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Abstract

In the present study we have extended our previous findings about the effects of

10 minutes of passive mandibular extension in anesthetized Wistar rats. By

prolonging the observation time to 3 hours, we showed that 10 minutes mandibular

extension caused a significant reduction of the mean arterial blood pressure and

heart rate respect to baseline values, which persisted up to 160 minutes after

mandibular extension. These effects were accompanied by a characteristic

biphasic response of pial arterioles: during mandibular extension, pial arterioles

constricted and after mandibular extension dilated for the whole observation period.

Interestingly, the administration of the opioid receptor antagonist naloxone

abolished the vasoconstriction observed during mandibular extension, while the

administration of Nv-Nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor,

abolished the vasodilation observed after mandibular extension. Either drug did not

affect the reduction of mean arterial blood pressure and heart rate induced by

mandibular extension. By qRT-PCR, we also showed that neuronal nitric oxide

synthase gene expression was significantly increased compared with baseline

conditions during and after mandibular extension and endothelial nitric oxide

synthase gene expression markedly increased at 2 hours after mandibular

extension. Finally, western blotting detected a significant increase in neuronal and

endothelial nitric oxide synthase protein expression. In conclusion mandibular

extension caused complex effects on pial microcirculation involving opioid receptor

activation and nitric oxide release by both neurons and endothelial vascular cells at

different times.
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Introduction

In a previous study we reported that young normal volunteers subjected to a

submaximal passive mandibular extension (ME), obtained by means of a dilator

applied for 10 minutes between the upper and lower incisor teeth, showed a

prolonged reduction in blood pressure (by 12–11 mmHg) and heart rate (by

about 13 bpm). These effects appeared after 10 minutes ME and persisted for the

successive 80 minutes. It had been suggested that ME could stimulate the terminal

nerve branches triggering these responses [1]. This suggestion has been supported

by experimental and clinical observations over the last 20 years which have

demonstrated that the facial area is an important source of powerful autonomic

reflexes that involve different systems including the cardiovascular system. For

example, the stimulation of trigeminal receptors innervating the nose and the

nasal passages was found to provide an important drive for the initiation of the

trigeminocardiac reflex (TCR). TCR causes changes in systemic blood pressure,

heart rate and, in some cases, gastric hypermotility [2–8].

A procedure as simple as ME, therefore, by causing important cardiovascular

effects by trigeminal nerve stimulation, could have significant applications,

especially in the control of systemic pressure.

Studies in experimental models have shown that TCR not only determines

cardiovascular changes, but also influences the cerebral circulation [9], [10]. The

systemic pressure and the cerebral circulation are closely related, because the

cerebral microcirculation tends to self-adjust in order to preserve the brain from

changes in blood flow during variations of systemic blood pressure. In a previous

study on the effects of ME in rats [11], we have demonstrated that animals

submitted to 10 minutes ME exhibited a reduction in the mean arterial blood

pressure (MABP) and heart rate (HR) following the stimulation of the peripheral

branches of the trigeminal nerve. When this nerve was cut the effects on MABP

and HR disappeared. The hypotensive and bradicardic actions persisted for

80 minutes after 10 minutes ME in line with the observations carried out in

humans [1]. Furthermore, in cerebral microcirculation, the pial arteriolar

diameter significantly decreased during ME; after ME a vasodilation occurred

which persisted for an observation period of 80 minutes. Therefore, ME appears

to cause a hypotensive response and a specific regulation of pial microcirculation,

but the underlying molecular mechanisms are still unknown.

The aim of the present study was to prolong the observation time after ME in

order to establish the duration of the hypotensive and bradicardic effects and to

evaluate the molecular mechanisms involved in the regulation of pial

microcirculation.

In particular, we assessed the role of nitric oxide (NO) because it is widely

involved in cerebral blood flow regulation [12], [13]. NO production may be due

to the activation of endothelial cells, neurons or nitrergic perivascular nerves.

Endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) are involved

in constitutive basal and stimulated NO production, and inducible NO synthase

(iNOS) generates NO when induced by the inflammation [14], [15].
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Materials and Methods

Animals

Male Wistar rats weighing 250–300 g (Harlan, Udine, Italy) were used. The

animals were individually housed in stainless steel cages in a room with a natural

light–dark cycle and constant temperature (24¡1 C̊) with access to food and

water ad libitum.

This study was carried out in strict accordance with the recommendations in

the Guide for the Care and Use of Laboratory Animals of the National Institutes

of Health. The protocol was approved by the Committee on the Ethics of Animal

Experiments of the University of Pisa (Permit Number: 001 4896/2013). All

surgery was performed under alpha-chloralose and urethane anesthesia, and all

efforts were made to minimize suffering.

Drugs

Unless otherwise stated, all chemicals and reagents were obtained from Sigma-

Aldrich (St. Louis, MO, USA). Primers for qRT-PCR were obtained from MWG

(Ebersberg, Germany).

Fluorescein isothiocyanate (FITC) bound to dextran (molecular weight

70 KDa), 50 mg/100 g body weight (b.w.) was dissolved in 0.5 ml of saline

solution for intravenous administration.

Nv-Nitro-L-arginine methyl ester (L-NAME), 10 mg/Kg b.w., was dissolved in

0.3 ml of saline solution for intravenous infusion (for 3 minutes, 10 minutes

before ME). For local application on the parietal cortex (for 10 minutes,

10 minutes before ME), 10 mg/Kg b.w. L-NAME were dissolved in 1 ml of

artificial cerebrospinal fluid (aCSF in mM: KCl 2.5, MgCl2 1.4, CaCl2 2.5, NaCl

119.0, NaHCO3 26.2, urea 6.7 and glucose 11.0).

Naloxone solutions were obtained dissolving 40 mg/Kg b.w. in 0.3 ml of saline

solution and intravenously infused (for 3 minutes, 10 minutes before ME) [16].

Animal preparation

The rats were anesthetized with intraperitoneal injection of alpha-chloralose

(50 mg/Kg b.w.) plus urethane (600 mg/Kg b.w.) for induction and with urethane

alone (100 mg/kg, i.v., every hour) for maintenance. They were tracheotomized,

intubated and mechanically ventilated with room air and a supplemental mixture

of O2/CO2 (end-tidal CO2 was continuously measured by a CO2 analyzer and a

respirator was adjusted to maintain end-tidal CO2 from 4.5 to 5.0% and to keep

arterial blood gas tension within the normal range).

A catheter was placed in the left femoral artery which permitted to measure the

arterial blood pressure. Another catheter was placed in the right femoral vein and

used for the injection of the fluorescent tracer (FITC), about every 120 minutes

during the whole experiment, and of urethane, about every 60 minutes.

Rectal temperature was monitored and maintained at 37.0¡0.5 C̊ with a

heating stereotaxic frame, where the rats were secured.
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To observe the pial microcirculation, a closed cranial window (465 mm) was

implanted above the left parietal cortex (posterior 1.5 mm to bregma; lateral,

3 mm to the midline) [17]. To prevent overheating of the cerebral cortex during

drilling, cold saline solution was suffused on the skull. The dura mater was gently

removed and a 150 mm-thick quartz microscope coverglass was sealed to the bone

with dental cement. The window inflow and outflow were assured by two needles

secured in the dental cement of the window so that the brain parenchyma was

continuously superfused with aCSF. The rate of superfusion was 0.5 mL/min

controlled by a peristaltic pump. During superfusion the intracranial pressure was

maintained at 5¡1 mmHg and measured by a pressure transducer connected to a

computer.

Throughout all experiments the values of mean arterial blood pressure (MABP)

and heart rate (HR) were continuously recorded. The diameter changes of pial

arterioles were monitored for 1 minute every 5 minutes. MABP was recorded

with a Viggo-Spectramed P10E2 transducer (Oxnard, CA, USA) connected to the

catheter in the femoral artery and HR was monitored with a Gould Windograf

recorder (model 13-6615-10S, Gould, OH, USA). Data were recorded and stored

in a computer for off-line analyses.

Figs. 1A, 1B and 1C report the different experimental protocols used to analyze

the effects of a single ME (see below) on MABP, HR and the pial arteriolar

diameter. Fig. 1D describes the experimental procedures carried out on rats whose

brain were used in qRT-PCR and western blotting assays (see below).

The protocol in Fig. 1A permitted the evaluation of the effects of ME of

different durations (5–15 minutes). Fig. 1B reports the protocol used to study the

effects of L-NAME and naloxone intravenously administered. Control rats

underwent the injection of saline solution and ME, or only the injection of L-

NAME or naloxone. The protocol in Fig. 1C permitted studying the effects of the

local application of L-NAME with or without ME.

In rats not subjected to ME [sham-operated (SO) rats], all parameters were

monitored and recorded for 210 minutes.

Baseline measurements were obtained prior to ME (mean of 3 measurements at

5 minute intervals over 15 minutes) and were defined as baseline values (B in the

Figures). Post-treatment measurements (AFTER ME in the Figures) were

obtained immediately after ME (or, in the SO rats, 20 minutes after baseline

observations) and were continued every 10 minutes for further 180 minutes.

Mandibular extension

Mandibular extension (ME) was induced by a home-made U-shaped spring

device placed between the two dental arches (superior and inferior) of the rat.

The spring device, appropriately designed for rats, consisted of two thin layers

covered with a silicone elastomer (Sylgard, Dow Corning, Midland, MI) coupled

to an adjustable spring.

The degree of ME was set at the upper limit of the opening of the mouth to

avoid any muscle fatigue. Muscle fatigue was assessed in pilot experiments where
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Fig. 1. Outline of the different protocols used. (A) After 15 minutes of observation in baseline conditions, 5
or 10 or 15 minutes ME were performed and after removing ME post treatment measurements were carried
out for 180 minutes. At the start of the experiment and about 100 minutes later, the fluorescent tracer was
infused by the catheter placed in the right femoral vein. (B) After the 15 minutes baseline observation, L-
NAME or naloxone or saline were i.v. infused by the catheter placed in the right femoral vein for 3 minutes.
Then, after further 10 minutes in which the animal was kept in baseline conditions, ME was applied for
10 minutes. Afterwards post treatment measurements were carried out for 180 minutes. The FITC has been
infused as in A. (C) 15 minutes of baseline observation were followed by a perfusion of L-NAME for
10 minutes in the cranial window open on the parietal region. Then, 10 minutes ME was performed followed
by post treatment measurements for 180 minutes. The FITC has been infused as in A. (D) All animals were
subjected to 15 minutes baseline observation and 10 minutes ME. At the end of the baseline period 3 rats
were sacrificed for qRT-PCR and 3 rats for Western Blotting assays (Basal in Fig. 6D, 6E). Immediately after
removing ME, 3 rats were sacrificed for qRT-PCR. Post treatment measurements were continued, and after
1 hour, 3 rats were sacrificed for qRT-PCR assay, after 2 hours 3 rats were sacrificed for qRT-PCR assay and
3 rats for Western Blotting assay, and after 3 hours further 3 rats were sacrificed for qRT-PCR assay. FITC
was initially infused in all animals and every 100 minutes in the animals observed for prolonged times.

doi:10.1371/journal.pone.0115767.g001
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the rats were subjected to different degrees of opening of the mouth; the tension of

the masseter and anterior temporal muscles was evaluated by electromyography

[18].

Fluorescent microscopy technique and microvascular parameter

assessment

Pial microcirculation was visualized with a fluorescence microscope (Leitz

Orthoplan) fitted with long-distance objectives 2.5 x, numerical aperture (NA)

0.08, 10 x, NA 0.20, 20 x, NA 0.25, 32 x, NA 0.40, and a 10 x eyepiece and a filter

block (Ploemopak, Leitz). Epi-illumination was provided by a 100 W mercury

lamp using the appropriate filter for FITC and a heat filter (Leitz KG1). Pial

microcirculation was televised with a DAGE MTI 300RC low-light level digital

camera (2.1 megapixel) and recorded by a computer based frame grabber

(Pinnacle DC 10 plus, Avid Technology, MA, USA).

Video images were videotaped and microvascular measurements (diameter and

length) were made off-line using a computer-assisted imaging software system

(MIP Image, CNR, Institute of Clinical Physiology, Pisa, Italy). The results of

diameter measurements were in accordance with those obtained by the shearing

method (¡0.5 mm). To avoid bias due to single operator measurements, two

independent ‘‘blinded’’ operators measured the vessel diameters. Their measure-

ments overlapped in all cases.

The arteriolar network was mapped by stop-frame images and pial arterioles

were classified according to a centripetal ordering scheme (Strahler method,

modified according to diameter) [19]. Order 0 was assigned to capillaries; order 1

to terminal arterioles and progressively higher orders to the vessels upstream.

When two vessels of the same order joined, the parent vessel was assigned the next

higher order. If two daughter vessels were of different orders, the parent vessel

retained the higher of the two orders. The procedure of the pial arterioles

classification was previously reported [20]. Arteriolar diameters and capillary red

blood cell (RBC) velocity were measured with a computer-assisted method (frame

by frame) in an area of 7506750 mm and expressed as mm/s.

In each animal one order 5, one order 4, two order 3 and four order 2 arterioles

were studied during each experiment. We chose to present only the data regarding

order 2 vessels, the most numerous arterioles in each preparation.

Quantitative real-time RT-PCR (qRT-PCR real time)

Parietal cortex was dissected from rats sacrificed during the baseline observation

period or immediately after the end of 10 minutes ME, or 1, 2 or 3 hours after ME

according to the protocol shown in Fig. 1D (see above). The brain samples were

frozen in liquid nitrogen and stored at 280 C̊. Total RNA was extracted from

three samples for each experimental condition using ClCs gradient in accordance

with Chirgwin et al. [21]. The purified RNA was suspended in RNase-free water,

quantified spectrophotometrically (SmartSpec 3000; Bio-Rad, Hercules, CA,
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USA), treated with Amplification Grade DNase I (Sigma-Aldrich) and reverse-

transcribed into cDNA (500 ng to sample) by using iScript cDNA synthesis kit

(BioRad, Hercules, CA, USA).

Quantitative real-time PCR (qRT-PCR) was performed with the SYBR Green

kit on the MiniOpticon Two-Color Real-time PCR detection system (Bio-Rad,

Hercules, CA, USA). The primer pairs used: nNOS, eNOS, iNOS and

glyceraldehyde 3-phosphate dehydrogenase (G3PDH) were designed using the

software Primer Express Software v3.0.1 (Applied Biosystems, Foster City, CA,

USA). The forward and reverse primers were chosen to hybridize a single specific

region of the appropriate gene sequence and are listed in Table 1.

For the PCR reaction 15 mL master-mix were prepared using 7.5 mL iQ Sybr

Green Supermix (200 mM dNTP, 5 mM MgCl2, 3.75 U iTaq DNA polymerase),

0.5 mg/ml cDNA, 300 nM of each primer and RNase-free H2O. Cycling conditions

included initial denaturation (3 minutes at 95 C̊), amplification, the quantifica-

tion program repeated 40 times (10 sec at 95 C̊, 60 sec at 57 C̊ with a single

fluorescent measurement at the end of each elongation step) and the dissociation

protocol (from 60 C̊ to 95 C̊ by 1 C̊ increments followed by a 30 sec hold and

fluorescent measurement).

According to the protocol indicated by Bio-Rad (Hercules, CA, USA), the

primers’ efficiency had been previously assessed (see Tab 1S). Each target gene

was loaded with G3PDH, used as the reference gene. Before using it, we tested the

transcriptional stability of G3PDH. In three biological replicates for each of which

we did three technical replicates, we evaluated the Ct value in samples from rats

sacrificed during the baseline condition, immediately after 10 minutes ME or 1, 2

or 3 hours after ME. The Ct values of G3PDH were comparable with each of the

genes we analyzed in this work and showed small changes in the various samples

(see Fig. S1 and Tab. S2 in S1 File).

The relative gene expression values (22DDCt) were calculated using G3PDH as

the endogenous reference gene and samples from rats sacrificed during the

baseline condition as the calibrator sample (control sample), following the

calculation described by Livak et al. [22]. This method assumes that gene is

amplified with an efficiency close to 100% and not less than 5%.

Western Blotting

Two hours after ME, 3 rats subjected to ME and 3 rats which had been subjected

only to 15 minutes baseline observation were sacrificed to obtain samples of

parietal cortex areas. The tissues were homogenized in 300 ml of lysis buffer

containing: 20 mM Hepes at pH 7.4, 1.0 mM NaN3, 1% Triton X, 0.2 mM

Na3VO4, 50 mM NaF, and also a protease/phosphatase inhibitors cocktail. The

homogenates obtained were centrifuged at 7.000 rpm for 40 minutes at 4 C̊, the

supernatant was collected and the protein concentration was determined using the

Lowry’s method.

Supernatant containing total proteins was quantified and 80 mg of each sample

were separated on 12% SDS–PAGE and transferred onto Hybond ECL

Trigeminal Nerve Stimulation Affects Rat Cerebral Microcirculation
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nitrocellulose membranes (Amersham Pharmacia Biotech, USA) by electroblot-

ting at 100 V for 60 minutes at 4 C̊ in transfer buffer (25 mM Tris-HCl, 192 mM

glycine, pH 8.3, 20% methanol). Subsequently, the membranes were subjected to

blocking for 60 minutes at room temperature in TBS (Tris Buffered Saline) 1X,

0.1% Tween 20, 5% non-fat dry milk (Bio-Rad, Hercules, CA, USA) and then

incubated overnight at 4 C̊ with the primary antibody polyclonal anti-eNOS

(Santa Cruz Biotechnology Inc., CA, USA) diluted 1:500 in 1X TBS, 0.1% Tween

20 and 3% non-fat dry milk. After 3 washes in 0.1%, TBS-Tween, the membranes

were incubated for 60 minutes at room temperature with the secondary antibody

anti-rabbit IgG labeled with horseradish peroxidase (Amersham Pharmacia

Biotech UK Limited), diluted 1:2000 in 1X TBS, 0.1% Tween 20 and 3% non-fat

dry milk. Finally other 3 washes were performed in 0.1% TBS-Tween.

The signals were detected by chemiluminescence with ECL (Amersham

Pharmacia Biotech UK Limited). The relative intensity of protein bands was

measured using the Molecular Imager Chemi-Doc imaging system (Bio-Rad,

Hercules, CA, USA) and evaluated by the Quantity One software (Bio-Rad,

Hercules, CA, USA).

The b-tubulin was used as an internal control and the optical density was

normalized vs control and reported in the form of Arbitrary Units (AU).

Statistical analysis

All data were expressed as mean ¡ S.E. Data were tested for normal distribution

with the Kolmogorov-Smirnov test. Due to the normality of distribution, one way

ANOVA for repeated measures was used for testing the changes in MABP, HR and

pial arterioles diameter. For post-hoc analysis, the Dunnett’s multiple comparison

test was done.

The significance of changes in capillary RBC velocity was evaluated by one way

ANOVA for repeated measures when three values needed to be compared or by

the paired t test when only two values were considered.

The increase or decrease of gene expression at different times after ME was

determined by comparing the target gene in rats sacrificed immediately after

10 minutes ME or 1, 2 or 3 hours after ME. and in control rats (sacrificed during

the baseline condition) with a one way ANOVA design after normalization to

G3PDH. All reactions were made in triplicate and data were plotted in histograms

as mean ¡ E.S.

Table 1. Primer sequences used in qRT-PCR assay.

Gene Primer Sequences Accession N˚
nNOS F:TCATCATCTCAGACCTGATTCGA R:TCTACCAAGGGGCGACCGT NM_052799.1

eNOS F:TGGATCTAGACACCCGGACAAC R:GTCACTTTGGCCAGCTGGTAA NM_021838.2

iNOS F:GAAAGCGGTGTTCTTTGCTTCT R:CGCTTCCGACTTTCCTGTCAA NM_012611.3

G3PDH F:GCTCTCTGCTCCTCCCTGTTC R:CGACCTTCACCATCTTGTCTATGA NM_017008.4

doi:10.1371/journal.pone.0115767.t001
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The unpaired t test was made to evaluate the significant differences in protein

expression.

The statistical analysis was carried out with SPSS Statistics 20 package.

Statistical significance was set at p,0.05.

Results

Effects of ME on mean arterial blood pressure (MABP), heart rate

(HR) and pial microcirculation

As previously shown [11], the cardiovascular response to ME consisted of an

initial gradual reduction of MABP and HR during ME that persisted after ME

(80 minutes) without recovering the initial value. We extended the observation

time after ME. Fig. 2A shows the MABP values. After 5 minutes ME, MABP

significantly declined from 109.90¡1.07 mmHg to 99.82¡3.06 mmHg imme-

diately after ME (One way ANOVA for repeated measures, F19.1195267.40,

p,0.0001, gp51, post hoc test p,0.01); afterwards it remained stably reduced

for about 90 minutes, and then gradually increased in the following 50 minutes

remaining however still significantly reduced compared to the baseline value up to

140 minutes (106.20¡0.52 mmHg, p,0.01). A similar response pattern was

found for HR (# in Fig. 2B). In fact, immediately after 5 minutes ME, HR

significantly decreased from 321.67¡3.82 bpm to 275.00¡2.50 bpm

(F19,1195401.20, p,0.0001, gp50.923, post hoc test p,0.01) and then remained

significantly reduced up to 140 minutes after ME (309.33¡2.52, p,0.01 vs

baseline value).

Rats subjected to 10 minutes ME presented, after ME, a significant reduction of

MABP which decreased from 113.94¡2.34 mmHg to 89.28¡1.87 mmHg

(F19.995214.00, p,0.0001, gp51, post hoc test p,0.01). MABP remained stably

reduced for about 130 minutes, and then steeply increased in the following

30 minutes, remaining however still significantly reduced compared to the

baseline value up to 160 minutes (111.4¡2.62 mmHg, p,0.01). A similar

response pattern was found for HR (N in Fig. 2B), which significantly diminished

from 321.67¡1.44 bpm to 252.00¡1 bpm immediately after ME (F19.995855.70,

p,0.0001, gp51, post hoc test p,0.01), and it persisted reduced up to

160 minutes after ME (at 160 minutes: 257.00¡0.50 bpm, p,0.01 vs baseline

value) and subsequently recovered the value observed in basal conditions.

Increasing the time duration of ME to 15 minutes, the same trend as after

10 minutes ME was observed: MABP and HR decreased from the baseline value of

112.95¡2.48 mmHg and 321.00¡1.87 bpm respectively, to 89.56¡1.71 mmHg

(F19.995215.40, p,0.0001, gp51, post hoc test p,0.01) and 260.91¡3.90 bpm

(F19.995214.00, gp51, p,0.0001, post hoc test p,0.01) respectively. Afterwards

both parameters persisted significantly reduced up to 160 minutes after ME

(p,0.01 vs baseline value).

No changes of MABP and HR were observed in control rats (SO), which were

only subjected to surgical procedures (& in Fig. 2A; Fig. 2B).
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Pial arterioles displayed a characteristic biphasic response, consisting in an

initial vasoconstriction during ME, followed by a prolonged dilatation after ME.

In particular order 2 arterioles during 5, 10 or 15 minutes ME, according to the

time-duration of ME, exhibited a significant diameter decrease respect to the

baseline value from 24.32¡1.25 mm to 22.48¡1.23 mm at the end of 5 minutes

Fig. 2. ME of different durations induced a reduction of MABP and HR. MABP(A) and HR (B) were
recorded before (B) and after ME. ME of different durations induced an immediate significant reduction of
MABP in comparison with the baseline value lasting for 140 minutes after 5 minutes ME (n55 rats, open
circle) and for 160 minutes after 10 or 15 minutes ME (n55 rats, filled circle and n55 rats, grey circle
respectively). In control rats (n55 rats, SO) MABP did not change for the whole observation period (filled
square). HR significantly decreased immediately after removing ME of different durations. After 5 minutes ME,
HR persisted significantly reduced up to 140 minutes (open circle), while after 10 (filled circle) or 15 minutes
(grey circle) ME, HR was significantly decreased up to 160 minutes. In SO rats (filled square), HR was
constant for the whole observation period. * Significantly different from the baseline value.

doi:10.1371/journal.pone.0115767.g002
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ME (F19.995107.80, p,0.0001; gp51, post hoc test, p,0.01; Fig. 3), from

23.99¡0.71 mm to 19.34¡1.24 mm at the end of 10 minutes ME (F19,995107.80,

p,0.0001; gp51, post hoc test, p,0.01; Fig. 3) and from 23.13¡0.83 mm to

17.95¡0.56 mm at the end of 15 minutes ME (F19.995265.40, p,0.0001; gp51

post hoc test, p,0.01; Fig. 3). The animals subjected to 5 minutes ME showed, up

to 40 minutes after ME, an increase of the arterioles diameter which then

gradually decreased in the following 30 minutes, until reaching the baseline value

(at 70 minutes: 25.74¡1.32 mm, p,0.01 vs baseline value). Rats subjected to 10

or 15 minutes ME presented a vasodilation which persisted for the whole

observation period after ME without achieving the baseline value (Fig. 3).

The vasoconstriction observed during 5, 10 or 15 minutes ME was

accompanied by a significant reduction of capillary RBC velocity

(0.12¡0.02 mm/s, F2.14569.06, p,0.0001; gp50.95, post hoc test, p,0.01;

0.15¡0.02 mm/s, F2.14568.77, p,0.0001; gp51, post hoc test, p,0.01; and

0.13¡0.04 mm/s, F2.14532.28, p,0.0001; gp51, post hoc test, p,0.05,

respectively) compared with the baseline values (0.19¡0.02 mm/s,

0.21¡0.01 mm/s and 0.20¡0.03 mm/s, respectively). After ME the capillary RBC

velocity increased, in particular in animals subjected to 5 minutes ME capillary

RBC velocity was 0.28¡0.02 mm/s up to 40 minutes after ME (p,0.01) and

afterwards recovered the baseline value. Rats subjected to 10 or 15 minutes ME

exhibited a capillary RBC velocity of 0.31¡0.03 mm/s (p,0.01) and

0.32¡0.03 mm/s (p,0.05), respectively for the whole observation period.

Fig. 3. ME of different durations caused a biphasic response in order 2 pial arterioles. The values of the
diameters of order 2 arterioles have been measured before and after ME. ME of different durations induced a
simultaneous vasoconstriction followed by a vasodilation persisting for 70 minutes after 5 minutes ME (open
circle) and for the whole after ME observation period (180 minutes) after 10 (filled circle) or 15 (grey circle)
minutes ME. No changes in diameter values have been detected in SO rats, (filled square). * Significantly
different from the baseline value.

doi:10.1371/journal.pone.0115767.g003
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Control rats (SO) did not exhibit any arteriolar diameter changes for the whole

observation period and the capillary RBC velocity was stably 0.21¡0.02 mm/s.

The inhibition of nociceptors modifies the pial arterioles response

during ME

The intravenous administration of naloxone 10 minutes before 10 minutes ME

did not affect the effects of ME on MABP and HR (Table 2), while it abolished the

vasoconstriction concomitant with ME. In particular, the order 2 vessels mean

diameter increased from 23.73¡0.77 mm (baseline value, B) to 26.73¡0.86 mm at

the end of ME (One way ANOVA for repeated measures, F19.119542.98,

p,0.0001, gp51, post hoc test, p,0.01 vs. baseline value; Fig. 4A). The

vasodilation lasted for the whole period after ME and was accompanied by a

significant increase of capillary RBC velocity (0.29¡0.01 mm/s, paired t test,

t57.086, df54, p50.0021) compared with the baseline value (0.20¡0.03 mm/s).

On the contrary, rats subjected to 10 minutes ME (Fig. 4A) and treated with

saline intravenously administered 10 minutes before 10 minutes ME (Fig. 4B)

exhibited the typical vasoconstriction followed by vasodilation accompanied by a

significant reduction of capillary RBC velocity (0.13¡0.02 mm/s, F2.14555.75,

p,0.0001; gp50.97, post hoc test, p,0.05) in comparison with the baseline value

(0.19¡0.02 mm/s) during vasoconstriction, while a significant increase of

capillary RBC velocity (0.30¡0.03 mm/s, p,0.05) occurred during vasodilation.

Also in these rats, the intravenous administration of saline did not affect the

effects of ME on MABP and HR (Table 2). Finally, animals treated with naloxone

alone did not exhibit changes in MABP, HR (Table 2) and in arteriolar diameter

(Fig. 4A), as was the case for the rats treated with saline alone (Table 2; Fig. 4B).

Nitric oxide synthase inhibition affects the ME-induced effects on

pial microcirculation

Local or intravenous administration of L-NAME for 10 minutes before

10 minutes ME did not affect the ME-induced response of MABP and HR

(Table 3; Table 4), while they completely abolished the prolonged pial arterioles

dilation observed after ME (Fig. 5A; Fig. 5B). In fact, after both L-NAME

treatments, pial arterioles remained constricted for the entire period after ME

without recovering the baseline value. The diameter of order 2 arterioles reduced

from 26.75¡1.06 mm to 22.60¡1.10 mm (One way ANOVA for repeated

measures, F19.79543.14, p,0.0001, gp51, post hoc test, p,0.01; Fig. 5A) in

animals treated with L-NAME intravenously administered and from

28.48¡1.90 mm to 24.10¡1.97 mm (F19.79549.04, p,0.0001, gp51, post hoc

test, p,0.01; Fig. 5B) in rats treated with L-NAME locally applied. Capillary RBC

velocity significantly reduced after ME from 0.21¡0.01 to 0.12¡0.04 mm/s

(paired t test, t55.034, df54, p50.0073) and from 0.19¡0.03 to 0.10¡0.02 mm/

s (paired t test, t55.416, df54, p50.0056) in rats treated with intravenous and

local administration of L-NAME, respectively.
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L-NAME intravenously or locally administered in rats not subjected to

10 minutes ME did not cause changes of the parameters evaluated throughout all

the observation period (Table 3; Table 4; Fig. 5A; Fig. 5B).

Interestingly, the vasodilation observed after 10 minutes ME (28¡3.2% of the

baseline value) did not represent the maximal dilation of order 2 arterioles,

because the local application of 100 mM acetylcholine induced a vasodilation of

41.5¡2.7% of the baseline value in sham-operated animals (data not shown) as

previously observed by Oriji [23].

Effects of ME on NO synthase expression

The results just reported are consistent with the notion that the vasodilation

observed after ME is mediated by a mechanism involving nitric oxide (NO).

Therefore, we evaluated the gene expression of the three isoforms of NOS during

the baseline period, at the end of ME and 1, 2 and 3 hours after ME. The results

obtained by qRT-PCR assay are summarized in Fig. 6. The histograms show the

Table 2. Effects of intravenous administration of naloxone or saline on MABP and HR.

Naloxone +10 min ME Saline +10 min ME Naloxone Saline

MABP
(mmHg)

HR (beats/
min)

MABP
(mmHg)

HR (beats/
min)

MABP
(mmHg)

HR (beats/
min)

MABP
(mmHg)

HR (beats/
min)

Baseline 113.07¡1 319.00¡0.71 116.85¡1.57 330.50¡1.20 Baseline 110.40¡1.02 332.70¡1.25 105.23¡1.07 329.80¡1.10

ME end 93.37¡0.88 262.33¡0.41 101.90¡1.71 283.80¡1.15 10 min 110.35¡1.04 332.00¡1.32 105.28¡1.20 329.40¡0.83

10 min 89.17¡0.73 263.33¡1.08 93.88¡1.65 282.22¡0.48 20 min 110.55¡1.02 332.25¡1.00 105.08¡1.19 330.00¡1.26

20 min 88.87¡0.83 260.33¡0.41 93.85¡1.73 281.90¡1.50 30 min 110.70¡1.02 331.90¡0.84 105.03¡1.23 330.33¡1.14

30 min 88.73¡0.78 263.33¡0.41 93.63¡1.82 283.00¡0.75 40 min 110.73¡1.06 331.77¡0.94 105.08¡1.27 330.90¡1.30

40 min 88.30¡0.74 266.33¡1.08 93.35¡1.71 282.97¡1.00 50 min 110.53¡1.08 332.40¡0.37 105.23¡1.40 329.97¡0.74

50 min 88.33¡0.72 264.67¡0.41 93.15¡1.78 280.55¡0.88 60 min 110.53¡1.03 332.95¡1.20 105.55¡1.34 329.74¡0.98

60 min 88.07¡0.81 263.33¡1.08 93.48¡1.73 281.73¡0.44 70 min 110.60¡0.97 332.50¡1.18 105.55¡1.21 330.41¡1.10

70 min 88.07¡0.76 262.33¡0.41 93.35¡1.92 281.90¡0.73 80 min 110.55¡1.03 331.98¡1.45 105.38¡1.17 330.74¡1.20

80 min 88.00¡0.80 262.00¡0.71 93.50¡1.90 282.7 ¡1.03 90 min 110.55¡0.99 331.71¡0.96 105.05¡1.28 330.00¡1.00

90 min 88.37¡0.72 263.00¡0.71 93.23¡2.12 283.44¡1.08 100 min 110.48¡0.92 332.00¡1.50 104.85¡1.22 329.85¡1.11

100 min 88.43¡0.70 261.33¡0.41 93.40¡1.97 284.76¡0.85 110 min 110.58¡0.86 332.00¡1.28 104.88¡1.26 329.70¡1.17

110 min 88.37¡0.61 261.00¡0.71 93.38¡1.80 284.00¡0.55 120 min 110.50¡0.80 332.55¡0.95 105.25¡1.16 329.70¡0.75

120 min 88.63¡0.63 264.00¡0.71 93.23¡1.89 282.58¡1.70 130 min 110.63¡0.90 331.94¡1.50 105.50¡1.31 329.50¡1.44

130 min 88.60¡0.81 264.67¡0.41 93.33¡1.94 281.21¡1.08 140 min 110.70¡0.97 331.47¡0.90 105.55¡1.27 329.23¡1.18

140 min 89.07¡0.63 263.67¡0.41 93.28¡1.99 282.35¡0.90 150 min 110.78¡1.02 331.60¡1.05 105.40¡1.19 329.90¡1.30

150 min 92.40¡1.35 266.00¡0.71 96.70¡2.43 280.87¡0.85 160 min 110.73¡0.97 331.94¡1.20 105.33¡1.23 330.80¡0.60

160 min 100.67¡0.70 301.00¡0.71 104.98¡2.81 283.02¡0.65 170 min 110.78¡0.83 332.08¡1.50 105.03¡1.18 330.45¡1.12

170 min 109.37¡1.65 321.00¡0.71 113.35¡2.39 310.50¡1.55 180 min 110.58¡1.02 332.75¡1.20 104.95¡1.23 330.00¡1.10

180 min 111.93¡1.12 321.00¡0.71 116.38¡2.01 330.00 1.35 190 min 110.53¡1.00 332.50¡1.55 104.98¡1.19 330.00¡1.50

The values were recorded in the baseline condition, at the end of ME, and every 10 min during the after ME period in rats subjected to administration of
naloxone or saline and 10 min ME. The value were recorded in the baseline condition and every 10 min for 190 min in rats subjected to the administration of
naloxone or saline alone.

doi:10.1371/journal.pone.0115767.t002
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ratio between the transcript level of each target gene and the G3PDH gene

expression level normalized to the control sample (baseline condition, B in

Fig. 6A, 6B, 6C). Fig. 6A shows that ME was accompanied by a significant

increase in the expression of nNOS which persisted for the whole observation

period (baseline value: 1.00¡0.01, at the end of ME: 1.38¡0.21; 1 hour after ME:

1.22¡0.13; 2 hours after ME: 1.49¡0.13; 3 hours after ME: 1.40¡0.10; One Way

Fig. 4. Nociceptors inhibition with naloxone abolished the vasocostriction during 10 minutes ME. (A)
Naloxone was administered as described in Fig. 1B. Naloxone alone did not modify the diameter of order 2
arterioles (n54 rats, open rhomb), while, when associated with ME, it suppressed (n54 rats, filled rhomb) the
constriction observed during ME, but did not affect the dilation observed after ME. (B) Saline administration
(see Fig. 2B) did not influence the ME effects on pial arterioles diameter (n54 rats, filled hexagon), while,
when applied alone, (n54 rats) it did not induce any changes in pial arterioles diameter (open hexagon).
* Significantly different from the baseline value.

doi:10.1371/journal.pone.0115767.g004
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ANOVA, F4.4753.274, p50.019; post hoc test, gp50.92, p,0.05, for all the times

considered compared to the baseline value). The expression of eNOS gene

(Fig. 6B) was markedly increased 2 hours after ME (baseline value: 1¡0.02, at the

end of ME: 1.10¡0.09; 1 hour after ME: 1.10¡0.17; 2 hours after ME:

1.71¡0.25; 3 hours after ME: 1.32¡0.23, F4.4752.68, p50.04, gp50.93, post hoc

test, p,0.05, 2 hours after ME vs. baseline value).

Interestingly, the expression of iNOS gene was significantly reduced by ME

(Fig. 6C; baseline value: 1.00¡0.07; at the end of ME: 0.67¡0.08; 1 hour after

ME: 0.79¡0.09; 2 hours after ME: 0.83¡0.07; 3 hours after ME: 0.790¡0.066,

F4.5955.73, p50.001, post hoc test, p,0.05 for all the times considered compared

to the baseline value).

Finally, we analyzed the protein expression of the three NOS isoforms during

the baseline period and 2 hours after ME. As shown in Fig. 6D and Fig. 6E, at

2 hours after ME the synthesis of nNOS (0.52¡0.10 A.U.) was significantly

increased in comparison with the value obtained in control rats (0.38¡0.06 A.U.,

unpaired t test, t53.202, df58, p50.0126) as well as the eNOS synthesis (at

2 hours after ME: 1.70¡0.20 AU, control value: 0.40¡0.10 AU, unpaired t test,

Table 3. Effects of local administration of L-NAME on MABP and HR.

L-NAME +10 min ME L-NAME

MABP (mmHg) HR (beats/min) MABP (mmHg) HR (beats/min)

Baseline 108.90¡1.53 341.67¡0.88 Baseline 105.38¡1.98 333.00¡1.50

ME end 92.98¡1.61 298.33¡0.88 10 min 105.63¡1.94 332.85¡0.99

10 min 91.48¡1.43 296.33¡0.88 20 min 106.00¡1.94 332.33¡0.85

20 min 91.55¡1.48 294.67¡0.33 30 min 106.13¡1.94 331.98¡0.75

30 min 91.73¡1.43 297.67¡0.33 40 min 106.08¡2.24 331.37¡1.40

40 min 92.05¡1.42 297.67¡0.33 50 min 105.90¡2.13 332.39¡0.95

50 min 92.45¡1.44 297.33¡0.33 60 min 105.98¡2.02 332.99¡1.40

60 min 92.58¡1.51 300.00¡0.58 70 min 106.03¡1.89 332.50¡1.75

70 min 92.48¡1.47 301.67¡0.33 80 min 106.25¡2.01 332.25¡1.50

80 min 91.88¡1.49 302.67¡0.33 90 min 105.78¡1.87 332.40¡0.98

90 min 91.70¡1.40 297.33¡0.67 100 min 105.53¡1.88 333.55¡1.10

100 min 91.88¡1.39 296.33¡0.88 110 min 105.75¡2.11 333.99¡1.70

110 min 91.95¡1.39 294.67¡0.33 120 min 105.90¡2.02 333.00¡1.23

120 min 92.25¡1.51 294.67¡0.33 130 min 105.80¡1.98 333.58¡1.35

130 min 92.40¡1.53 296.33¡0.88 140 min 105.50¡1.94 332.80¡1.50

140 min 94.80¡1.44 298.67¡0.33 150 min 105.75¡2.05 333.12¡0.40

150 min 101.83¡1.44 298.00¡0.58 160 min 105.80¡1.90 333.92¡0.70

160 min 106.43¡1.54 311.67¡0.33 170 min 105.75¡1.88 332.76¡0.87

170 min 108.78¡1.43 341.00¡0.58 180 min 105.75¡1.84 332.40¡0.93

180 min 108.88¡1.57 339.00¡0.58 190 min 105.85¡1.88 333.00¡1.25

The values were recorded in the baseline condition, at the end of 10 min ME, and every 10 min during the after ME period in rats subjected to local
administration of L-NAME and 10 min ME. The value were recorded in the baseline condition and every 10 min for 190 min in rats only subjected to local
administration of L-NAME.

doi:10.1371/journal.pone.0115767.t003
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t520.37, df58, p,0.0001), while the iNOS synthesis was significantly decreased

(at 2 hours after ME: 0.25¡0.08 A.U.; control value: 0.43¡0.07 A.U., unpaired t

test, t56.020, df58, p50.0003).

These data suggest that the vasodilation observed immediately after ME was

supported by a release of NO from neuronal cells; afterwards (2 hours after ME)

NO release was mainly due to endothelial cells activity, and neuronal cells

continued to sustain NO release until 3 hours after ME.

Discussion

In a previous paper [11] we noted that in the anesthetized rat, a passive ME of 5 to

15 minutes caused a prolonged reduction of MABP and HR associated with a

biphasic pial microcirculation response, which were abolished by trigeminal nerve

cutting. In that study, the follow-up after ME (80 minutes) was insufficient to

determine the actual duration of these effects. In the present study we extended

the follow-up by prolonging the observation time to 3 hours, thus being able to

determine the full time course of the hypotensive and bradycardic responses until

Table 4. Effects of i.v. administration of L-NAME on MABP and HR.

L-NAME +10 min ME L-NAME

MABP (mmHg) HR (beats/min) MABP (mmHg) HR (beats/min)

Baseline 108.90¡1.53 336.67¡1.08 Baseline 107.75¡1.08 328.70¡1.30

ME end 92.98¡1.61 283.00¡0.71 10 min 107.80¡0.97 329.00¡0.55

10 min 91.48¡1.43 281.00¡0.71 20 min 107.68¡1.10 329.50¡1.20

20 min 91.55¡1.48 283.67¡0.41 30 min 108.18¡0.91 329.88¡0.75

30 min 91.73¡1.43 285.67¡0.82 40 min 108.48¡0.86 328.40¡1.35

40 min 92.05¡1.42 282.67¡0.41 50 min 108.58¡1.04 328.12¡1.27

50 min 92.45¡1.44 287.33¡0.41 60 min 108.38¡1.13 328.54¡1.22

60 min 92.58¡1.51 291.00¡0.71 70 min 108.45¡1.39 329.00¡1.08

70 min 92.48¡1.47 291.67¡0.41 80 min 108.48¡1.36 329.50¡1.24

80 min 91.88¡1.49 289.00¡0.71 90 min 108.25¡1.27 329.00¡1.15

90 min 91.70¡1.40 288.00¡0.71 100 min 108.33¡1.13 328.55¡1.20

100 min 91.88¡1.39 285.67¡0.41 110 min 108.13¡0.94 328.74¡1.68

110 min 91.95¡1.39 283.67¡0.82 120 min 108.15¡0.86 328.93¡0.87

120 min 92.25¡1.51 282.00¡1.23 130 min 108.33¡0.93 329.43¡1.72

130 min 92.40¡1.53 284.33¡0.41 140 min 108.45¡0.97 329.84¡1.50

140 min 94.80¡1.44 285.33¡0.41 150 min 108.45¡0.98 328.95¡1.08

150 min 101.83¡1.44 291.00¡0.71 160 min 108.43¡0.92 328.78¡0.95

160 min 106.3¡1.54 311.00¡0.71 170 min 108.43¡0.96 328.37¡0.67

170 min 108.78¡1.43 334.33¡1.48 180 min 108.00¡0.96 328.69¡1.35

180 min 108.88¡1.57 336.00¡0.71 190 min 108.23¡1.13 328.90¡1.10

The values were recorded in the baseline condition, at the end of 10 min ME, and every 10 min during the after ME period in rats subjected to i.v.
administration of L-NAME and 10 min ME. The value were recorded in the baseline condition and every 10 min for 190 min in rats only subjected to i.v.
administration of L-NAME.

doi:10.1371/journal.pone.0115767.t004
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recovery. Conversely, the dilation of pial arterioles did not recover the basal value

within 3 hours.

The duration of ME seemed to depend on both the time course and the extent

of the responses. In fact, 5 minutes ME determined a hypotensive and bradycardic

effect that was less prolonged and somewhat less pronounced, compared to 10–

Fig. 5. eNOS inhibition with L-NAME blocked the vasodilation induced by 10 minutes ME. Both i.v.
infusion of L-NAME (n54 rats, see Fig. 1B) (A) and topical application of L-NAME (n54 rats, see Fig. 1C) (B)
abolished the increase of the pial order 2 arterioles diameter (filled triangle) due to ME without affecting the
constriction observed during ME. L-NAME alone (n54 rats, open triangle) did not induce any changes in the
pial order 2 arterioles diameter. * Significantly different from the baseline value.

doi:10.1371/journal.pone.0115767.g005
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15 minutes ME, that, by converse, had essentially identical curves and much

steeper recoveries (see Fig. 2).

It has been known for some time that trigeminal sensory stimulation may elicit

cardiovascular depressor responses; however, to our knowledge, in no instance,

effects as prolonged as those observed here (of two hours or more) have been

reported [20], [24], [5].

The responses of pial microcirculation to ME were more complex and differed

in various aspects from those of blood pressure and heart rate. In fact,

concomitantly with the reduction of MABP and HR during ME, the pial arterioles

(unexpectedly) constricted, as previously observed [11], whereas following ME, a

prolonged overshooting vasodilation occurred with a time course that depended

on the duration of ME. For 5 minutes of ME the vasodilator effect persisted for

about 40 minutes and then gradually subsided in the following 30 minutes,

Fig. 6. The expression of nNOS and e NOS was increased 2 hours after 10 minutes ME. (A) The gene coding for nNOS was significantly more
expressed at all the times considered with respect to the baseline value (B). The expression of the gene coding for eNOS was significantly more expressed
at 2 hours after ME with respect to all the other time points considered (C). The gene coding for iNOS was significantly less expressed at all times after ME
with respect to the baseline value. (D) Western blotting performed with brain samples from rats sacrificed 2 hours after ME shows that, at this time, the blot
for nNOS and e NOS was more positive compared to the ones obtained in baseline conditions (upper blots), whereas both the iNOS expression and the b-
tubulin expression (lower blots) were comparable at the two times considered. (E) Histograms showing the ratio of the optical density between b-tubulin and
eNOS, nNOS and iNOS calculated for the baseline condition and 2 hours after ME. * Significantly different from the baseline value. Abbreviations: A.U.
arbitrary unit.

doi:10.1371/journal.pone.0115767.g006
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whereas for longer ME (10–15 minutes) the vasodilation persisted for the whole

observation period (180 minutes), although it was less pronounced in the last

40 minutes. The vasoconstriction was always accompanied by a significant

reduction of the capillary RBC velocity while the vasodilation induced an

important increase in the capillary RBC velocity.

This biphasic response of pial microcirculation to ME is somewhat surprising

and deserves consideration, since, a systemic blood pressure decrease is usually

accompanied by a vasodilation of pial arterioles. However in our model the

reduction of MABP during ME was associated with an initial constriction of pial

arterioles followed by a prolonged dilation after ME. Interestingly, these two

responses seem to be mediated by different mechanisms. In fact, the initial

vasoconstriction (but not the subsequent vasodilatation) was found to be

abolished by naloxone, while the subsequent prolonged vasodilatation (but not

the initial vasoconstriction) was abolished after inhibition of NO synthase by L-

NAME. Since it has been shown that naloxone can directly modulate the

activation of the trigeminal neurons by inhibiting specific opioid receptors [25],

we suggest that the vasoconstrictor effect in pial microcirculation during ME was

elicited by an opioid receptor-mediated mechanism triggered by trigeminal

discharge. However, while opioid-mediated mechanisms appear to play a major

role in the pial arterioles constriction response upon trigeminal stimulation, they

do not exert a similar role on systemic circulation since naloxone did not affect

MABP and HR decrease.

The pial arterioles dilation concomitant with the reduction of MABP and HR

after ME may represent a compensatory autoregulatory response of pial

microcirculation secondary to changes in perfusion pressure, as observed in

several animal models [26], [27]. However, a few aspects seem to suggest that pial

vasodilation is not simply an autoregulatory response secondary to the

hypotensive effect due to ME. Interestingly, the pial vasodilatory response appears

to be at least in part dissociated from the hypotensive response, as observed by

comparing their time-course for 5 minutes ME: in fact, while MABP remained

stably low for about 100 minutes, maximal pial vasodilatation persisted for only

40 minutes, recovering to basal values in the following 40 minutes at a time where

the hypotensive effect was still fully present. By prolonging the ME duration (10

or 15 minutes), MABP and HR recovered the basal value within 150 minutes and

160 minutes respectively, while the pial arterioles persisted significantly dilated for

the whole observation period.

Little is known about the mechanisms underlying the dilation of cerebral vessels

associated with trigeminal stimulation. Some authors observed that a powerful

and differentiated activation of sympathetic system occurs within seconds after

the initiation of a trigeminocardiac reflex which leads to an increase in regional

cerebral blood flow with no changes in cerebral metabolic rate of oxygen or

glucose [28]. Lindauer and co-workers suggested that an increase in neuronal

activity due to trigeminal nerve stimulation may be correlated with neuronal

nitric oxide release affecting the arterioles adjacent to the activated neuronal pool

[29]. Our results show an increase of the nNOS expression during and after ME,
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which did not result in a vasodilation during ME. According to Gong et al. [30]

and Moncada et al., [31], NO released by nNOS probably maintains the integrity

and the homeostasis of neuronal cells initially and only successively (after ME) it

contributes to the vasodilation. On the other hand, the opioid-mediated effects

leading to vasoconstriction may overcome the vasodilatory effect of NO during

ME. In the after ME period, the pial vasodilation was sustained not only by the

activity of nNOS which was highly expressed for the whole observation period,

but also by eNOS activity, mainly at 2 hours. In fact, the real time qRT-PCR assay

on samples of the parietal cortex which receives the main trigeminal afferents,

showed a significant increase of the expression of the gene coding for nNOS

during and after ME and a progressive increase in the expression of the gene

coding for eNOS, statistically significant at 2 hours after ME when compared to

the baseline condition. Moreover, western blotting analysis confirmed the increase

in expression of the protein nNOS and eNOS at 2 hours after ME. The expression

of the gene coding for iNOS was significantly reduced during and after ME for the

whole observation period and at 2 hours after ME the protein expression was also

reduced with respect to the baseline condition, indicating that ME is a non-

invasive method devoid of harmful (inflammatory) side effects [13].

In conclusion, the effects of ME on cardiovascular parameters appear to be

complex, because they involve different mechanisms. Opioid receptor activation

during ME and NO release by neuronal and endothelial vascular cells after ME

affect pial microcirculation, whereas the systemic responses causing decrease in

MABP and HR seems to be related to other mechanisms probably involving

activation of vagal efferents to the heart and modulation of vasomotor neuron

discharge on peripheral circulation. It is worth noting that the decrease in arterial

blood pressure is not accompanied by an increase in heart rate. Further

investigation carried out on the brainstem trigeminal and vagal nuclei could

elucidate this issue.
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