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To our knowledge at the time of writing, the maximum Waring rank for the set of all

ternary forms of degree d (with coefficients in an algebraically closed field of characteristic

zero) is known only for d ≤ 4, and the best upper bound that is known for d = 5 is twelve.
In this work we lower the upper bound to ten (and there are evidences that it is likely

sharp).
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1. Introduction

The target of the present paper is the Waring problem for the set of all forms of

fixed degree and in a fixed number of variables, with coefficients in an algebraically

closed field of zero characteristic. This problem is part of a body of questions which

are under renewed interest, because of the recent discovery of new applications (see

the book [14]). General information can be found in nearly everyone of the several

articles that have recently been written in this topic (e.g., in [17]).

The best general upper bound on the Waring rank of an arbitrary form f of

degree d ≥ 3 and in n variables, to our knowledge at the time of writing, is given by

[3, Corollary 9]: apart from a few exceptional pairs (n, d), we have

rk f ≤ 2 ⌈ 1

n
(n + d − 1

n − 1
)⌉ . (1.1)

That result is based on the Alexander-Hirschowitz theorem (see [1]), which gives

the rank of a general f , for each fixed pair (n, d). One would like to determine

the sharp bound rmax(n, d). A lower bound for rmax(n, d) is given, of course, by

the rank of general forms, which is half of the above upper bound. In the case of

ternary forms, n = 3, the rank of monomials (see [5, Proposition 4.1]) gives a better
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lower bound:

rmax(3, d) ≥ ⌈d
2 + 2d

4
⌉ .

Lower bounds for polynomials of special type are also intensively studied (see,

e.g., [15], [17], [9], [4, Corollary 3.4]). Some upper bounds that do not rely on

the Alexander-Hirschowitz theorem turn out to be better than (1.1) in low degree

(see [11, Corollary 6], [2, Propositions 3.9 and 4.2]).

In this situation, to study the unknown case with least (n, d) seems a reasonable

way to seek for inspiration. For (n, d) = (3,5), the mentioned results [3, Corollary 9],

[11, Corollary 6], [2, Proposition 3.9] and [2, Proposition 4.2] give, respectively,

rmax(3,5) ≤ 14,14,13,12. In this paper we find

rmax(3,5) ≤ 10 .

Note that, according to [5, Proposition 4.1], there exist degree five monomials in

three variables whose rank is nine, and that when n = 3 and 2 ≤ d ≤ 4, as well as

when n ≥ 4 and d ≥ 2, rmax(n, d) is not reached by monomials. Although to find a

rank ten ternary quintic might be harder than one would expect and, at this point,

we would not have excluded that is impossible, we can anticipate that our bound is

actually sharp. Indeed, the needed example is part of an article in preparation by

Jaros law Buczyński and Zach Teitler (personal communication).

For the introductory purposes, here we quickly recapitulate the content of [7],

where a way to determine rmax(3,4) is presented, and subsequently outline the

enhancements we are obtaining here.

All vector spaces are understood over a fixed algebraically closed field K of zero

characteristic. We fix standard graded rings S● = Sym● S1, S● = Sym● S1 and a dual

pairing between S1 and S1. The dual pairing naturally extends to S●, S●, giving rise

to the apolarity pairing (for details, see [7, Introduction]). The contraction operation

l ⨼ v ∈ S● , l ∈ S●, f ∈ S● ,

is easily described in terms of apolarity and, on the other hand, simply amounts to

constant coefficients partial derivation, when dual bases

x0, . . . , xn ∈ S1 , x0, . . . , xn ∈ S1

are fixed (xi ⨼ f (x0, . . . , xn) = ∂f/∂xi). The sign ⊥ will refer to orthogonality with

respect to the apolarity pairing in fixed degree; we shall not use it to denote ap-

olar ideals. A projective space PV is understood as the set of all one-dimensional

subspaces ⟨ v ⟩ of the vector space V . Given f ∈ Sd, its (Waring) rank is denoted

by rk f .

Let us start by recalling the situation of [7, Lemmas 2.1 and 2.4], which deal

with binary forms. From the viewpoint of rank determination, these elementary

objects exhibit a nontrivial behavior which, nevertheless, is well-understood in its

general lines (see, e.g., [16], [10], [6]). So, let us assume dimS1 = 2 for the moment.
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Let W ⊂ S4 be a subspace of dimension three. We also put the hypothesis that,

for some linearly independent x0, x1 ∈ S1,W contains x0
4, x1

4 (as in [7, Lemma 2.1])

or x0
4, x0

3x1 (as in [7, Lemma 2.4]). To take a geometric view, we consider the plane

PW in the four-space PS4. We look at PSd as the ambient of a canonical rational

normal curve Cd, through a Veronese embedding νd ∶ PS1 ↠ Cd ↪ PSd, simply

given by νd (⟨ v ⟩) ∶= ⟨ vd ⟩. In the case W ⊃ {x0 4, x1
4}, the plane PW meets C4 in

(at least) two distinct points ⟨x0 4 ⟩, ⟨x1 4 ⟩; in the case W ⊃ {x0 4, x0
3x1}, PW is

tangent to C4 in ⟨x0 4 ⟩. This gives a line PL ⊂ PW , that is secant (L = ⟨x0 4, x1
4 ⟩)

or tangent (L = ⟨x0 4, x0
3x1 ⟩) to C4. To regard A ∶= PW ∖ PL as an affine plane

with line at infinity PL is also convenient. The mentioned lemmas give information

on the rank stratification in W ; namely, they describe the loci

R ∶= {⟨ f ⟩ ∈ A ∶ rk f ≠ 3} , R′ ∶= {⟨ f ⟩ ∈ A ∶ rk f = 4}
(note that R ∖R′ is precisely the set of ⟨ f ⟩ ∈ A with rk f ≤ 2). For instance, in the

secant case ([7, Lemma 4.1]) we have one of the following alternatives 1a, 1b, 2:

(1) R′ consists of at most two points and

(a) R ≠ ∅ is an affine conic with points at infinity exactly ⟨x04 ⟩, ⟨x14 ⟩, and

when R possesses a singular point ⟨x ⟩ we have rkx = 1 and R′ = ∅; or

(b) R ≠ ∅ is an affine line with point at infinity different from ⟨x04 ⟩, ⟨x14 ⟩; or

(2) R = R′ ≠ ∅ is an affine line with point at infinity either ⟨x04 ⟩ or ⟨x14 ⟩, and,

more precisely, R = R′ = A ∩ P⟨x04, x03x1 ⟩ in the first case, R = R′ = A ∩
P⟨x0x13, x14 ⟩ in the other.

In the tangent case the alternatives are similar: see [7, Lemma 2.4]. These results

are quite elementary, and may be proved in several different ways. A geometric

argument of a common kind is outlined in [7, discussion after Lemma 2.1]. It is

based on the projection of A from L, PSd ∖ PL → P(Sd/L). Indeed, we get a point

in a plane, whose position with respect to the projection of C4, which is a conic,

determines the alternative that occurs. Case 2 is perhaps the worst, in view of

subsequent applications.

Now, let us consider ternary forms, and so assume dimS1 = 3, f ∈ S4. According

to [7, Proposition 4.1], there exist distinct ⟨x0 ⟩ , ⟨x1 ⟩ , ⟨ l ⟩ ∈ PS1 such that x0x1l ⨼
f = 0. We look again at PS4 as the ambient of a Veronese embedding ν4 ∶ PS1 → PS4,

⟨ v ⟩ ↦ ⟨ v4 ⟩. Each of P ⟨x0 ⟩⊥, P ⟨x1 ⟩⊥, P ⟨ l ⟩⊥, is a line in PS1 that is mapped by

ν4 into a rational normal quartic in a space of (essentially) binary forms, say PV0,

PV1, PV2 (V0 = Sym4 ⟨x0 ⟩⊥, etc.). Since x0x1l⨼ f = 0, we have f ∈ V0 +V1 +V2. This

allows to decompose f (in several ways) as a sum of binary forms, each belonging

to a subspace of the form W described before; then, one can exploit the information

provided by the lemmas to bound the rank of f : see the proofs of [7, Propositions 3.1

and 5.1].

In the present work we pursue the same idea. First of all, [7, Proposition 4.1]

has already been generalized (see [2, Proposition 2.7]), and this allows us to decom-

pose every ternary quintic into a sum of four binary quintics. Hence, by suitably
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generalizing [7, Lemmas 2.1 and 2.4], we are lead to find upper bounds on the rank.

The main difficulty is that a case-by-case strategy like that of [7, Propositions 3.1

and 5.1] becomes considerably more complicated, and that is why in this paper we

also perform some nontrivial reductions.

Although the help of a geometric picture is invaluable to drive arguments, we

also need to write down some related equations (in particular, this simplifies the

extension of the analysis that was performed in the proof of [7, Proposition 2.3]).

To this end, in Section 3 we skip to a purely algebraic setting, we present an ex-

tension of [7, Lemmas 2.1 and 2.4], and also discuss an additional condition (which

has already appeared in [2]) that allows to avoid Case 2 mentioned before. Other

preparatory results are set up in Section 4. They can be regarded as complements

to [2, Proposition 2.7], but limited to the case of quintics. The final bound is stated

in Proposition 5.2.

2. Standing Notation

As anticipated in the introduction, we work over an algebraically closed field K of

characteristic zero, S●, S● denote dually paired, standard graded rings, and con-

traction is denoted by ⨼. A projective space PV is understood as the set of all

one-dimensional subspaces ⟨ v ⟩ of the vector space V . One may set Pn ∶= PKn+1,

and allow the classical notation [a0, . . . , an] for ⟨ (a0, . . . , an) ⟩ ∈ Pn (a). Given f ∈ Sd,
its (Waring) rank will be denoted by rk f .

Given f ∈ Sd+δ, we define the partial polarization map, fδ,d ∶ Sδ → Sd, by setting

fd,δ(t) ∶= t ⨼ f . Given x ∈ S●, we shall denote by ∂x ∶ S● → S● the contraction by x

operator f ↦ x ⨼ f .

In a few cases, to interpret elements of Sd as homogeneous polynomial functions

on S1 will be convenient. In view of that, sometimes we shall use the shortcut

p(v) ∶= 1

d!
p ⨼ vd = 1

d!
∂p (vd) , p ∈ Sd, v ∈ S1 (2.1)

(when d = 1 we have p(v) = p ⨼ v = ∂p(v)).
In order to efficiently manipulate parameterizations, we fix a further standard

graded ring K [t0, t1] in two indeterminates t0, t1, and a bigraded ring

S ∶= K [t0, t1]⊗ S● ,

with the bigrading being given by

Sδd ∶= K [t0, t1]
δ
⊗ Sd .

The contraction operation can be extended on S, by letting S● act trivially on

K [t0, t1]. That is, we denote again by ∂x the operator

id⊗∂x ∶ K [t0, t1]⊗ S● → K [t0, t1]⊗ S●

aIn the usual formalism, [a0, . . . , an] = ⟨ (a0, . . . , an) ⟩ ∖ {(0, . . . ,0)}; but of course this causes no

technical problems in the present setting.
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for all x ∈ S●, and moreover, for all f ∈ S the notation x ⨼ f will stand for ∂x(f).
Informally speaking: t0, t1 behave as constants with respect to the differential oper-

ators given by the contraction with any x ∈ S●. Also the shortcut (2.1) can naturally

be extended to any v ∈ K [t0, t1]⊗ S1:

p(v) ∶= 1

d!
p ⨼ vd .

On the other hand, every element f ∈ S can be evaluated in the obvious way at

(λ,µ) ∈ K2 (b), or more generally at (λ,µ) ∈ K2, with K being any commutative

K-algebra. We shall use the notation f ↾(λ,µ) for the evaluation of f ∈ S at (λ,µ) ∈
K2, which lies in K ⊗ S● (in particular, it lies in S● when K = K and in S when

K = K [t0, t1]).

Remark 2.1. Every f ∈ Sδd gives rise to a map

U → PSd , U ⊆ P1, [λ,µ]↦ ⟨ f ↾(λ,µ) ⟩ , (2.2)

that parameterizes a (rational) curve in PSd. Suppose that f admits a (homoge-

neous) divisor a ∈ K [t0, t1] ⊆ S, of positive degree. Then the parameterization (2.2)

is undefined at the zeroes of a, and f/a gives an extended parameterization. If a is

a divisor of greatest degree (among those in K [t0, t1]), then the extended parame-

terization is defined on the whole of P1.

Finally, we explicitly recall an elementary fact which holds, more generally, when

the coefficients are in a field of characteristic not dividing d.

Remark 2.2. Let d ≥ 2 and consider a linear combination of two d-th powers of

linear forms, with both nonzero coefficients. If it is again a d-th power, then the two

powers must be proportional (from a geometric viewpoint: rational normal curves

of degree d ≥ 2 admit no trisecant lines).

The following more general fact is also well-known.

Remark 2.3. If ⟨ v0 ⟩ , . . . , ⟨ vd ⟩ ∈ PS1 are distinct, then ⟨ v0d ⟩ , . . . , ⟨ vdd ⟩ ∈ PSd are

linearly independent.

3. Ancillary Lemmas on Binary Forms

Throughout this section we assume dimS1 = 2. To generalize the results on binary

forms we outlined in the introduction, let us consider a (d−2)-dimensional projective

subspace PW in PSd, with d ≥ 3. Let νd ∶ PS1 → PSd denote again the Veronese

embedding given by νd (⟨ v ⟩) ∶= ⟨ vd ⟩, and set Cd ∶= νd (PS1). If ⟨ l ⟩ ∈ PS1 and we

set ⟨ v ⟩ ∶= ⟨ l ⟩⊥, then ⟨ vd ⟩ ∈ Sd is the kernel of the restriction Sd → Sd−1 of the

bThat is, the evaluation homomorphism ev
(λ,µ) ∶ S → S● is simply ev

(λ,µ)⊗ id, with ev
(λ,µ) ∶

K [t0, t1]→ K being the ordinary evaluation. If a basis x0, . . . , xn of S1 is fixed, it amounts to the

ordinary substitution t0 ↦ λ, t1 ↦ µ into polynomials in t0, t1, x0, . . . , xn.
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contraction operator ∂l. More generally, if p ∈ Sδ and L ∶= Sd ∩ Ker∂p, then PL
can be regarded as the subspace of PSd spanned by νd(Z), with Z in PS1 being

given by p = 0 and ‘counted with multiplicities’ (c). For instance, in the situation

described in the introduction, if ⟨ l0 ⟩ ∶= ⟨x0 ⟩⊥ , ⟨ l1 ⟩ ∶= ⟨x1 ⟩⊥, then in the secant

case we have L = S4 ∩Ker∂l0l1 , and in the tangent case we have L = S4 ∩Ker∂l02 .

Therefore, the projection PSd ∖ PL → P(Sd/L) can be substituted by P (πp), with

πp being the restriction Sd → S2 of ∂p. The hypothesis that PW meets the curve

Cd in a group Z of d − 2 points (counted with multiplicities), is simply replaced by

W ∶= Sd ∩ ∂−1p (⟨ q ⟩), with ⟨p ⟩ ∈ PSd−2 and ⟨ q ⟩ ∈ PS2. With those assumptions, the

projection of Cd is simply replaced by C2.

Since the above described situation will often occur in the present paper, to set

up some related notation will ease the exposition.

Definition 3.1. When dimS1 = 2 and p ∈ Sd, q ∈ Se are nonzero (binary) forms,

we set

Wp,q ∶= Sd+e ∩ ∂−1p (⟨ q ⟩) , Lp,e ∶= Sd+e ∩Ker∂p ⊂Wp,q , Ap,q ∶= PWp,q ∖ PLp,e

(actually, these spaces depend only on the points ⟨p ⟩ ∈ PSd, ⟨ q ⟩ ∈ PSe). Moreover,

we shall refer to

{⟨ f ⟩ ∈ Ap,q ∶ rk f = 2} .

as the rank two locus in Ap,q.

To avoid the Case 2 that was mentioned in the introduction, note that it occurs

exactly when q is a square v2 for some root ⟨ v ⟩ ∈ PS1 of p ∈ S2. In the next section

we shall find suitable linear forms such that the contraction of f by their product is

not a square (a similar caution already appeared in [2]). This way, we also exclude

the occurrence of a singularity in the Case 1a, which happens if and only if q = v2
with ⟨ v ⟩ not a root of p. Under that hypothesis, below we determine a suitable

parameterization of the rank two locus.

Lemma 3.2. Let dimS1 = 2, ⟨p ⟩ ∈ Sd−2, with d ≥ 3, ⟨ q ⟩ ∈ PS2, with q not a square,

and let R̊ be the rank two locus in Ap,q (see Definition 3.1).

Given x0, x1 ∈ S1 such that ⟨x0x1 ⟩ = ⟨ q ⟩, there exists a unique

r ∈ K [t0, t1]
d−2

⊗Wp,q ⊂ Sd−2d

such that

t0t1 ⋅ (r ↾
(t02,t12

)
) = p (t0x0 − t1x1) (t0x0 + t1x1)

d − p (t0x0 + t1x1) (t0x0 − t1x1)
d
,

cWe shall not strictly need that statement, which serves only to provide a geometric insight; in any
case, it could easily be made precise. For instance, using elementary scheme theory, Z would be

the subscheme given by Proj (S●/(p))↪ ProjS●, and the span would be given by the intersection

of all linear subschemes that contains νd(Z) scheme-theoretically. One might also easily avoid
schemes.
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and a finite subset X ⊂ P1 such that

R̊ = {⟨ r ↾(λ,µ) ⟩ ∶ [λ,µ] ∈ P1 ∖X} .

Proof. Let ⟨ q ⟩ = ⟨x0x1 ⟩ with x0, x1 ∈ S1. Since q is not a square, ⟨x0 ⟩ , ⟨x1 ⟩ ∈ PS1

are distinct. In the polynomial ring S = K [t0, t1, x0, x1] we have

⟨ t0t1q ⟩ = ⟨ (t0x0 + t1x1)
2 − (t0x0 − t1x1)

2 ⟩ . (3.1)

Let

g ∶= p (t0x0 − t1x1) (t0x0 + t1x1)
d − p (t0x0 + t1x1) (t0x0 − t1x1)

d
.

Then, (3.1) and the Lebnitz rule for contraction give

p ⨼ g ∈ K [t0, t1]
2d−2

⊗ ⟨ q ⟩ ,

hence g ∈ K [t0, t1]
2d−2

⊗Wp,q ⊂ S2d−2
d . Since

g ↾(0,t1)= 0 = g ↾(t0,0) ,

g is divisible by t0t1. Next, let h ∶= g/t0t1 ∈ K [t0, t1]
2d−4

⊗Wp,q and note that

h ↾(−t0,t1)= h = h ↾(t0,−t1) .

Therefore h ∈ K [t02, t12]⊗Wp,q, and hence h = r ↾
(t02,t12

)
for some r ∈ K [t0, t1]

d−2
⊗

Wp,q ⊂ Sd−2d . By definition,

t0t1 ⋅ (r ↾
(t02,t12

)
) = p (t0x0 − t1x1) (t0x0 + t1x1)

d − p (t0x0 + t1x1) (t0x0 − t1x1)
d
,

(3.2)

and, of course, the above relation uniquely determines r.

Since r ∈ K [t0, t1] ⊗Wp,q, we have r ↾(λ,µ)∈ Wp,q for all (λ,µ) ∈ K2. If ρx0 +
θx1, ρx0 − θx1 ∈ S1 are not roots of p and ρθ ≠ 0, then g ↾(ρ,θ)≠ 0, ⟨ r ↾(ρ2,θ2) ⟩ =
⟨g ↾(ρ,θ) ⟩, and rkg ↾(ρ2,θ2)= 2 (rank one is excluded by Remark 2.2). Since p ⨼
g ↾(ρ,θ)≠ 0, we also have that ⟨ r ↾(ρ2,θ2) ⟩ is not in PLp,2 (hence is in Ap,q). Therefore,

⟨ r ↾(ρ2,θ2) ⟩ ∈ R̊ .

Conversely, suppose that ⟨ f ⟩ ∈ R̊. Then f = v0d + v1d for some distinct ⟨ v0 ⟩ , ⟨ v1 ⟩ ∈
PS1 and ⟨ f ⟩ ∈ Ap,q = PWp,q ∖ PLp,2. But f ∈ Wp,q implies that p ⨼ f ∈ ⟨ q ⟩ and

f /∈ Lp,2 implies that p ⨼ f ≠ 0. Since

p ⨼ f = d!

2
(p (v0) v02 + p (v1) v12) ,

and q is not a square, we have that p (v0) and p (v1) are both nonzero. Then we

can rescale v0, v1 and assume that

f = p (v1) v0d − p (v0) v1d , p ⨼ f = d!

2
p (v0)p (v1) (v02 − v12) . (3.3)
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Let (x0, x1) be the basis of S1, dual to (x0, x1). Since p⨼f ∈ ⟨ q ⟩ = ⟨x0x1 ⟩, we have

x0
2 ⨼ (v02 − v12) = 0 = x1 2 ⨼ (v02 − v12). Hence

x0 (v0)
2 = x0 (v1)

2
, x1 (v0)

2 = x1 (v1)
2
.

Since v0 ≠ v1, and up to possibly replacing v1 with −v1 when d is even or replace

(v0, v1) with (−v1, v0) when d is odd, we deduce

x0 (v0) = x0 (v1) x1 (v0) = −x1 (v1) .

Since v0 = x0 (v0)x0 +x1 (v0)x1, v1 = x0 (v1)x0 +x1 (v1)x1 = x0 (v0)x0 −x1 (v0)x1,

we have that (3.2) and the first equality in (3.3) lead to

f = x0 (v0)x1 (v0) r ↾
(x0(v0)

2,x1(v0)
2
)
.

Moreover, we already pointed out that v0, v1 are not roots of p, and x0 (v0)x1 (v0) ≠
0 because ⟨ v0 ⟩ ≠ ⟨ v1 ⟩.

This way we showed that if

X ∶= {[ρ2, θ2] ∈ P1 ∶ p (ρx0 + θx1) = 0} ∪ {[1,0], [0,1]}

then we have

R̊ = {⟨ r ↾(λ,µ) ⟩ ∶ [λ,µ] ∈ P1 ∖X} .

Definition 3.3. Throughout this paper, when dimS1 = 2, ⟨p ⟩ ∈ Sd−2 with d ≥ 3 and

⟨ q ⟩ = ⟨x0x1 ⟩ with distinct ⟨x0 ⟩ , ⟨x1 ⟩ ∈ PS1, the notation rp,x0,x1 will refer to the

polynomial r ∈ Sd−2d determined as in the statement of Lemma 3.2.

For use in later calculations, below we explicitly write down some formulas,

whose algebrogeometric meaning is quite elementary.

Lemma 3.4. Let dimS1 = 2, p = l1⋯ld−2 with d ≥ 3 and ⟨ l1 ⟩ , . . . , ⟨ ld−2 ⟩ ∈ PS1,

q = x0x1 with distinct ⟨x0 ⟩ , ⟨x1 ⟩ ∈ PS1, and let r ∶= rp,x0,x1 (see Definition 3.3).

For each i, let

ai ∶= li (x0)2 t0 − li (x1)2 t1 ∈ K [t0, t1] , ⟨ vi ⟩ ∶= ⟨ li ⟩⊥

and [λi, µi] = [li (x1)2 , li (x0)2] ∈ P1 be the root of ai (that is, ai ↾(λi,µi)
= 0).

We have:

● ∀I ⊆ {1, . . . , d − 2}, ∏i∈I ai divides (∏i∈I li) ⨼ r;

● with r′I given by (∏i∈I ai) r′I = (∏i∈I li) ⨼ r, if I ⊊ {1, . . . , d − 2} then the map

[λ,µ]↦ ⟨ r′I ↾(λ,µ) ⟩

is one-to-one outside a finite subset of P1 (d); moreover,

r′
{1,...,d−2} = 2d!q ;

dIt follows that it is, more precisely, a birational parameterization of a (rational, quasi-projective)

curve.
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● given i, j ∈ {1, . . . , d − 2}, we have that lj (vi) = 0 ⇒ aj ↾(λi,µi)
= 0;

● ∀i ∈ {1, . . . , d − 2}, r ↾(λi,µi)
∈ ⟨ vid ⟩;

● if r ↾(λi,µi)
= 0 then aj ↾(λi,µi)

= 0 for some j ≠ i;
● if aj ↾(λi,µi)

= 0 for some j ≠ i then r ↾(λi,µi)
= 0 or lj (vi) = 0.

Proof. Note that

ai ↾
(t02,t12

)
= li (t0x0 + t1x1) li (t0x0 − t1x1) . (3.4)

With I ⊆ {1, . . . , d− 2}, let us set pI ∶=∏i∈I li, p′I ∶= p/pI , aI ∶=∏i∈I ai, k ∶= ♯(I) and

sI ∶= p′I (t0x0 − t1x1) (t0x0 + t1x1)
d−k − p′I (t0x0 + t1x1) (t0x0 − t1x1)

d−k
. (3.5)

By definition of r and taking into account (3.4), we have

t0t1 ⋅ (pI ⨼ r ↾
(t02,t12

)
) = d!

(d − k)! aI ↾(t02,t12
)

sI . (3.6)

Since sI ↾(0,t1)= 0 = sI ↾(t0,0), sI is divisible by t0t1. Therefore pI ⨼ r is divisible

by aI . From (3.5) and (3.6) also easily follows that if [ρ2, θ2], [ρ′2, θ′2] ∈ P1 are

distinct, ρθ ≠ 0, ρ′θ′ ≠ 0, and ρx0 + θx1, ρx0 − θx1, ρ′x0 + θ′x1, ρ′x0 − θ′x1 are not

roots of p′I , then the equality

⟨ r′I ↾(ρ2,θ2) ⟩ = ⟨ r′I ↾(ρ′2,θ′2) ⟩

would imply that the (d−k)-th powers of ρx0+θx1, ρx0−θx1, ρ′x0+θ′x1, ρ′x0−θ′x1
are linearly dependent. But this is impossible when I ⊊ {1, . . . , d−2}, because in that

case we have d−k ≥ 3 and the four linear polynomials are pairwise non-proportional

(see Remark 2.3). Therefore the map [λ,µ] ↦ ⟨ r′I ↾(λ,µ) ⟩ is one-to-one outside a

finite subset of P1, when I ⊊ {1, . . . , d − 2}. Moreover, from (3.6) easily follows that

r′
{1,...,d−2} = 2d!q.

Let us prove the remaining statements (the ones about (λi, µi), vi). By defi-

nition, ⟨ vi ⟩ = ⟨ li ⟩⊥ for all i (that is, vi is a nonzero root, unique up to a scalar

factor, of l1), and the statements are independent of the choice of the representa-

tives (λi, µi) of [λi, µi] and vi of ⟨ li ⟩⊥. Therefore we can set, for each i, ρi ∶= li(x1),
θi ∶= −li(x0) and assume

vi = ρix0 + θix1 , (λi, µi) = (ρi2, θi2) .

Let us also set v′i ∶= ρix0 − θix1. From (3.4) we get

aj ↾
(ρi2,θi

2
)
= lj (vi) lj (v′i) , ∀i, j . (3.7)

This immediately gives, for each i, j, the implication lj (vi) = 0 ⇒ aj ↾(λi,µi)
= 0.

Taking I = ∅ in (3.6) (in other words, writing down the defining relation of r),

we get

ρiθir ↾(ρi2,θi2)= s∅ ↾(ρi,θi)= p (v′i) vid − p (vi) v′i
d
.
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Note that p (vi) = 0 for all i, because ⟨ vi ⟩ = ⟨ li ⟩⊥ and li is a factor of p. Therefore,

if ρiθi ≠ 0 then

r ↾
(ρi2,θi

2
)
= p (v

′

i)
ρiθi

vi
d ∈ ⟨ vid ⟩

as required and, moreover, r ↾
(ρi2,θi

2
)
= 0 if and only if p (v′i) = 0. But ρiθi ≠ 0 also

imply ⟨ v′i ⟩ ≠ ⟨ vi ⟩, hence p (v′i) = 0 if and only if lj (v′i) = 0 for some j ≠ i. From

(3.7) we easily deduce that, in the case ρiθi ≠ 0, the two remaining statements to

be proved are true.

Let us now assume ρi = 0 and let s′ ∶= s∅/t0. Since ρi = 0, we have vi = θix1 and

li (x1) = 0. Hence

s′ =

li (x0)p′{i} (t0x0 − t1x1) (t0x0 + t1x1)
d − li (x0)p′{i} (t0x0 + t1x1) (t0x0 − t1x1)

d
,

(3.8)

which gives s′ ↾(0,θi)∈ ⟨x1d ⟩ = ⟨ vid ⟩. From (3.6) and θi ≠ 0 (vi ≠ 0) we deduce

r ↾
(ρi2,θi

2
)
=

s′ ↾(0,θi)
θi

∈ ⟨ vid ⟩ ,

as it was to show. Moreover, r ↾
(ρi2,θi

2
)
= 0 if and only if s′ ↾(0,θi)= 0. But in view

of (3.8) and li (x0) ≠ 0, we have that s′ ↾(0,θi)= 0 if and only if p′
{i} (vi) = 0, that is,

lj (vi) = 0 for some j ≠ i. To conclude, it suffices to note that lj (vi) = 0 if and only

if aj ↾
(ρi2,θi

2
)
= 0, because of (3.7) and ρ = 0.

The case θi = 0 can obviously be handled in the same way.

The next results provide us with sufficient conditions to avoid that too much

binary quintics of high rank arise.

Remark 3.5. Let dimS1 = 2 and PW be a projective plane in PS5 (i.e., dimW = 3).

According to [2, Proposition 4.1] (e), there exists a nonempty (Zariski) open subset

U of PW such that rk f ≤ 4 for all ⟨ f ⟩ ∈ U . For some special PW , that result

can not be improved, in the sense that for no nonempty open subset U of PW
we can have rk f ≤ 3 for all ⟨ f ⟩ ∈ U . Indeed, let us take nonzero x, y ∈ S1, and

set W ∶= S5 ∩ Ker∂x2y, ⟨u ⟩ ∶= ⟨x ⟩⊥, ⟨ v ⟩ ∶= ⟨ y ⟩⊥. We show that rk f ≥ 4 for all

f ∈ W ∖ ⟨u5, v5 ⟩ (which implies nonexistence of U). Let f ∈ W ∖ ⟨u5, v5 ⟩ and

If ⊂ S● be its apolar ideal, that is,

If ∶= {h ∈ S● ∶ ∂h(f) = 0} =⊕
d

Ker fd,5−d .

According to [10, Theorem 1.44(iv)], If is generated by a form h ∈ Ss and a form

h′ ∈ S7−s, with s ≤ 3. But x2y ∈ If , hence h divides x2y (because degh′ = 7− s ≥ 4)).

eThere is probably a mistake in the proof of that proposition given in [2], but to write down a

completely correct and detailed proof does not take long.



October 6, 2016 20:35 WSPC/INSTRUCTION FILE AuthorVersion

Every Ternary Quintic is a Sum of Ten Fifth Powers 11

Now, if h is squarefree then [10, Lemma 1.31] gives f ∈ ⟨u5, v5 ⟩, which is excluded.

Henceforth, the same lemma gives rk f = 7 − s ≥ 4 (f).

It is well-known that the rank of a generic form of degree d = 2s or d = 2s + 1 is

s + 1, that is, there exists a nonempty open subset of PSd such that rk f = s + 1 for

all ⟨ f ⟩ ∈ U . Actually, we have a bit more: the set of all ⟨ f ⟩ ∈ PSd with rk f = s + 1

is open (and nonempty). This fact is probably widely known as well, but we prefer

to give a precise explanation, because we lack a reference.

Remark 3.6. Let Cd be the curve given by d-th powers in PSd, with dimS1 = 2. Let

σr (Cd), r ≤ ⌊d+1
2

⌋, be the r-th secant variety of Cd (see, e.g., [14, Definition 5.1.1.2]).

Let us recall that σr (Cd) = σr (Cd)lo ∪ σr (Cd)hi, with

σr (Cd)lo ∶= {P ∈ PSd ∶ rkP ≤ r} , σr (Cd)hi ∶= {P ∈ PSd ∶ rkP ≥ d + 2 − r} ,

by the Comas-Seiguer theorem (see [14, Theorem 9.2.2.1]).

When d is even, d = 2s, it immediately follows that the set U of all ⟨ f ⟩ ∈ PSd
with rk f = s + 1 is the complement of σs (Cd), which is a projective variety, hence

a (Zariski) closed subset. Therefore U is open.

When d is odd, d = 2s+1, then the set to be proved being closed is X ∶= σs (Cd)∪
σs+1 (Cd)hi. A proof that X is a projective variety may go as that one for the secant

varieties (we do not need to prove irreducibility which, nevertheless, holds as well).

One may look at the incidence variety V ⊂ PSs+1×PSd, V ∶= {(⟨h ⟩ , ⟨ f ⟩) ∶ h ⨼ f = 0}
(in geometric terms, the condition prescribes that ⟨ f ⟩ lie in the subspace spanned by

the subscheme νs+1 (Z), with Z ⊂ PS1 being given by h = 0 and νs+1 ∶ PS1 → PSs+1

being the Veronese embedding). Now, [10, Lemma 1.31 and Theorem 1.44(i, iv)]

imply that ⟨ f ⟩ ∈ X if and only if h ⨼ f = 0 for some nonzero h ∈ Ss+1 that is

not squarefree. But for nonzero binary forms squarefree means nonsigular; hence,

if Y ⊆ PSs+1 is the locus given by the discriminant, which is a projective variety,

we have X = π2 (π−11 (Y )), with π1, π2 being the projections of PSs+1 × PSd. To

conclude, it suffices to recall the basic algebrogeometric result that the image of a

projective variety through a morphism is a projective variety as well.

Lemma 3.7. Let dimS1 = 2, ⟨p ⟩ ∈ PS2, ⟨ t ⟩ ∈ PS3. If t is not a cube then there

exists a nonempty open subset U of PWp,t (see Definition 3.1) such that rk f = 3

for all ⟨ f ⟩ ∈ U .

Proof. In view of the above Remark 3.6, to find a rank three f ∈Wp,t will suffice.

Let N ∶= ⟨ t ⟩⊥ = Ker t3,0 (dimN = 3). Since t is not a cube, for no x ∈ S1 we can

have N = xS2 (in geometric terms, the linear series on PS1 given by PN is without

fixed points). Moreover, we have Ker t2,1 = ⟨ q ⟩ for some ⟨ q ⟩ ∈ PS2. Therefore we can

find distinct ⟨x1 ⟩ , ⟨x2 ⟩ , ⟨x3 ⟩ ∈ PS1 such that x1x2x3 ∈ N and, moreover, x1, x2,

x3 do not divide p nor q. By dimension reasons, we have Wp,t ∩Ker∂x1x2x3 = ⟨ f ⟩

f It would be easy to exhibit, pursuing the same arguments, the whole rank stratification on PW .
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for some ⟨ f ⟩ ∈ PWp,t (the intersection is nonzero because x1x2x3 ∈ N , and the

sum is ⟨x1x2x3p ⟩⊥ because x1x2x3 and p are coprime). Since x1x2x3 ⨼ f = 0, [10,

Lemma 1.31] gives f ∈ ⟨ v15, v25, v35 ⟩, where ⟨ vi ⟩ ∶= ⟨xi ⟩⊥ for each i; hence rk f ≤ 3.

To exclude that rk f ≤ 2, note that in this case we have q′ ⨼ f = 0 for some

⟨ q′ ⟩ ∈ PS2. Note also that S5 ∩ Ker∂p ∩Ker∂x1x2x3 = {0}, otherwise S5 ∩ Ker∂p
and S5 ∩ Ker∂x1x2x3 would be both contained in a subspace of dimension four,

necessarily of the form ⟨h,h′ ⟩⊥ with linearly independent h,h′ ∈ S5. This would

mean that the coprime forms x1x2x3 ∈ S3 and p ∈ S2 divide both h and h′, which is

impossible (cf. also Remark 2.3). Now, q′ ⨼f = 0 and S5 ∩Ker∂p ∩Ker∂x1x2x3 = {0}
imply that q′ ⨼ t = 0, hence ⟨ q′ ⟩ = ⟨ q ⟩. This would lead to f ∈ Ker∂q ∩Ker∂x1x2x3 ,

and hence S5 ∩Ker∂q ∩Ker∂x1x2x3 ≠ {0}, which can be excluded as before.

Lemma 3.8. Let dimS1 = 2, ⟨x ⟩ ∈ PS1, ⟨ f ⟩ ∈ PS4, D ∶= S5 ∩ ∂x−1 (⟨ f ⟩). If for

infinitely many ⟨ g ⟩ ∈ PD we have rk g ≥ 4, then there exists ⟨ y ⟩ ∈ PS1 such that

x2y ⨼ g = 0 ∀g ∈D

or

xy2 ⨼ g = 0 ∀g ∈D .

Proof. If rk f3,1 = 1, then y ⨼ f = 0 for some nonzero y ∈ S1. Hence xy ⨼ g = 0 for

all g ∈D, and the properties to be proved are both true. Therefore, we can assume

that N ∶= Ker f3,1 is two-dimensional.

If for infinitely many ⟨k ⟩ ∈ PN we have that k is divisible by a square, then

all k ∈ N are divisible by a fixed square y2, with y ∈ S1 (g). Hence N = y2S1, that

implies y2 ⨼ f = 0 and therefore xy2 ⨼ g = 0 for all g ∈D. Thus, we can assume that

k is divisible by a square only for a finite number of ⟨k ⟩ ∈ PN .

From [10, Lemma 1.31 and Theorem 1.44(i, iv)] follows that if g ∈ S5 and rk g ≥ 4,

then z1z2
2⨼g = 0 for some nonzero z1, z2 ∈ S1 (it is an instance of a fact we already

pointed out in Remark 3.6). Hence, for each of the infinitely many ⟨ g ⟩ ∈ ⟨D ⟩ with

rk g ≥ 4, we can choose z1, z2 such that z1z2
2⨼g = 0. If g /∈ Ker∂x then we also have

z1z2
2 ∈ N . But Ker∂x ∩S5 consists of exactly one point ⟨ v5 ⟩ (with ⟨ v ⟩ = ⟨x ⟩⊥),

and k is divisible by a square only for a finite number of ⟨k ⟩ ∈ PN . Therefore there

exist two distinct points of ⟨D ⟩ that give the same ⟨ z1z2 2 ⟩ ∈ PN . Since dimD = 2

(because the restriction S5 → S4 of ∂x is surjective and has a one-dimensional

kernel), this implies that z1z2
2 ⨼ g = 0 for all g ∈ D. In particular, z1z2

2 ⨼ v5 = 0,

which means that z1z2
2

is divisible by x, and this proves our statement (with

⟨ y ⟩ = ⟨ z2 ⟩ if ⟨x ⟩ = ⟨ z1 ⟩ or ⟨ y ⟩ = ⟨ z1 ⟩ if ⟨x ⟩ = ⟨ z2 ⟩).

gIt is an easy case of Bertini’s theorem (see also [12, Lemma 1.1, Remark 1.1.1]). Actually, it would
also be easy to show that if k is divisible by a square for at least nine ⟨k ⟩ ∈ PN then all k ∈ N are

divisible by a fixed square.
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The above result is closely related with some nice and more general geometric

facts, which we think are worthy of being quickly outlined. Indeed, PD is a line in

PS5 that meets the rational normal curve C5 in ⟨ v5 ⟩ (at least). We can generalize

the result by dropping this hypothesis on the position of the line with respect

to C5. What matters is that infinitely many points in PD lie on a plane spanned

by a divisor of the type 2P +Q on C5 (in the scheme-theoretic sense, and with P,Q

possibly coinciding). Taking into account Remark 3.6, we have that every point in

PD lies on a plane spanned by a divisor of the type 2P +Q. We want to show that

PD is contained in one of those planes (in the situation of Lemma 3.8, it easily

follows that ⟨ v5 ⟩ must coincide with P or with Q). Let us suppose the contrary,

and then note that ‘the divisor 2P +Q must move’ and that the projection of C5

from the line PD is a curve C ′ in a three-dimensional projective space, for which

each divisor 2P +Q becomes aligned. The divisor 2P can not be fixed, otherwise

(since Q moves) PD would be the tangent to C5 in P and therefore contained in

each of the planes. We also have Q ≠ P for a generic choice of the divisor, otherwise

C ′ would be a line (by a well-known result in characteristic zero). We conclude that

C ′ is a space curve, not contained in a plane, such that the generic tangent meets

it in another point. When C ′ is nonsingular, that is exactly what a relevant result

of algebraic geometry excludes: see [13, Theorem 3.1] (h).

Since the results in [13] are quite deep, and leave out the case when C ′ is cuspidal

(see also [13, Remark 3.8]), we also point out that when the degree of C ′ is at most

five (as in the situation of Lemma 3.8), they can be proved by using more elementary

considerations, and the restriction on C ′ can be removed. We quickly outline the

proof using an informal, but not uncommon language. First, note that the point

Q as well can not be fixed, otherwise the projection from Q would be inseparable

on C ′ (which is impossible since char K = 0). Now, if we move a generic divisor

2P +Q in its first order infinitesimal neighborhood, then we get a plane containing

3P + 2Q. But this plane must meet the curve in the further point of intersection of

the tangent in Q. This point, for a generic 2P +Q, is distinct from P , otherwise the

generic tangent would be a bitangent (and this is excluded by another known result

of projective differential geometry). Since our curve is of degree at most five, to

note that it can not intersect a plane in a degree six divisor suffices. To make such

informal considerations rigorous is routine when the base field K is the complex

field. For an arbitrary K of characteristic zero, one might easily use the techniques

developed in [8].

Lemma 3.9. Let dimS1 = 2, ⟨ q ⟩ ∈ PS2, ⟨x1x2x3 ⟩ ∈ PS3, with x1, x2, x3 ∈ S1,

A ∶= Ax1x2,q (see Definition 3.1) and

E ∶= {⟨ f ⟩ ∈ A ∶ rk g ≥ 4 for infinitely many ⟨ g ⟩ ∈ P (S5 ∩ ∂x3
−1 (⟨ f ⟩))} .

hWe thank Edoardo Ballico for suggesting the reference [13] and correcting our initial overlooking
of the regularity hypothesis in the statement of the theorem.
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Then there exists a finite set F such that for each ⟨ f ⟩ ∈ E we have ⟨∂x1 f ⟩ ∈ F or

⟨∂x2 f ⟩ ∈ F .

Proof. Let us decompose q = x0x1 and let

u0 ∶= x3 (x1)x0 + x3 (x0)x1 , u1 ∶= x3 (x1)x0 − x3 (x0)x1 , (3.9)

v1 ∶= x1 (u1)u03 − x1 (u0)u13 , v2 ∶= x2 (u1)u03 − x2 (u0)u13 ,

vhk ∶= xh (x1−k)xk3 − 3xh (xk)xk2x1−k , ∀h ∈ {1,2}, k ∈ {0,1} .
Note that

∂xh vh, ∂xh vhk , ∈ ⟨x0x1 ⟩ = ⟨ q ⟩ , ∀h ∈ {1,2}, k ∈ {0,1} . (3.10)

Then, let us define

F ∶= {⟨x03 ⟩} , if ⟨x0 ⟩ = ⟨x1 ⟩
and

F ∶= {⟨ v1 ⟩ , ⟨ v2 ⟩ , ⟨ v10 ⟩ , ⟨ v11 ⟩ , ⟨ v20 ⟩ , ⟨ v21 ⟩} , if ⟨x0 ⟩ ≠ ⟨x1 ⟩ .
Let ⟨ f ⟩ ∈ E and D ∶= S5 ∩ ∂x3

−1 (⟨ f ⟩). According to Lemma 3.8, there exists

⟨ z3 ⟩ ∈ PS1 such that x3
2
z3 ⨼ g = 0 for all g ∈ D, or x3z3

2 ⨼ g = 0 for all g ∈ D.

Therefore,

x3z3 ⨼ f = 0 or z3
2 ⨼ f = 0 . (3.11)

If ⟨ z3 ⟩ ∈ {⟨x1 ⟩ , ⟨x2 ⟩}, let i ∈ {1,2} be such that ⟨xi ⟩ = ⟨ z3 ⟩. In the case when

⟨ z3 ⟩ /∈ {⟨x1 ⟩ , ⟨x2 ⟩} but ⟨x3 ⟩ ∈ {⟨x1 ⟩ , ⟨x2 ⟩}, let i ∈ {1,2} be such that ⟨xi ⟩ =
⟨x3 ⟩. Otherwise, let us fix i ∈ {1,2} at leisure. Let us set

f ′ ∶= ⟨∂xi f ⟩
and denote by j ∈ {1,2} the index other than i (for short, j ∶= 3 − i). To prove that

⟨ f ′ ⟩ ∈ F will suffice.

Recall that ⟨ f ⟩ ∈ A = Wx1x2,q ∖ Lx1x2,2 (see Definition 3.1), and f ∈ Wx1x2,q

implies that ∂xj f ′ ∈ ⟨ q ⟩ and f /∈ Lx1x2,2 implies that ∂xj f ′ ≠ 0. Hence

⟨∂xj f ′ ⟩ = ⟨ q ⟩ .
We also point out that if l ⨼ f ′ = 0 for some nonzero l ∈ S1, then the required

statement ⟨ f ′ ⟩ ∈ F follows. Indeed, in that case we necessarily have f ′ = w3 for

some nonzero w ∈ S1. Hence ∂xj f ′ ∈ ⟨w2 ⟩ and we know that ⟨∂xj f ′ ⟩ = ⟨ q ⟩. Thus

⟨w2 ⟩ = ⟨ q ⟩, which leads to ⟨w ⟩ = ⟨x0 ⟩ = ⟨x1 ⟩. Therefore ⟨w3 ⟩ = ⟨x03 ⟩ ∈ F as

required.

Suppose first that ⟨xi ⟩ = ⟨ z3 ⟩. Then, from (3.11) follows that x3 ⨼ f ′ = 0 or

xi ⨼ f ′ = 0 and this leads to ⟨ f ′ ⟩ ∈ F , as pointed out above.

Then, we can assume ⟨xi ⟩ ≠ ⟨ z3 ⟩ (henceforth, ⟨xj ⟩ ≠ ⟨ z3 ⟩ as well, by the choice

of i). If ⟨xi ⟩ = ⟨x3 ⟩ and x3z3 ⨼ f = 0, then z3 ⨼ f ′ = 0 and we have again ⟨ f ′ ⟩ ∈ F .

It follows that to prove the result in the following two cases will suffice:
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● z3
2 ⨼ f ′ = 0, or

● x3z3 ⨼ f ′ = 0 and ⟨xi ⟩ ≠ ⟨x3 ⟩ (henceforth, ⟨xj ⟩ ≠ ⟨x3 ⟩ as well).

Suppose first that ⟨x0 ⟩ = ⟨x1 ⟩. In the first case, we have z3
2 ⨼ x02 = 0, hence

z3 (x0) = 0. Therefore xjz3 ⨼ f ′ = 0. But ⟨xj ⟩ ≠ ⟨ z3 ⟩ and z3
2 ⨼ f ′ = 0 as well. This

gives z3 ⨼ f ′ = 0 and therefore ⟨ f ′ ⟩ ∈ F . In the second case, we have x3z3 ⨼ x02 = 0,

hence x3 (x0) = 0 or z3 (x0) = 0. Therefore xjx3 ⨼ f ′ = 0 or xjz3 ⨼ f ′ = 0. But ⟨xj ⟩
does not coincide with ⟨ z3 ⟩, nor with ⟨x3 ⟩ (since we are dealing with the second

case). Hence x3 ⨼ f ′ = 0 or z3 ⨼ f ′ = 0, and therefore ⟨ f ′ ⟩ ∈ F .

Suppose, finally, that ⟨x0 ⟩ ≠ ⟨x1 ⟩. In the first case, we have z3
2 ⨼ q = 0, hence

z3 (xk) = 0 for some k ∈ {0,1}. If z3 (xk) = 0, then z3
2 ⨼ vjk = 0; and vjk ≠ 0 because

⟨x0 ⟩ ≠ ⟨x1 ⟩. Let ⟨ yj ⟩ ∶= ⟨xj ⟩⊥ and note that S3 ∩Ker∂xj = ⟨ yj3 ⟩. If ⟨ f ′ ⟩ ≠ ⟨ vjk ⟩,
then yj

3 ∈ ⟨ f ′, vjk ⟩ because ∂xj f ′ ∈ ⟨ q ⟩ and ∂xj vjk ∈ ⟨ q ⟩ by (3.10). Since z3
2 ⨼ f ′ =

z3
2 ⨼ vjk = 0, from yj

3 ∈ ⟨ f ′, vjk ⟩ we deduce z3
2 ⨼ yj3 = 0, which is excluded because

⟨ z3 ⟩ ≠ ⟨xj ⟩. Hence ⟨ f ′ ⟩ ≠ ⟨ vjk ⟩ is excluded, so we get ⟨ f ′ ⟩ = ⟨ vjk ⟩ ∈ F as required.

In the second case, we have x3z3 ⨼x0x1 = 0. If x3 (x0) = 0 or x3 (x1) = 0, we deduce

that ⟨x3 ⟩ = ⟨ z3 ⟩ and we fall again in the first case. Hence we can assume that

x3 (x0) ≠ 0 and x3 (x1) ≠ 0. Now, we also have

0 = x3z3 ⨼ x0x1 = x3 (x0) z3 (x1) + x3 (x1) z3 (x0) .

Hence, from (3.9) we get z3 (u0) = 0. Since also x3 (u1) = 0, we have that x3z3⨼vj = 0;

and vj ≠ 0 since x3 (x0) ≠ 0 and x3 (x1) ≠ 0. As before, from (3.10) and ∂xj f ′ ∈ ⟨ q ⟩
we deduce that if ⟨ f ′ ⟩ ≠ ⟨ vj ⟩ then x3z3 ⨼ yj3 = 0. But this is excluded, since

⟨x3 ⟩ ≠ ⟨xj ⟩ and ⟨ z3 ⟩ ≠ ⟨xj ⟩. Thus, we can conclude with ⟨ f ′ ⟩ = ⟨ vj ⟩ ∈ F .

4. On Apolar Configurations of Lines

As explained in the introduction, the basic idea we are pursuing to bound the rank

of f is to find suitable l1, . . . , lk ∈ S1, such that l1⋯lk ⨼ f = 0. In more geometric

terms, we are dealing with configuration of lines of the plane PS1, that are apolar to

the target form f . After a brief preparation, soon we shall start finding appropriate

configurations.

Lemma 4.1. Assume dimS1 = 3, and recall that we are taking scalars in a field of

characteristic zero. If f ∈ Sd and V ⊂ S1 is a two-dimensional subspace, then (at

least) one of the following statements is true:

● l ⨼ f is a d-th power for at most two choices of ⟨ l ⟩ ∈ PV ; or

● there exists ⟨ l ⟩ ∈ PV such that l ⨼ f = 0.

Proof. We assume that the first of the listed statements is false and prove the

second. We can choose linearly independent x1, x2 such that V = ⟨x1, x2 ⟩ and

x1⨼f = v1d, x2⨼f = v2d for some v1, v2 ∈ S1. If v1 = 0 or v2 = 0 the second statement
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trivially follows. If not, since there exists one more

⟨x3 ⟩ ∈ ⟨x1, x2 ⟩ ∖ (⟨x1 ⟩ ∪ ⟨x2 ⟩)

such that x3 ⨼ f is a d-th power, from Remark 2.2 and linearity on the left of

the contraction operation ⨼ follows that ⟨ v1d ⟩ = ⟨ v2d ⟩, and henceforth x2 ⨼ f ∈
⟨ v1d ⟩. Then, again by linearity on the left of contraction, we can find a nonzero

l ∈ ⟨x1, x2 ⟩ = V such that l ⨼ f = 0.

The following results help to find appropriate apolar configurations of lines,

under appropriate hypotheses.

Remark 4.2. Let f ∈ Sd, with dimS1 = 3, and ⟨x ⟩ ∈ PS1 be such that x2 ⨼ f = 0.

Suppose that ⟨p ⟩ ∈ PSδ is such that p ⨼ f = 0 and the curve p = 0 in PS1 intersects

the line x = 0 in (exactly) δ distinct points, that henceforth are simple points of the

curve. We have that the δ (distinct) tangents l1 = 0, . . ., lδ = 0 to the curve in the

intersection points are such that l1⋯lδ ⨼ f = 0 (cf. the second part of the proof of

[7, Proposition 5.2]).

Lemma 4.3. Let f ∈ S5, with dimS1 = 3, and suppose that there exist distinct

⟨x1 ⟩ , ⟨x2 ⟩ ∈ PS1 such that

x1x2
2 ⨼ f = 0 .

Then (at least) one of the following statements is true:

● there exists a nonzero l3 ∈ S1 such that ⟨x1 ⟩ , ⟨x2 ⟩ , ⟨ l3 ⟩ are distinct and

x1x2l3 ⨼ f = 0; or

● there exist nonzero l2, l3, l4 ∈ S1 such that ⟨x1 ⟩ , ⟨ l2 ⟩ , ⟨ l3 ⟩ , ⟨ l4 ⟩ are distinct,

x1l2l3l4 ⨼ f = 0 and no one of x1l3l4 ⨼ f , x1l2l4 ⨼ f , x1l2l3 ⨼ f is a square.

Proof. Let us set

f ′ ∶= x1 ⨼ f , G ∶= x2 ⨼ f ′ .

Since x2 ⨼G = x1x2 2 ⨼ f = 0, we have G ∈ T● ∶= Sym● ⟨x2 ⟩⊥ = Ker∂x2 ⊂ S●. Now, T●
and T ● ∶= S●/ (x2) are rings of binary forms, with an apolarity pairing induced by

that between S● and S●.

Suppose first that G2,1 ∶ T 2 → T1 is not surjective (equivalently, rkG ≤ 1). In this

case we have L3 ⨼G = 0 for some nonzero L3 ∈ T 1. But L3 = l3 + (x2), and we can

choose a representative l3 ∈ S1 ∖ ⟨x1 ⟩ (besides /∈ ⟨x2 ⟩). This leads to x1x2l3 ⨼ f = 0

with distinct ⟨x1 ⟩ , ⟨x2 ⟩ , ⟨ l3 ⟩ ∈ PS1, as prescribed in the first statement.

Then, let us assume that G2,1 ∶ T 2 → T1 is surjective and look at the linear

system on PT1 (the line x2 = 0 in PS1) that is cut by polynomials in V ∶= ⟨G ⟩⊥ =
KerG3,0 ⊂ T 3. For no L3 ∈ T 1 ∖ {0} we can have V = L3T 2, otherwise L3 ⨼G = 0,

which is possible only when G2,1 ∶ T 2 → T1 is not surjective. Since dimV = 3, this

means that the linear system cut by V is without fixed points. Therefore we can
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find distinct ⟨L2 ⟩ , ⟨L3 ⟩ , ⟨L4 ⟩ ∈ PT 1 ∖ {⟨X1 ⟩}, with X1 ∶= x1 + (x2) ∈ T 1, such

that H ∶= L2L3L4 ∈ V (hence H ⨼G = 0). Since dim KerG2,1 = 1, the linear forms

L2, L3, L4 can be chosen so that, moreover,

L3L4 ⨼G ≠ 0, L2L4 ⨼G ≠ 0, L2L3 ⨼G ≠ 0 . (4.1)

Let us fix (at leisure) x2 ∈ S1 such that x2 ⨼ x2 = 1, and set F ∶= f ′ − x2G. Since

x2 ⨼ x2 = 1 and x2 ⨼G = 0, we have

x2 ⨼ F = (x2 ⨼ f ′) −G = 0 ,

hence F ∈ T4. Since G2,1 is surjective, there exists K ∈ T 2 such that

K ⨼G = −H ⨼ F .

Let h ∈ S3 be the representative of H ∈ T ● = S●/ (x2) that lies in Sym3 ⟨x2 ⟩⊥ (that

is, h ∈ Sym3 ⟨x2 ⟩⊥, H = h + (x2)). Let us also choose (at leisure) a representative

k ∈ S2 of K and set p ∶= h + x2k. Note that h ⨼ x2G = 0, because h ∈ Sym3 ⟨x2 ⟩⊥,
and recall that x2 ⨼ F = 0. We have

p ⨼ f ′ = (h + x2k) ⨼ (F + x2G) = h ⨼ F + k ⨼G =H ⨼ F +K ⨼G = 0 .

But the curve p = 0 in PS1 intersects the line PT1 in three distinct points, given

by ⟨L2 ⟩⊥ , ⟨L3 ⟩⊥ , ⟨L4 ⟩⊥, because p + (x2) = h + (x2) = H = L2L3L4. According

to Remark 4.2, we get three tangents l2 = 0, l3 = 0, l4 = 0, such that x1l2l3l4 ⨼
f = l2l3l4 ⨼ f ′ = 0. Of course, we can assume Li = li + (x2) for each i ∈ {2,3,4},

and since ⟨L2 ⟩ , ⟨L3 ⟩ , ⟨L4 ⟩ are distinct and lie in PT 1 ∖ {⟨X1 ⟩}, we have that

⟨x1 ⟩ , ⟨ l2 ⟩ , ⟨ l3 ⟩ , ⟨ l4 ⟩ are distinct.

Finally, suppose that there exist distinct i, j ∈ {2,3,4} such that lilj ⨼ f ′ = u2
for some u ∈ S1. This assumption leads to

LiLj ⨼G = lilj ⨼G = x2 ⨼ u2 = 2 (x2 ⨼ u)u .

In view of (4.1), this would imply that x2 ⨼ u ≠ 0, which is impossible (because it

means that, on one side, u /∈ ⟨x2 ⟩⊥ = T1 and, on the other, 2(x2⨼u)u = LiLj⨼G ∈ T1
is a nonzero multiple of u lying in T1). Hence x1l3l4 ⨼ f , x1l2l4 ⨼ f and x1l2l3 ⨼ f
are not squares, as prescribed in the second statement.

We shall also need to particularize the situation of the above lemma, as described

in the following remark.

Remark 4.4. With f and x2 as in Lemma 4.3, suppose that x2
2 ⨼ f = 0, so that

we can choose ⟨x1 ⟩ ∈ PS1 ∖ {⟨x2 ⟩} at leisure. We point out that we can choose

⟨x1 ⟩ so that it fulfills the second condition listed in the lemma, or the condition

x1x2 ⨼ f = 0. More explicitly:

● there exists ⟨x1 ⟩ ∈ PS1 ∖ {⟨x2 ⟩} such that x1x2 ⨼ f = 0; or

● there exist distinct ⟨x1 ⟩ , ⟨ l2 ⟩ , ⟨ l3 ⟩ , ⟨ l4 ⟩ ∈ PS1 such that x1l2l3l4 ⨼ f = 0 and

no one of x1l3l4 ⨼ f , x1l2l4 ⨼ f , x1l2l3 ⨼ f is a square.
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Indeed, let us look at the beginning of the proof of Lemma 4.3, and note that the

second condition could be excluded only if G2,1 is not surjective, that is, G is not

a cube. In the present situation G depends on the choice of x1, hence if G is not

a cube for some choice of x1, then the second condition is fulfilled. In the opposite

case, it suffices to exploit Lemma 4.1 with x2 ⨼ f in place of f and with V being

whatever two-dimensional subspace of S1 that does not contain x2.

Lemma 4.5. Let f ∈ S5, with dimS1 = 3. Then (at least) one of the following facts

is true:

● there exist distinct ⟨ l1 ⟩ , ⟨ l2 ⟩ , ⟨ l3 ⟩ ∈ PS1 such that l1l2l3 ⨼ f = 0; or

● there exist distinct ⟨ l1 ⟩ , ⟨ l2 ⟩ , ⟨ l3 ⟩ , ⟨ l4 ⟩ ∈ PS1 such that l1l2l3l4 ⨼ f = 0 and no

one of l1l3l4 ⨼ f , l1l2l4 ⨼ f , l1l2l3 ⨼ f is a square.

Proof. According to [2, Proposition 2.7], we can find distinct ⟨x1 ⟩, ⟨x2 ⟩, ⟨x3 ⟩,
⟨x4 ⟩ in PS1 such that x1x2x3x4 ⨼ f = 0. For each i ∈ {1,2,3,4} let

qi ∶=
⎛
⎝∏j≠i

xj
⎞
⎠
⨼ f ,

and let us denote by ν the number of indices i such that qi is a square. Of course,

we can choose ⟨x1 ⟩ , ⟨x2 ⟩ , ⟨x3 ⟩ , ⟨x4 ⟩, in such a way that ν is minimum (among

all the choices of distinct ⟨ y1 ⟩ , ⟨ y2 ⟩ , ⟨ y3 ⟩ , ⟨ y4 ⟩ ∈ PS1 with y1y2y3y4 ⨼ f = 0), and

order them so that qi is a square exactly when 1 ≤ i ≤ ν. If ν ≤ 1, the second

statement is true with li ∶= xi for all i. Therefore, we can assume ν ≥ 2. We can also

assume that q1 ≠ 0, because in the opposite case the first statement is true with

(l1, l2, l3) ∶= (x2, x3, x4).

Since ν ≥ 2 and q1 ≠ 0, we have q1 = v12 for some nonzero v1 ∈ S1. Let us consider

the algebraic curve

C ∶= P ⟨ v1 ⟩⊥ × {⟨x2 ⟩} × {⟨x3 ⟩} × {⟨x4 ⟩} ⊂ PS1 × PS1 × PS1 × PS1 .

To check that, for each i, the set

⎧⎪⎪⎨⎪⎪⎩
( ⟨ y1 ⟩ , ⟨ y2 ⟩ , ⟨ y3 ⟩ , ⟨ y4 ⟩ ) ∶

⎛
⎝∏j≠i

yj
⎞
⎠
⨼ f is a square

⎫⎪⎪⎬⎪⎪⎭
is algebraic in PS1 × PS1 × PS1 × PS1 is not difficult. It follows that there exists a

nonempty (Zariski) open subset U of C such that for all (⟨ l1 ⟩ , ⟨x2 ⟩ , ⟨x3 ⟩ , ⟨x4 ⟩) ∈
U and i with ν < i ≤ 4, we have that

⎛
⎝
l1∏
j≠i

xi
⎞
⎠
⨼ f

is not a square. Because of minimality of ν, we also have that l1x3x4 ⨼ f must be a

square for all ⟨ l1 ⟩ different from ⟨x3 ⟩ , ⟨x4 ⟩ and such that

(⟨ l1 ⟩ , ⟨x2 ⟩ , ⟨x3 ⟩ , ⟨x4 ⟩) ∈ U .
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Now let us look at Lemma 4.1, with x3x4 ⨼ f in place of f and V ∶= ⟨ v1 ⟩⊥. In

view of the above said, the first statement in that lemma can not occur. Hence,

l1x3x4 ⨼ f = 0 for some ⟨ l1 ⟩ ∈ P ⟨ v1 ⟩⊥.
If ⟨ l1 ⟩ is different from ⟨x3 ⟩ , ⟨x4 ⟩, then the first statement in the lemma under

proof is true with l2 ∶= x3, l3 ∶= x4. If not, then ⟨ l1 ⟩ coincides with ⟨x3 ⟩ or ⟨x4 ⟩,
and the result follows from Lemma 4.3 with (x4, x3) or, respectively, (x3, x4), in

place of (x1, x2).

The above result can easily be refined as follows.

Remark 4.6. Let f ∈ S5, with dimS1 = 3. Then (at least) one of the following facts

is true:

● there exist distinct ⟨ l1 ⟩ , ⟨ l2 ⟩ ∈ PS1 such that l1l2 ⨼ f = 0; or

● there exist distinct ⟨ l1 ⟩ , ⟨ l2 ⟩ , ⟨ l3 ⟩ ∈ PS1 such that l1l2l3 ⨼ f = 0 and no one of

l1l3 ⨼ f , l1l2 ⨼ f is a cube; or

● there exist distinct ⟨ l1 ⟩ , ⟨ l2 ⟩ , ⟨ l3 ⟩ , ⟨ l4 ⟩ ∈ PS1 such that l1l2l3l4 ⨼f = 0 and no

one of l1l3l4 ⨼ f , l1l2l4 ⨼ f , l1l2l3 ⨼ f is a square.

Indeed, if the first statement listed in Lemma 4.5 is false, then the second statement

is true. But that statement coincides with the third statement here. Then, let us

assume that the first statement in Lemma 4.5 is true. In this case, it suffices to

reiterate the arguments in the proof of Lemma 4.5, with ⟨ l1 ⟩ , ⟨ l2 ⟩ , ⟨ l3 ⟩ ∈ PS1 in

place of ⟨x1 ⟩ , ⟨x2 ⟩ , ⟨x3 ⟩ , ⟨x4 ⟩ ∈ PS1, and at the end exploit Remark 4.4 instead

of Lemma 4.3.

5. Decomposition in a sum of ten fifth powers

Proposition 5.1. Let f ∈ S5, with dimS1 = 3. If there exist distinct ⟨ l1 ⟩ , . . . , ⟨ l4 ⟩ ∈
PS1 such that

● l1l2l3l4 ⨼ f = 0,

● l1l2l3 ⨼ f and l1l2l4 ⨼ f are not squares,

● l1l3l4 ⨼ f ≠ 0 and l2l3l4 ⨼ f ≠ 0,

then rk f ≤ 10.

Proof. Let us consider the rings T● ∶= Sym● ⟨ l4 ⟩⊥ = Ker∂l4 and T ● ∶= S●/ (l4) with

the apolarity pairing induced by that between S● and S●. Let p ∶= l1l2l3 + (l4) ∈ T 3

and note that q ∶= l1l2l3 ⨼ f ∈ T2. In view of Lemma 3.2 (with T in place of S) and

Definition 3.3, we can consider r4 ∶= rp,x0,x1 ∈ T ∶= K [t0, t1] ⊗ T●, with x0x1 = q.
We have that rk r4 ↾(λ,µ)= 2 for all [λ,µ] outside a finite subset of P1. According

to Lemma 3.4, we can find a1, a2, a3 ∈ ⟨ t0, t1 ⟩ with the properties indicated in that

statement.
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In the present proof, to turn a3 into t0 by means of a linear change of coordinates

will be convenient. To this end, we can certainly find s0, s1 such that ⟨ s0, s1 ⟩ =
⟨ t0, t1 ⟩ and a3 ↾(s0,s1)= t0, and set

f4 ∶= r4 ↾(s0,s1) , ai4 ∶= ai ↾(s0,s1) , ∀i ∈ {1,2,3}

(hence a34 = t0). Since T● is a subring of S●, f4 can be regarded as an element of

S = K [t0, t1]⊗S●. Of course, still rk f4 ↾(λ,µ)= 2 for all [λ,µ] outside a finite subset

of P1. Moreover, let ⟨ v34 ⟩ ∶= ⟨ l3, l4 ⟩⊥ = ⟨ l3 + (l4) ⟩⊥ and, for each i ∈ {1,2}, let

[λi, µi] ∈ P1 be the root of ai4 (that is, ai4 ↾(λi,µi)
= 0).

The properties of r4, a
1, a2, a3 stated in Lemma 3.4 lead (in particular) to:

● ∀I ⊆ {1,2,3}, ∏i∈I ai4 divides (∏i∈I li) ⨼ f4;

● with f ′4;I ∈ S being defined by setting

(∏
i∈I

li) ⨼ f4 = (∏
i∈I

ai4) f ′4;I ,

∀I ⊊ {1,2,3} the map

[λ,µ]↦ ⟨ f ′4;I ↾(λ,µ) ⟩

is one-to-one outside a finite subset of P1; moreover,

l1l2l3 ⨼ f4 = 240a14a24t0q = 240a14a24t0 (l1l2l3 ⨼ f) ; (5.1)

● for each j ∈ {1,2}, lj (v34) = 0 ⇒ aj4 ↾(0,1)= 0;

● f4 ↾(0,1)∈ ⟨ v345 ⟩.

Now, let us consider l3 in place of l4 and l1l2l4+(l3), l1l2l4⨼f in place of p, q. As

before, we get r3 ∈ S3
5, b1, b2, b4 ∈ K [t0, t1] with the properties listed in Lemma 3.4

for r, a1, a2, a3. Let r′3;{1,2} ∈ S1
3 be defined, as in the lemma, by the equality

l1l2 ⨼ r3 = b1b2r′3;{1,2} .

By one of the properties listed in the lemma, we have

l4 ⨼ r′3;{1,2} = 240b4 (l1l2l4 ⨼ f) ,

hence the map

[λ,µ]↦ ⟨ r′3;{1,2} ↾(λ,µ) ⟩

(which is one-to-one outside a finite subset of P1) takes values in the projective

line PWl4+(l3),l1l2l4⨼f ⊂ PS3 (see Definition 3.1). Since r′3;{1,2} ∈ S1
3, that map is in

fact everywhere defined and, actually, an isomorphism P1 ∼Ð→ PWl4+(l3),l1l2l4⨼f of

projective lines. Since f ′4;{1,2} enjoys the same property (but with a different range

line), and

l4 ⨼ f ′4;{1,2} = 0 , l4 ⨼ (l1l2 ⨼ f) = l1l2l4 ⨼ f ≠ 0 ,
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the polynomial

240t0 (l1l2 ⨼ f) − f ′4;{1,2} ,

which for reasons that will soon become clear we denote by

f ′3;{1,2} ,

again defines an isomorphism of P1 into a projective line in PS3. But (5.1) implies

l3 ⨼ f ′4;{1,2} = 240t0 (l1l2l3 ⨼ f) ,

that in turn gives

l3 ⨼ f ′3;{1,2} = 0 .

Moreover,

l4 ⨼ f ′3;{1,2} = 240t0 (l1l2l4 ⨼ f) . (5.2)

The last two equalities proves that the range of the map

[λ,µ]↦ ⟨ f ′3;{1,2} ↾(λ,µ) ⟩

is again PWl4+(l3),l1l2l4⨼f , as it was for r′3;{1,2}. One easily deduce that there exists

an invertible linear change on (t0, t1) that turns r′3;{1,2} into f ′3;{1,2}. Performing

that change of coordinates on r3, b
1, b2, b4 (i), we find f3, a

13, a23, a43 that enjoy a

similar list of properties as f4, a
14, a24, a34 (note that the notation f ′3;{1,2} is coherent

with that one in the list, and that (5.2) implies a43 = t0).

Let

g ∶= a14a24f3 + a13a23f4 .

Taking into account that f ′3;{1,2} = 240t0 (l1l2 ⨼ f) − f ′4;{1,2} by definition, we have

l1l2 ⨼ g = 240a13a14a23a24t0 (l1l2 ⨼ f) . (5.3)

Let us show that

g ↾(0,1)= 0 . (5.4)

Recall that f3 ↾(0,1), f4 ↾(0,1)∈ ⟨ v345 ⟩, henceforth g ↾(0,1)∈ ⟨ v345 ⟩. If l1 ⨼ v34 = 0,

then a13 ↾(0,1)= a14 ↾(0,1)= 0 by one of the properties in the respective lists, and

(5.4) follows. If l2 ⨼ v34 = 0 we can argue in the same way. Suppose then that

l1 ⨼ v34 ≠ 0, l2 ⨼ v34 ≠ 0. In this case, if g ↾(0,1) had been a nonzero multiple of v34
5,

then l1l2 ⨼ g ↾(0,1) would have been a nonzero multiple of v34
3, which is excluded

by (5.3). Hence (5.4) is proved.

Now, by (5.4), there exists f34 ∈ S4
5 such that t0f34 = g. Let

f12 ∶= 240a13a23a14a24f − f34 .

iThe change is not intended to act elsewhere; in particular, we keep f4 unaltered.
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We have

240a13a23a14a24t0f = t0f12 + a14a24f3 + a13a23f4 (5.5)

and from (5.3) we easily deduce

l1l2 ⨼ f12 = 0 . (5.6)

Let us also recall that a34 = t0 = a43. We have

l3 ⨼ t0f34 = l3 ⨼ g = a14a24 (l3 ⨼ f3) + a13a23 (l3 ⨼ f4) = a13a23t0f ′4;{3} ,

hence

l3 ⨼ f34 = a13a23f ′4;{3} .

Therefore

l3 ⨼ f12 = a13a23 (240a14a24 ∂l3 f − f ′4;{3}) ,

which leads to

l1l3 ⨼ f12 = a13a23a14 (240a24 ∂l1l3 f − f ′4;{13}) .

As before, we have that the map [λ,µ] ↦ ⟨ f ′4;{13} ↾(λ,µ) ⟩ is an isomorphism of P1

onto a projective line in PS3 (in what follows, to use that it is one-to-one outside a

finite subset of P1 would suffice). From

l4 ⨼ ∂l1l3 f = l1l3l4 ⨼ f ≠ 0 , l4 ⨼ f ′4;{13} = 0

we deduce that the map

[λ,µ]↦ ⟨ (l1l3 ⨼ f12) ↾(λ,µ) ⟩

is defined outside a finite subset of P1 and one-to-one. Moreover, taking into account

(5.6) and possibly enlarging the forbidden finite subset of P1, we can assume that

the above map takes values in Al4+(l2),l1l3l4⨼f (see Definition 3.1, with the dually

paired rings S●/ (l2), Sym● ⟨ l2 ⟩⊥ = Ker∂l2 in place of S●, S●). The same argument

works for any other lilj ⨼ f12 with (i, j) ∈ {1,2} × {3,4}: outside a suitable finite

subset of P1, the map

[λ,µ]↦ ⟨ (lilj ⨼ f12) ↾(λ,µ) ⟩

is one-to-one and takes values in Al7−j+(l3−i),lil3l4⨼f .

Now, we exploit Lemma 3.9, with the dually paired rings S●/ (l1), Sym● ⟨ l1 ⟩⊥ =
Ker∂l1 in place of S●, S●, and with q = l2l3l4 ⨼ f , x1 ∶= l3 + (l1), x2 ∶= l4 + (l1),

x3 ∶= l2 + (l1). We get sets E, F , that here we shall denote by E1, F1. In the same

way, by exchanging the roles of l1, l2, we get sets E2, F2.

We know that each of l3 ⨼ (l2 ⨼ f12) and l4 ⨼ (l2 ⨼ f12) gives a map, respectively

into Al4+(l1),l2l3l4⨼f and Al3+(l1),l2l3l4⨼f , that is one-to-one outside a finite subset

of P1. It follows that outside a (fixed) finite subset of P1, both maps take values

outside the finite set F1. According to Lemma 3.9, this implies that the map into
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Al3l4+(l1),l2l3l4⨼f given by l2 ⨼ f12, outside the mentioned finite subset of P1 takes

values outside E1. Similarly, the map into Al3l4+(l2),l1l3l4⨼f given by l1⨼ f12, outside

some finite subset of P1, takes values outside E2.

By the above said, we can fix [λ,µ] ≠ [0,1] such that

aij ↾(λ,µ)≠ 0 , ∀(i, j) ∈ {1,2} × {3,4}

and the polynomials

f12 ∶= f12 ↾(λ,µ) , f3 ∶= f3 ↾(λ,µ) , f4 ∶= f4 ↾(λ,µ)
(do not vanish and) satisfy the conditions

⟨ l2 ⨼ f12 ⟩ ∈ PS4 ∖E1 , ⟨ l1 ⨼ f12 ⟩ ∈ PS4 ∖E2 , rk f3 = 2 , rk f4 = 2 .

By (5.6), f12 admits (many) decompositions f12 = f1+f2 with f1, f2 ∈ S5, l1⨼f1 = 0,

l2 ⨼ f2 = 0 (and l1 ⨼ f2 ≠ 0, l2 ⨼ f1 ≠ 0 because l1 ⨼ f12 ≠ 0 and l2 ⨼ f12 ≠ 0). If we set

⟨ v12 ⟩ ∶= ⟨ l1, l2 ⟩⊥, then for every scalar ν, f12 = (f1 + νv125) + (f2 − νv125) is again

a decomposition of the same kind. Therefore, since ⟨ l2 ⨼ f12 ⟩ /∈ E1, ⟨ l1 ⨼ f12 ⟩ /∈ E2,

we can fix f1, f2 such that rk ⟨ f1 ⟩ ≤ 3, ⟨ f2 ⟩ ≤ 3.

By evaluating (5.5) at (λ,µ), we end up with a decomposition

f = g1 + g2 + g3 + g4
with ⟨ gi ⟩ = ⟨ fi ⟩ for all i and

rk f1 ≤ 3 , rk f2 ≤ 3 , rk f3 = 2 , rk f4 = 2 .

Hence rk f ≤ 10.

Proposition 5.2. If f ∈ S5 and dimS1 = 3 then rk f ≤ 10.

Proof. Basically, we argue as in the proofs of [7, Proposition 3.1] and [2, Proposi-

tion 4.2]. According to Remark 4.6, there exist k distinct ⟨ l1 ⟩ , . . . , ⟨ lk ⟩ ∈ PS1, with

2 ≤ k ≤ 4, such that l1⋯lk ⨼ f = 0, and with additional properties when k = 3 or

k = 4. Let us set

Vi ∶= Sym5 ⟨ li ⟩⊥ ⊆ S5 ,

for all i ∈ {1, . . . , k}, and define

σ ∶⊕
i

Vi →∑
i

Vi , (v1, . . . , vk)↦∑
i

vi .

For each i ∈ {1, . . . , k}, we denote by πi ∶⊕i Vi → Vi the projection map. Moreover,

we set W ∶= σ−1(⟨ f ⟩) and denote by αi the restriction W → Wi ∶= πi(W ) ⊆ Vi ⊆
∑j Vj of πi. Since l1⋯lk ⨼ f = 0, we have f ∈ ∑i Vi.

The simple case k = 2 can immediately be worked out as follows. Since f ∈
V1 + V2, we can pick v ∈W such that σ(v) = f . Therefore f = α1(v) + α2(v). Since

α1(v), α2(v) can be regarded as binary forms, we have rkα1(v), rkα2(v) ≤ 5, and

hence rk f ≤ 5 + 5 = 10.
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Suppose now k = 3. Recall that, moreover, l1l3 ⨼ f and l1l2 ⨼ f are not cubes (in

particular, they do not vanish). We can also assume that l2l3 ⨼ f ≠ 0, otherwise we

fall again in the case k = 2. The form t ∶= l1l2⨼f belongs to the ring of binary forms

T● ∶= Sym● ⟨ l3 ⟩⊥ = Ker∂l3 ⊂ S●. In the dual ring T ● = S●/ (l3), let p ∶= l1l2+(l3). Note

that W3 =Wp,t, because for each v ∈W we have α1(v)+α2(v)+α3(v) = σ(v) ∈ ⟨ f ⟩
and therefore

l1l2 ⨼ α3(v) = l1l2 ⨼ (α1(v) + α2(v) + α3(v)) ∈ ⟨ t ⟩

(this gives W3 ⊆Wp,t; the equality follows, say, by dimension reasons). Since t is not

a cube, Lemma 3.7 gives a nonempty open subset U3 ⊆ PW3 such that rk f3 = 3 for

all ⟨ f3 ⟩ ∈ U3. In the same way, we get a nonempty open subset U2 ⊆ PW2 such that

rk f2 = 3 for all ⟨ f2 ⟩ ∈ U2. Finally, according to [2, Proposition 4.1], there exists a

nonempty open subset U1 ⊆W1 such that rk f1 ≤ 4 for all ⟨ f1 ⟩ ∈ U1.

Now, since the intersection of nonempty (Zariski) open subsets is nonempty, we

can pick

⟨ v ⟩ ∈ (Pα1)−1 (U1) ∩ (Pα2)−1 (U2) ∩ (Pα3)−1 (U3)

with σ(v) = f . We end up with a decomposition f = α1(v) + α2(v) + α3(v), and

hence rk f ≤ 4 + 3 + 3 = 10.

Suppose, finally, that k = 4. If l2l3l4 ⨼ f = 0 we fall again in the case k = 3 (with

l2, l3, l4 in place of l1, l2, l3; note also that if, say, l2l4 ⨼ f is a cube, then l1l2l4 ⨼ f
is a square). If l2l3l4 ⨼ f ≠ 0 the result follows from Proposition 5.1.
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