth, identified by the name DMBS-LARGE, include all
concepts that find a match in Wikidata, not just those related to course content. From
these only those related to database context were extracted, i.e. 84 di↵erent entities
(880 annotations overall, 20 annotations per lesson on average), forming a second
ground truth named DMBS-FOCUS.

For both ground truths, of the 10 segments per lecture, 7 segments were picked
for train and 3 for test (overall 300 training segments and 130 test segments) by
performing 10-fold cross-validation.

The following SQL statements and subtopics were considered to evaluate the
search engine: “basi di dati” 14, “SELECT”, “WHERE”, “LIKE”, “ORDER BY”,
“LIMIT”, “COUNT”, “JOIN”, “INNER JOIN”, “SELF JOIN”, “NON EQUI JOIN”,
“GROUP BY”, “HAVING”, “HAVING COUNT”, “HAVING SUM”, “HAVING
MAX”, “HAVING MIN”, “DISTINCT”, “IN”, “NOT IN”, “EXIST”, “NOT EXIST”,
“query annidata” 15, “query correlata” 16. For each of the previous keywords, snippets
from the video lectures corpus were manually searched and used as ground truth for
the retrieval task.

2.3.2.1 Evaluation metrics

Fewer papers assess indexing only qualitatively, relying on the opinions of a few
experts [99, 195]. The most common evaluation approaches are divided between
survey-based [72, 79] and supervised metrics [10, 16, 20, 99, 110, 177, 211, 213].
In the former teachers ask students to evaluate the system generally through sur-
veys, analyzing their responses; in the latter, the automatically generated index was
compared to a ground truth manually generated.

14“basi di dati” is the Italian translation of “database”
15“query annidata” is the Italian translation of “nested query”
16“query correlata” is the Italian translation of “correlated query”
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Table 3.4 VISA Named Entity Linking performance on DMBS-LARGE dataset

Strategy Precision Recall F1-Score
VISA 0.32 0.20 0.25

AGDIST 0.04 0.04 0.04
AIDA 0.034 0.11 0.02

Babelfy 0.08 0.20 0.05
DBpedia
Spotlight

0.06 0.10 0.04

FOX 0 0 0
PBOH 0.17 0.17 0.17

The supervised metrics most frequently adopted are Precision, Recall and F1-
Score [10, 16, 20, 99, 110, 177]. In this study, they were computed using GERBIL
[216], an evaluation framework for semantic entity annotation. GERBIL also inte-
grates public instances of previously discussed competitors. The knowledge base
used for the evaluation has been DBpedia, hence the extracted entities links to
DBpedia.

To retrieve DBpedia entities from the Wikidata ones extracted by VISA, the
alignment between Wikidata and DBpedia previously discussed was used.

The search engine was evaluated using Mean Average Precision (MAP) (see
Appendix A to further clarification).

3.4.3 Results

2.3.3.1 Video indexing

The performance of VISA was compared to the other approaches integrated in
GERBIL; the final result is shown in Table 3.4 for DMBS-LARGE. VISA achieves
significantly better performance than all competitors.

To gain insights into the process of disambiguation, the characteristics of the
generated decision tree were explored. Figure 3.3 displays an example of decision
tree trained from the video lectures used for the preliminary evaluation. The Gini
impurity index indicates the quality of a feature domain split. A perfect separation
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results in a Gini score equal to zero, while an equal distribution of the target value is
achieved when the Gini index is equal to 1. In the training model, all the generated
partitions have Gini index below or equal to 0.5.

The model explanation (see Figure 3.3) shows that the most discriminative data
feature (i.e., the feature considered first in the top-down visit of the tree) is Wikidata
Graph Similarity, i.e. a measure of the pertinence of the candidate entity to the
main subject (Database), obtained through the Wikipedia graph. Hence, considering
just textual similarity measures would be inappropriate for accurately selecting the
assigned entities.

The results obtained considering only the entities related to “database” (i.e.
DMBS-FOCUS dataset) are shown in Table 3.5. The system performances are lower
than for DMBS-LARGE, revealing a poor ability to disambiguate the entities in the
course domain, but still higher than the other extractors that reach in most cases
null values. The strategy named VISA-FILTERED is a modification of the basic
version that requires more manual e↵ort: the educator should link each course topic
to an appropriate Wikipedia page and only the corresponding entities are retained
for annotating the text, while the others are discarded. With this modification, the
precision increases sharply and consequently F1. This demonstrates that the precision
of the system reached specifying only the main course entity was low because many
entities not related to the Database course were recognized and not because the
domain entities were recognized in incorrect moments of the lecture. Therefore the
instructor has to consider the trade-o↵ between choosing a single Wikipedia page
and getting an annotation with out domain entities or manually specifying multiple
pages and getting a context focused indexing.

This di↵erence is not significant if the indexing phase is only developed to
support search function because the student filters through the query the entities to
search for.

2.3.3.2 Search function

As with video-lecture indexing, the performance of VISA was compared against
GERBIL competitors, updating the semantic annotations used for retrieval depending
on the algorithm. The complete list of results is shown in Table 3.6; VISA outperforms
the other approaches.
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Table 3.5 VISA Named Entity Linking performance on DMBS-FOCUS dataset

Strategy Precision Recall F1-Score
VISA 0.08 0.78 0.14

VISA-FILTERED 0.97 0.78 0.86
AGDIST 0.01 0.01 0.01

AIDA 0 0 0
Babelfy 0 0 0

DBpedia
Spotlight

0 0 0

FOX 0 0 0
PBOH 0.02 0.02 0.02

Table 3.6 VISA Recommendation performance in a Database course

Strategy MAP
VISA 0.8112

AGDIST 0.0037
AIDA 0.0034

Babelfy 0.0021
DBpedia
Spotlight

0.0061

FOX 0.0001
PBOH 0.1293

In particular, the system returns the following data:

• An information box with the description of all the entities recognized in the
query; the description is derived from Wikidata and it illustrates the potential
for using knowledge bases to provide at a glance a clear idea of the content of
interest.

• The recovery of all the inherent video fragments extracted from the video
lessons corpus.

• The ability to click on a fragment and start the video clip showing below it the
highlighted words linked to named entities .
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(a) Desktop version

(b) Mobile version

Fig. 3.4 Example of a query through VISA’s search engine for the n-gram “basi dati”
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3.5 Discussion and guidance for future research

This chapter highlights the main advantages of indexing video lectures, namely:

• Increased student engagement in the use of an e-learning environment, allow-
ing more comfortable browsing of video material.

• Facilitating study by allowing faster retrieval of the content of interest, a feature
that is particularly useful for review before the exam in order to improve
performance.

A large collection of video lecture indexing approaches from the literature were ex-
amined with particular focus on the techniques and the type of semantic annotations:
keywords, topic, keyphrases, tag clouds, and named entities. Named entities have
the inherent advantage of allowing additional information to be retrieved from the
knowledge base to enrich the user interface, allowing the learner further clarification
of the concept of interest.

With this in mind a new supervised semi-automatic multilingual algorithm, called
VISA, was presented that indexes video lectures by named entities and provides a
search function. VISA was compared with state-of-the-art NEL algorithms, achieving
better results on a dataset related to a database course in Italian. This is mainly due
to the ability of the methodology to consider the domain of interest of the course
with minimal teacher e↵ort. The presented work still requires future work to address
some major issues:

• VISA needs to be validated with other courses and in multiple languages.

• VISA needs to be applied in a real-world scenario to assess through a survey the
students’ satisfaction with using it and to estimate its benefits on the students’
exam outcome.

Semantic annotations are a prominent direction for research; for example, other
instructional materials may be employed to provide students with automatic align-
ment of di↵erent educational sources. In this regard, the following chapter will focus
on a new methodology to address the cross-media linking of educational material
that still relies on named entity annotations.



Chapter 4

Cross-media Retrieval for multimodal
learning

Technical advances allowed the availability of a large quantity of material of di↵erent
nature, such as text, images, maps, audio (speech and music) and video. The
Computer Science discipline that deals with the process of searching and retrieving
multimedia documents is called Multimedia Information Retrieval [67]. The sub-
branch of information retrieval designated for scenarios where queries and retrieval
results are of di↵erent media types is called cross-media retrieval [159]. This chapter
discusses the adoption of cross-media retrieval for learning to align educational
materials of di↵erent types based on semantics. Specifically, the content is organized
as follows: Section 4.1 outlines the benefits of using di↵erent types of educational
materials, Section 4.2 inspects automatic cross-media retrieval procedures from the
literature, Section 4.3 presents TVREM, a new method to perform video-to-text and
text-to-video retrieval designed for educational resources and Section 4.4 draws out
the major lessons learned and future directions.

4.1 The learning value of using educational materials
of di↵erent nature

The rapid growth of the web and multimedia data has impacted education, comple-
menting traditional resources (e.g. books, paper notes...) with materials of di↵erent
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nature such as slides, ebooks, educational videos, images, discussion forums, chats,
social network groups, podcasts, etc.. [33, 36, 54, 103]. The value of unconventional
resources is still debated in literature; for example, there are di↵erent views related
to Youtube videos:

• [203] discusses that although students are consuming more online content such
as YouTube videos, their skills and self-esteem in integrating these materials
are still far from the utopian vision of independent learning, and they often
need authoritative guidance such as that of professors.

• [111] revealed that the use of discovery learning 1 and YouTube videos as
educational technology tools in primary school science lessons helped students
enhance cognitive achievement.

• [98] focus on Youtube tutorials videos as a resource to improve problem-
solving skills for academic development.

• [139] details best practices for academic content-creators to succeed in en-
gaging students with Youtube videos, since such casual learners are curious,
intrigued by novel ideas, and actively seeking new knowledge, insights and
skills.

Therefore, even if there is no unified opinion on Youtube usage, similar to many
other digital resources, they certainly allow cross-checking across multiple sources
of learning content. However, educational resources from di↵erent contexts and/or
of di↵erent types are in most cases not linked and the learner must often search alone
for resources of interest, filtering out those that are more or less suitable.

Although searching is an excellent way to achieve critical and creative learning
[178], students with lower versus higher topic knowledge exhibited di↵erent patterns
of navigation within and across mediums [164]; di↵erent learning styles may appeal
to di↵erent modal preferences [30].

Information search, i.e. seeks relevant information from other information
resources, should not be confused with help-seeking, i.e. asking for help from

1Discovering learning is a technique in which students discover knowledge without guidance,
developing their own understanding. The role of instruction is merely to provide a suitable environ-
ment, which in software might be a microworld or simulation. Discovery learning involves hypothesis
formulation and testing [81, 191].
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someone more competent (e.g., the teacher). [167] examines the boundaries between
information search and help-seeking by proposing a framework that integrates them
and thus provides for the advice of a facilitator in the selection of content at either
the preliminary or final stages. Similarly in [120] authors conclude that students
need support in searching on the Web as well as in developing information literacy.

Other research indicates that it is increasingly a duty for teachers to dispense rich
educational material from a variety of sources. Students have been shown to learn
more deeply from a combination of words and pictures than from words alone [138].
The authors in [35] state: “teachers and lecturers have to deal with a much greater
range of information processing styles, cultural backgrounds and styles of learning.
As a result, the ideal for teaching in higher education is now recognized to involve
much more than lectures as the means of information provision”. [186] highlights
the value of providing instructional materials in various forms as a facilitator of
metacognition and surveyed most of the previous research.

[145, 186, 252] inspected the role of multimodal learning on students’ perfor-
mance. Findings have shown that the use of di↵erent instructional resources depends
on the student and the context, i.e. lower-achieving students benefit more than others.

[47, 186] looked at narrow temporal contexts, such as subjecting students to
the use of diverse material during a lecture and subsequently testing them; within
such temporal constraints, the risk is that cognitive overload may arise. Conversely,
providing diverse instructional material in broader temporal windows can motivate
students to question and understand educational content in greater detail, helping
them to focus more on the concepts rather than the presenting mode. Nowadays it
is challenging to keep track of all the di↵erent support materials used by students,
for example, the use of the web, or the exchange of information among peers (e.g.
via messaging apps like Telegram); hence it might be helpful to provide students
with an environment where multiple educational resources are presented and aligned
by educational concept or topic in order to track directly through the system the
operations performed by users in order to understand their most significant behaviors.
In conclusion, the use of multimodal educational resources is a clear advantage
for the student’s engagement and improving performance; therefore, the ability to
automatically link di↵erent educational resources semantically related may be both
an advantage for the student to discover new material to improve understanding and
for the teacher as a support tool.
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4.2 Cross-media Retrieval of educational resources

A detailed review of cross-media retrieval is presented in [160]. The authors ex-
amined more than 100 references distinguishing between common space learning
methods and cross-media similarity measurement methods; the former measure
the similarities among items in a common space, and the latter directly compute
the cross-media similarities by analyzing the known data relationships without an
explicit common space. Both common space learning and cross-media similarity
measurement methods are in turn divided into a wide variety of categories (Figure
4.1).

Of particular interest are graph approaches such as Graph Regularization Meth-
ods [27], a semi-supervised learning technique for labeling a partially labeled graph;
their goal is to predict the labels of unlabeled vertices. This category includes JRL
[246], JGRHML [247], S 2 UPG [158]; these approaches achieved the highest per-
formances in [160] for video-to-text and text-to-video retrieval tasks, which are of
greatest interest since the method proposed in Section 4.3 has been tested on datasets
that mix video and textual resources. Other methods for this task are listed on the
following Github page: https://github.com/danieljf24/awesome-video-text-retrieval.
They are all DNN-based methods.

The starting point is CLIP [171], an image-to-text retrieval approach that instead
of recognizing predetermined categories of objects in images, learns directly from
raw data about alignment with subtitles. CLIP became the foundation for a large
number of subsequent works for the video-to-text and text-to-video retrieval tasks:

• [68] presents CLIP2Video, a network that intends to transfer the learning ca-
pability of the image representation introduced by CLIP to conversely retrieve
video from text queries.

• CAMoE [50] improves CLIP by introducing Mixture-of-Experts (MoE) to
extract multi-perspective video representations (e.g. action, entity, scene) to
align them separately with the corresponding part of the text and Dual Softmax
Loss (DSL) to force that when a text-to-video or video-to-text pair reaches the
optimal match, the symmetric video-to-text or text-to-video is the highest.

https://github.com/danieljf24/awesome-video-text-retrieval
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• Whereas video-to-text retrieval frameworks use transformers for video and
encoders for text, CLIP2TV [76] aims at exploring where the critical elements
lie in the transformer.

Other interesting approaches that do not rely on CLIP include the following:

• [64] proposes a dual encoding for video retrieval by text, rather than the
single-lever encoder previously applied, secondly, they introduce hybrid space
learning which combines the high performance of the latent space and the
good interpretability of the concept space.

• [65] considers the domain gap problem between training data and testing data,
instead of just the semantic and modality gap, proposing a new model called
MAP that exhibits greater generalization capabilities.

• TACo [236] improves contrastive learning using a token-aware contrastive loss
which is computed by taking into account the syntactic classes of words, such
as nouns and verbs.

The approaches analyzed thus far, particularly DNN-based methods, are not
extensible across much of the educational domain for the following reasons:

• The datasets used (Table 4.1), although ranging in di↵erent domains, are
composed of short videos, whose useful content is usually present in the audio
channel, and texts in the size of the paragraph (e.g. descriptions, captions,
imperative English sentences); on the contrary, in educational video clips,
important information can be hidden both in the video (e.g. blackboard, slides
or animations) and in the audio (the professor’s speech) channels and they
can also last for a long time (e.g. a classroom lesson filmed and subsequently
uploaded on an E-learning platform); moreover, textual resources can also
be long: pages of notes, chapters of textbooks, Powerpoint presentations
containing a large number of slides.

• DNN-based methods require plenty of time and loads of hardware (e.g., GPUs);
the need for resources increases exponentially for very long videos.

Similarly, audio-to-text retrieval approaches, which could be useful for linking
the audio channel of educational videos with educational texts, are also tested with
datasets in which the audio clips are brief [109, 154].
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Table 4.1 Analysis on available datasets for Cross-media Retrieval

Dataset Retrieval type Video/audio clips duration Text content
MSVD [46]

Video-to-text

usually less than 10 seconds long captions
MSR-VTT [233] between 10 and 30 seconds descriptions

TRECVID 2016 [18]
source clips between 10 e 60 seconds,
target clips between 10 and 120 seconds

descriptions

VATEX [224] around 10 seconds descriptions
LSMDC [180] 2 seconds at most audio descriptions

ActivityNet [119]
the dataset contains
videos as long as 10 minutes

captions

DiDeMo [93] short clips, not specified descriptions
HowTo100M [141] 2000 seconds descriptions
YooCook,YouCook2
[249]

average length of 5.26 minutes sentences

Cross-task [251] not specified but small clips annotation
AudioCaps [105]

Audio to text
10 seconds audio captions

Clotho [66] between 15 and 30 seconds audio captions

In the educational field, some studies inspect the role of Linked Data technologies
to improve educational resources [62, 238]. [238] proposes Annomation, a system
to manually perform semantic annotations on educational videos, and SugarTube,
a platform to browse semantically linked educational video resources. The authors
highlight two major benefits of using semantic annotations for cross-media retrieval:
(i) collecting related learning resources (ii) the ability to share, reuse and semantically
connect the educational resource from di↵erent educational institutions.

In [62] the authors survey approaches for Linked Education, i.e. education that
exploits educational Web data. They focused in particular on integrating services able
to merge data from heterogeneous educational repositories; for example, MERLOT
2 allows searching simultaneously in 20 partner collections and digital libraries.
However, the interlinking task is di↵erent from cross-media retrieval since the
MERLOT interface enables running a text query to retrieve educational materials
from di↵erent sites and not fetch learning resources from others of a di↵erent type.
Interlinking is most useful for searching starting without a source resource to form
a set of di↵erent materials related to the same topic; on the other hand, whether
students have not understood a specific educational resource, cross-media retrieval
allows them to search from it for material about the same knowledge presented in a
di↵erent format.

2https://www.merlot.org

https://www.merlot.org


4.2 Cross-media Retrieval of educational resources 85

Traditional Statistical
Correlation Analysis

DNN-based

Cross-media Graph
Regularization

Common Space
Learning Learning to Rank

Dictionary Learning

Cross-media Hashing

Other Method

Cross-media
Similarity Graph based

Cross-media
Similarity

Measurement

Neighbor Analysis

Relevance Feedback
Analysis

Other approaches

Multimodal
Topic Model

Fig. 4.1 Methodologies classification for Cross-media Retrieval

Although there may be overlap between the two tasks, cross-media retrieval
should also not be confused with the augmentation of educational resources. [49]
propose augmenting paper-based reading activity with direct access to digital ma-
terials and sca↵olded questioning using Smartphone; however, in this case, the
additional material was prepared manually and was not retrieved automatically. The
unique example of cross-media retrieval similar to the approach presented in the
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next section is [184]; here the authors described HealthRecSys, a content-based
recommender system that links YouTube videos about health to reputable health
educational websites from MedlinePlus 3. The designed pipeline consists of the
following steps:

• Video metadata (title,description and subtitles) are used as possible terms.

• The natural processing system cTAKES™ XVII is applied to metadata to
extract SNOMED-CT health terms from text from SNOMED-CT XVIII clinical
healthcare ontology.

• Bio-ontology API XIX is employed to find synonymous MedlinePlus terms XX

from the SNOMED-CT terms.

The final output is a Youtube video under which several links to MedlinePlus
pages are suggested, allowing the user to reduce the burden when searching for
reliable additional content.

Given the use of semantic enrichment for cross-media retrieval in education next
section proposes an approach that relies on named entity linking using Wikidata
knowledge base.

4.3 TVREM: a new method for text-to-video and video-
to-text retrieval for educational material

[43] partially presents the content of this section; the major contribution of this
work is to propose a methodology that splits the cross-media retrieval task into two
subtasks:

1. extraction of named entities (NEs) from original educational resources to
represent each file as a set of NEs linked to a knowledge base;

2. calculating a similarity score between sets of entities belonging to di↵erent
media resources to determine whether they relate to the same content.

3https://medlineplus.gov

https://medlineplus.gov
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In [43] the method has been validated with a newly created dataset called Book-
ToYout consisting of ebooks sections related to Computer Science and Youtube
videos. The proposed approach performed better than state-of-the-art solutions. In
this section the following changes have been made:

• The method was named TVREM: text-to-video and video-to-text retrieval for
educational material.

• It has been tested with a larger number of configurations to assess the best way
to derive the similarity score.

• The set of features used to train machine learning models has been reduced
since unnecessary features were removed.

• A new dataset, called EDUCA, was created consisting of lecture notes and
educational videos both from MIT OpenCourseWare XXI;

• Results were compared for both datasets against more baselines and competi-
tors.

• The TVREM performance on BookToYout improved and for both datasets
BookToYout and EDUCA the algorithm outperformed competitors.

The remainder of this section is broken down as follows: subsection 4.3.1 details
the methodology used, subsection 4.3.2 summarizes the experimental settings and
subsection 4.3.3 reports the results obtained. Finally subsection 4.3.4 details how to
reproduce the experiments.

4.3.1 Methodology

The proposed approach receives as input PDF files containing text and video in MP4
format; it consists of the following steps, which are also summarized in Figure 4.2:

1. Text extraction: it focuses on the extraction of textual content from PDFs and
of audio from videos in MP4;

2. Named Entity Linking: two sets of entities are derived from the video transcript
and the PDF text;
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3. Entity sets expansion: it allows to amplify the original entity sets with parents
and separate instances from classes;

4. Feature engineering: it refers to the creation of a feature set consisting of
Cardinalities and similarity metrics computed between the two entities sets
derived from video and PDF;

5. Similarity computation and ranking: the final similarity between the two
resources is determined via machine learning algorithms.

Each of these steps is discussed in detail in the following section.

3.3.1.1 Text extraction

The automatic transcription from the video is formed by two steps: (i) audio extrac-
tion from the video was performed using MoviePy Python library XXII, thereafter (ii)
the audio transcript was derived through Cloud Natural Language APIs XXIII.

The plain text from slides was derived by using the ConvertApi service XXIV.

3.3.1.2 Named Entity Linking

Named entities were extracted from the plain text by applying the following extrac-
tors:

• TextRazorXXV extracts entities by linking them with Wikidata.

• Babelfy XXVI [146] returns DBpedia entities.

• Google Cloud Speech API XXVII gives back Wikipedia entities.

To standardize the di↵erent responses, the entities have been aligned with Wiki-
data using sameAs 4 property and subsequently merged. Wikidata achieved higher-
quality standards compared to alternative solutions [245]. Notice that Wikidata
content curation relies on a voluntary basis, requires community approval prior to
adding new content, and supports data ingestion from external data sources.

4http://www.w3.org/2002/07/owl#sameAs

http://www.w3.org/2002/07/owl#sameAs
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Fig. 4.2 The TVREM architecture
TVREM is modular, i. e. each of its blocks can be replaced with a di↵erent implementation as long as
the output is of the same form. For example, ConvertApi could be replaced by Tesseract for text
extraction from PDF files or a di↵erent named entity linking algorithm could be applied instead of
the current one.
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3.3.1.3 Entity sets expansion

Wikidata organizes the large set of available entities into complex hierarchies [198],
providing the ability to expand the original set of entities to classes and parents.

Let Ets and Ev be the set of KB entities associated with the PDF text snippet ts
and video transcript v.

For both entities sets the instances were distinguished from other entity types by
querying the Wikidata Sparql endpoint 5 as follows.

ASK {

<ENTITY URI> wdt:P31 ?o.

}

where ENTITY URI indicates the URI of the entity involved, whereas wdt:P31 6 is
the instance of predicate in the KB.

Let Its and Iv be the entity sets consisting of all the instances in Ets and Ev,
respectively. In order to semantically enrich the Ets and Ev contextual descriptions,
a query to retrieve the corresponding parents has been performed by using the predi-
cates wdt:P279 (subclass of) 7 and wdt:P361 (part of) 8.

SELECT ?o {

<ENTITY URI> wdt:P279|wdt:P361 ?o.

}

Let Pts and Pv be the parent entities related to Ets and Ev, respectively. The
extended entity sets E⇤ts and E⇤v are obtained by the union of the respective child and
parent entities Pts and Pv, i.e., E⇤ts = Ets[Pts, E⇤v = Ev[Pv.

Suppose know that two compared resources a are related to the same content; in
the NEL step the entity set Ea is derived from a and the entity set Eb is derived from
b. The instance i is one of the entities belonging to Ea, while its class c is belong to

5https://query.wikidata.org/
6http://www.wikidata.org/prop/direct/P31
7http://www.wikidata.org/prop/direct/P279
8http://www.wikidata.org/prop/direct/P361

https://query.wikidata.org/
http://www.wikidata.org/prop/direct/P31
http://www.wikidata.org/prop/direct/P279
http://www.wikidata.org/prop/direct/P361
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Eb Amplifying Ea and Eb, c will belong to E⇤a and will be part of the intersection
between E⇤a and E⇤b.

Table 4.2 Features characterizing the hts,vi pair in TVREM

Index Feature name Method of determination Description
Cardinalities

1 card(Ets) |Ets| cardinality of set Ets

2 card(Ev) |Ev| cardinality of set Ev

3 card(Ets\Ev) |Ev\Ets| cardinality of the intersection between Ets and Ev

4 card(Ev[Ets) |Ev[Ets| cardinality of the union between Ets and Ev

5 card(Its) |Its| cardinality of set Its

6 card(Iv) |Iv| cardinality of set Iv

7 card(Its\ Iv) |Its\ Iv| cardinality of the intersection between Its and Iv

8 card(Its[ Iv) |Its[ Iv| cardinality of the union between Its and Iv

9 card(Pts\Pv) |Pts\Pv| cardinality of the intersection between Pts and Pv

10 card(Pts[Pv) |Pts[Pv| cardinality of the union between Pts and Pv

11 card(E⇤ts) |E⇤ts| cardinality of set E⇤ts
12 card(E⇤v) |E⇤v | cardinality of set E⇤v
13 card(E⇤ts\E⇤v) |E⇤ts\E⇤v | cardinality of the intersection between E⇤ts and E⇤v
14 card(E⇤ts[E⇤v) |E⇤ts[E⇤v | cardinality of the union between E⇤ts and E⇤v

Similarities
15 N(Ets,Ev) |Et s\Ev |

max(|Ets |,|Ev |) normalized weighted intersection between Ets and Ev

16 O(Ets,Ev) |Et s\Ev |
min(|Ets |,|Ev |) overlap coe�cient between Ets and Ev

17 J(Ets,Ev) |Ets\Ev |
|Ets[Ev |

Jaccard similarity between Ets and Ev

18 N(Its, Iv) |Its\Iv |
max(|Its |,|Iv |) normalized weighted intersection between Its and Iv

19 O(Its, Iv) |Its\Iv |
min(|Its |,|Iv |) overlap coe�cient between Its and Iv

20 J(Its, Iv) |Its\Iv |
|Its[Iv |

Jaccard similarity between Its and Iv

21 N(Pts,Pv) |Pts\Pv |
max(|Pts |,|Pv |) normalized weighted intersection between Pts and Pv

22 O(Pts,Pv) |Pts\Pv |
min(|Pts |,|Pv |) overlap coe�cient between Pts and Pv

23 J(Pts,Pv) |Pts\Pv |
|Pts[Pv |

Jaccard similarity between Pts and Pv

24 N(E⇤ts,E
⇤
v) |E⇤ts\E⇤v |

max(|E⇤ts|,|E⇤v |)
normalized weighted intersection between E⇤ts and E⇤v

25 O(E⇤ts,E
⇤
v) |E⇤ts\E⇤v |

min(|E⇤ts|,|E⇤v |)
overlap coe�cient between E⇤ts and E⇤v

26 J(E⇤ts,E
⇤
v) |E⇤ts\E⇤v |

|E⇤ts[E⇤v |
Jaccard similarity between E⇤ts and E⇤v

Target
class sim(ts,v) probability value

3.3.1.4 Feature engineering

The features are derived from the previous formed entity sets: Pts, Ets, Its, E⇤ts, Pv,
Ev, Iv, E⇤v . They are split into two groups: Cardinalities compute intersections and
unions between sets; Similarities determine likeness between them according to
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the similarity measures described in [89] and [133]. The considered feature set is
summarized in Table 4.2.

For pair of resources hts,vi, a feature vector was derived.

3.3.1.5 Similarity computation and ranking

TVREM determines similarity by testing di↵erent machine learning algorithms. In
particular, receiving the data divided into train and validation set, it selects the
algorithm that, towed with the train split, achieves the best performance on the
validation set with respect to the target score: (i) Mean Average Precision (MAP)
[250], (ii) Precision at k (P@K) and (iii) Recall at k (R@K) [100, 185].

For each algorithm di↵erent hyper-parameters are tested choosing the best by
performing a grid search on the validation set; the complete list of algorithms and
hyper-parameters is provided in Table 4.3.

Since training all these models can be time-consuming, the framework allows to
freely remove algorithms or hyper-parameters.

To avoid introducing a bias in the learning phase, feature values were preemp-
tively normalized using a min-max scaler:

Xnorm = 2
 

X�Xmin

Xmax�Xmin

!
�1

Cross-media content retrieval relies on the network outputs (O) produced by
taking the queried resource (Q) combined with any candidate resource of a di↵erent
type. The final ranking consists of the candidates sorted in order of decreasing output
probability.

4.3.2 Experimental settings

Datasets

Since no datasets for this task were present in the literature, two datasets were created:
BookToYout and EDUCA. Both consist of PDF files and MP4 videos and are both
suitable for the video-to-text and text-to-video retrieval tasks.
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Table 4.3 Hyper-parameters for grid search in TVREM

Hyper-parameter Set of possible values

Neural network a

activation hidden layers linear, selu, relu, elu, sigmoid
activation output layer linear,sigmoid

loss function cosine similarity, mse, binary cross entropy
optimizer adam
dropout 0.05, 0.10, 0.15, 0.20, 0.25, 0.30

batch size 1,5,10
number of hidden layers 2

units per layer (15,7),(10,5),(30,15)

K-Neighbors Classifier b

number of neighbors 2, 3, 4, 5, 6, 7, 8, 9

Decision Tree Classifier b

maximum depth 2, 3, 5, 7, 10, None
minimum number of samples split 2, 4, 6
minimum number of samples leaf 1, 3, 5

maximum number of features for split None, auto, sqrt, log2

Decision Tree Regressor b

maximum depth 2, 3, 5, 7, 10, None
minimum number of samples split 2, 4, 6
minimum number of samples leaf 1, 3, 5

maximum number of features for split None, auto, sqrt, log2

Random Forest Classifier b

maximum depth 2, 3, 5, 7, 10, None
minimum number of samples split 2, 4, 6
minimum number of samples leaf 1, 3, 5

maximum number of features for split None, auto, sqrt, log2
number of estimators 10, 50, 100

Random Forest Regressor b

maximum depth 2, 3, 5, 7, 10, None
minimum number of samples split 2, 4, 6
minimum number of samples leaf 1, 3, 5

maximum number of features for split None, auto, sqrt, log2
number of estimators 10, 50, 100

Epsilon-support vector Regressor (SVR) b

kernel RBF, linear
regularizer 0.025, 0.05, 0.01, 1, 10, 100, 1000

Default configurations for Gaussian Naive Bayes Classifier, Gaussian Process Classifier, Gaus-
sian Process Regressor, Multilayer Perceptron Classifier, Multilayer Perceptron Regressor,
Logistic Regression, Linear Regression band XGBoost c

a Implemented with the Python library Keras (link:https://keras.io/)
b Implemented with the Python library Scikit-learn (link:https://scikit-learn.org/stable/)
c Implemented with the Python library Xgboost (link:https://xgboost.readthedocs.io/en/

stable/)

https://keras.io/
https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/
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Table 4.4 Statistics on new datasets defined for Cross-Media Retrieval in education: Book-
ToYout and EDUCA

Property
Value

BookToYout EDUCA
Min Max Avg Min Max Avg

Snippets length (word count) 2 34359 2959.6 1 821.68 6326
No. of relevant videos per snippet 1 10 4.7 1 1

Video length 2min 1h21min 21min 21sec 33min 1h

BookToYout includes academic instructional ebooks and Youtube educational
videos. It was formed starting from ebooks covering the following Computer Science
topics: machine learning, pattern recognition, control system engineering, java
programming, SQL (Structured Query Language), semantic web, probability. A
few chapters have been chosen for each book; the complete list is reported in the
appendix B. For each chapter title, a query was performed on Youtube Data API
5.2 and the top 10 URLs related to English language videos were saved. A panel
of experts subsequently reviewed each of the videos indicating whether or not they
contained similar content to the original book chapter (0=unbound content, 1=bound
content). The final dataset is composed of 92 book chapters and 753 Youtube videos;
more detailed information is provided in Table 4.4.

EDUCA consists of 223 video lectures recorded in class and 223 students’ notes.
Both materials have been extracted from the MIT OpenCourseWare 5.2 website9

that publishes most MIT course content. In this case, the materials were already
aligned on the website and no subsequent annotation e↵ort was required. The
detailed list of considered courses is shown in the Table 4.5. These are related to
various educational subjects accordingly to the International Standard Classification
of Education (ISCED) XXVIII.

Although both datasets are related to university-level topics, there are some major
di↵erences between them:

• In EDUCA the materials are generated by students (the notes) and teachers (the
video lectures) while in BookToYout the materials are generated by experts,
not necessarily teachers.

9https://ocw.mit.edu/about/
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• BookToYout textual resources are discursive and explanatory while EDUCA’s
lecture notes generally outline summaries of what was explained in class.

• BookToYout’s video resources are in most cases home-recorded, edited, and
intended for a web audience, while EDUCA’s video resources are recorded
in-class lectures where the professor speaks in front of the students.

• Educational materials of di↵erent types and from di↵erent contexts are aligned
in BookToYout, the educational materials are always of di↵erent types but
from the same context in EDUCA.

• More than one video resource (5 on average) can be linked for each textual
material in BookToYout, while a textual resource always corresponds to just
one video resource in EDUCA.

These distinctions allow validating TVREM for slightly di↵erent contexts.

Implementation settings

The experiments were conducted strictly following the pipeline shown in Figure 4.2
and the details explained in Section 4.3.1. A single change was accomplished for
EDUCA where text extraction was carried out using Tesseract rather than ConvertAPI
since ebooks are subject to copyright restrictions and cannot be uploaded to third-
party services.

Both datasets are highly unbalanced in that the number of pairs that do not match
is much higher than those that match in the training data: 1 out of 128 for EDUCA,
and 1 out of 131 for BookToYout. To address this problem the training dataset is
randomly resampled. Three di↵erent techniques were tested:

• Oversampling: it extracts multiple copies from the minority class in the training
dataset.

• Undersampling: it randomly deletes samples from the majority class in the
training dataset.

• Dynamic undersampling: same as undersampling but the samples chosen for
the majority class vary at each training epoch; this technique has only been
validated with neural networks.
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Table 4.5 Summary of the MIT courses employed in EDUCA

Course name ISCED
level

Broad fields of education
in ISCED-F 2013

Number of
lectures

Innovation Systems for Science, Technol-
ogy, Energy, Manufacturing, and Health a

6 Social sciences, journal-
ism and information

7

The Film Experience b 6 Humanities and Arts 20
Principles of Chemical Science 6 Natural sciences, mathe-

matics and statistics (Phys-
ical science - Chemistry) c

35

Introduction to algorithm d 6 Information and Commu-
nication Technologies

24

Machine Learning for Healthcare e 7 Information and Commu-
nication Technologies

25

Foundations of Computational and Sys-
tems Biology f

6-7 Information and Commu-
nication Technologies

20

Blockchain and Money 7 Social sciences, journal-
ism and information (Eco-
nomics) g

22

Energy Decisions Markets and Policies h 7 Social sciences, journal-
ism and information (Eco-
nomics)

22

Probabilistic Systems Analysis and Ap-
plied Probability i

7 Natural sciences, math-
ematics and statistics
(Mathematics and statis-
tics)

25

String Theory and Holographic Duality j 7 Natural sciences, mathe-
matics and statistics (Phys-
ical science - Physics)

24

a https://rb.gy/4vxqkx
b https://rb.gy/n1l18e
c https://rb.gy/d0d4eo
d https://rb.gy/itluom
e https://rb.gy/8fvkcf
f https://rb.gy/1mfthe
g https://rb.gy/z6aewy
h https://rb.gy/d9dwtp
i https://rb.gy/5odrpp
j https://rb.gy/np1sg8

https://rb.gy/4vxqkx
https://rb.gy/n1l18e
https://rb.gy/d0d4eo
https://rb.gy/itluom
https://rb.gy/8fvkcf
https://rb.gy/1mfthe
https://rb.gy/z6aewy
https://rb.gy/d9dwtp
https://rb.gy/5odrpp
https://rb.gy/np1sg8
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Baselines and competitors

The method presented has been evaluated against some baselines and competitors.

The baselines use video transcripts and text extracted from PDFs as input docu-
ments:

• TFIDF: the documents are represented as TFIDF (term frequency-inverse
document frequency) features [123] and the document similarity is evaluated
using cosine similarity [173]; this approach is widely adopted in literature
[188, 246]. The features were computed using the TFIDF Scikit-learn Python
implementation 10 and the following hyper-parameters were optimized via
grid search:

– ngram_range: it determines lower and upper boundary of the range of
n-values for di↵erent n-grams to be extracted; the following values were
tested: (1,1), (2,2), (3,3), (1,3), (1,2), (2,3).

– max_df : when building the vocabulary ignore terms that have a document
frequency strictly higher than the given threshold; the following values
were tested: 0.7,0.8,0.9,1.0.

– min_df : when building the vocabulary ignore terms that have a document
frequency strictly lower than the given threshold; the following values
were tested: 1,3,5,7,10.

• BERT transformers: based on [176] di↵erent models for document embeddings
have been tested and the final ranking was estimated by cosine similarity; the
complete list of tested sentence transformers is provided here: distiluse-base-
multilingual-cased , paraphrase-MiniLM-L6-v2, bert-large-nli-stsb-mean-
tokens , distilbert-base-nli-stsb-mean-tokens, bert-base-nli-stsb-mean-tokens,
bert-base-nli-mean-tokens, roberta-base-nli-stsb-mean-tokens, xlm-r-large-en-
ko-nli-ststb, bert-large-nli-mean-tokens, xlm-r-base-en-ko-nli-ststb, roberta-
large-nli-stsb-mean-tokens, roberta-large-nli-mean-tokens, distilbert-base-nli-
mean-tokens, roberta-base-nli-mean-tokens. The transformers names are
derived from the HugginFace implementation 11.

10https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.
TfidfVectorizer.html

11https://huggingface.co/sentence-transformers

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://huggingface.co/sentence-transformers
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The video-to-text and text-to-video algorithms used as competitors are JRL
[246], JGRHML [247] and S 2 UPG [158] . The implementations described in the
[158, 246, 247] for XMedia dataset were used for all three algorithms.

In addition to baselines and competitors, similarities were determined comput-
ing the final ranking using the following features individually: O(Ets,Ev),J(Ets,Ev),
card(Ev\Ets),N(Ets,Ev),J(Its, Iv),O(Ets,Ev), card(Ev\Ets),J(Ets,Ev),N(Its, Iv),
O(Its, Iv), O(Pts,Pv), card(Pts\Pv),J(Pts,Pv),card(Its\ Iv),N(Ets,Ev),N(Pts,Pv).
This was beneficial to figuring out the impact of machine learning algorithms to
combine similarities and cardinalities.

Metrics

(i) Precision at k, (ii) Recall at k and (iii) Mean Average Precision (MAP) were
adopted for evaluation.

For EDUCA dataset and in the video-to-text retrieval task for BookToYout dataset
P@1 and R@5 have been calculated since for each query there is only one correct
resource and consequently P@1 = R@1 determines how many times this resource is
in the first position while R@5 determines if it is in the first top-5 returned resources.
For the text-to-video task for BookToYout P@5 and R@10 were computed because
the correct resources are on average five for each query.

4.3.3 Results

Tables 4.6,4.7,4.9,4.8 show the results of the video-to-text and text-to-video retrieval
tasks on EDUCA and BookToYout datasets for the train, validation and test splits.
Specifically, each table shows the scores of the top 5 machine learning algorithms
in TVREM ,both for models estimated using the entire feature set, only Similarities
and only Cardinalities) and performances achieved by features taken individually,
baselines, and competitors. For each of these 4 categories, the algorithms are
ordered by a weighted average of the 3 scores on the test set: W = 0.4 ·MAP+0.4 ·
P@k+ 0.2 ·R@k. The best models for each <dataset,task> and their scores are
highlighted in bold and underlined. In addition, for each of them, the contribution
of each feature was computed by determining mean absolute Shapley Additive
exPlanations(SHAP) [130] values (Figures 4.3).
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The following conclusions can be derived:

• TVREM achieved the best scores in both video-to-text and text-to-video re-
trieval for both datasets. The scores are significantly high for EDUCA; for
BookToYout video-to-text retrieval task instead the Precison@1 is lower than
EDUCA while similar scores were reached for the other metrics. The low-
est scores were obtained for BookToYout text-to-video retrieval task; in this
case, more video resources are associated with a query and therefore only
one of them not present in the first ranks will cause the recall decrease, while
the lower precision is because there are more not matching video resources
semantically close to the matching ones than in EDUCA.

• Among the various machine learning algorithms adopted there is not one
that has outperformed the others for all tasks, on the contrary, they have
often achieved similar results demonstrating that by combining features with
di↵erent strategies and even using simpler approaches good performance can
be reached.

• Both Similarities and Cardinalities features were beneficial; in fact although
in most cases all features or Similarities alone led to the highest results, the
model that performed best when performance was lowest on average (i.e. for
BookToYout in text-to-video retrieval task) adopted only the Cardinalities
features.

• Changing the data sampling mode (oversampling or undersampling) for train-
ing didn’t a↵ect the performance.

• Some features considered individually achieved slightly lower results but in
the same order of magnitude as the machine learning models. Generally,
these are also the ones that have the highest SHAP values in the machine
learning models. This suggests that the key to the proposed methodology is
the adoption of entity sets to represent resources and that the algorithms to
compute similarity only serve to slightly improve the final rankings.

• Baselines underperformed machine learning models and individual features;
among them, transformers outperformed TFIDF approaches: the model that
averaged the best scores (3 out of 4 cases) was distiluse-base-multilingual-
cased.
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(a) Text-to-Video for EDUCA dataset (b) Video-to-Text for EDUCA dataset

(c) Text-to-Video for BookToYout dataset (d) Video-to-Text for BookToYout dataset

Fig. 4.3 Feature relevance analysis for models computed with TVREM

• Competitors achieved the worst scores probably because they are designed to
deal with videos that contain meaningful content in frames rather than audio,
while in the given datasets most of the relevant information is in the audio
track.

4.3.4 Reproducibility

The results achieved with the proposed method are fully reproducible by attending
the instructions to the following Github repository: https://github.com/Loricanal/
TVREM. It contains (i) the complete code of TVREM implemented in Python
language (ii) a link to download the EDUCA dataset including videos and lecture
notes and (iii) the intermediate files for both BookToYout and EDUCA datasets. For
BookToYout, for privacy reasons, only the sets of entities extracted from the videos
and texts have been released, therefore the experiments can be reproduced from the
Entity sets expansion step.

https://github.com/Loricanal/TVREM
https://github.com/Loricanal/TVREM
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Table 4.6 Text-to-Video Retrieval scores for EDUCA dataset

Algorithm Features
MAP Precision@1 Recall@5

Train Val Test Train Val Test Train Val Test
TVREM

Multilayer Perceptron Regressor

Cardinalities,

Similarities

95.66 95.69 100.0 93.02 95.56 100.0 100.0 95.56 100.0

Similarities 93.89 95.67 97.45 89.15 95.56 95.92 100.0 95.56 100.0

Cardinalities 91.64 95.68 96.94 87.6 95.56 93.88 99.22 95.56 100.0

Gaussian Process Classifier

Cardinalities,

Similarities
94.91 95.79 98.98 91.47 95.56 97.96 100.0 95.56 100.0

Similarities 94.64 95.7 98.37 90.7 95.56 97.96 100.0 95.56 100.0

Cardinalities 93.49 95.9 96.84 89.15 95.56 95.92 100.0 95.56 100.0

Linear Regression

Cardinalities,

Similarities
95.74 95.72 98.98 92.25 95.56 97.96 100.0 95.56 100.0

Similarities 95.03 95.67 98.64 90.7 95.56 97.96 100.0 95.56 100.0

Cardinalities 93.06 95.67 97.14 89.15 95.56 95.92 97.67 95.56 97.96

Neural network

Cardinalities,

Similarities
96.15 96.02 98.64 93.02 95.56 97.96 100.0 95.56 100.0

Similarities 95.09 95.71 97.62 92.25 95.56 95.92 98.45 95.56 100.0

Cardinalities 93.23 95.85 92.6 89.15 95.56 87.76 98.45 95.56 97.96

Multilayer Perceptron Classifier

Cardinalities,

Similarities
95.76 95.81 96.94 92.25 95.56 93.88 100.0 95.56 100.0

Similarities 95.25 95.67 98.64 92.25 95.56 97.96 99.22 95.56 100.0

Cardinalities 87.37 95.67 95.92 81.4 95.56 91.84 95.35 95.56 100.0

Individual features

O(Ets ,Ev) 92.27 93.46 98.37 88.37 91.11 97.96 97.67 95.56 100.0

J(Ets ,Ev) 95.27 95.67 97.96 91.47 95.56 95.92 100.0 95.56 100.0

card(Ev \Ets) 92.27 93.44 96.44 88.37 91.11 95.92 97.67 95.56 97.96

N(Ets ,Ev) 89.04 91.22 95.58 82.17 86.67 91.84 97.67 95.56 100.0

J(Its , Iv) 90.17 93.45 93.1 83.72 91.11 89.8 97.67 95.56 97.96

O(Ets ,Ev) 85.16 92.07 93.03 77.52 91.11 87.76 96.12 93.33 100.0

card(Ev \Ets) 85.18 92.04 92.05 77.52 91.11 87.76 96.9 93.33 97.96

J(Ets ,Ev) 90.4 94.56 92.52 85.27 93.33 85.71 96.9 95.56 100.0

N(Its , Iv) 84.33 91.22 90.48 75.97 86.67 85.71 95.35 95.56 95.92

O(Its , Iv) 88.7 93.92 90.14 82.17 93.33 81.63 97.67 95.56 100.0

O(Pts ,Pv) 74.01 81.87 89.59 63.57 73.33 81.63 89.15 91.11 100.0

card(Pts \Pv) 74.01 81.85 88.61 63.57 73.33 81.63 89.15 91.11 97.96

J(Pts ,Pv) 85.19 89.74 88.78 79.07 84.44 79.59 94.57 95.56 100.0

card(Its \ Iv) 88.7 92.78 88.35 82.17 91.11 79.59 97.67 95.56 97.96

N(Ets ,Ev) 75.13 86.96 86.9 63.57 80.0 77.55 89.15 95.56 100.0

N(Pts ,Pv) 65.97 78.52 79.83 53.49 68.89 69.39 79.07 95.56 100.0

Baselines
distiluse-base-multilingual-cased 37.88 48.35 44.46 24.81 35.56 28.57 52.71 64.44 57.14

paraphrase-MiniLM-L6-v2 36.62 43.13 42.66 23.26 33.33 30.61 47.29 48.89 53.06

bert-large-nli-stsb-mean-tokens 29.41 25.44 35.2 19.38 13.33 24.49 39.53 31.11 44.9

distilbert-base-nli-stsb-mean-tokens 24.51 30.94 32.46 14.73 22.22 22.45 30.23 40.0 42.86

bert-base-nli-stsb-mean-tokens 33.49 30.87 32.27 20.93 22.22 20.41 45.74 35.56 38.78

bert-base-nli-mean-tokens 25.19 24.75 28.87 16.28 13.33 18.37 33.33 35.56 34.69

roberta-base-nli-stsb-mean-tokens 18.25 32.63 29.45 10.85 20.0 14.29 25.58 40.0 44.9

xlm-r-large-en-ko-nli-ststb 21.69 26.11 27.2 12.4 15.56 14.29 30.23 28.89 40.82

bert-large-nli-mean-tokens 23.61 23.69 25.79 13.95 15.56 14.29 27.91 28.89 32.65

xlm-r-base-en-ko-nli-ststb 24.83 28.58 24.48 15.5 20.0 14.29 31.78 28.89 28.57

roberta-large-nli-stsb-mean-tokens 19.82 30.5 23.08 12.4 17.78 10.2 23.26 42.22 38.78

roberta-large-nli-mean-tokens 17.87 25.51 22.5 10.85 17.78 12.24 23.26 28.89 26.53

distilbert-base-nli-mean-tokens 16.6 24.9 21.47 10.08 13.33 10.2 19.38 31.11 32.65

roberta-base-nli-mean-tokens 10.37 20.92 14.15 5.43 13.33 4.08 12.4 20.0 18.37

TFIDF 3.34 12.12 13.5 0.0 6.67 2.04 2.33 11.11 18.37

Competitors
JRL 10.12 12.42 11.67 4.59 4.61 7.82 11.11 13.21 8.67

JGRHML 12.31 11.09 10.20 11.10 9.88 13.41 18.91 21.33 23.9

S 2 UPG 13.76 15.49 12.44 14.62 12.69 14.95 20.0 17.86 19.0
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Table 4.7 Video-to-Text Retrieval scores for EDUCA dataset

Algorithm Features
MAP Precision@1 Recall@5

Train Val Test Train Val Test Train Val Test
TVREM

Logistic Regression

Cardinalities,

Similarities
93.57 93.91 96.6 89.15 93.33 93.88 98.45 93.33 100.0

Similarities 93.57 94.19 96.6 89.15 93.33 93.88 98.45 95.56 100.0

Cardinalities 91.76 93.64 90.48 88.37 93.33 81.63 96.9 93.33 100.0

Multilayer Perceptron Classifier

Cardinalities,

Similarities
93.05 93.96 96.6 88.37 93.33 93.88 97.67 95.56 100.0

Similarities 93.83 94.7 96.6 89.92 93.33 93.88 98.45 95.56 100.0

Cardinalities 90.55 91.43 89.63 86.05 88.89 81.63 96.12 93.33 100.0

Epsilon-support vector Regressor

Cardinalities,

Similarities
93.44 94.68 96.6 89.15 93.33 93.88 98.45 95.56 100.0

Similarities 93.56 95.78 96.6 89.92 95.56 93.88 97.67 95.56 100.0

Cardinalities 91.14 93.61 87.76 87.6 93.33 77.55 96.12 93.33 100.0

Neural network

Cardinalities,

Similarities
93.92 94.7 95.58 89.92 93.33 91.84 97.67 95.56 100.0

Similarities 92.77 95.78 96.6 88.37 95.56 93.88 97.67 95.56 100.0

Cardinalities 89.4 94.56 91.75 83.72 93.33 85.71 95.35 95.56 97.96

Multilayer Perceptron Regressor

Cardinalities,

Similarities
91.91 94.46 92.52 86.05 93.33 85.71 98.45 95.56 100.0

Similarities 93.35 94.28 95.24 89.15 93.33 91.84 98.45 95.56 100.0

Cardinalities 90.73 94.57 95.24 86.05 93.33 91.84 96.12 97.78 100.0

Individual features

O(Ets ,Ev) 89.44 89.68 95.92 83.72 84.44 91.84 96.9 95.56 100.0

O(Ets ,Ev)P 79.45 72.61 91.56 70.54 60.0 85.71 91.47 88.89 100.0

O(Its , Iv) 81.37 82.51 88.44 72.09 73.33 79.59 95.35 95.56 100.0

J(Its , Iv) 83.21 88.85 83.94 75.19 84.44 73.47 92.25 93.33 97.96

O(Pts ,Pv) 71.84 68.79 82.5 58.91 57.78 73.47 86.82 86.67 97.96

J(Ets ,Ev) 87.67 90.05 83.48 82.17 86.67 71.43 94.57 93.33 97.96

card(Ev \Ets) 55.85 65.1 76.99 44.19 55.56 65.31 65.12 77.78 91.84

N(Ets ,Ev) 71.47 75.11 77.03 60.47 68.89 65.31 82.17 84.44 91.84

J(Ets ,Ev)P 74.27 82.34 68.72 67.44 77.78 57.14 82.95 86.67 85.71

card(Its \ Iv) 50.71 60.29 69.61 37.21 48.89 53.06 61.24 71.11 91.84

N(Its , Iv) 66.67 72.92 69.61 55.04 64.44 53.06 79.07 86.67 91.84

J(Pts ,Pv) 61.14 73.82 57.13 51.16 68.89 42.86 73.64 77.78 67.35

N(Ets ,Ev)P 39.51 52.13 38.77 27.91 44.44 14.29 48.84 55.56 65.31

card(Ev \Ets)P 15.9 41.66 38.77 1.55 31.11 14.29 19.38 53.33 65.31

card(Pts \Pv) 11.76 35.64 33.11 0.78 24.44 12.24 10.85 44.44 59.18

N(Pts ,Pv) 25.45 45.67 31.92 13.95 37.78 10.2 35.66 48.89 59.18

Baselines
distiluse-base-multilingual-cased 27.64 46.02 41.45 17.83 31.11 26.53 37.98 57.78 61.22

paraphrase-MiniLM-L6-v2 26.65 44.09 39.83 16.28 33.33 24.49 36.43 57.78 57.14

bert-base-nli-stsb-mean-tokens 9.28 26.6 24.53 3.1 17.78 16.33 10.08 31.11 26.53

bert-large-nli-mean-tokens 20.38 30.16 23.63 12.4 20.0 14.29 25.58 42.22 32.65

xlm-r-large-en-ko-nli-ststb 14.01 26.04 22.37 6.98 13.33 10.2 16.28 33.33 34.69

roberta-large-nli-stsb-mean-tokens 13.14 29.64 23.26 4.65 20.0 14.29 19.38 37.78 26.53

distilbert-base-nli-stsb-mean-tokens 12.78 28.67 20.06 3.88 17.78 10.2 20.16 40.0 26.53

bert-large-nli-stsb-mean-tokens 12.39 20.33 18.08 6.2 8.89 10.2 13.95 28.89 20.41

bert-base-nli-mean-tokens 14.98 24.74 14.93 6.98 13.33 4.08 20.93 33.33 26.53

xlm-r-base-en-ko-nli-ststb 9.91 20.51 15.9 3.88 8.89 4.08 10.85 31.11 24.49

distilbert-base-nli-mean-tokens 14.16 22.68 15.77 5.43 6.67 2.04 20.16 37.78 30.61

roberta-large-nli-mean-tokens 8.19 19.46 13.69 3.1 8.89 4.08 9.3 28.89 18.37

roberta-base-nli-mean-tokens 12.61 22.5 12.56 5.43 11.11 2.04 15.5 28.89 20.41

roberta-base-nli-stsb-mean-tokens 6.06 20.18 11.27 2.33 11.11 2.04 5.43 24.44 16.33

TFIDF 4.49 13.32 9.23 0.78 8.89 2.04 5.43 8.89 10.2

Competitors
JRL 11.35 10.91 11.58 9.11 8.74 9.92 9.32 14.43 12.12

JGRHML 12.21 12.04 11.39 12.32 9.97 12.27 17.93 19.42 22.1

S 2 UPG 13.01 14.62 11.21 13.43 11.97 13.53 19.08 17.00 19.21
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Table 4.8 Text-to-Video Retrieval scores for BookToYout dataset

Algorithm Features
MAP Precision@5 Recall@5

Train Val Test Train Val Test Train Val Test
TVREM

Gaussian Process Classifier

Cardinalities,

Similarities
80.85 73.57 71.39 51.39 30.0 35.71 61.35 72.22 60.55

Similarities 58.2 79.25 59.99 22.22 45.0 28.57 28.57 71.58 37.86

Cardinalities 81.03 75.54 86.97 52.78 30.0 64.29 58.46 68.38 63.06

Epsilon-support vector Regressor

Cardinalities,

Similarities
82.53 75.89 81.54 50.0 35.0 64.29 62.45 66.45 65.41

Similarities 80.85 78.56 76.14 55.56 45.0 57.14 61.19 69.66 61.47

Cardinalities 79.73 75.14 77.49 48.61 40.0 50.0 58.37 67.74 63.71

Decision Tree Regressor

Cardinalities,

Similarities
80.81 74.74 79.6 56.94 45.0 64.29 57.01 56.84 63.56

Similarities 79.66 75.24 82.68 45.83 45.0 64.29 60.04 60.68 62.52

Cardinalities 73.93 71.11 79.12 50.0 30.0 57.14 47.44 70.3 65.29

Gaussian Process Regressor

Cardinalities,

Similarities
78.85 73.9 80.4 48.61 25.0 64.29 56.41 65.81 61.59

Similarities 81.31 73.62 79.65 59.72 40.0 50.0 57.07 62.61 65.29

Cardinalities 81.0 48.37 80.4 58.33 10.0 57.14 56.81 17.74 65.29

Neural network

Cardinalities,

Similarities
78.38 82.12 78.85 50.0 50.0 64.29 59.52 72.22 64.25

Similarities 79.69 78.85 72.32 48.61 50.0 57.14 59.56 70.3 50.36

Cardinalities 83.59 80.95 76.8 59.72 55.0 42.86 61.64 64.53 62.52

Individual features

card(Ev \Ets)P 80.06 75.25 82.23 48.61 25.0 71.43 61.59 71.58 57.77

card(Ev \Ets) 80.06 75.25 82.23 48.61 25.0 71.43 61.59 71.58 57.77

O(Ets ,Ev) 79.92 76.04 84.79 47.22 30.0 64.29 60.43 65.17 56.58

O(Ets ,Ev)P 79.92 76.04 84.79 47.22 30.0 64.29 60.43 65.17 56.58

N(Ets ,Ev) 81.94 74.55 77.26 56.94 20.0 50.0 60.28 75.43 63.18

N(Ets ,Ev)P 81.94 74.55 77.26 56.94 20.0 50.0 60.28 75.43 63.18

J(Ets ,Ev)P 80.62 72.71 75.91 51.39 15.0 50.0 60.99 67.74 60.4

J(Ets ,Ev) 80.62 72.71 75.91 51.39 15.0 50.0 60.99 67.74 60.4

O(Its , Iv) 24.99 38.42 22.87 1.39 0.0 7.14 0.77 3.85 4.82

N(Its , Iv) 24.99 38.42 22.87 1.39 0.0 7.14 0.77 3.85 4.82

J(Pts ,Pv) 24.99 38.42 22.87 1.39 0.0 7.14 0.77 3.85 4.82

N(Pts ,Pv) 24.99 38.42 22.87 1.39 0.0 7.14 0.77 3.85 4.82

O(Pts ,Pv) 24.99 38.42 22.87 1.39 0.0 7.14 0.77 3.85 4.82

J(Its , Iv) 24.99 38.42 22.87 1.39 0.0 7.14 0.77 3.85 4.82

card(Its \ Iv) 24.99 38.42 22.87 1.39 0.0 7.14 0.77 3.85 4.82

card(Pts \Pv) 24.99 38.42 22.87 1.39 0.0 7.14 0.77 3.85 4.82

Baselines
distiluse-base-multilingual-cased 48.37 66.2 49.32 33.33 35.0 42.86 27.49 50.43 36.88

paraphrase-MiniLM-L6-v2 49.67 66.31 50.82 31.94 45.0 35.71 30.88 40.6 28.75

bert-base-nli-stsb-mean-tokens 36.54 55.24 40.6 16.67 30.0 35.71 13.31 38.46 22.55

bert-large-nli-mean-tokens 32.44 46.88 40.19 15.28 10.0 28.57 10.98 20.51 22.85

xlm-r-large-en-ko-nli-ststb 32.77 49.34 38.8 15.28 15.0 28.57 9.36 24.57 21.11

roberta-large-nli-stsb-mean-tokens 35.45 58.67 39.86 20.83 30.0 28.57 11.87 45.3 19.2

distilbert-base-nli-stsb-mean-tokens 35.5 54.34 39.01 13.89 25.0 21.43 12.96 22.44 23.15

bert-large-nli-stsb-mean-tokens 34.42 51.39 39.47 18.06 30.0 21.43 11.72 27.35 20.3

bert-base-nli-mean-tokens 32.01 46.32 37.9 12.5 15.0 21.43 9.1 12.61 19.42

xlm-r-base-en-ko-nli-ststb 30.96 50.1 36.58 11.11 20.0 21.43 8.14 28.42 18.5

distilbert-base-nli-mean-tokens 32.06 48.13 36.98 13.89 20.0 14.29 8.72 22.22 26.76

roberta-large-nli-mean-tokens 31.66 49.64 36.54 13.89 10.0 14.29 8.8 29.27 25.72

roberta-base-nli-mean-tokens 30.04 42.34 29.19 16.67 5.0 21.43 6.8 6.62 14.17

roberta-base-nli-stsb-mean-tokens 34.29 48.87 33.7 19.44 15.0 14.29 11.76 17.31 16.04

TFIDF 26.28 43.21 27.33 1.39 10.0 0.0 2.12 9.62 10.56

Competitors
JRL 14.2 24.6 19.1 5.1 4.06 7.11 8.31 6.86 6.88

JGRHML 33.12 38.0 32.1 9.55 8.0 8.47 10.52 10.22 12.54

S 2 UPG 21.31 17.7 31.04 8.81 7.62 9.03 11.2 12.45 11.92
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Table 4.9 Video-to-Text Retrieval scores for BookToYout dataset

Algorithm Features
MAP Precision@1 Recall@5

Train Val Test Train Val Test Train Val Test
TVREM

Epsilon-support vector Regressor

Cardinalities,

Similarities
99.21 100.0 99.09 51.69 29.81 61.86 98.87 100.0 97.95

Similarities 99.55 100.0 100.0 51.69 29.81 61.86 100.0 100.0 100.0
Cardinalities 99.15 100.0 99.36 51.69 29.81 61.86 98.87 100.0 100.0

Gaussian Process Regressor

Cardinalities,

Similarities
99.58 100.0 100.0 51.52 29.81 61.86 100.0 100.0 100.0

Similarities 99.66 100.0 100.0 51.69 29.81 61.86 100.0 100.0 100.0

Cardinalities 99.66 84.71 100.0 51.69 11.8 61.86 100.0 54.17 100.0

Random Forest Classifier

Cardinalities,

Similarities
98.99 100.0 100.0 50.34 29.81 61.86 100.0 100.0 100.0

Similarities 99.66 100.0 100.0 51.69 29.81 61.86 100.0 100.0 100.0

Cardinalities 99.66 100.0 100.0 51.69 29.81 61.86 100.0 100.0 100.0

Random Forest Regressor

Cardinalities,

Similarities
99.66 100.0 100.0 51.69 29.81 61.86 100.0 100.0 100.0

Similarities 99.34 100.0 99.36 51.69 29.81 61.86 100.0 100.0 100.0

Cardinalities 99.66 100.0 100.0 51.69 29.81 61.86 100.0 100.0 100.0

Gaussian Process Classifier

Cardinalities,

Similarities
99.34 100.0 99.36 51.69 29.81 61.86 100.0 100.0 100.0

Similarities 99.66 100.0 100.0 51.69 29.81 61.86 99.52 100.0 100.0

Cardinalities 99.58 100 99.58 51.69 29.81 61.86 99.52 100.0 100.0

Individual features

O(Ets ,Ev) 99.25 100.0 99.36 51.69 29.81 61.86 99.35 100.0 100.0

card(Ev \Ets)P 99.18 100.0 99.24 51.69 29.81 61.86 98.87 100.0 100.0

card(Ev \Ets) 99.18 100.0 99.24 51.69 29.81 61.86 98.87 100.0 100.0

J(Ets ,Ev)P 99.54 100.0 99.36 51.69 29.81 61.86 100.0 100.0 100.0

O(Ets ,Ev)P 99.25 100.0 99.36 51.69 29.81 61.86 99.35 100.0 100.0

J(Ets ,Ev) 99.54 100.0 99.36 51.69 29.81 61.86 100.0 100.0 100.0

N(Ets ,Ev) 99.49 100.0 99.24 51.69 29.81 61.86 99.52 100.0 100.0

N(Ets ,Ev)P 99.49 100.0 99.24 51.69 29.81 61.86 99.52 100.0 100.0

O(Its , Iv) 51.02 76.02 57.18 0.51 2.48 6.78 6.61 22.92 53.42

N(Its , Iv) 51.02 76.02 57.18 0.51 2.48 6.78 6.61 22.92 53.42

J(Pts ,Pv) 51.02 76.02 57.18 0.51 2.48 6.78 6.61 22.92 53.42

N(Pts ,Pv) 51.02 76.02 57.18 0.51 2.48 6.78 6.61 22.92 53.42

O(Pts ,Pv) 51.02 76.02 57.18 0.51 2.48 6.78 6.61 22.92 53.42

J(Its , Iv) 51.02 76.02 57.18 0.51 2.48 6.78 6.61 22.92 53.42

card(Its \ Iv) 51.02 76.02 57.18 0.51 2.48 6.78 6.61 22.92 53.42

card(Pts \Pv) 51.02 76.02 57.18 0.51 2.48 6.78 6.61 22.92 53.42

Baselines
paraphrase-MiniLM-L6-v2 74.67 92.41 75.88 21.45 19.25 27.12 62.42 89.58 86.99

distiluse-base-multilingual-cased 71.86 92.0 71.01 17.91 18.63 22.03 59.19 87.5 77.4

distilbert-base-nli-stsb-mean-tokens 60.87 83.22 62.03 7.6 8.07 12.71 34.52 58.33 61.64

roberta-large-nli-stsb-mean-tokens 61.43 86.22 63.54 8.78 10.56 15.25 33.87 77.08 54.11

bert-large-nli-stsb-mean-tokens 60.5 83.39 62.76 7.09 8.07 13.56 33.06 62.5 59.59

roberta-base-nli-stsb-mean-tokens 61.76 85.64 62.61 9.29 9.94 16.1 33.55 77.08 50.0

distilbert-base-nli-mean-tokens 59.38 80.41 62.22 6.93 4.35 14.41 28.55 54.17 52.05

bert-base-nli-stsb-mean-tokens 63.06 84.34 61.37 9.46 8.7 11.02 39.19 62.5 53.42

bert-base-nli-mean-tokens 58.92 81.89 60.07 5.74 6.83 11.86 28.71 56.25 54.79

xlm-r-large-en-ko-nli-ststb 58.7 81.69 60.3 6.76 6.83 11.02 25.65 52.08 54.79

xlm-r-base-en-ko-nli-ststb 59.43 82.28 58.85 6.93 6.83 11.02 30.0 58.33 54.79

TFIDF 53.21 80.85 61.44 1.69 6.83 11.86 13.23 47.92 49.32

bert-large-nli-mean-tokens 56.39 81.42 58.8 3.55 6.21 9.32 21.94 54.17 57.53

roberta-large-nli-mean-tokens 57.72 84.08 60.57 5.57 7.45 12.71 26.13 72.92 49.32

roberta-base-nli-mean-tokens 57.54 79.2 57.42 6.42 2.48 10.17 22.58 56.25 38.36

Competitors
JRL 12.47 11.82 11.00 5.13 4.81 8.28 19.21 41.48 39.11

JGRHML 27.67 24.12 29.00 8.44 6.37 11.02 33.47 41.89 50.74

S 2 UPG 31.12 33.02 31.04 7.11 6.03 9.32 36.17 42.42 49.0
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4.4 Discussion and guidance for future research

This chapter discussed the usefulness of cross-media retrieval for learners to im-
prove engagement and mastery of subject matter; this is useful for both improving
performance in college courses and enhancing problem-solving skills.

Greater focus was placed on video-to-text and text-to-video retrieval by con-
sidering as a case study the retrieval of unconventional educational resources (e.g.
Youtube videos) from traditional educational resources (e.g. slides of course material
or textbooks). For this purpose, a new method called TVREM was proposed. It
outperformed current approaches on two educational datasets.

Some future improvements can be proposed:

• To refine the current ground truth, it might be useful to move from a binary
annotation to a multi-level annotation both to di↵erentiate more precisely the
similarity of the resources and to distinguish the value of the returned resource,
e.g. the same content explained in a di↵erent way, additional content to satisfy
curiosity and enrich knowledge, etc.

• To reach more general findings, it may be useful to create other datasets and
test the transfer learning potential of models trained with one dataset on others.

• To study the flexibility of the algorithm to adapt to di↵erent ground truths for
the same dataset since they depend on the annotator and the final ranking of the
resources could vary according to the educational level, learning interests or
training mode preferences. For example in an academic course, the professor
could determine the right ranking of the educational resources according to
the competencies she/he wants the students to acquire; she/he could start from
a textbook or from the self-produced educational material to search for similar
resources in a video collection, look at the automatic ranking obtained with
a pre-computed TVREM model and manually reorder the resources in case
of error, modifying the ground truth and fine-tuning the model. A di↵erent
professor might prefer di↵erent resources and therefore annotate the dataset
di↵erently, resulting in a di↵erent final model.

Further, the same learner could establish the resources of greater interest
and refine the tuning of the model because she/he is driven by interests of
personal learning (e.g. to realize an own idea of which it does not possess the
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competencies) or because she/he prefers educational material of a determined
type. Taking into account the case study of retrieving videos from textbooks
and Youtube as a collection, di↵erent users could prefer di↵erent channels
that produce videos with di↵erent styles (e.g. animations or more traditional
videos): starting from the model fine-tuned by the professor they could see the
ranking returned and reorder it by searching for video resources with the same
semantics but with a more preferential look.



Chapter 5

Conclusions

5.1 Summary of Contributions

Since the early 1990s, there has been an increasing diversification of learning modes;
in particular, the digital age resulted in the increasing use of electronic materials in
education up to fully online courses such as MOOCs. This led to greater facility in
recording student data and the emergence of Learning Analytics (LA) in 2011.

This dissertation focused on the application of artificial intelligence to support LA
and education with two main objectives: (i) early predict students’ exams outcome
figuring out why they succeed or fail in order to early take action (e.g. warning
at-risk profiles) (ii) o↵er richer educational materials to students by indexing video
lectures, to facilitate their review, and aligning multimodal resources, to foster their
comprehension.

With respect to the first objective, the following contributions were achieved:

• A methodology that relies on Lazy Associative Classifier L3 [22] for the pre-
diction of students’ academic performance has been presented; this associative
algorithm enables the derivation of human-readable rules to explain the reasons
for classification. Its prediction capabilities have been validated in 1st-year
Bachelor’s Degrees courses in Engineering; the results demonstrate that as-
sociative models are as accurate as the other best non-explainable classifiers.
In addition, from the inspection of the rules, several profiles of students were
derived; these enable personalized intervention.
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• VESPE, Visual Explainable Student performance PrEdictor, has been intro-
duced; it allows deriving explainable models to early predict student outcomes
by combining the most popular machine learning algorithms with a state-
of-the-art explainability AI method, namely SHapley Additive exPlanations
(SHAP) [130]. The method achieves high performance in an Object-Oriented
programming course using as features the laboratory activity recorded through
Version Control System. Based on the model explanation targeted interven-
tions were proposed for each outcome category.

• Since there are no benchmarks for sharing data and naming features, UNI-
FORM, an open relational database integrating various learning data sources,
was presented. It allows for automatically extending the integrated dataset
as soon as new data sources become available through a machine learning
classifier that detects attribute alignments based on the correlations among the
corresponding textual attribute descriptions. The integration phase has reached
a promising quality level on most of the analyzed benchmark datasets.

With respect to the second objective, the following contributions were achieved:

• VISA, a supervised approach to indexing video lectures with semantic anno-
tations, was presented. The method automatically extracts n-grams from the
video transcripts and compares them with Wikidata entity labels, deriving
a list of matching candidates. These are filtered considering not only text
similarity measures but also the semantic pertinence of the candidate to the
main subject of the video lectures. The performance of the proposed system
was validated on a ground truth against the techniques available in the general
entity annotation system GERBIL. The preliminary results demonstrate the
e↵ectiveness of the proposed approach since it outperformed competitors for
both named entity disambiguation and search function tasks.

• A new method for text-to-video and video-to-text retrieval for educational
material named TVREM has been introduced. Its key feature is the represen-
tation of each resource, independent of whether it is textual or visual, as a
set of entities to determine the similarity between two resources with sets
of similarity metrics (e.g. Jaccard similarity). TVREM has been validated
on two datasets achieving very high scores and outperforming baselines and
competitors.
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5.2 Future Works

Three macro topics were discussed in this thesis, namely student outcome prediction,
video-lecture indexing and cross-media retrieval of educational resources. In future
work, these could be integrated into a single learning context. Starting from the
video-lecture indexing system created for the databases course using VISA in Chapter
3.4, TVREM could be used to automatically retrieve other educational resources,
such as:

• The slides and handouts of the course prepared by the professor.

• Youtube videos concerning the same knowledge.

• Discussions about course exercises (e.g. SQL queries) in Telegram chats; this
technology is increasingly used in our university, and students created group
chats where they exchange doubts related to course exercises. Extracting dis-
cussions in the chats, anonymizing and linking them to the points in the video
lectures where the same knowledge is covered would provide students with
the ability to access such resources directly through the learning management
system.

The learning management system would then embed both video-lecture indexing,
search functions, and a wide range of di↵erent educational materials. Students’
interactions with the system could be tracked to derive features as input for VESPE.
The SHAP explanations will help to clarify if and how the system usage a↵ects the
student performance.



Notes

I. YouTube Data API integrates several facilities for developers, including Automatic caption generation
and Search (link: https://developers.google.com/youtube/)

II. Tesseract is a technology for Optical Character Recognition (link: https://github.com/tesseract-ocr/
tesseract)

III. JOCR is a program for Optical Character Recognition (link: http://jocr.sourceforge.net/)

IV. MODI is a software for Optical Character Recognition (link: https://www.moditrace.net/en/add-ons/
ocr-clear-character-recognition/)

V. TAGME is a powerful tool that is able to identify on-the-fly meaningful short-phrases (link: https:
//tagme.d4science.org/tagme/)

VI. Autometa is an automated binning pipeline for extraction of microbial genomes from individual
shotgun metagenomes (link: https://github.com/celsowm/AutoMeta).

VII. CSO-Classifier is an unsupervised approach for automatically classifying research papers according
to the Computer Science Ontology (link:https://github.com/angelosalatino/cso-classifier)

VIII. NCBO Annotator is an ontology-based web service for annotation of textual biomedical data with
biomedical ontology concepts (link: https://github.com/ncbo/ncbo_annotator)

IX. Ontotext provides a complete set of semantic technologies transforming how organizations identify
meaning across diverse databases and massive amounts of unstructured data. (link:https://www.
ontotext.com/)

X. DBpedia is a project aiming to extract structured content from the information created in the Wikipedia
project (link: https://www.dbpedia.org/)

XI. Computer Network Ontology is an ontology for the categorization of computer networks domain.
https://bioportal.bioontology.org/ontologies/CN

https://developers.google.com/youtube/
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
http://jocr.sourceforge.net/
https://www.moditrace.net/en/add-ons/ocr-clear-character-recognition/
https://www.moditrace.net/en/add-ons/ocr-clear-character-recognition/
https://tagme.d4science.org/tagme/
https://tagme.d4science.org/tagme/
https://github.com/celsowm/AutoMeta
https://github.com/angelosalatino/cso-classifier
https://github.com/ncbo/ncbo_annotator
https://www.ontotext.com/
https://www.ontotext.com/
https://www.dbpedia.org/
https://bioportal.bioontology.org/ontologies/CN
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XII. Computer Science Ontology is a large-scale ontology of research areas based on 16 million publica-
tions, mainly in the field of Computer Science. https://cso.kmi.open.ac.uk/home

XIII. Natural Language ToolKit is a Python library that provides support to work with human language
data (link:https://www.nltk.org/)

XIV. Elasticsearch is a search engine based on the Lucene library. It provides a distributed, multitenant-
capable full-text search engine with an HTTP web interface and schema-free JSON documents.
(link:https://www.elastic.co/elasticsearch/)

XV. The DBpedia ontology is a formal definition of categories, properties, and relations between the
concepts, data, and entities forming DBpedia knowledge base. (link: http://mappings.dbpedia.org/
server/ontology/classes/).

XVI. The Wikimedia REST API o↵ers access to Wikimedia’s content and metadata in machine-readable
formats, in this thesis, it was mainly used to link Wikidata entities with Wikipedia pages and vice
versa (link:https://www.mediawiki.org/wiki/Wikimedia_REST_API)

XVII. Apache cTAKES™ is a natural language processing system for extraction of information from
electronic medical record clinical free-text (link: websitehttp://ctakes.apache.org/)

XVIII. SNOMED-CT is a multilingual clinical healthcare ontology (link:http://www.ihtsdo.org/snomed-ct)

XIX. Bio-ontology API is comprised of a set of biomedical resources that are connected together via links.
(link: http://data.bioontology.org/documentation)

XX. MedlinePlus is an online information service produced by the United States National Library of
Medicine. The service provides curated consumer health information MedlinePlus provides en-
cyclopedic information on health and drug issues and provides a directory of medical services
(link:https://en.wikipedia.org/wiki/MedlinePlus)

XXI. MIT OpenCourseWare is a web-based publication of virtually all MIT course content. (link:https:
//ocw.mit.edu/

XXII. MoviePy is a Python library for video editing (link:https://pypi.org/project/moviepy/)

XXIII. The Cloud Natural Language API provides developers with natural language understanding tech-
nologies, including sentiment analysis, entity sentiment analysis, content classification, and syntax
analysis (link:https://cloud.google.com/natural-language/docs/reference/rest/).

XXIV. ConvertApi is an API that enables converting files to many di↵erent formats (link:https://www.
convertapi.com/pdf-to-txt)

https://cso.kmi.open.ac.uk/home
https://www.nltk.org/
https://www.elastic.co/elasticsearch/
http://mappings.dbpedia.org/server/ontology/classes/
http://mappings.dbpedia.org/server/ontology/classes/
https://www.mediawiki.org/wiki/Wikimedia_REST_API
http://www.ihtsdo.org/snomed-ct
http://data.bioontology.org/documentation
https://en.wikipedia.org/wiki/MedlinePlus
https://ocw.mit.edu/
https://ocw.mit.edu/
https://pypi.org/project/moviepy/
https://cloud.google.com/natural-language/docs/reference/rest/
https://www.convertapi.com/pdf-to-txt)
https://www.convertapi.com/pdf-to-txt)
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XXV. TextRazor combine state-of-the-art natural language processing techniques with a comprehensive
knowledge base of real-life facts to help rapidly extract named entities from documents, tweets, or
web pages (link:https://www.textrazor.com/).

XXVI. Babelfy is a unified graph-based approach to multilingual Entity Linking and Word Sense Disam-
biguation (link:http://babelfy.org/)

XXVII. Google Cloud Speech API provides natural language functionalities including named entity linking
(link:https://cloud.google.com/speech-to-text/)

XXVIII. The International Standard Classification of Education provides a comprehensive framework for
organising education programmes and qualification by applying uniform and internationally agreed
definitions to facilitate comparisons of education systems across countries.The is available at this
(link : http://uis.unesco.org/en/topic/international-standard-classification-education-isced)

https://www.textrazor.com/
http://babelfy.org/
https://cloud.google.com/speech-to-text/
http://uis.unesco.org/en/topic/international-standard-classification-education-isced
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Appendix A

Background knowledge

Semantic web basics

Knowledge base

A knowledge base (KB) is a technology used to store complex structured and unstruc-
tured information used by a computer system, that employs Resource Description
Framework (RDF) data model to represent knowledge in a machine-readable way.
RDF stores data in triples composed by a subject, a predicate and an object. Subject
and predicate are URIs, while object be either an URI or plain text. An Uniform
Resource Identifier (URI) is a string of characters that uniquely identify a name or
a resource on the internet; Uniform Resource Locator (URL) is a type of URI that
specifies not only a resource, but how to reach it on the internet.

To clarify RDF format, some examples of triples related to Wikidata knowledge
base are presented below:

1. wd : Q16559571 wdt : P31 wd : Q5

2. wd : Q16559571 r d f s : l a b e l " G i o r g i o Mon tan in i "@en

3. wd : Q5 r d f s : l a b e l " human "@en

4. wdt : P31 r d f s : l a b e l " i n s t a n c e o f "@en

The 4 triples mean that Giorgio Montanini is a human.
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They use the following list of prexifes:

• wd prefix is the shortening of < h t t p : / /www. w i k i d a t a . o rg / e n t i t y / >

that denotes Wikidata subject or objects referenced by URIs

• wdt is the shortening of < h t t p : / /www. w i k i d a t a . o rg / prop / d i r e c t / >

that denotes Wikidata predicates

• r d f s is the shortening of< h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / r d f =schema #>

that denotes the label related to the given subject.

@en su�x indicates that the label is in English.

Wikidata

Wikidata is a free and open knowledge base including structured content derived
from Wikipedia (link:https://www.wikidata.org/wiki/Wikidata:Main_Page).

A Wikidata entity refers to a subject or an object identified by an URI; a Wikidata
property refers to a predicate. Each Wikidata entity or property is associated to a
web page.

A peculiar feature of Wikidata is the orderly and unambiguous organization of
content; this allows to derive parental relationships between entities through the
following predicates:

• http://www.wikidata.org/prop/direct/P31 (instance of )

• http://www.wikidata.org/prop/direct/P279 (class of )

• http://www.wikidata.org/prop/direct/P361 (part of )

Named entity recognition and linking

A named entity is a real-world object, such as a person, location, organization,
product, etc., that can be denoted with a proper name [229]. Named entity recognition
is a subtask of information extraction that seeks to locate and classify named entities
mentioned in unstructured text into pre-defined categories such as person names,

https://www.wikidata.org/wiki/Wikidata:Main_Page
http://www.wikidata.org/prop/direct/P31
http://www.wikidata.org/prop/direct/P279
http://www.wikidata.org/prop/direct/P361
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organizations, locations, medical codes, time expressions, quantities, monetary
values, percentages, etc. [228]. Named entity linking is the task of assigning a unique
identity to entities mentioned in text [104]; most of the cases they are linked to a
knowledge base.

Evaluation metrics

This section provides a formal definition of the evaluation metrics employed in the
dissertation.

Classification evaluation metrics

The metrics used to evaluate the classification are Precision, Recall, F1-Score,
Accuracy and Balanced Accuracy, that rely on the concepts of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN). The terms positive
and negative refer to the classifier’s prediction ( the expectation), and the terms
true and false refer to whether that prediction corresponds to the ground truth (the
observation).

Precision

Precision is the fraction of relevant instances among the retrieved instances and it is
defined by the following formula:

Precision =
T P

T P+FP

Recall

Recall (also known as sensitivity) is the fraction of relevant instances that were
retrieved and it is defined by the following formula:

Recall =
T P

T P+FN
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F1-Score

F1-Score is the harmonic mean of precision and recall:

F1S core =
Precision ·Recall

Precision+Precision

Accuracy

Accuracy is the proportion of correct predictions among the total number of cases
examined

Accuracy =
T P+T N

T P+T N +FP+FN
Accuracy can be a misleading metric for imbalanced data sets.

Balanced Accuracy

Balanced accuracy [243] can serve as an overall performance metric for a model. It
is especially useful when the classes are imbalanced since it rewards the predictions
made for the samples belonging to the minority class whereas penalizes those made
for the samples of the majority class.

Balanced Accuracy =
1
2

(
T P

T P+FP
+

T N
T N +FN

)

Retrieval evaluation metrics

The metrics utilized to evaluate retrieval task are Precision at k (P@k), Recall at
k (R@k)and Mean Average Precision (MAP). While MAP is computed using the
entire list of returned resources sorted by similarity score, P@k and R@k cuto↵ the
list at the k entity.

Precision at k

Precision at k = P@k =
recommended items at k that are relevant

number o f recommended items at k
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Recall at k

Recall at k = R@k =
recommended items at k that are relevant

total number o f relevant items

Mean Average Precision

The Mean Average Precision (MAP) is defined in [250]. Given an input query, the
Average Precision (AP) is computed as follows:

AP =
Pk=1

n (P(k)⇥ rel(k))
num. o f retrieved relevant resources

where P(k) is the precision at k, whereas rel(k) is an indicator function that takes
value one if the retrieved resource at rank k is relevant, zero otherwise.

The MAP score is the average AP over all the performed queries.

Shapley Additive Explanations

Shapley Additive Explanations (SHAP), is a method for the interpretation of predic-
tions of ML models through Shapely values. SHAP values are based on game theory
where the “game” is reproducing the outcome of the model and the “players” are the
features ~f included in the model; to determine the importance of a single feature/-
player the outcome of each possible combination (or coalition) of features/players
should be considered. SHAP requires to train a distinct predictive model for each

distinct coalition, i.e. 2
���� ~f

���� models.

The SHAP value S HAP( f1) of a feature f1 corresponds to the weighted sum
of its "marginal contributions" in the various models in which it is employed. The
marginal contribution of a feature f1 for a model M1 starting from a model M2 in
which are present all the features of M1 except f1 corresponds to the di↵erence of
the prediction scores between M1 and M2; it represents the e↵ect of that additional
feature on the outcome.

SHAP values are determined for each data sample (one game:one observation),
hence they o↵er local explainability; to estimate the global explainability (i.e.,
over all data) of a feature f1, mean of absolute shap values is taken into account:
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PN
j=1kS HAP j( f1))k

N where N is the total number of samples and S HAP j( f1) corresponds
to the SHAP value of feature f1 on the jth data sample.
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Educational content presented in
BookToYout

Each educational topic in BookToYout corresponds to a chapter in an instructional
book. The complete list of chapter titles is given here:

• Elementary Graph Algorithms

• Medians And Order Statistics

• Adding Jtextfields And Jbut-
tons To A Jframe

• Boosting

• B-trees

• Steady-state Errors

• Transient Response Via Gain
Adjustment

• Running A Java Application
And Correcting Logic Errors

• Steady-state Error For Systems
In State Space

• The Weak Law Of Large Num-
bers

• Implementing Tf-idf

• Using Views To Simplify
Queries

• Inferencing In The Good Rela-
tions Ontology

• Improving Performance When
Updating Large Tables

• Inference In The Semantic Web

• Specifying The Exceptions
That A Method Can Throw

• Working With Cbow Embed-
dings

• Implementing An Lstm Model

• List Of Symbols

• Markov Models

• Training A Siamese Similarity
Measure

• Conditioning

• Installation And Setup

• Multithreaded Algorithms

• All-pairs Shortest Paths

• Total Probability Theorem And
Bayes’ Rule

• Blank Nodes

• The Em Algorithm In General

• The Control Systems Engineer

• Linear Algebra

• Creating And Using Packages

• Software Development Tools

• Distributing Data Across The
Web

• Creating A Table

• Convolutional Neural Net-
works

• Writing Fast Numpy Functions
With Numba

• Explore The Data

• Understanding Computer Files

• The Continuous Bayes’ Rule

• Analysis And Design Of Feed-
back Systems

• Where Are The Smarts?

• Distributing Tensorflow Across
Devices And Servers

• Clustering Using K-means

• Hidden Markov Models

• Greedy Algorithms

• Learning The Tensorflow Way
Of Linear Regression

• Gain Margin And Phase Mar-
gin Via The Nyquist Diagram

• The Z-transform

• Symbolic Di↵erentiation

• Structured And Record Arrays
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• Implementing A One-layer
Neural Network

• Block Diagrams

• Set Complement

• Linear Programming

• Moving Window Functions

• Using Null To Find Rows With
Missing Values

• Derived Distributions

• Expressivity In Modeling

• Overriding Superclass Meth-
ods

• Decision Theory

• Advanced Array Input And
Output

• Probabilistic Models

• Movielens 1m Dataset

• Understanding Composition
And Nested Classes

• Interfacing Between Pandas
And Model Code

• Growth Of Functions

• Understanding Javafx Struc-
ture: Stage

• Scene

• Panes

• And Widgets

• Binary Hypothesis Testing

• Higher-order Relationships

• Maximum Margin Classifiers

• Analysis And Design Objec-
tives

• Rdf As A Tell-and-ask System

• Approximation Algorithms

• Bayesian Inference And The
Posterior Distribution

• Quicksort

• Using Shortcut Arithmetic Op-
erators

• Hopfield Networks

• Exponential Family Distribu-
tions

• Writing Records To A Random
Access Data File

• Data Aggregation

• Forward-mode Autodi↵

• Functions Of Random Vari-
ables

• Limitations Of Fixed Basis
Functions

• Implementing A Simpler Cnn

• Modeling For Human Commu-
nication

• Prerequisites

• Manual Di↵erentiation

• Basic Sampling Algorithms

• Working With A Genetic Algo-
rithm

• Working With A Linear Svm

• Classification Of States

• The Machine Learning Land-
scape


