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1 Introduction

The recent detection in July 2012, of a new particle compatible with the Higgs boson

by ATLAS [1] and CMS [2] collaborations at LHC certainly represents a milestone that

has once again confirmed the predictive strength of the Standard Model (SM) of strong

and electroweak interactions. However, from the theoretical point of view it is hardly to

believe that the SM is the last step toward the unification in a simple principle of all the

fundamental interactions. Several phenomena or open problems suggest the presence of

physics beyond the SM. One can just remind few of them, like the hint of unification of all

gauge couplings for extreme large energy, the particular structure of fermion masses, the

baryonic/leptonic number violation processes necessary at scale larger than the electroweak

one in order to yield baryogenesis, the problem related to the separation of very different

energy scales in a field theory with scalars (hierarchy problem), etc.

The Grand Unified Theory (GUT) paradigm is able to address part of these problems.

Suggested by the simple extension of the SM scheme to larger gauge groups, it has rep-

resented a huge scientific effort, which, starting from seventies, has had to face with the

experimental counterpart of proton decay search, and with the necessity of an even too

rich scalar content of the theory. The main feature that makes plausible a GUT scheme at

very high energy, namely a compact gauge group describing the fundamental interactions,

comes from the observation that running gauge couplings tend to get closer and closer with

the increase of energy.

A GUT is generally characterized by a typical energy scale, MGUT. It is naively defined

as the scale where the SM gauge couplings cross at one point according to their running.

The same definition can be rephrased as follows: the GUT scale is the scale at which a

compact gauge symmetry G spontaneously breaks down to SM (namely SU(3) × SU(2)×
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U(1)). Below such a scale the gauge couplings, being equal to each other at µ = MGUT, run

down and match their experimental values at the benchmark point µ = MZ . However, this

is strictly true for SU(5) model only, for which both the above definitions are equivalent.

Moreover, in SU(5) the great desert is occurring since there are no intermediate thresholds

due to new massive states starting from Mt up to GUT scale.

Then a question is in turn and concerns the size of MGUT. While a natural upper bound

is represented by string or reduced Planck scale MP ' 2·1018 GeV, the lower limit is settled

by the predicted degree of stability of ordinary matter (proton decay). The experimental

limits on the proton decay mediated by the heavy gauge bosons pose stringent bounds on

their masses, hence on MGUT.

Before LEP epoch, non-supersymmetric GUTs could not been discriminated due to

the poor precision characterizing the measurements of SM parameters, even though the

low energy scale of unification, order . 1015 GeV, was already in strong tension with the

proton lifetime limit. Such situation then drastically changed with the precise measure-

ments at LEP, which essentially excluded non-supersymmetric GUT. In fact, after the

precise measurements of the gauge couplings α1, α2, α3 at MZ, and of other SM quantities

at LEP, it was clear that a real one step unification of running gauge couplings was not

possible at high energy, at least without assuming new physics. However, in the frame-

work of Supersymmetry (SUSY) one obtains a milder running of couplings that provides

a satisfactory unification at a common high energy scale MGUT [3–7]. Moreover, SUSY

also provides a road map for solving the gauge hierarchy and Doublet-Triplet splitting

problems. In particular, minimal SU(5) allows a technical solution for the hierarchy and

Doublet-Triplet splitting via a fine tuning, which is stable against radiative corrections due

to SUSY [8, 9]. However, there exist more natural solutions without fine tuning, as “Miss-

ing Doublet Mechanism” (MDM) in extended SU(5) [10–14], “Missing v.e.v. Mechanism”

(MVM) in SO(10) [15–18], or “pseudo-Goldstone boson instead of Fine Tuning” (GIFT)

Mechanism in SU(6) [19–24].1

The golden goal of supersymmetry was to explain naturally the origin of the elec-

troweak (EW) scale in terms of the soft supersymmetry breaking (SSB) parameters, with-

out artificial fine tunings among them. In this design of a natural SUSY, the EW scale

has to be originated by the SUSY breaking scale itself. This means that already above few

hundred GeV the SM has to be replaced by the supersymmetric extensions of the Standard

Model (MSSM in the minimal version), which would imply a rich new phenomenology that

LHC should have already found. With the conclusion of the 8 TeV LHC run I, MSSM

have been greatly constrained by a variety of direct searches [34–36]. The properties of the

1The rudimentary idea of Higgs emerging as pseudo-Goldstone boson was first introduced at the level

of SUSY-SU(5) model in refs. [25–27], assuming that Higgs superpotential has an ad hoc global SU(6)

symmetry at the price of introducing an extra singlet supermultiplet. These models are not fully realistic

without local SU(6) completion. At the level of local SU(5) symmetry the assumption of Higgs super-

potential having SU(6) global symmetry is equivalent to many fine tunings, but at the same time such

extended symmetry is explicitly violated in the Yukawa sector. Let us remark that the supersymmetric

pseudo-Goldstone mechanism was also discussed in the context of SO(10) [28], SO(n) and E6 [21]. More

recently such mechanism was also applied for the solution of the little hierarchy problem in the framework

of minimal low scale extensions of the MSSM [29–33].
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discovered Higgs boson are fully compatible with the Standard Model Higgs, and a second

light Higgs predicted in natural SUSY was not found. In the meanwhile the experimental

lower bounds on the masses of gluinos and squarks were increased up to TeV scale.

More in general, the missing evidence up to now for a SUSY phenomenology at LHC

has caused a pessimistic attitude of the scientific community toward SUSY and SUSY-GUT

paradigms, thus forcing theoretical physicists to look for different approaches. As a radical

possibility, there emerged a concept of split supersymmetry [37, 38], which pushes some

SUSY partners (squarks and sleptons) to arbitrarily large scale while leaving the others

(gauginos and Higgsinos) at the low scale.

In view of this, one can ask if the experimental situation after LHC is really so dramatic

to justify almost a total give up of the SUSY scheme, or SUSY still remains the most

promising and well defined concept that particle physics above SM should tend to. In

any case one cannot exclude the possibility that SUSY lives just around the corner, and

gluinos or squarks will be indeed discovered at the TeV scale in the second run of the

LHC. However, it is important to remark that even before LHC, already in the LEP epoch

the experimental data supplied mounting evidences disfavoring, at some level, SUSY at

few hundred GeV [39]. It is worth reminding the problem of electric dipole moments of

electron and neutron, which within ∼100 GeV range for SUSY were predicted too large,

while increasing the SUSY scale to few TeV they are naturally suppressed to the level of the

present experimental limits. The situation is similar for the flavor violating processes like

µ→ eγ, b→ sγ etc. For arbitrary soft parameters, the flavor violation limits would require

the increasing of the SUSY scale up to 100 TeV, but such a limit can be lowered to TeV scale

by a particular use of symmetry arguments, namely by means of an approximate alignment

of the soft SUSY parameters with the Yukawa couplings. In this concern, one can mention

particular theoretical scenarios based on a gauged family symmetry SU(3)H [40–43], which

can be implemented for SUSY-GUT as well [40, 41, 44]. In this case, the flavor violation

limits would allow SUSY scales as small as 1 TeV. Later on such a possibility was described

as a paradigm thereafter simply denoted as Minimal Flavour Violation [45].

Finally, as will be clarified in the following, the Higgs physics, modulo specific conspir-

acies, seems to indicate that the SUSY scale should be above few TeV as well. Therefore,

one can conclude that SUSY scale larger than few TeV is quite reasonable, and if SUSY

indeed lives near this lower bound, then it should show up in the LHC run II.

In this paper, we try to reanalyze the issue showing the room still remaining for

SUSY-GUT inspired models under some natural assumptions, which will be clarified in the

following, and the consequences of such schemes on LHC run II and on future colliders like

FCC-ee and FCC-hh [46, 47]. Under such assumptions, we study the implications on SUSY

mass spectrum due to the gauge couplings and Yukawa couplings unification. We adopt the

paradigm of one step gauge unification, which we simply denote as SU(5) bottleneck, and

that still remains a quite general condition. GUTs may be based on a group larger than

SU(5) like SO(10), SU(6) or E6, which provide promising and predictive models describing

physics below the string scale or reduced Planck scale MP . Such latter symmetry groups

do not provide automatically one step unification of the gauge couplings, and generically

they could be broken down to the SM passing through different intermediate stages of the
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gauge symmetry breaking. In this case the gauge couplings unification phenomenon would

not be a clean prediction of the scheme, but rather an ad hoc reconstructed phenomenon.

In this respect, the condition of SU(5) bottleneck simply requires that the gauge symmetry

is broken in such a way that below the scale MGUT it reduces to SU(3)×SU(2)×U(1) with

three gauge couplings α1, α2, α3 that run down in energy starting from the same value αGUT

(denoting the GUT gauge coupling at MGUT). In other words we require that independently

of whatever is the “mother” unified gauge group, and the intermediate breaking scales it

may require, at the last symmetry breaking stage, nearby MGUT, it behaves as SU(5).

Below such a scale the theory should reduce to the Minimal Supersymmetric Standard

Model (MSSM).

In the present analysis we require that all coupling constants, including Yukawa cou-

plings, must be order one in the “mother” GUT scenario above MGUT, assuming that there

are no ad hoc small parameters and no ad hoc fine tuning among parameters. Moreover,

the mass parameters involved in the SUSY breaking are supposed to be of the same order

of magnitude (modulo possible differences between F - and D-terms). Small Yukawa cou-

plings for light families in the MSSM superpotential below the GUT scale do not contradict

the previous requirements as we will discuss in the next section.

In summary, to perform our study we require:

• Unification of all gauge couplings at a single energy scale (MGUT) without interme-

diate symmetry scales (SU(5) bottleneck). We take into account only SUSY particle

thresholds, simply denoted as SUSY thresholds, at which SUSY particles show up,

and GUT thresholds related to GUT multiplet fragments that can be lighter than

MGUT. Since we do not allow the presence of ad hoc small parameters these fragments

cannot be much lighter than one order of magnitude of MGUT.

• Consistency of third family fermion masses: correct mass of the top quark and Yukawa

b-τ unification.

• Consistency with the experimental limit on proton decay.

• The absence of special fine tunings among the parameters (couplings O(1) at MGUT),

which can be seen as a general naturalness requirement.

Moreover, we do not consider the possible limits on SUSY-GUTs coming from the assump-

tion that one of the SUSY particles must necessarily be a DM candidate. This is due to

the possible presence of R-violating terms that would make unstable the lightest SUSY

particle at cosmological time-scale. Hence, in order to get model independent predictions

we prefer do not use such cosmological constraints.

Under this ansatz, we analyze the limits on the mass spectrum of SUSY particles once

the previous requirements are fulfilled, and indeed we obtain an upper limit of about few

TeV in the more natural case when all supersymmetric particles have masses of the same

order of magnitude. The situation changes if one takes into account a possible spread

among the superpartner masses of different types (gauginos, sfermions and Higgsino). In

this case, we look for the minimum of the mass spectrum, identifying such value as the
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energy scale upon which SUSY phenomenology has to be detected. By spanning on all

compatible SUSY-GUT models (see previous requirements), in presence of both SUSY and

GUT thresholds, we find that the above minimum can be as large as ∼ 20 TeV. This

represents the main result of our analysis since it provides an almost model independent

upper bound for the appearance of SUSY phenomenology.

In order to get such a result, once that all masses of the model are fixed, by using a

Mathematica code that solves the set of Renormalization Group Equations (RGEs) at two

loops, we determine the unification GUT scale MGUT and the possible compatibility of such

a choice with the experimental measurements of gauge couplings at EW scale. Note that

the running of Yukawa couplings is also taken into account as well as the constraints coming

from the top mass and possible b-τ unification requirement. Finally, from this approach

we get the allowed regions for the SUSY particle masses determined by the simultaneous

effect of SUSY and GUT thresholds. From these results one obtains indications about the

discovery potential of SUSY at LHC hence clarifying the role of future colliders. Note that

the effect of possible intermediate thresholds could be also studied, but it would result in

an extremely model dependent scenario. For this reason in order to be more predictive we

prefer do not consider such possibility.

The paper is organized as follows. In section 2 we give the generic details of SUSY-GUT

model considered, whereas in section 3 we provide the Renormalization Group Equations for

couplings, discussing the initial conditions and SUSY, GUT thresholds as well. Moreover

this section contains a description of the numerical method adopted. In section 4 we report

our results whereas section 5 contains our conclusions.

2 Overview on SUSY-GUT and naturalness principles

Let us consider a generic SUSY-GUT based on a gauge symmetry G. Within the framework

of N = 1 supersymmetry, such a theory should contain vector (gauge) superfields V in

adjoint representation of G, and some set of chiral superfields Φ in different representations

of G. A generic renormalizable Lagrangian can be written as2

LSUSY =

∫
d2θd2θ̄Φ†eV Φ +

[∫
d2θWW +

∫
d2θW (Φ) + h.c.

]
, (2.1)

where the first and second term yield the canonically normalized kinetic terms of the chiral

superfields and the gauge superfields, and their gauge interactions. These terms do not

involve any coupling constant apart of the gauge coupling, which is an O(1) parameter.

Third term describes mass and interaction terms between the fermionic and scalar com-

ponents of chiral superfields Φ, via the superpotential W (Φ) that is a general G invariant

holomorphic combination Φ containing the trilinear terms with O(1) coupling constants

and the bilinear (mass) terms. The soft supersymmetry breaking (SSB) terms can be

presented in a form similar to eq. (2.1)

LSSB =

∫
d2θd2θ̄ ρΦ†eV Φ +

[∫
d2θ ηWW +

∫
d2θ ηW ′(Φ) + h.c.

]
, (2.2)

2For explicit notations, see e.g. ref. [48].
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making use of auxiliary superfields with non-zero F - and D-terms, respectively, η = MF θ
2

and ρ = M2
D θ

2θ̄2, where the dimensional parameters MF and MD can be in principle

different. In particular, MF determines the size of gaugino mass terms, and via the third

term in eq. (2.2), contributes to the SSB terms for the chiral superfields. The D-term can

be of the order of M2
F once it is simply given by a direct product ηη̄ = M2

F θ
2θ̄2, while

there can be also a direct D-term and in this case M2
D � M2

F . In general the function

W ′(Φ) should have the same structure of the superpotential W (Φ), but its couplings are

not obliged to be the same of W (Φ).

The chiral superfields can be divided into Higgs and fermion superfields distinguished

by matter parity Z2, under which the fermion superfields change the sign while the Higgs

superfields are invariant. In this way, the superpotential W has two terms related to the

Higgs and Yukawa sectors, namely

W = WHiggs +WYukawa . (2.3)

The Higgs superpotential WHiggs is responsible for the v.e.v.’s breaking both the gauge

symmetry G down to MSSM and then to SM.

2.1 MSSM limit of a SUSY-GUT: mass scales and Higgs sector

The MSSM represents the low energy limit of a generic SUSY-GUT. Here, we are going to

discuss the different energy scales entering in the SUSY breaking pattern, paying particular

attention to the Higgs sector. In MSSM the superpotential of eq. (2.3) is explicitly given by

WMSSM = Y u
ijQiu

c
jHu + Y d

ijQid
c
jHd + Y e

ije
c
iLjHd + µHuHd , (2.4)

which contains chiral superfields corresponding to three families of quarks and leptons

(i, j = 1, 2, 3 are family indices), and two Higgses Hu and Hd. The SSB F -terms repeat

the structure of WMSSM, and contain also the soft Majorana masses of gauginos (bino,

neutralinos and gluinos for a = 1, 2, 3)

LF = AuijQ̃iũ
c
jHu +AdijQ̃id̃

c
iHd +Aeij ẽ

c
i L̃jHd + µBµHuHd + m̃a

Gλaλa . (2.5)

Note that the dimensional parameters Au,d,eij , Bµ and m̃a
G are expected to be parametrically

of the order of MF , though in the model dependent context the gaugino masses can be in

principle different from other F -terms. On the other hand, the soft masses of all scalars

including the Higgses are given by D-terms

LD =m̃2
QijQ̃

†
i Q̃j+m̃

2
uij ũ

c†
i ũ

c
j+m̃

2
dij d̃

c†
i d̃

c
j+m̃

2
LijL̃

†
i L̃j+m̃

2
eij ẽ

c†
i ẽ

c
j+M̃

2
uH
∗
uHu+M̃

2
dH
∗
dHd . (2.6)

All these dimensional parameters are of the same order of magnitude given by the energy

scale MD. These terms, in principle, can be parametrically larger than F -terms, though

they can naturally be of the same order of magnitude. Therefore, all soft parameters can

be divided in three classes: the soft Majorana gaugino masses O(MF ), the soft masses of

the scalars as squarks and sleptons O(MD), and the so-called µ-term that determines the

Higgsino masses and contributes to masses of scalar doublets Hu and Hd. GUT implies

– 6 –



J
H
E
P
0
8
(
2
0
1
5
)
0
8
3

that all gauginos must have the same mass at the GUT scale (m̃a
G = m̃G ∀a), and the

similar mass unification can be assumed for masses of the squarks and sleptons entering

in the same GUT multiplet. Hence the differences between the true masses of squarks and

sleptons, or between the masses of gluinos and neutralinos, are simply due to the running.

In this way, SUSY-thresholds, namely the possible splittings among the masses of SUSY

particles, can be defined by three mass scales only, which are gluino mass m̃g O(MF ),

squark mass m̃sq O(MD), and the Higgsino mass m̃H O(µ).

A comment concerning the Higgs scalars Hu and Hd is in turn. Their mass matrix

M2 =

(
M̃2
u + µ2 µBµ
µBµ M̃2

d + µ2

)
(2.7)

involves the mass parameters of three different origins: mass terms M̃2
u and M̃2

d (SSB D-

terms), Bµ (SSB F -term), and supersymmetric µ-term, which can be of different orders

of magnitude. If the SSB parameters assume large values, namely larger than few TeV or

even larger, one cannot pretend to recover the so-called natural solution, which would link

the EW scale to the SSB scale. Hence a certain fine tuning condition has to be imposed.

In particular, one eigenstate h should have a small negative squared mass

−m2 =
1

2

(
2µ2 + M̃2

u + M̃2
d −

√
4µ2B2

µ + (M̃2
u − M̃2

d )2

)
∼ −(100 GeV)2 , (2.8)

and that will be identified with the SM Higgs. It should get a v.e.v. (v = 250 GeV) breaking

the EW symmetry and leaving behind the Higgs Boson with mass M2
h = 2m2 ≈ (125 GeV)2.

The other mass eigenstate h̃ is heavy, with M2
h̃

= 2µ2 + M̃2
u + M̃2

d + m2, and it should

decouple at the SSB scale. In this way, the mixing angle between the Higgses Hu and Hd

is given by tan 2β = 2µBµ/(M̃
2
u − M̃2

d ), and hence the v.e.v. of h is placed between them

vu = v sinβ and vd = v cosβ.

In principle, D-terms M̃u,d could be larger than Bµ and µ. However in this case the

fine tuning of eq. (2.8) would not be possible. On the other hand, a F -term Bµ much larger

than D-terms is not very natural. Moreover, for µ,Bµ � M̃u,d one would get tan β ≈ 1,

which would make problematic to accommodate the 125 GeV Higgs. Therefore, to impose

a realistic fine tuning only one possibility is left, namely to take soft parameters M̃u,d, Bµ
and supersymmetric parameter µ all of the same order of magnitude, which looks rather

embarrassing in the context of the generic SUSY models. However, in the framework of

the SU(6) model [19] with pseudo-Goldstone solution for the gauge hierarchy and Doublet-

Triplet splitting problems this situation arises rather naturally. In this case in fact, the

supersymmetric µ-term emerges as a result of SUSY breaking, and at the leading order

approximation the condition of eq. (2.8) is straightforwardly obtained.

In view of this, if one extends the needed conspiracy between the soft F - and D-terms

in the Higgs sector to the squark and slepton masses (D-terms) and the gaugino masses

(F -terms) as well, then all supersymmetric partners will be expected to have masses of the

same order of magnitude.

Let us remark also that for the proper condensation of the Higgs field a large quar-

tic coupling constant ruling its self-interaction is needed, namely, one should have λ =

– 7 –
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M2
h/2v

2 ≈ 0.13. On the other hand, in the framework of the MSSM such a coupling is

mainly provided by the gauge D-terms of SU(2) × U(1). Hence, at a scale of the order of

the mass terms present in eq. (2.7) one has λ = 1
4(g2 + g′

2
) cos2 2β, where g and g′ are the

running gauge couplings of SU(2) and U(1) respectively. At the electroweak scale the gauge

couplings are too small for saturating the needed value and one only gets λ ≈ 0.07. From

this result it is derived the famous Higgs mass limit in the MSSM M2
h = M2

Z cos2 2β+

radiative corrections, which makes difficult to recover the LHC Higgs mass Mh ≈ 125 GeV

and requires huge radiative corrections. However, the running of the Standard Model cou-

plings shows that λ fastly decreases with energy [49], and at a scale of the order of 10 TeV

it almost matches the needed value, unless tan β is too small. As it was shown in ref. [50],

by taking into account radiative corrections of reasonable size, the MSSM Higgs picture

in the above described decoupling limit is indeed compatible with the 125 GeV Standard

light Higgs. This is the case for a scale of SUSY larger then few TeV, and if tan β is not

too small, namely tan β & 2.

Therefore, the Higgs physics, modulo specific conspiracies, indicates that the SUSY

scale should be above few TeV, and similarly the bounds from the electric dipole moments

settle the lower limit to few TeV as well. Generally flavor violations fix more stringent

bounds, and for arbitrary soft masses and A parameters they would require SUSY scale

larger than ∼ 100 TeV. However, there can be (flavor) symmetry reasons that providing

approximate alignment of the soft SUSY parameters with the Yukawa couplings reduce the

lower limit to ∼ 10 TeV. Moreover, in some theoretical scenarios based on flavor symmetries

the flavor limits can allow SUSY scales as small as 1 TeV providing interesting relations

between the soft mass matrices and SSB trilinear terms with the fermion Yukawa matrices

as e.g. m̃2
eij = m2

0δij + m2
1(Y e†Y e)ij + m2

2(Y e†Y e)2
ij and Aeij = m3Y

e
ij , m0,1,2,3 being soft

mass parameters [40–43]. Therefore, one can conclude that SUSY scale larger than few

TeV is quite natural and if SUSY indeed lives near this lower bound, then it should be

discovered in the LHC run II.

2.2 A generic SUSY-GUT in the SU(5) bottleneck

In minimal SUSY SU(5) [8, 9], the Higgs sector contains the following chiral superfields:

Σ in the adjoint representation 24 of SU(5) and H, H respectively in the fundamental

representations 5, 5. In this case one has the following expression for the Higgs part of the

superpotential in eq. (2.3):

WHiggs =
MΣ

2
Σ2 +

λΣ

3
Σ3 +MH HH + ξ HΣH . (2.9)

There exists a supersymmetric minimum in which the adjoint field Σ gets a v.e.v. breaking

SU(5) down to SU(3)× SU(2)×U(1):

〈Σ〉 = VΣ × diag

(
2

3
,

2

3
,

2

3
,−1,−1

)
, VΣ =

3MΣ

λΣ
. (2.10)

As a result, the “leptoquark” gauge bosons X,Y of SU(5) get a mass

MGUT = MX,Y =
5

3

√
2παGUTVΣ , (2.11)
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where αGUT is the SU(5) gauge coupling, while the Higgs supermultiplets in the broken

phase have masses

M̃Σ =
5

3
λΣVΣ , M̃D = µ = MH − ξVΣ � VΣ , M̃T = MH +

2

3
ξVΣ ≈

5

3
ξVΣ , (2.12)

In the previous expression M̃Σ denotes the mass of the color octet and weak isospin triplet

fragments of the SU(5) adjoint Higgs Σ ((8,1) ⊕ (1,3) under SU(3) × SU(2)), which are

degenerate in mass. The quantity M̃T denotes the mass of the Higgs triplet supermultiplets

T, T̄ contained in H, H̄, and M̃D is the mass (µ-term in eq. (2.4)) of their doublet fragments

Hu and Hd. The latter, which determines the Higgsino masses in the MSSM, should be

small, while M̃T should be large, order the GUT scale, in order to avoid a too fast proton

decay mediated by the color triplet Higgs or Higgsino exchanges. In minimal SU(5) [8, 9],

the price for such Doublet-Triplet (D-T) splitting is the fine tuning between the parameters

in the superpotential of eq. (2.9). In particular, eq. (2.12) shows that two large values MH ,

ξVΣ ∼ 1016 GeV should be fine tuned for obtaining µ ∼ 103 GeV, with the precision of

about 10−13. However, this condition is sufficient when one takes into account the SSB

terms in eq. (2.2), in which the function ηW ′ in this case can be presented as

ηW ′Higgs = θ2

(
MΣ

2
BΣ Σ2 +

λΣ

3
AΣΣ3 +MH BHHH + ξ AHHΣH

)
, (2.13)

where A and B are dimensional parameters of the order of MF . The presence of these terms

shift the v.e.v. of Σ and generate its non-zero F -term, and at the end, the full account of

these contributions generates the soft term µBµ in eq. (2.5), as µBµ = ξVΣ(AH − AΣ −
BH + BΣ) + O(M2

F ). Therefore, for adjusting this value O(VΣMF ) to the needed value

µBµ ∼ M2
F ∼ 1 TeV2, the parameter AH − AΣ − BH + BΣ, which is O(MF ), should be

extremely fine tuned. Therefore, this situation cannot be called a natural solution of the

hierarchy and D-T splitting problems.

In minimal SU(5) model the problem of D-T splitting has only a technical solution,

given by fine tuning of µ in eq. (2.12) that is stable against radiative corrections. This

situation is then worsened by the need of another fine tuning in the soft term µBµ. Of

course, minimal SU(5) model is not realistic, and one should not be surprised to find that

fine tunings are required.

Below we describe more natural situations when fine tunings can be avoided in specific

GUT models. Nevertheless, we shall consider minimal SU(5) as a prototype model, in the

sense of SU(5) bottleneck condition, for understanding the possible threshold corrections.3

There are several realistic models in which the D-T splitting problem can be solved

without fine tunings. In particular, in SU(5) this can be done via the “Missing Doublet

3In particular, the masses M̃Σ, M̃T are important for our analysis since, if they are smaller than MGUT,

they would give significant threshold corrections near the GUT scale and affect the gauge coupling unifi-

cation. However, within our paradigm of naturalness, couplings λΣ and ξ are assumed to be O(1), and

thus M̃Σ, M̃T ≥MGUT. Nevertheless, we study also situation when these fragments can be relatively light,

taking a possibility that within the natural spread of O(1) values, some of the above couplings could be as

small as 0.1.
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Mechanism” (MDM) [10–14], in SO(10) via the “Missing v.e.v. Mechanism” (MVM) [15–

18], while in SU(6) via the “pseudo-Goldstones instead of Fine Tuning” (GIFT) Mecha-

nism [19–22, 25, 27]. In these models, the required patterns of the superpotentials are

usually obtained by imposing some discrete symmetries, which are guaranteed at the level

of renormalizable couplings, but cannot provide suppression of dangerous high order oper-

ators destabilizing these solutions. It is interesting to note, however, that stable solutions

at any order can be achieved by making use of the anomalous U(1)A gauge symmetry (see

refs. [14, 18, 24] respectively for the MDM SU(5), MVM SO(10) and GIFT SU(6)). In

these models the soft parameters like BΣ and AΣ for the heavy GUT breaking superfields

can be quite large, without creating additional fine-tuning problems. Let us briefly describe

them here.

In SU(5), the MDM [10, 11] contains the Higgs superfields in representations Φ ∼ 75,

H ∼ 5, H̄ ∼ 5̄, Ψ ∼ 50, Ψ̄ ∼ 50, with the following superpotential terms:

W = MΦ2 + λΦ3 +M1ΨΨ̄ + λ1HΦΨ̄ + λ2H̄ΦΨ + µHH̄ , (2.14)

with M and M1 being the mass parameters order MGUT and λ’s being O(1) coupling

constants. SU(5) is broken down to SU(3) × SU(2) × U(1) by the v.e.v. of Φ ∼ 75. The

latter represents a less economic multiplet replacing the adjoint Σ of the minimal SU(5),

which also generates the mixing between the color triplet fragments in the Higgs 5- and

50-plets, whereas there are no doublets in the 50-plets. In this way, all color triplets are

heavy, with mass of order MGUT, while the doublets in H, H̄ remain light, with mass given

by the µ-term. In this theory the new soft parameter BΦ (see eq. (2.13) for its analogous

definition) can be taken large without inducing a large Bµ. The unpleasant feature of this

model is that the parameter µ should be taken very small with respect other masses M,M1

in an ad hoc way.

Seemingly this model should satisfy our SU(5) bottleneck condition, since it is based

just on SU(5). However, the situation is not so simple. The problem is that it involves

the huge superfields 75, 50 and 50, and if their fragments remain just slightly lighter than

MGUT, their large threshold corrections can completely ruin the gauge coupling unification.

Moreover, the symmetry motivated versions of the MDM model [13, 14] contain twice as

large amount of these fields. Therefore, in the context of these models the crossing of gauge

couplings, with the todays precision, can be hardly considered stable for large threshold

corrections.

For SO(10), in the MVM [15, 16], the philosophy is similar: the Higgs doublets remain

massless since some of the GUT-breaking fields have vanishing v.e.v. along the direction

that would give them a mass, whereas they couple with the triplets with non-zero v.e.v..

Therefore also in this case the protection of the doublet sector is due to group theoretical

reasons. Therefore large soft terms ∼ 10 TeV in the heavy sector will not influence µ

and Bµ.

Regarding one step unification condition, it is not a priori guaranteed in SO(10). In

fact this gauge group can be broken down to SU(3)×SU(2)×U(1) not passing through the

SU(5) bottleneck, but e.g. via Pati-Salam subgroup SU(4)×SU(2)×SU(2) and subsequent

symmetry breaking chains. This can be settled by ad hoc choice assuming that the Higgs
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superfields, which break SO(10) down to SU(5) subgroup, have the largest v.e.v.. However,

there remains the problem that this model, and SO(10) models in general, are not very

economic as far as the Higgs sector is concerned. The minimal set of GUT superfields

necessary to achieve the correct symmetry breaking and MVM pattern within the renor-

malizable superpotential, contains one 54-plet, at least three 45-plets, 16 ⊕ 16 and two

10-plets [17, 18], whereas in some versions the much larger multiples as 210 and 126⊕126

are used. Large threshold corrections due to these fragments can easily affect the crossing

of gauge couplings and thus transform the gauge coupling unification from a prediction to

an accidental fact.

The SU(6) model [19–24] is based on very simple set of GUT superfields, in fact as

simple as the minimal SU(5), SU(6) gauge symmetry is broken by two sets of superfields:

two fundamental representations H ∼ 6 and H̄ ∼ 6 that break SU(6) down to SU(5),

and one in adjoint representation Σ ∼ 35, that leads to the breaking channel SU(6) →
SU(4) × SU(2) × U(1). As a result the two channels together break the SU(6) gauge

symmetry down to SU(3) × SU(2) × U(1). The simple assumption on which the GIFT

mechanism is based is that the Higgs superpotential does not contain the mixed term

HΣH̄, so that it has the form W = W (Σ) +W (H, H̄), where

W (Σ) =
MΣ

2
Σ2 +

λΣ

3
Σ3 , W (H, H̄) = Y (HH̄ − V 2) . (2.15)

As a result the superpotential acquires an accidental global symmetry SU(6)Σ × SU(6)H ,

which independently transforms Σ, and H, H̄ superfields. Then, in the limit of unbroken

supersymmetry the MSSM Higgs doublets Hu, Hd appear as massless Goldstone superfields

built up as a combination of doublet fragments from Σ, and H, H̄, that remain uneaten

by the gauge bosons. Therefore in this limit µ vanishes exactly.

Supersymmetry breaking terms like AΣ, BΣ shift the v.e.v.’s and also give F-terms to

them, therefore generating Bµ term for the MSSM Higgses. However, since these terms also

respect the global symmetry SU(6)Σ×SU(6)H , the mass matrix of the Higgses in eq. (2.7)

is degenerate, and thus one Higgs scalar (combination of the scalar components of Hu and

Hd) still remains massless. Thus, even with arbitrary BΣ that give µ ∼ Bµ ∼ BΣ, there

is an automatic relation between µ and Bµ terms that guarantees that the determinant of

eq. (2.7) vanishes. This degeneracy is removed only by radiative corrections due to Yukawa

terms that do not respect the global symmetry, and the resulting Higgs mass will be of the

order of µ and Bµ, given by the mismatch in their renormalization. Therefore, in the case

of large BΣ ∼ 10 TeV we are still left with a “little” hierarchy problem of the electroweak

scale stability against 10 TeV scale discussed in previous section.

Due to economic Higgs sector and the way in which the GIFT mechanism works in

SU(6), the SU(5) bottleneck condition is satisfied in straightforward way. In a most elegant

way this occurs in the context of model [24] with anomalous U(1)A symmetry where H, H̄

v.e.v.’s emerge essentially at the string scale. Below such energy the theory becomes a

minimal SU(5) with one adjoint 24 and two fundamentals 5 and 5 plus one SU(5)-singlet,

altogether composing a 35-plet of SU(6) that remains a global symmetry at this point.

– 11 –



J
H
E
P
0
8
(
2
0
1
5
)
0
8
3

Until now we have not considered yet the fermion sector and the Yukawa part of the

superpotential in eq. (2.3). Coming back to a naive minimal SU(5) where fermions are

allocated in the representations 10i ⊕ 5i, i = 1, 2, 3, one can write the Yukawa couplings

WYukawa = Y u
ij10i10jH + Y e

ij10i5jH̄ , (2.16)

which after SU(5) breaking reduces to the Yukawa part of WMSSM reported in eq. (2.4).

However, one immediately encounters two problems:

i) this predicts Y d
ij = Y e

ij and thus degeneracy of the Yukawa eigenvalues between down

quarks and leptons of all generations at the GUT scale, yd,s,b = ye,µ,τ . While for

the third generation the yb = yτ unification works (almost) perfectly, for the lighter

generations it is dramatically wrong;

ii) in this way we must introduce small Yukawa couplings for lighter generations. In

fact while only top quark has a large Yukawa yt ' 1 (for large tan β, yb and yτ could

be large as well), the rest of the Yukawa couplings must be � 1 in any case. This

would contradict our assumption of no artificially small parameters in the mother

GUT theory.

Fortunately, both these problems can be solved at one shot in a rather natural manner,

assuming that, by some symmetry reasons,4 only the third generation gets masses from the

renormalizable Yukawa terms of eq. (2.16), while the masses of the first two generations

are due to higher order operators

auij10i10j
ΣH

MP
+ buij10i10j

Σ2H

M2
P

+ adij10i5j
ΣH

MP
+ bdij10i5j

Σ2H

M2
P

+ . . . (2.17)

In the previous expression MP denotes the Planck energy scale and i, j = 1, 2, 3, with

the coefficients a, b ∼ O(1) (see e.g. in [51]). The expression (2.17) after SU(5) breaking

gives the Yukawa terms for the light families and their mixing with the third family. In

this case we gain two things: the light fermion Yukawa couplings are no more degenerate,

since they get Clebsch factors from the v.e.v. of Σ, and hierarchy between the families can

be naturally understood in terms of small factor 〈Σ〉/MP ∼ 10−1 ÷ 10−2. The effective

high order operators can be obtained by integrating out some heavy fermions in vector-like

representations 5⊕5, 10⊕10, with masses O(MP ), with which light chiral families 10i⊕5i
mix with the O(1) Yukawa couplings [52–55]. In this way, the mother theory becomes free

of small couplings, namely all coupling constants are O(1). It should be also noticed that

due to these terms, the yb = yτ unification in third family is not anymore exact but it

gets corrections, typically yb = yτ
(
1 ± O(yµ/yτ )

)
while in some predictive scenarios with

asymmetric textures [18, 56, 57] corrections could be even larger.

4Typically due to family symmetries (in SU(6) model this occurs automatically due to pseudo-Goldstone

nature of the Higgs superfields) only top quark can get the mass from renomalizable coupling with yt ∼ 1,

while other masses come from higher order terms suppressed by MP . It is worth to notice, however, that in

spite masses of b and τ emerge from higher order operator, yb = yτ still holds with the modulo corrections

related to hierarchy between the SU(6)→ SU(5) and SU(5)→ SU(3)× SU(2)× U(1) breaking scales with

V5/V6 ∼ 10−1 ÷ 10−2 [22, 23].

– 12 –



J
H
E
P
0
8
(
2
0
1
5
)
0
8
3

This situation emerges in a very natural way in the context of SU(6) model [19]. Its

minimal anomaly free fermion content contains three generations of chiral superfields in

multiplets that are a SU(6) decomposition of a 27-plet of E6, 27 = 6̄⊕ 6̄⊕ 15, containing

two (anti)fundamental representations, and a two-index antisymmetric one.5 Their SU(5)

decomposition reads 6̄ = 5̄⊕ 1̄ and 15 = 5⊕ 10. The only possible Yukawa couplings are

gik15i6̄kH̄, i = 1, 2, 3 and k = 1, 2, . . . 6, where the matrix gik can be taken block diagonal

without lose of generality, e.g. with non-vanishing elements being only g14, g25, g36. After

symmetry breaking SU(6) → SU(5) by the v.e.v. of H̄ (VH), these couplings combine

three fragments 5i ⊂ 15i with three combinations of six 5̄ fragments from 6̄k into massive

particles with M ∼ VH . Consequently, theory reduces to SU(5) with three generations

10i ⊕ 5̄i, i = 1, 2, 3. However, non-renormalizable Yukawa couplings can be written that

could generate fermion masses.

It is possible to make a minimal modification of the model by introducing a superfield

20 (three-index antisymmetric representation) [22, 23] whose SU(5) decomposition is 20 =

10 ⊕ 10. Since 20 is a pseudo-real representation of SU(6), its mass term is not allowed:

convolution of 202 with a Levi-Chivita tensor is vanishing. Therefore, its 10⊕10 fragments

remain massless before SU(6) symmetry breaking. In this case, the Yukawa couplings

λ20 20 Σ and λ′i 20 15iH that explicitly violate the global SU(6)Σ × SU(6)H symmetry

can be introduced. The latter one combining 10 ⊂ 20 with 10 ⊂ 15 provides massive

states, while the former one reduces to a SU(5) Yukawa coupling for the fragment 10 ⊂ 20

with 5 fragment of Σ, λ10 10 5Σ. In this way, an upper quark from 10, to be identified

with top quark, gets Yukawa coupling with the pseudo-Goldstone fragment Hu ⊂ 5Σ,

with yt ∼ λ ∼ 1. The t-quark is the only particle getting in this way mass O(100)

GeV [22, 23]. Masses of other particles should necessarily emerge from the higher order

operators. Namely, masses of b and τ come from the operator (λb/M
2
P ) 20 6̄3H̄

2Σ implying

yb = yτ modulo small corrections, namely yb = yτ
(
1 +O(VΣ/VH)

)
. The mass of c-quark is

induced by the term (λc/M
2
P ) 152152H

2Σ, with a nice implication yc ∼ yb,τ ∼ (VH/MP )2

pointing towards small or moderate tan β. It is worth to remark that this feature also

implies the lower bound (VH/MP )2 > 0.01, i.e. VH & 1017 GeV. Hence, VH � VΣ and the

SU(5) bottleneck condition is naturally satisfied.

In this framework, the SSB D-terms of eq. (2.16), which generate masses for squarks

and sleptons, are given by

LSU(5)
Y,D = m̃2

10ij 1̃0
†
i 1̃0j + m̃2

5ij 5̃
†
i 5̃j . (2.18)

In our analysis, we allow the mass matrices m̃10 and m̃5 to be different. Different squark

and slepton fragments, which have the same soft masses in the GUT limit, split at low

energies due to the running. The effect of such difference on the compatibility of the model

has been considered in the following analysis. Note that m̃10 and m̃5 would be exactly

equal in SO(10) inspired models at MGUT. As for inter-family splitting of soft masses,

as well as for healthy pattern of the trilinear terms in eq. (2.5), they can be alligned

5For a comparison, SO(10) decomposition of the E6 27-plet is 16⊕ 10⊕ 1 containing the spinor repre-

sentation 16, but also additional non chiral fragments 10⊕ 1.
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with the Yukawa terms through MFV relations between the Yukawa couplings and soft

parameters for squarks and sleptons, as e.g. m̃2
uij = m2

0δij + m2
1(Y u†Y u)ij + m2

2(Y u†Y u)2
ij

and Auij = m3Y
u
ij , where m0,1,2,3 are soft mass parameters. Therefore, due to small values

of the Yukawa couplings, mass spectrum of the squarks and sleptons must have inter-

family degeneracy with possible exclusion of stop since yt ∼ 1. In any case, this unification

of fermion and sfermion masses and interaction patterns provides a chance for a natural

suppression of SUSY induced flavor violating effects, and allows to lower the SUSY scale

down to 1 TeV. It is important that such relations can be obtained also in the context of

realistic and predictive SUSY-GUT scenarios for the fermion masses and mixing [40–44].

3 Renormalization group equations: initial conditions and threshold

corrections

Let us consider the Renormalization Group Equations (RGEs), up to 2-loop order, for a

set of couplings Xi that can be generally cast in the following form

d

dt
Xi =

1

16π2
β

(1)
Xi

(Xj) +
1

(16π2)2
β

(2)
Xi

(Xj) , (3.1)

where t = ln(M/M0), and M0 represents the renormalization energy scale at which we

impose the initial conditions. The set of running couplings and the corresponding expres-

sions for β
(1)
Xi

and β
(2)
Xi

depend on the energy regime considered, simply denoted as SM (non

SUSY) or MSSM (SUSY), and on the massless particle content at that particular energy

scale. The complete set of SM RGEs is provided by [58–63], while the MSSM RGEs are

reported in [64]. We properly assume that only the Yukawa couplings for the heaviest

particles of each family generation (i.e. top and bottom quarks and tau lepton) give a con-

siderable contribution. Moreover, in the running of gauge couplings we consider only the

top Yukawa contribution since the others are negligible at all energy scales for moderate

tanβ. Moreover, in the MSSM β-functions we neglect the terms related to trilinear soft

couplings Au,d,eij of eq. (2.5).

As usual, starting from low energy, it is convenient to fix the renormalization mass M0

at the EW scale MZ = 91.1876 ± 0.0021 GeV [34], where the gauge couplings αi = g2
i /4π

result to be in the MS renormalization scheme [34]

α−1
1 (MZ)=59.008±0.008 , α−1

2 (MZ)=29.569±0.014 , α3(MZ)=0.1184±0.0007 , (3.2)

where i = 1, 2, 3 stands for U(1), SU(2), SU(3), respectively. As it is well known, in the

running from low to high energy scale we have to add every particle above its individual

threshold given by its mass, and to impose at the same time corresponding matching

conditions. In the SM this happens, for instance, in the case of Higgs (Mh = 125.7 ±
0.4 GeV) and of top quark (Mt = 173.21± 0.51± 0.71 GeV) [34].

Starting from MZ, with the increase of energy we have at a certain scale the transition

from SM to MSSM. Here, we have two possibilities, namely, the single-scale and multi-

scale approaches, [65]. In the single-scale approach, the transition between SM and MSSM

occurs at a given effective energy scale simply denoted as MSUSY. In this scenario all SUSY
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Figure 1. Running of the gauge couplings α−1
1 (blue), α−1

2 (green) and α−1
3 (red) with MSUSY =

2 TeV up to 2-loop in β-functions. For each α−1 it is reported the 3σ error band due to the

experimental uncertainty at MZ. The range for MSUSY compatible with the measurements within

3σ is from ∼ 1 TeV up to ∼ 3.5 TeV. The inset is a focus of the crossing region.

particles share the same mass. In figure 1 one shows the gauge couplings unification in a

SUSY scheme with a single effective energy scale MSUSY ∼ TeV . In achieving such result,

as it is well known, 2-loop β-functions play a relevant role in increasing the value for MSUSY

needed. However, the simplifying assumption of single-scale approach is very unnatural,

since, in principle, the SUSY particles mass spectrum might be not degenerate. When

such occurrence is considered we have the so-called multi-scale approach that is adopted

in our analysis.

In the framework of SUSY-GUTs under the SU(5) bottleneck ansatz, sparticles, even

though with the same mass at MGUT, naturally acquire different masses al low scale due

to the renormalization group equations. In our model, according to eqs. (2.5) and (2.18),

at MGUT there exist three parameters related to SUSY soft masses m̃G (SSB F-terms)

for gauginos and, m̃10 and m̃5 (SSB D-terms) for matter sparticles. Let us denote with

m̃g, m̃W, m̃sq and m̃sl the pole masses of gluinos, neutralinos, squarks and sleptons at

low energy scale, respectively. Due to the SU(5) bottleneck ansatz, at MGUT we can

assume m̃g/m̃W = 1 and m̃sq/m̃sl = m̃10/m̃5 = 1. It is worth while noticing that the

simplicity assumption m̃10/m̃5 = 1 does not sensibly affect the final results since the main

contribution to gauge coupling running comes from gauge and Higgs sectors as will be

clarified in the following. Finally, there exists also another parameter m̃h that is the mass

of two higgsinos of the same order of supersymmetric parameter µ. Note that the mass of

the second Higgs is of the same order of the masses of matter sparticles.

Let us define Mmin and Mmax as the minimum and the maximum of SUSY particles

mass spectrum, respectively, in a given model. Concerning the SUSY thresholds we adopt

the following simplicity ansatz. We use below Mmin 2-loop SM RGEs, while above Mmax

2-loop MSSM RGEs. Within these two scales, we apply 1-loop MSSM RGEs for each new

SUSY particle, i.e. adding the contributions of each particles at the corresponding mass

(see ref. [66]), while we use 2-loop SM RGEs for SM particles.

– 15 –



J
H
E
P
0
8
(
2
0
1
5
)
0
8
3

Moreover, since the SM β-functions are typically evaluated in the MS renormalization

scheme, while the MSSM ones are obtained using the DR, one should take into account

matching relations between the couplings corresponding to the different schemes. However,

since the transition between MS and DR gives a shift in the unknown SUSY particles

masses smaller than 1%, for the level of accuracy of the present analysis we can safely

neglect such effect.

For Yukawa couplings of the corresponding particles, we use 2-loop SM RGEs up to

Mmax and 2-loop MSSM RGEs above such scale, imposing the suitable matching conditions

ySMt = yMSSM
t sinβ , ySMb = yMSSM

b cosβ , ySMτ = yMSSM
τ cosβ . (3.3)

Finally, GUT particles which are lighter than leptoquarks (X, Y ) modify RGEs before

gauge couplings unify at MGUT. For instance, the mass of the (8,1)⊕ (1,3) fragments of

SU(5) adjoint Higgs, M̃Σ, or of triplet fragments (3,1) ⊕ (3̄,1) in H, H̄, could be below

MGUT if the coupling constants λΣ or ξ in eq. (2.9) are small. Indeed, by comparing

eqs. (2.11) and (2.12) we can define the following parameters

χΣ ≡
MGUT

M̃Σ

=

√
2παGUT

λΣ
, χT ≡

MGUT

M̃T

=

√
2παGUT

ξ
, (3.4)

If the parameter χΣ is large, then the GUT threshold corrections due to fragments of Σ will

be relevant. According to our naturalness conditions, we assume that λΣ is not unnaturally

small, and impose the constraint χΣ < 10. The same can be applied also for color triplet

fragments T, T̄ . However, the proton stability against dimension-5 operators require M̃T >

MGUT. Therefore, ξ ∼ 1 is favored, and threshold corrections related to χT are expected

to be irrelevant. It is interesting to notice that in the context of SU(6) model [19], one

automatically gets M̃Σ = M̃T as far as they emerge from the same adjoint Higgs Σ ∼ 35.

Hence, the requirement of the proton stability against Higgsino mediated dimension-5

operators, M̃T ≥MGUT, also implies that there should be no threshold corrections neither

from other fragments the superfield Σ.

The b-τ unification at GUT energy scale is also studied, by imposing at MGUT

yb(MGUT) = yτ (MGUT)

(
1 +O

(
yµ(MGUT)

yτ (MGUT)

))
. (3.5)

Note that since the ratio between two Yukawa couplings is essentially unchanged by the

running, we have used their values measured at EW scale in order to estimate O (yµ/yτ ).

The masses are mb(mb) = 4.18 ± 0.03 GeV (evaluated in MS scheme), Mτ = 1776.82 ±
0.16 MeV and Mµ = 105.6583715± 0.0000035 MeV [34].

We have developed a Mathematica program6 which resolves all the RGEs with nu-

merical iterative method and takes into account all the matching and threshold rela-

tions discussed in the previous sections. The input parameters of the program are

{m̃h, m̃g, m̃sq, χΣ, tanβ} (hereafter simply denoted as a model), whereas the outputs are

{α3(MZ), MGUT, αGUT, yt(MGUT), yb(MGUT), yτ (MGUT)}. The quantity χT has not been

6Other programs able for such a purpose are for instance RunDec [67], SPheno [68] and SoftSusy [69].
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considered in the analysis since it contributes in an almost irrelevant way (ξ ∼ 1) to

the running.

Since the output quantity α3(MZ) must be compatible with its experimental value

it represents a compatibility constraint that has to be satisfied by the particular model

chosen. In other words, scanning on the possible input values one has to discard those

choices producing a value of α3(MZ) outside the experimental range. This yields, at the

end of the procedure, a set of compatible SUSY-GUT models.

Another compatibility constraint concerns MGUT since it is straightforwardly related

to the proton lifetime τp. In a generic SUSY-GUT scheme, the proton decay is induced

by dimension-6 operators (mediated by gauge bosons X,Y ), and by any type of effective

operators allowed by a general operator analysis [70, 71]. In this study we focus our

attention on dimension-6 operators responsible for the relevant decay channel p → e+π0,

namely the exclusive decay channel posing the most stringent bounds. The corresponding

experimental bound is Γ−1
(
p→ e+π0

)
= τp/Br

(
p→ e+π0

)
> 1.29 ·1034 yr [72] with 219.7

kt-yr of data at 90% confidence level. From ref. [73] one gets for the partial width

Γ
(
p→ e+π0

)
=
π

4

α2
GUT

M4
GUT

mp

f2
π

α2
H |1+D+F |2

(
1−m

2
π

m2
p

)2[(
A

(1)
R

)
+
(
A

(2)
R

)(
1+|Vud|2

)2
]
. (3.6)

By substituting in the above expression: fπ = 0.13 GeV, αH = −0.0112 GeV3, D = 0.8,

F = 0.47, A
(1)
R ≈ 2.5 and A

(2)
R ≈ 2.6 (see ref. [73] for the definition of the parameters) and

using [34] one gets

Γ−1
(
p→ e+π0

)
≈ 2.4·1032

(
MGUT

1016 GeV

)4
1

α2
GUT

yr > 1.29·1034yr =⇒ MGUT√
αGUT

& 3·1016 GeV .

(3.7)

In the following we adopt this conservative limit that does not depend strongly on the

details of the fermion masses and mixing. It is interesting to remark that the new effective

operators of dimension-4 and -5 can be induced by the SSB terms when the heavy gauge

bosons of GUT are integrated out [74, 75]. After being dressed by gauginos, they transform

into dimension-6 operators, and in the case of large soft parameters, as it can be in our

case, the proton lifetime in gauge mediated channels can be strongly affected (enhanced or

even suppressed) depending on the pattern of soft terms in the heavy Higgs sector [75].

The dimension-6 operators induced by the exchange of heavy color triplet scalars in

H, H̄ are suppressed by small Yukawa couplings of the first generation fermions, even

though in some models with flavor symmetry [76, 77] their contribution can be dominant.

In generic SUSY-GUTs, the dominant contribution to proton decay usually comes from

dimension-5 operators induced by the color triplet Higgsino exchange [78, 79]. After being

dressed by gauginos, they induce proton decay dominantly via the channel p→ K+ν. The

experimental limit on the latter is quite stringent, namely τp/Br (p→ K+ν) > 5.9·1033 yr at

90% confidence level [80]. This bound excludes the naive supersymmetric SU(5) model [81,

82], which is however already excluded by the wrong prediction for the light quark masses.

For models reproducing realistic fermion masses the impact of these dimension-5 operators

is strongly model dependent. In literature have been discussed many examples of models in

which dimension-5 operators can be suppressed by particular symmetry reasons [13, 83–87].
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By taking the constant ξ ∼ 1, the color triplet Higgsinos move to mass scales higher than

the GUT scale. In addition, having squark mass large enough, say 10 TeV, the Higgsino

mediated dimension-5 operators indeed become safe.

As discussed before, the running of all couplings is evaluated using 2-loop β-functions,

while the threshold effects are studied at 1-loop level only. Since the 2-loop RGEs are an

extremely involved set of coupled equations, we employ an iterative method whose steps

are shown in figure 2. In order to impose the gauge unification at MGUT, for a given choice

of input parameters and starting from the known values of MZ, Mh, Mt, Mb, Mτ , α−1
1 (MZ)

and α−1
2 (MZ) previously reported, we iteratively

• evolve α1 and α2, from MZ to higher energy scales;

• find their intersection point that defines the values of αGUT and its corresponding

unification scale MGUT;

• evolve backward α3 using (αGUT,MGUT) as initial point, obtaining α3(MZ);

• starting from this solution for running gauge coupling constants we introduce the

contributions of yt, yb and yτ in such a way that they consistently reproduce the

known values of Mt, Mb and Mτ . This fixes at the end the corresponding values for

yt(MGUT), yb(MGUT) and yτ (MGUT). Note that the other Yukawa couplings are not

considered since they give subdominant contributions.

This procedure must be iterated until it converges. The convergence conditions is that the

absolute difference
∣∣αi+1

3 (MZ)− αi3(MZ)
∣∣ < 10−5. Such precision is sufficient since it has

to face an experimental uncertainty of the order of 10−3. We have also verified that the

models considered remain perturbative during the running of all couplings.

In the multi-scale approach, there exist in principle five masses parameters, i.e. m̃g,

m̃W, m̃sq, m̃sl and m̃h, which define the SUSY thresholds. In order to estimate the values

for the two masses, m̃W and m̃sl, assuming m̃g/m̃W = 1 and m̃sq/m̃sl = m̃10/m̃5 =

1 at MGUT, we resolve backwards the RGEs of gauginos and sparticles soft masses in

the single-scale approach, where MSUSY is of the same order of magnitude of m̃g and

m̃sq, respectively. In particular, concerning matter SUSY particles we assume m̃sq/m̃sl =

m̃Q/m̃L at MSUSY = m̃sq.

Concerning the GUT threshold, for a given value of χΣ, we iteratively find the value

of M̃Σ through which the chosen value of χΣ is achieved.

4 Results

In our analysis we try to determine, among the compatible SUSY-GUT models, namely the

possible choices {m̃h, m̃g, m̃sq, χΣ, tanβ}, the energy scale above which SUSY signatures

have to show up. To define such a scale, let us consider a given compatible model where

the corresponding SUSY particles have masses m̃h, m̃g, and m̃sq that admit a minimum.

By scanning on all compatible models for fixed χΣ we can determine the maximum of
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Figure 2. Steps of the iterative method implemented in the Mathematica program which solves the

RGEs, imposing gauge unification at MGUT. All red solid lines mean that the differential equations

are resolved from MZ up to MGUT, whereas the black dashed line means that the corresponding

RGE is resolved from high to low energy scales. The circles represent the initial conditions imposed

at MZ, while the black triangles denote the output parameters that must be compatible with

experimental bounds. The energy scales, Mmin and Mmax, are respectively the minimum and the

maximum of SUSY particles masses in a given model. The quantity M̃Σ denotes the mass of Σ Higgs

fragments (8,1)⊕ (1,3). Note that all these energy scales define the SUSY and GUT thresholds.

Parameters α3(MZ) MGUT

χΣ: 1→ 10 +2.0 % +106 %

m̃g: 1→ 10 TeV -2.2 % -47 %

m̃sq: 1→ 10 TeV +0.2 % -2.6 %

m̃h: 1→ 10 TeV -4.5 % -16 %

Table 1. Level of dependence of α3(MZ) and MGUT on the main parameters related to SUSY and

GUT thresholds. The dependence on tan β, at this level, results to be negligible.

previous minima (once that we have marginalized with respect to tan β) hereafter denoted

by MUB(χΣ).

In table 1 we report the behaviors of α3(MZ) and MGUT as a function of the SUSY and

GUT thresholds. In particular, concerning α3(MZ) one observes two opposite dependences

on the thresholds. The increasing in the GUT threshold, χΣ, produces an analogous

increasing in α3(MZ), whereas the opposite occurs for SUSY thresholds. This can lead to a

possible balancing between these different effects that allows for larger masses in the SUSY

spectrum. As it appears from the table, the squarks provides a negligible contribution to

α3(MZ) hence justifying the simplicity ansatz we already quoted m̃10/m̃5 = 1 at MGUT.

The behavior of MGUT on the thresholds is qualitatively similar, but the strong dependence

on χΣ makes more difficult a possible balancing.

In figure 3 we report on the first row of the panel the compatibility region for the

masses m̃h, m̃g, m̃sq for different values of GUT threshold χΣ. As it is clear, m̃h and m̃g

result to have a reasonable inverse correlation and this occurs almost independently of m̃sq.
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From the figure one can observe the presence of an upper bound for m̃h that is smaller than

the possible ones for the other particles, and that such value appears to be a monotonic

increasing function of χΣ. Note that for simplicity in these pictures we do not superimpose

the constraints coming from proton lifetime and b-τ unification.

The other rows of figure 3 provide the allowed regions of the input parameters once

one has reduced the level of arbitrariness among the values of SUSY masses. In particular

in the second, third and fourth row one assumes the relations m̃h = m̃sl, m̃h = m̃W and

m̃g = m̃sq, respectively. Such situations cannot be straightforwardly derived by the 3d

plots of the first row, and hence they complement such information. Moreover, these three

different situations are in agreement with the fine tuning of eq. (2.8), which require the

masses m̃g (SSB F-terms), m̃sq (SSB D-terms) and m̃h (supersymmetric µ-term) to be of

the same order of magnitude. The superimposed dashed lines correspond to given values

of MGUT, expressed in 1016 GeV, whereas the red line, if present, bounds from above the

region allowed by proton lifetime. Note that eq. (3.7) bounds the compatibility regions for

small values of χΣ only. This is due to the fact that larger values of χΣ are able to spread

and shift up to larger values the compatibility regions for SUSY particle masses (see second

and third column of figure 3). Moreover χΣ affects the MGUT allowed region as well, as it

is clearly shown in figure 4, where it can be seen how increasing the values of χΣ one gets

larger values for the unification scale. The red-dashed regions of figure 4 are excluded by

proton lifetime constraint of eq. (3.7).

The anti-correlation showed by some of the mass parameters suggests that to look for

MUB(χΣ), it is convenient to assume particular relations among SUSY particle masses.

In particular, in the m̃h-m̃g plane one can see that if a mass is very light, the other one

has to be very heavy, whereas the quantity m̃sq is not bound at all. This suggests that

MUB(χΣ) can be found by imposing m̃h = m̃g = m̃sq in the allowed region, and looking

for the maximum of such values.

In the left panel of figure 5 we provide the allowed region in the plane tan β-yt(MGUT).

As it is clear from the plot, for moderate tan β (naturalness requirement, namely small

fine tuning in the Higgs and Yukawa sector) yt(MGUT) is bound to be larger than 0.5. In

the case of exact (yb = yτ ) or partial (yb = 0.90 yτ and yb = 0.85 yτ ) b-τ unification at

MGUT, according to eq. (3.5), the quantity yt(MGUT) cannot be lower than ∼ 1.5, ∼ 0.7

and ∼ 0.5, respectively. It is worth observing, that the b-τ unification at GUT energy

also imposes tan β . 3.0 for the case yb = 0.90 yτ . However, larger values for tan β can

be obtained by relaxing the relation of eq. (3.5). In particular, the allowed region in the

plane tan β-yt(MGUT) is not bounded at all for yb = 0.80 yτ , which is considered as the

case “without b-τ unification”.

In the right panel of figure 5 we show the quantity MUB(χΣ) as function of GUT

threshold χΣ. On the upper part of the picture we report the values of λΣ corresponding to

the particular values of χΣ. As it can be easily seen, too large values of χΣ would correspond

to excessively small values of λΣ that can be considered unnatural. Moreover, to assume

large values for χΣ > 10 would also imply MGUT unnaturally approaching Planck scale.

For these reasons in our analysis we bound the values of χΣ in the conservative interval

1 ÷ 10. As shown in the plot, b-τ unification at MGUT prefers lighter SUSY particles,

implying lower values for MUB(χΣ).
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χΣ = 1 (λΣ ∼ 0.5) χΣ = 3 (λΣ ∼ 0.2) χΣ = 10 (λΣ ∼ 0.05)

(a) m̃h = m̃sl (b) m̃h = m̃sl (c) m̃h = m̃sl

(d) m̃h = m̃W (e) m̃h = m̃W (f) m̃h = m̃W

(g) m̃g = m̃sq (h) m̃g = m̃sq (i) m̃g = m̃sq

Figure 3. In the first row of the panel the compatibility regions for the masses m̃h, m̃g, and m̃sq for

different values of χΣ are reported. The second, third and fourth row provide the allowed regions

once they have been assumed the relations m̃h = m̃sl, m̃h = m̃W and m̃g = m̃sq, respectively (green

and yellow regions correspond to 99% and 95% CL respectively). The dashed black lines correspond

to given values of MGUT expressed in 1016 GeV, whereas the red line, if present, bounds from above

the region allowed by proton lifetime (eq. (3.7)).

– 21 –



J
H
E
P
0
8
(
2
0
1
5
)
0
8
3

χΣ = 1 (λΣ ∼ 0.5) χΣ = 3 (λΣ ∼ 0.2) χΣ = 10 (λΣ ∼ 0.05)

p-decay bound:
MGUTαGUT ≳3·1016GeV
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p-decay bound:
MGUTαGUT ≳3·1016GeV
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p-decay bound:
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Figure 4. Allowed regions in the MGUT-αGUT plane obtained for different values of GUT threshold

χΣ. The red-dashed regions are excluded by proton lifetime constraint of eq. (3.7).

yb= 0.85 yτ
yb= 0.90 yτ
yb= yτ

2 4 6 8 10
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V
)

λΣ
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Figure 5. (a) Allowed region in the plane tan β-yt(MGUT). The yellow (green) region corresponds

to compatibility within 2σ (3σ) uncertainty. The blue, purple and red lines bound from below

the allowed region once that exact or partial b-τ unification at MGUT is respectively assumed (see

eq. (3.5)). (b) The quantity MUB as a function of χΣ. On the upper part of the picture, we report

the values of λΣ corresponding to the values of χΣ according to eq. (3.4).

For all these reasons, one gets that the upper bound for MUB(χΣ) is ∼ 20 TeV whenever

χΣ ≤ 10. For energy scale larger than such upper bound a generic SUSY-GUT model

satisfying our requirements has to show up via the detection of Higgsinos or gluinos. Such

a prediction cannot be extended to squarks that could be much heavier.

Note that, in case we had used more stringent bounds due to dimension-5 operators

mediating proton decay (even though highly model dependent), we would have excluded

larger portions of the allowed regions reported in figure 4 thus favoring larger values of χΣ.

In this case, the determination of the upper bound of ∼ 20 TeV for MUB would remain

completely unchanged since it only depends on the largest values of χΣ compatible with

our requirements.
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5 Conclusions

Besides the recent detection of a new particle compatible with the Higgs boson that com-

pletes the spectacular set of experimental evidences supporting the SM, it is hardly to

believe that a QFT based on the gauge group SU(3) × SU(2) × U(1) can represent the

deepest description of fundamental interactions. This consideration mainly follows from

the observation that several phenomena or open problems suggest the presence of physics

beyond the SM. Among them, the hint of unification of all gauge couplings for extreme

large energy, and the problem related to a natural separation of very different energy

scales in a field theory with scalars (hierarchy problem) strongly indicate the need for more

profound schemes.

The GUT paradigm once implemented in a SUSY framework is able to simply ad-

dress all these problems. Nevertheless, since the 8 TeV LHC run I has greatly constrained

SUSY-GUT, one can ask if such simple scenario is still viable. In the present analysis,

by considering a generic SUSY-GUT obeying quite general assumptions (SU(5) bottleneck ;

consistency with third family fermion masses and with the experimental limit on proton

decay; absence of special fine tunings among couplings, which are O(1) at MGUT) we

have analyzed the limits on the mass spectrum of SUSY particles once the experimental

constraints at MZ and proton decay limit are considered.

Parametrizing the SUSY mass spectrum in terms of three quantities related to SUSY

soft masses m̃g (SSB F-terms) for gluinos, m̃sq (SSB D-terms) for squarks, and m̃h (su-

persymmetric µ-term) for Higgsinos, we have looked at those values compatible with the

previous requirements. The aim was the determination of the upper bound for the minima

of compatible spectra. Such energy scale defines a threshold above which SUSY signatures

have to show up. This study provides indications about the chances to unveil new physics

on LHC run II and on future colliders.

In order to be more conservative in our prediction we have discussed the general possi-

bility that SUSY-GUT posses several thresholds. This means to assume possible splittings

between the masses of SUSY particles (multi-scale approach), and analogously, to admit

that some GUT particles can take mass below the unification scale (GUT thresholds). In

comparison with the single-scale approach where the SUSY breaking scale is of order of few

TeV, in the multi-scale scenario we find that SUSY particles masses can be much heavier.

We claim that if a SUSY-GUT model is the proper way to describe physics beyond

the SM and under the natural assumptions reported above, the lightest gluino or Higgsino

cannot have a mass larger than ∼ 20 TeV. The requirement of b-τ unification at GUT

energy scale slightly reduces such upper bound of few TeV. It is worth observing that our

conclusions are strongly affected by the experimental uncertainty on α3(MZ) and on the

proton lifetime lower limit. According to these results a new generation of colliders able

to achieve the 100 TeV [46, 47] energy range would have the chance to cover almost all the

parameter space beneath a natural unifying scheme.
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