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Abstract In this paper we present some known results on cumulative measures of
information, study their properties and relate these definitions to concepts of relia-
bility theory. We give some relations of these measures of discrimination with some
well-known stochastic orders and with the relative reversed hazard rate order. We
investigate also a stochastic comparison among the empirical cumulative measures
that can be related to the cumulative measures. Large part of this paper is a survey
article; however, in the last section, we define a new measure of discrimination between
residual lifetimes and study some of its properties.

Keywords Cumulative residual entropy · Differential entropy · Empirical
cumulative entropy · Kullback–Leibler discrimination measure · Reversed hazard rate

Mathematics Subject Classification Primary 94A17; Secondary 62N05 · 60E15

1 Introduction

Entropy is a baseline concept in information theory and it was introduced by Claude
Shannon in 1948 (see [25]) as a measure of the uncertainty associated to a discrete
random variable. If X is a r.v. with values {x1, . . . , xn} and probability mass function
p, the Shannon entropy is:
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S210 M. Longobardi

H(X) = −
n∑

i=1

p(xi ) log p(xi )

In the classical approach to Information Theory, when X is a non-negative
absolutely continuous random variable with support S = (0, u), u ≤ +∞, and
fX (x), FX (x) and F X (x) are the probability density function, the cumulative distri-
bution function and the survival function of X , respectively, the Shannon information
measure of X , also called the differential entropy of X , is defined by

HX = E[− log f (X)] = −
∫ +∞

0
f (x) log f (x) dx (1)

where ‘log’ means natural logarithm and 0 log 0 = 0 by convention. It is well-known
that HX measures the “uniformity” of the distribution of X , i.e. how the distribution
spreads over its domain, and is irrespective of the locations of concentration. Observe
that HX is not invariant under changes of variables and can even be negative.

A “length biased” shift-dependent measure of uncertainty that stems from the dif-
ferential entropy is the weighted entropy (see Di Crescenzo and Longobardi [6])

Hw(X) = −E[X log fX (X)] = −
∫ +∞

0
x fX (x) log fX (x) dx (2)

If X describes the random lifetime of a biological system, such as an organism or
a cell, then Xt = [X − t | X > t] describes the remaining (residual) lifetime of the
system at age t , with distribution function

FXt (x) = FX (x + t)− FX (t)

F X (t)

Hence, if the system has survived up to time t , the uncertainty about the remaining
lifetime is measured by means of the differential entropy of Xt . The mean residual
lifetime is

mrlX (t) = E(Xt ) = E(X − t | X > t) = 1

F(t)

∫ +∞

t
F(x) dx, t ∈ S.

The random variable X(t) = [X | X ≤ t] describes the past lifetime of the system
at age t with distribution function

FX(t) (x) = FX (x)

FX (t)

and mean past lifetime

μX (t) = E[X(t)] =
∫ t

0

[
1 − FX (x)

FX (t)

]
dx, t ∈ S.
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Cumulative measures of information and stochastic orders S211

Its uncertainty was defined in 2002 by Di Crescenzo and Longobardi [5] and called
past entropy.

In reliability theory, the duration of the time between an inspection time t and the
failure time X, given that at time t the system has been found failed, is called inactivity
time and is represented by the random variable [t − X | X ≤ t], t > 0, with mean
inactivity time

μ̃X (t) = E[t − X | X ≤ t] = 1

F(t)

∫ t

0
F(x) dx

For further results about these concepts in reliability theory see [4,13,14,16,18,19].
The hazard rate function λX (t) and the reversed hazard rate function τX (t) of X

are important biometric functions, and are defined as the ratio of the density of X to
the survival function of X and the ratio of the density of X to the distribution function
of X , respectively, i.e.

λX (t) = − d

dt
log F X (t) = fX (t)

F X (t)

and

τX (t) = d

dt
log FX (t) = fX (t)

FX (t)

for every t such that F X (t) > 0 and FX (t) > 0. For further properties of hazard rate
and reversed hazard rate functions see [2,15,19].

The following decreasing convex function is defined as a double integral of the
reversed hazard rate, for x ≥ 0:

T (2)X (x) = −
∫ +∞

x
log FX (z) dz =

∫ +∞

x

[∫ +∞

z
τX (u) du

]
dz (3)

Its derivative is strictly related to the distribution function of X . Indeed, we have

Ṫ (2)X (x) = d

dx
T (2)X (x) = log FX (x) = −

∫ +∞

z
τX (u) du (4)

In the last 50 years stochastic orders have attracted many authors of different areas of
probability and statistics, because orders are invoked to give bounds and inequalities
and also comparisons among stochastic systems. The basic idea is to establish if
a random variable is larger than another one. Let us recall some stochastic orders
(see Shaked and Shanthikumar [24]). Let X and Y be continuous random variables
having support (lX , rX ) and (lY , rY ), respectively, with −∞ ≤ lX < rX ≤ ∞ and
−∞ ≤ lY < rY ≤ ∞. Then

• X ≤st Y (in the usual stochastic order) if and only if

E[φ(X)] ≤ E[φ(Y )] (5)
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S212 M. Longobardi

for all increasing functions φ : R → R for which the expectations exist. Equiva-
lently, X ≤st Y if and only if P(X ≤ t) ≥ P(Y ≤ t) for all t ∈ R

• X ≤lr Y (in likelihood ratio order) if and only if fX (t)/ fY (t) is decreasing in
t ∈ (lX , rY );

• X ≤hr Y (in hazard rate order) if and only if λX (t) ≥ λY (t), for every t ∈ (−∞,

max{rX , rY }) or, equivalently, if and only if F X (t)/FY (t) is decreasing in t ∈
(−∞, max{rX , rY });

• X ≤rh Y (in the reversed hazard rate order) if and only if τX (t) ≤ τY (t), ∀t ∈
(min{lX , lY },∞) or, equivalently

FX (t)

FY (t)
is decreasing in t ∈ (min{lX , lY },∞). (6)

• X ≤dcx Y (in the decreasing convex order) if and only if (5) is true for all decreasing
convex functions φ : R → R for which the expectations exist.

Recently, a new stochastic order, called relative reversed hazard rate order, was
given in [23]. The random variable X is said to be smaller than Y in relative reversed
hazard rate order (X ≤rrh Y ) if and only if τX (t)

τY (t)
is decreasing in t > 0.

In this paper we summarize some results recently obtained on various information
measures, and provide a new dynamic cumulative measure of discrimination that will
be the object of future investigation.

In Sect. 2 we recall the definition of the cumulative entropy, an information measure
defined by substituting the probability density function fX (x) with the distribution
function FX (x) in (1), we relate this measure to the cumulative inaccuracy, give some
results in reliability theory and obtain some bounds and inequalities using stochastic
orders. Moreover, we give the definition of a dynamic version of the cumulative entropy
(see [7–11]).

In Sect. 3 we study the cumulative Kullback–Leibler measure of discrimination, a
dynamic version of this measure and study some relations with inaccuracy (see [12]).

In Sect. 4 we write the empirical cumulative entropy and the empirical cumulative
KL measure and their relation with the empirical cumulative inaccuracy. We give also
a theorem in which this measure is related to the relative reversed hazard rate order
(see [7–12]).

Finally, in Sect. 5 we define a new cumulative discrimination measure for residual
lifetimes, providing some properties and an example.

2 Cumulative entropies

Various alternatives for the entropy of a continuous distribution have been proposed in
the literature. The cumulative residual entropy (CRE) of a random lifetime X is given
by
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Cumulative measures of information and stochastic orders S213

E(X) = −
∫ +∞

0
F(x) log F(x) dx = E[mrl(X)] (7)

(see [22] and, for applications, [1]). For further results see [20].
Di Crescenzo and Longobardi [7] defined a new information measure similar to

E(X), that is useful to measure information on the inactivity time of a system. This
measure is called cumulative entropy and is defined as

CE(X) = −
∫ +∞

0
F(x) log F(x) dx (8)

In this definition the argument of the logarithm is a probability.
We remark that:

• CE(X) = 0 iff X is a constant;
• If Y = aX + b, with a �= 0 and a, b ∈ R, then

CE(Y ) = |a| ·
{CE(X) if a > 0

E(X) if a < 0

For a non-negative random variable X , with mean inactivity time μ̃(t) and cumu-
lative entropy CE(X) < +∞, we have (see [7])

CE(X) = E[μ̃(X)] = E
[
T (2)X (X)

]
(9)

The cumulative entropy and the cumulative residual entropy are related by the
following relation:

E(X)+ CE(X) =
∫ +∞

−∞
h(x) dx

where

h(x) = −[FX (x) log FX (x)+ F X (x) log F X (x)], x ∈ R

is the partition entropy of X evaluated at x defined in [3] (for details, see [10]).
Let us summarize some bounds of the cumulative entropy in the following theorem:

Theorem 1 Let X be a non-negative random variable. Then

(i) CE(X) ≥ C eH(X), where C = exp{∫ 1
0 log(x | log x |) dx} = 0.2065;

(ii) CE(X) ≥ ∫ +∞
0 F(x) F(x) dx;

(iii) CE(X) ≥ − ∫ +∞
μ

log F(z) dz;
(iv) CE(X) ≤ E(X);
(v) CE(X) ≤ e−1 b;
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S214 M. Longobardi

(vi) CE(X) ≤ [b − E(X)] ∣∣ log
(
1 − E(X)

b

)∣∣, where the equality holds if X takes
values 0 and b with probability e−1 and 1 − e−1, respectively, in which case
CE(X) = e−1b.

The bounds (v) and (vi) hold if X takes values in [0, b], with b finite.

Given two random lifetimes X and Y having distribution functions FX and FY

defined on (0,∞), let us introduce the cumulative inaccuracy

K [FX , FY ] = −
∫ +∞

0
FX (u) log FY (u) du (10)

as the cumulative analog of the measure of inaccuracy due to Kerridge ([17]).
We give now a probabilistic meaning of the cumulative inaccuracy in terms of

T (2)Y (X) and T (2)X (Y ) and a connection between K [FX , FY ] and CE(X) (see [11]).

Proposition 1 For non-negative absolutely continuous random variables X and Y ,
we have

K [FX , FY ] = E
[
T (2)Y (X)

]
, K [FY , FX ] = E

[
T (2)X (Y )

]
(11)

Proposition 2 Let X and Y be non-negative random variables with finite unequal
means and satisfying X ≥st Y or Y ≥st X, with X absolutely continuous. If K [FY , FX ]
is finite, then

CE(X) = K [FY , FX ] + E
[
Ṫ (2)X (Z)

]
[E(X)− E(Y )], (12)

where Z is an absolutely continuous non-negative random variable having probability
density function

fZ (x) = FY (x)− FX (x)

E(X)− E(Y )
, x ≥ 0 (13)

The following theorem proved in [9] is a generalization of (vi) of Theorem 1:

Theorem 2 Let X and Y be random variables that take values in [0, b], where b <
+∞, with finite means E(X) and E(Y ), respectively, and such that X ≥st Y . Then

CE(X) ≤ CE(Y )+ [b − E(X)]
∣∣∣∣log

b − E(X)

b − E(Y )

∣∣∣∣ (14)

In the following theorem, we obtain a connection between our measures of dis-
crimination and stochastic orders (see [11]).

Theorem 3 Let X and Y be non-negative random variables. If X ≤st Y , then

K [FY , FX ] ≤ CE(X) ≤ K [FX , FY ].
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Cumulative measures of information and stochastic orders S215

If X ≤dcx Y , then

CE(X) ≤ K [FY , FX ].

We remark that X ≤st Y does not imply in general CE(X) ≤ CE(Y ).
If we consider the random variable past lifetime [X | X ≤ t], it is interesting

to consider a measure of uncertainty related to the past. The dynamic cumulative
entropy is defined, for any random variable X with support (0, b), for b ≤ +∞, as
the cumulative entropy of [X | X ≤ t], namely

CE(X; t) = −
∫ t

0

FX (x)

FX (t)
log

FX (x)

FX (t)
dx, t > 0 : FX (t) > 0.

Let us recall that:

• CE(X; t) is non-negative for all t
• limt→0+ CE(X; t) = 0, limt→b− CE(X; t) = CE(X).

Remark also that

CE(X; t) = E[μ̃X (X) | X ≤ t] = E[T (2)X (X; t) | X ≤ t], t > 0,

where

T (2)X (x; t) = −
∫ t

x
log

F(z)

F(t)
dz, t ≥ x ≥ 0 (15)

Note that if X is a non-negative absolutely continuous random variable and if
CE(X; t) is increasing for all t ≥ 0, then CE(X; t) uniquely determines FX (t).

3 Cumulative Kullback–Leibler information measure

In this section we recall a new measure of information and its properties recently stud-
ied by Di Crescenzo and Longobardi [12]. The notion of differential entropy has been
extended to the relative entropy of two distributions, which is a discrepancy measure
between the distributions of two non-negative absolutely continuous random variables
X and Y with distribution functions FX and FY , respectively, called Kullback–Leibler
information measure:

IX,Y =
∫ +∞

0
fX (u) log

fX (u)

fY (u)
du (16)

IX,Y measures the inefficiency of assuming that the pdf is fY when the true pdf is
fX .

Let X and Y be random variables with finite means and with left-hand-points

lX = in f {t ∈ R : FX (t) > 0} and lY = in f {t ∈ R : FY (t) > 0}
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S216 M. Longobardi

and right-hand-points

rX = sup{t ∈ R : FX (t) < 1} and rY = sup{t ∈ R : FY (t) < 1},

respectively. Suppose that lX = lY = l. The cumulative KL information of X and Y
is defined as

CK L(X,Y ) =
∫ max{rX ,rY }

l
FX (u) log

FX (u)

FY (u)
du + E(X)− E(Y ) (17)

provided that the integral in the right-hand-side is finite (see [21]).
Remark that CK L(X,Y ) ≥ 0 and CK L(X,Y ) = 0 if and only if FX (u) = FY (u)

almost everywhere. The measure CK L(X,Y ) is strictly related to the cumulative
entropy of X . In fact,

CK L(X,Y ) = K [FX , FY ] − CE(X)+ E(X)− E(Y ) (18)

where K [FX , FY ] = − ∫ max{rX ,rY }
l FX (u) log FY (u) du and CE(X) is defined in (8).

It is interesting to compare the cumulative KL information with other suitable
discrimination measures like Cramer–von Mises distance, Renyi divergence of order
α > 0, energy distance, Hellinger distance and Bhattacharya distance. To this aim,
we give the following example, which is a particular case of Example 2.2 in [12].

Example 1 If X and Y have exponential distributions with parameters 1 and 2, respec-
tively, we have:

CK L(X,Y ) = −γ − 1
2 + 1

6π
2 − ψ(2), IX,Y = − 1

2 + log 2,

dC M (X,Y ) = 1

30
, dR,2(X,Y ) = log 4

3 ,

dR,0.5(X,Y ) = 2 log 3
2
√

2
, dE (X,Y ) = 1

3 ,

dH (X,Y ) = 1 − 2
√

2
3 , dB(X,Y ) = log 3

2
√

2

(19)

where γ 
 0.577216 is the Euler’s constant and ψ(z) = Γ ′(z)/Γ (z) is the digamma
function.

The next five results on the cumulative KL discrimination measure are taken from
[12].

Theorem 4 Let X and Y be absolutely continuous random variables taking values in
[0, r ], with r finite. Then,

CK L(X,Y ) ≥ [r − E(X)] log
r − E(X)

r − E(Y )
+ E(X)− E(Y ) (20)

The right-hand-side of (20) is non-negative, and it vanishes when E(X) = E(Y ).

In the next theorem we recall some lower and upper bounds for CK L(X,Y ).
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Cumulative measures of information and stochastic orders S217

Theorem 5 Let X and Y be random variables with finite means. Then

CK L(X,Y ) ≥ 1

2

∫ max{rX ,rY }

l

[FX (u)− FY (u)]2

1
3 FX (u)+ 2

3 FY (u)
du (21)

and

CK L(X,Y ) ≤
∫ max{rX ,rY }

l

[
F2

X (u)

FY (u)
− FX (u)

]
du + E(X)− E(Y ),

provided that the integrals in the right-hand-sides are finite. Moreover, if X ≥st Y , we
have

CK L(X,Y ) ≤
∫ max{rX ,rY }

l

FX (u)

2

[
FX (u)

FY (u)
− 1

] [
3 − FX (u)

FY (u)

]
du + E(X)− E(Y )

and

CK L(X,Y ) ≤ −α
∫ max{rX ,rY }

l
FX (u)

[
1 − FX (u)

FY (u)

]2

du + E(X)− E(Y ),

with α = 2.45678.

We recall also a dynamic measure for past lifetimes (see [12]). The cumulative past
KL information of two random lifetimes X and Y , having supports (0, rX ) and (0, rY ),
respectively, is defined as

CK L(X(t),Y(t)) =
∫ t

0

FX (x)

FX (t)
log

(
FX (x)

FX (t)

FY (t)

FY (x)

)
dx + μX (t)− μY (t),

for every t ∈ DX,Y = (0,min{rX , rY }).
Note that CK L(X(t),Y(t)) measures how the distributions of the past lifetimes X(t)

and Y(t) are close, when the items at time t > 0 are inspected and both are found
failed. This measure satisfies:

• CK L(X(t),Y(t)) is non-negative for all t ∈ DX,Y

• lim
t→0+CK L(X(t),Y(t)) = 0 and lim

t→+∞CK L(X(t),Y(t)) = CK L(X,Y ).

The cumulative past KL information of X and Y can be expressed as

CK L(X(t),Y(t)) = K [FX(t) , FY(t)] − CE(X; t)+ μX (t)− μY (t), for t ∈ DX,Y

(22)

where K [FX(t) , FY(t)] introduces the cumulative inaccuracy of the past lifetimes, i.e.

K [FX(t) , FY(t)] = −
∫ t

0

FX (x)

FX (t)
log

FY (x)

FY (t)
dx (23)

(see [12]).
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The following result gives some bounds for this measure.

Theorem 6 For all t ∈ DX,Y

CK L(X(t),Y(t)) ≥ [t − μX (t)] log
t − μX (t)

t − μY (t)
+ μX (t)− μY (t) (24)

and

CK L(X(t),Y(t)) ≥ 1

2

∫ t

0

[FX(t) (x)− FY(t) (x)]2

1
3 FX(t) (x)+ 2

3 FY(t) (x)
dx (25)

Moreover, if X ≥rh Y , then

CK L(X(t),Y(t)) ≤ μX (t)− μY (t) (26)

A non-negative random variable X is said to be increasing (decreasing) failure
rate, in short IFR (DFR), if F X (t) = P(X > t) is logconcave (logconvex), i.e. if the
hazard rate function λX (t) is increasing (decreasing) in t > 0. Given two non-negative
random variables X and Y describing random lifetimes, in reliability theory it is of
interest to study the reliability of one variable with respect to the other.

For any non-negative random variable Y , consider the function

TY (t) = − log FY (t) =
∫ +∞

t
τY (x) dx, t > 0.

This introduces a notion of relative aging, in the sense that X is ageing faster than
Y if and only if the random variable TY (X) is IFR, or equivalently if and only if the
ratio of hazard rates λX (t)/λY (t) is increasing in t . Here, for t > 0, the hazard rate
function of Z = TX (Y ) is

λZ (t) = − d

dt
log F Z (t) = −τY (T

−1
X (t))

d

dt
T −1

X (t) = τY (T
−1
X (t))

τX (T
−1
X (t))

.

We can relate the concept of ageing in reliability theory to the relative reversed
hazard rate order. In fact:

Proposition 3 The following statements are equivalent:

(i) Z = TX (Y ) is IFR (DFR);
(ii) TY ◦ T −1

X is convex (concave);
(iii) X ≥rrh (≤rrh)Y (in the relative reversed hazard rate order).

It is easy to prove that if X ≤rh Y and X ≤rrh Y , then X ≤lr Y .
Recall now a monotonicity property.
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Theorem 7 Let X and Y be non-negative absolutely continuous random variables,
and let t ∈ DX,Y . Then CK L(X(t),Y(t)) is increasing in t if and only if

CK L(X(t),Y(t)) ≤ 1

τX (t)
{[τY (t)− τX (t)] [μY (t)− μX (t)]} (27)

4 Empirical cumulative measures

Let X1, X2, . . . , Xn be non-negative, absolutely continuous, independent and iden-
tically distributed (i.i.d.) random variables, that form a random sample drawn from
a population having distribution function FX (x). Let X(1) < X(2) < · · · < X(n)
be the order statistics of the random sample and U1 = X(1), Ui = X(i) − X(i−1)
(i = 2, 3, . . . , n) be the sample spacings. In this section we state some results obtained
in [7–12]. The cumulative entropy can be estimated by means of the empirical cumu-
lative entropy which is defined as

CE(F̂n) = −
∫ +∞

0
F̂n(x) log F̂n(x) dx,

where

F̂n(x) = 1

n

n∑

i=1

I{Xi ≤x}, x ∈ R

is the empirical distribution of the sample. The empirical cumulative entropy can be
expressed as

CE(F̂n) = −
n−1∑

j=1

U j+1
j

n
log

j

n
(28)

where U2 and Un possess small weights, whereas the larger weight is given to U j+1
such that j is close to e−1 n. Thus we note from (28) that the empirical cumulative
entropy is appropriate to measure variability in right-skewed distributions.

Observe that the standardized empirical cumulative entropy converges in distri-
bution to a standard normal variable as n → +∞ and CE(F̂n) → CE(X) a.s. as
n → +∞. Moreover, note that

CE(F̂n) ≤ X a.s.,

where X is the sample mean.
Consider now another random sample Y1,Y2, . . . ,Yn of non-negative, absolutely

continuous i.i.d. random variables, and denote its empirical cumulative entropy by

CE(Ĝn) = −
∫ +∞

0
Ĝn(y) log Ĝn(y) dy,

where Ĝn(y) is the empirical distribution of the sample.
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Moreover, in analogy with (10), we define the empirical cumulative inaccuracy as

K [F̂n, Ĝn] = −
∫ +∞

0
F̂n(u) log Ĝn(u) du = −

n−1∑

j=1

∫ Y( j+1)

Y( j)

F̂n(u) log
j

n
du (29)

where Y(1) < Y(2) < · · · < Y(n) are the order statistics of the new sample. Set

N j =
n∑

i=1

1{Xi ≤Y( j)}, j = 1, 2, . . . , n.

Moreover, rename by X j,1 < X j,2 < · · · the random variables of the first sample
belonging to (Y( j),Y( j+1)], if any. From the above positions we thus have that (29)
becomes

K [F̂n, Ĝn] = −1

n

n−1∑

j=1

⎡

⎣N j+1Y( j+1) − N j Y( j) −
N j+1−N j∑

r=1

X j,r

⎤

⎦ log
j

n
.

If Xi and Yi satisfy condition Xi ≤st Yi , then

K [Ĝn, F̂n] ≤st CE(X) ≤st K [F̂n, Ĝn],

where K [Ĝn, F̂n] can be obtained by symmetry.
We address the problem of estimating the cumulative KL information by means of

an empirical measure of discrimination. The empirical cumulative KL information is
defined as

CK L(F̂n, Ĝm) = −
∫ +∞

0
F̂n(x) log

F̂n(x)

Ĝm(x)
dx + X − Y ,

where X and Y are the sample means.
The empirical cumulative KL information can be rewritten as

CK L(F̂n, Ĝm) = K [F̂n, Ĝm] − CE(F̂n)+ X − Y .

It is easy to prove that, if X and Y are non-negative random variables such that X
is in L p for some p > 1 and X ≥st Y , then the empirical cumulative KL information
of X and Y converges to the cumulative KL information of X and Y , i.e.

CK L(F̂n, Ĝm) → CK L(X,Y ) a.s. as n → +∞ and m → +∞.

For other details see [7,8,12].
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5 The cumulative residual KL measure of discrimination

The aim of this last section is the introduction of a new measure of discrimination.
The cumulative residual KL information of two random lifetimes X and Y is defined
as

CK L(Xt ,Yt ) =
∫ +∞

t

FX (x + t)− FX (t)

F X (t)
log

(
FX (x + t)− FX (t)

FY (x + t)− FY (t)

FY (t)

F X (t)

)
dx

+ mrlX (t)− mrlY (t) (30)

for any t ∈ GX,Y = {t > 0 : FX (t) < 1, FY (t) < 1}. We can write this measure
also as

CK L(Xt ,Yt ) =
∫ +∞

t
FXt (x) log

FXt (x)

FYt (x)
dx + mrlX (t)− mrlY (t).

Notice that this measure is the cumulative KL information of the residual lifetimes
of X and Y ; it measures the closeness of the distributions of the two residual lifetimes,
when the items at time t > 0 are inspected and both are found alive.

This measure satisfies:

• CK L(Xt ,Yt ) is non-negative for all t ∈ GX,Y ,
• lim

t→0+CK L(Xt ,Yt ) = CK L(X,Y ), and lim
t→+∞CK L(Xt ,Yt ) = 0.

Now we give an example of computation of this measure for a particular choice of
X and Y .

Example 2 Let X and Y have uniform distribution over (0, a) and (0, b), respectively.
Then

CK L(Xt ,Yt ) =
⎧
⎨

⎩

a+t
2 log b−t

a−t + a−b
2 , if 0 < a < b

b2−t2

2(a−t) log b−t
a−t + a−b

2 , if 0 < b < a

The measure CK L(Xt ,Yt ) is not symmetric with respect to a and b, that is
CK L(Xt ,Yt ) �= CK L(Yt , Xt ).

Note that CK L(Xt ,Yt ) ≥ 0, and CK L(Xt ,Yt ) = 0 if and only if FX (u) = FY (u)
almost everywhere. Also this measure of discrimination has a meaning in reliability
theory. In fact, the following proposition can be easily proved.

Proposition 4 The cumulative residual KL information of X and Y can be expressed
as

CK L(Xt ,Yt ) = K [FXt , FYt ] − CE(Xt )+ mrlX (t)− mrlY (t), for t ∈ GX,Y

(31)
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where K [FXt , FYt ] introduces a new cumulative measure that is the cumulative inac-
curacy of the residual lifetimes of Xt and Yt , i.e.

K [FXt , FYt ] = −
∫ +∞

t
FXt (x) log FYt (x) dx (32)

and

CE(Xt ) = −
∫ +∞

t
FXt (x) log FXt (x) dx (33)

is the cumulative entropy referred to the residual lifetime Xt , for t ∈ GX,Y , provided
that the integrals in (32) and (33) are finite.

For this measure, the following lower bound holds.

Proposition 5 For all t ∈ GX,Y ,

CK L(Xt ,Yt ) ≥ 1

2

∫ +∞

t

[FXt (u)− FYt (u)]2

1
3 FXt (u)+ 2

3 FYt (u)
du. (34)

Proof The proof is similar to those of (21) and (25) and follows easily from the fact
that the function

h(x) = x log x − x + 1 − 1

2

(x − 1)2

1 + 1
3 (x − 1)

is non-negative for all x > 0. Applying this result to (30), with x = FXt (u)
FYt (u)

, we obtain
the statement.

For our new measure it is possible to obtain other lower and upper bounds simi-
lar to those studied for the cumulative KL information and the cumulative past KL
information. It is our intention to investigate the properties and the applications of the
cumulative residual KL discrimination measure in a next research.
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