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Abstract 

This paper aimed at the development of a phenomenological model of the fate of 

coal/ash particles in entrained-flow slagging coal gasifiers, which considers the 

establishment of a particle segregated phase in the near-wall region of the gasifier. 

In particular, near-wall phenomena were investigated and mechanistic 

understanding of particle–wall interaction patterns in entrained-flow gasifiers was 

pursued using the tool of physical modeling. Montan wax was used to mimic, at 

atmospheric conditions, particle-wall interactions relevant in entrained-flow 

gasifiers. As a matter of fact, this wax had rheological/mechanical properties 

resembling under molten state, those of a typical coal slag and, under solid state, 

those of char particles. Experiments have been carried out in a lab-scale cold 

entrained-flow reactor, equipped with a nozzle whence molten wax atomized into a 

mainstream of air to simulate the near-wall fate of char/ash particles in a real hot 

environment. The four particle-wall interaction regimes were investigated. The 

partitioning of the wax droplets/particles into the different phases was 

characterized by their selective collection at the reactor exhaust. Results showed 

that the particle wall interaction mechanisms and segregation patterns are deeply 

affected by the stickiness of both the wall layer and the impinging particle. In 

particular, the micromechanical interaction of a particle with a sticky wall enhances 

particle transport to the wall and the tendency to reach a segregation coverage 

regime with the formation of a dense-dispersed phase in the near-wall region of the 

reactor. Furthermore, increasing the mainstream air flow rate induces particle 

segregation and accumulation phenomena. 

 

1. Introduction 

The slagging conditions establishing during combustion/gasification of solid fuels 

play a key role in the design of modern entrained-flow reactors. The residence time 

in these processes is short (a few seconds), hence, high temperatures are required to 

ensure a good conversion; for this reason, almost all the entrained-flow gasifiers 

operate in the slagging mode. These operating temperatures ensure the destruction 
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of tars and oils and, if the gasifier is appropriately designed and operated, a very 

high carbon conversion may be reached [1].  

The slagging behavior of ash plays a key role in the performance of entrained-flow 

gasifiers. At temperatures above the ash-softening point, the ash becomes sticky 

and agglomerates, causing blockage of the beds or fouling of the heat exchange 

equipment. Once above the slagging temperature (about 1300-1500°C), ash has a 

fully liquid behavior with a relatively low viscosity, hence, it is possible to remove 

it from the system. Entrained-flow gasifiers have become the preferred technology 

for hard coals, and have been selected for the majority of commercial-sized IGCC 

applications. One advantage of a slagging reactor over a non-slagging combustor is 

the fact that the collected slag has in general a higher economic value compared 

with the bottom ash, because of its longer durability and resistance to surface wear. 

In addition, the slag layer results in a molten protective coating and reduces the 

heat loss to the wall, generally increasing the cold gas efficiency of the gasifier [2]. 

However, the increasing slag layer can bring about gasifier plugging, and the slag 

deposition on the wall membrane reduces the overall heat-transfer coefficient. The 

molten ash flows through the bottom of the gasifier and is quenched in a water bath 

[3]. The collected slag may have a relatively large content of unburned carbon. The 

presence of unburned carbon is a result of the incomplete gasification of the coal, 

which is the major determinant of the gasification efficiency in entrained-flow 

processes. The carbon content in fine and coarse slags can reach 60% and 30–35% 

respectively [4], and this is a crucial key also in coal gasification modeling. Char 

and ash particle deposition flux depends on the flow field and char trajectories, 

wall temperature, as well as on char properties such as carbon conversion, ash 

composition, particle diameter and velocity. Furthermore, the extent of coverage of 

the slag layer by carbon particles must also be taken into account given the 

relevance of the stiffness and surface roughness to the micromechanics of a particle 

impinging a refractory wall, a layer of adhered particles, or a layer of molten slag. 

The extent of surface coverage by carbon particles is governed by carbon 

impingement on the slag layer, convective transport of flowing slag, and 

gasification of carbon deposited on the slag. Different near-wall carbon-slag 

segregation regimes (entrapment, segregation, segregation coverage) can occur 

[5], as a function of the reactor axial coordinate and of the progress of XC. Also 

local hydrodynamic conditions influence the particle–wall interaction and, thus, the 

extent of carbon coverage onto the slag layer. Micromechanical interaction patterns 

and local hydrodynamics can determine the contributions of ash and slag within the 

gasifier. Particle–wall interaction occurs according to different micromechanical 

patterns, which depend on parameters such as particle and wall temperatures, 

solid/molten status of the particles and wall layer, char conversion degree, particle 

kinetic energy, surface tension of the slag layer, particle effective stiffness and 

char/slag interfacial tension. Char–slag interaction patterns are hereby classified on 

the basis of the stickiness degree of the wall layer and of the impinging char 

particle: 
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 the material laying on the wall (prevailingly, inorganic ash) is sticky when the 

wall temperature is high enough to ensure an ash molten status, generating a 

liquid slag layer. An additional condition for the slag layer to be sticky is that it 

must not be extensively covered by non sticky char particles;  

 the char particle is sticky when its temperature is beyond the ash melting point, 

and its carbon conversion degree is beyond a given threshold value, as the 

plastic behaviour is emphasized when the carbon content, which is inherently 

refractory, is reduced. 

On the basis of this classification, four interaction scenarios establishing during EF 

gasification can be considered, namely: (i) non sticky char/ash particle impinging 

on a molten-slag-covered sticky wall (NSP–SW); (ii) non sticky char/ash particles 

impinging on a non sticky wall (NSP–NSW); (iii) molten, i.e. sticky, ash particles 

impinging on a non sticky wall (SP–NSW); (iv) molten sticky ash particles 

impinging on a sticky wall (SP–SW). 

This study aims at investigating  near-wall particle segregation by using a lab-scale 

cold entrained-flow reactor. The cold flow model reactor ensures the formation of a 

dispersed phase and a near-wall layer to reproduce and characterize the four 

micromechanical interaction patterns.  

 

2. Experimental 

A lab-scale cold flow model reactor has been designed and set up, aiming at 

reproducing the basic general features of the interaction between a lean-dispersed 

particle/droplet phase and a confining wall. The model reactor is outlined in Fig. 1.  

 

 
Figure 1. Experimental apparatus. 

 

The plastic/fluid behaviour of softened or molten ash and of the wall slag layer has 

been simulated, at nearly ambient conditions, by molten wax as a surrogate of fuel 

ash. Waradur E
TM

 (Völpker Spezialprodukte, Germany) was selected, as the 

rheological/mechanical properties of this wax (a refined material made from black 
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raw montan wax) resembled those of a typical coal slag [6,7]. Wax properties are 

such that the entrapment and over-layering criteria are not satisfied, and the 

segregation or segregation–coverage regimes are likely to be established, as 

expected for realistic particle–slag interaction in entrained-flow gasifiers [5]. 

Moreover, mechanical properties of solid wax well agree with data for coal/char, 

confirming the suitability of this wax to mimic also the char behavior [8]. Details 

on the experimental apparatus and operation are described elsewhere [7]. 

In order to correctly operate the lab-scale reactor, three different temperatures have 

to be taken in account: the atomization temperature (Ta), i.e. the nozzle exit 

temperature, the main stream temperature, the wall temperature. Tuning these three 

temperatures, it is possible to obtain the different interaction regimes. Experimental 

tests aimed at characterizing the phenomenology of the interaction between the 

dispersed phase generated by the spray and the reactor walls. The operating 

conditions were selected so as to reproduce the four possible regimes (SW–SP, 

NSW–NSP, NSW–SP, SW–NSP), and are listed in Table 1. The values of Qa 

complied with the nozzle constraints and assured good wax atomization in terms of 

size and dispersion of droplets for all the investigated regimes. 

 

Table 1. Main reactor design and operating parameters. 
 SW–SP NSW–NSP NSW–SP SW–NSP 

Reactor internal diameter 

D [m] 
0.1 0.1 0.1 0.1 

Reactor length L [m] 0.1 0.6 0.1 0.45 0.1 0.6 0.15 0.6 

Atomization temperature 

Ta [°C] 
110 100 120 100 

Mainstream temperature 

Tms [°C] 
160 30 90 30 

Wall temperature Tw [°C] 140 30 30 110 190 

Wax feeding rate  

(z=0) [g s
–1

] 
0.6 0.2 0.3 1 0.2 0.3 

Flow rate of mainstream 

air Qms [m
3
 h

–1
 at 273 K] 

1 5 1 20 1 10 2 10 

Flow rate of atomization 

air Qa [m
3
 h

–1
 at 273 K] 

0.275 0.275 0.8 0.275 0.5 

 

The reactor length L was varied to study the influence of the distance from the 

injection nozzle on the fractional mass of wax transferred form the lean-dispersed 

phase to the wall layer. Reactor ducts of different lengths were used for this 

purpose. Partitioning measurements of the atomized wax between the dispersed 
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and the wall phases were quantitatively assessed. To accomplish this task, the 

reactor was equipped with a system (consisting by a vacuum flask, a trap, a filter 

and a pump) for the two phases wax collection at the bottom of the Pyrex tube. The 

mass flow rates in the dispersed phase and in the wall layer phase were obtained by 

dividing the amounts of wax cumulatively collected by the duration of the test. 

 

3. Results and Discussion 

In the following figures, the experimental data are reported as average values of 

multiple tests (symbols), together with error bars corresponding to the standard 

deviation. The effect of the mainstream air flow rate (Qms) on the partitioning of 

wax is reported and discussed. The partitioning of the atomized wax between the 

dispersed and the wall phases as a function of the distance from the nozzle is 

reported in Fig. 2a) for all the interaction regimes, at fixed Qms (1 m
3
 h

–1
 for SW-

SP, NSW SP and NSW NSP regimes, 2 m
3
 h

–1
 for the SW NSP regime). y

lean
 

reaches maximum values for the NSW NSP regime, minimum values for the 

SW SP regime, while its values in the SW NSP regime lie between those for the 

NSW NSP and NSW SP regimes, as expected. As a matter of fact, the interaction 

of a non sticky particle with a liquid layer can lead to segregation and 

segregation coverage regimes. Therefore, the fractional content of wax in the lean-

dispersed phase is lower than that obtained in the NSW NSP regime. On the other 

hand, the interaction of the particles with the liquid layer and with other particles 

makes the fractional content of wax in the lean phase larger than that obtained for 

the NSW SP and SW SP regimes, for which the main interaction pattern is the 

deposition. Figure 2b) reports the partitioning of the atomized wax between the 

dispersed and the wall phases, as a function of the distance from the nozzle for the 

NSW SP, NSW NSP and SW NSP regimes, at fixed =10 m
3
 h

–1
. The values of  

y
lean

 are lower for all the investigated regimes (compared to the results shown in 

Fig. 2a)). Data points obtained in the SW NSP regime are very close to those 

obtained in the NSW SP regime.  

On the whole, it is possible to conclude that sticky particles mainly adhere on the 

wall surface, regardless the stickiness of the wall, whereas non sticky particles may 

rebound, deposit, segregate and be resuspended into the main gaseous flow. As 

regards the interaction of non sticky particles with a sticky wall, the partitioning 

results lie between those obtained for the other regimes, indicating that a dense-

dispersed phase in the near-wall region of the reactor may establish. Larger 

mainstream air flow rates reduce the fractional content of wax in the dispersed 

phase, enhancing particle deposition/segregation phenomena in the NSW NSP 

regime, and less markedly in the SW NSP regime. This result was explained by 

considering the interaction between the mainstream flow and the oblique stagnation 

flow typical of the outer jet. Increasing the mainstream rate moderates the 

stagnation effects and suppresses the local turbulence, which is largely responsible 

for particle resuspension and rebound, thus favoring the stratification and 

segregation of particles in the near-wall region of the duct. 
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Figure 2. Partitioning of wax for all the interaction regimes. a) Qms=1 2 m

3
 h

1
; b) 

Qms=10 m
3
 h

1
. The limiting curves representing the NSW–NSP and the SW–SP 

regimes are plotted as a reference. 
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