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Abstract

Background and Aim: Warfarin is the most frequently prescribed anticoagulant worldwide. However, warfarin therapy is
associated with a high risk of bleeding and thromboembolic events because of a large interindividual dose-response
variability. We investigated the effect of genetic and non genetic factors on warfarin dosage in a South Italian population in
the attempt to setup an algorithm easily applicable in the clinical practice.

Materials and Methods: A total of 266 patients from Southern Italy affected by cardiovascular diseases were enrolled and
their clinical and anamnestic data recorded. All patients were genotyped for CYP2C9*2,*3, CYP4F2*3, VKORC1 -1639 G.A by
the TaqMan assay and for variants VKORC1 1173 C.T and VKORC1 3730 G.A by denaturing high performance liquid
chromatography and direct sequencing. The effect of genetic and not genetic factors on warfarin dose variability was tested
by multiple linear regression analysis, and an algorithm based on our data was established and then validated by the
Jackknife procedure.

Results: Warfarin dose variability was influenced, in decreasing order, by VKORC1-1639 G.A (29.7%), CYP2C9*3 (11.8%), age
(8.5%), CYP2C9*2 (3.5%), gender (2.0%) and lastly CYP4F2*3 (1.7%); VKORC1 1173 C.T and VKORC1 3730 G.A exerted a
slight effect (,1% each). Taken together, these factors accounted for 58.4% of the warfarin dose variability in our
population. Data obtained with our algorithm significantly correlated with those predicted by the two online algorithms:
Warfarin dosing and Pharmgkb (p,0.001; R2 = 0.805 and p,0.001; R2 = 0.773, respectively).

Conclusions: Our algorithm, which is based on six polymorphisms, age and gender, is user-friendly and its application in
clinical practice could improve the personalized management of patients undergoing warfarin therapy.
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Introduction

Warfarin sodium [1] is the most frequently prescribed

anticoagulant for the primary and secondary prevention of

thromboembolic disorders worldwide [2–4]. Despite the advent

of new oral antithrombotic agents such as dabigatran, rivarox-

aban, apixaban, which have proven to be cost-effective compared

with warfarin in some clinical conditions [5,6], warfarin remains

the mainstay of treatment for patients with mechanical heart

valves and patients noncompliant to new therapies because in

these populations their efficacy have not been explored [7].

Warfarin inhibits the Vitamin K Epoxide Reductase Complex 1

(VKORC1) thus reducing the activities of vitamin K-dependent

clotting factors II, VII, IX and X and coagulation. S-warfarin, the

most active of the two (R- and S-) isomers in the administered

drug, is mainly metabolized by the cytochrome P450 2C9

isoenzyme (CYP2C9) [8].

Notwithstanding its wide use, warfarin has a narrow therapeutic

range and a large interindividual variability in the dose needed (1–

20 mg/day) to obtain an adequate anticoagulation effect [4]. The

latter is generally measured by the prothrombin international

normalised ratio (INR) and its range is 2.0–3.0 or higher in at-high

risk patients [9]. Inappropriate INR levels may result in significant

bleeding or stroke (INR levels greater or lower than the target

range, respectively), particularly during the first weeks of therapy

(induction phase) [9–14]. To date, most clinicians prescribe 3–

10 mg/day for the first 2–5 days, then switch to a maintenance

dose established based on frequent INR monitoring [2,11,14].

Warfarin-induced adverse effects account for over 10% of all

adverse drug reactions leading to hospital admissions [15].
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The large interindividual variation in warfarin dose require-

ment is attributable to clinical, demographic, environmental

factors (age, gender, body mass index, daily vitamin K intake,

concomitant diseases, interaction between drugs, and smoking),

and to genetic factors, which account for 40–60% of the variability

[16–18]. Among genetic factors, single nucleotide polymorphisms

(SNPs) in the CYP2C9 (Gene Bank Accession Number AY702706;

chr.10q24) and in VKORC1 (Gene Bank Accession Number

AY587020; chr.16p11.2) genes were first described as major

contributors to dose-response variability. Subjects bearing poly-

morphisms in one or both of these genes require lower or higher

warfarin doses than subjects bearing the wild-type genes to obtain

an adequate anticoagulant effect [1,8,16,19–22]. More recently,

patients bearing a SNP (rs2108622) in the CYP4F2 gene (Gene

Bank Accession Number AF22194; chr.19p13.12), which is the

vitamin K1 oxidase involved in vitamin K1 metabolism, were

found to require a warfarin dose slightly higher than normal [23–

25] or similar to normal [26,27]. Moreover, a meta-analysis

revealed a statistically significant association between rs2108622

and the interindividual warfarin dose variation [28,29]. However,

it was annotated (www.pharmgkb.org) as a Level 1B clinical

association, namely ‘‘a variant-drug combination where the

preponderance of evidence shows an association. The association

must be replicated in more than one cohort with significant p-

values, and, preferably with a strong effect size’’).

In 2007 and in 2010, the US Food and Drug Administration,

Center for Drug Evaluation and Research, suggested that

CYP2C9 and VKORC1 -1639 G.A gene polymorphisms be

typed before starting warfarin therapy [30], and issued specific

guidelines in this sense [31]. This prompted several clinical trials to

evaluate the use of pharmacogenetic tests before starting warfarin

therapy. It also prompted the development of warfarin-dosing

algorithms that include genetic and non-genetic factors [32].

Notably, predictive algorithms must be based on data represen-

tative of the target population, and they should be validated. To

date, few studies have evaluated the global effect of genetic and

non-genetic factors on warfarin dosage in Italian subjects [1,33–

36].

The aim of this study was to estimate, in a Southern Italy

population of subjects affected by cardiovascular disorders

undergoing warfarin therapy, the effect of the CYP2C9 (*2 and

*3), CYP4F2*3, VKORC1 (-1639 G.A, 1173 C.T and 3730

G.A SNPs combined with clinical status, demographic and

environmental factors on warfarin dosing.

Results

The clinical, anamnestic and demographic features of our

warfarin-treated patients are shown in Table 1.

Our population did not differ in terms of gender (55.2% male).

Similarly, there were no differences between men and women in

terms of age, body mass index and the other parameters evaluated

(data not shown).

Cardiac valve replacement and atrial fibrillation were the most

frequent cardiovascular indications (43.9% and 38.1%, respec-

tively). Most patient (43.2%) did not assume any drug in addition

to warfarin.

Allelic and genotype frequencies of the CYP2C9*2, CYP2C9*3,

CYP4F2*3, VKORC1-1639 G.A, VKORC1 1173 C.T and

VKORC1 3730 G.A polymorphisms obtained in our patients

and those reported in other Caucasian groups are reported in

Table 2. Genotype frequencies, at the level of all tested genes,

were in Hardy-Weinberg equilibrium. The comparison between

the weekly warfarin dose assumed in the subjects bearing the wild-

allele or the polymorphic CYP2C9 variants is shown in

Figure 1A. Patients bearing the CYP2C9*1/*3, *2/*3 and *3/

*3 genotypes required a significantly lower warfarin dose than

patients with the wild-type allele (22.03 mg/week68.80; 13.4 mg/

week610.10; 9.74 mg/week63.25; respectively vs 32.11 mg/

week613.98; p,0.001).

The mean weekly warfarin dose was also significantly lower in

VKORC1 -1639 G.A mutated homozygotes and in heterozy-

gotes than in patients with the wild-type allele (18.81 mg/

week67.98, 29.15 mg/week611.79, and 37.80 mg/week613.37,

respectively, p,0.001) (Figure 1B). We also evaluated the

additive effect of the CYP2C9 and VKORC1 -1639 G.A

polymorphic genotypes on warfarin dose requirement. The

simultaneous presence of these polymorphisms further significantly

reduced the warfarin dose requirement as shown in Figure 2.

Slightly higher warfarin dosages were required by VKORC1

3730 G.A heterozygotes and homozygotes than by patients

carrying the wild-type allele (32.56 mg/week613.48 and

33.39 mg/week616.08 vs 24.38 mg/week611.12; p,0.05, re-

spectively) (Figure S1). No difference in warfarin dosages was

observed, by ANOVA analysis, in subjects bearing the VKORC1

1173 C.T (p = 0.72) or the CYP4F2*3 (p = 0.36) polymorphisms.

Haploview software showed the lack of linkage disequilibrium

between VKORC1-1639 G.A and 1173 C.T (D9: 0.186). Using

multiple linear regression analysis we assessed the effect of the

genetic and non genetic factors (see Table 1) on warfarin dose,

with the actual weekly warfarin dose as dependent variable. Using

the Jackknife procedure, we then validated the algorithm

developed on our data set. The percentage contributions of the

various factors on warfarin dose were in decreasing order: 29.7%

VKORC1-1639 G.A, 11.8% CYP2C9*3, 8.5% age, 3.5%,

CYP2C9*2, 2.0% gender and 1.7% CYP4F2*3. The effects of

VKORC1 1173 C.T and VKORC1 3730 G.A were marginal

Table 1. Clinical, anamnestic and demographic features of
the warfarin-treated patients.

Age (years) 67.35611.05

Gender male 55.2%

BMI (kg/m2) 26.9064.24

Indications for warfarin therapy

Cardiac valve replacement 43.9%

Atrial fibrillation 38.1%

Dilatative cardiomyopathy 8.5%

Deep venous thrombosis 6.5%

Pulmonary embolism 3.0%

Smoking 8.7%

Liver disease 15.5%

Dyslipidaemia 65.2%

Hypertension 62.5%

Drug assumption 56.8%

Only drugs that increase the warfarin effect 33.0%

Only drugs that decrease the warfarin effect 17.0%

Both types of drugs 6.8%

No drugs 43.2%

Warfarin dose assumed (mg/week) 28.73613.22

Continuous variables are expressed as means 6 standard deviation (SD) and
categorical variables as percentages.
doi:10.1371/journal.pone.0071505.t001

Warfarin: A Pharmacogenetics-Based Dosing Model
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(,1% each). In our population, the above factors accounted for

58.4% of the variance in warfarin dosage (Table 3) and 57.2%

after the exclusion of VKORC1 1173 C.T and VKORC1 3730

G.A, which were associated with the lowest and highest doses,

respectively.

To explore how our algorithm worked versus the two online

algorithms (www.warfarindosing.org and www.pharmgkb.org)

(accessed September 2011), we compared by Pearson analysis

each patient’s predicted warfarin dosage by the Jackknife

procedure with those predicted by the two online algorithms

(Figure 3A and 3B). The data obtained with our algorithm

significantly correlated with those predicted by two online

algorithms: Warfarin dosing (p,0.001; R2 = 0.805) and Pharmgkb

(p,0.001; R2 = 0.773).

Discussion

We investigated the effect of genetic and not genetic factors on

the mean weekly warfarin dose variability in an adult South Italian

population to setup a simple algorithm easily applicable in clinical

practice.

The allele and genotype frequencies of the CYP2C9*2,

CYP2C9*3, CYP4F2*3 and VKORC1 (-1639 G.A, 3730

G.A and 1173 C.T) genes were similar to those found in

other Caucasian populations, except for a slightly higher

prevalence of the VKORC1 -1639 A/A genotype (25% vs

7.6–20.8%) [33–39].

The effect of the CYP2C9, CYP4F2 and VKORC1 genotypes

on warfarin dose was similar to those previously reported

[10,12,40]. In particular, the warfarin dose was 17.0% and

32.0% respectively lower in subjects bearing the CYP2C9*2 or

CYP2C9*3 polymorphic alleles versus wild type, which is similar

to the previously reported reductions of 18–20% and 34–38%,

respectively [10,38,40–42] in Caucasians. Furthermore, there was

a 25% dose reduction in subjects bearing the VKORC1-1639 A

allele, which is also in agreement with previously reported

percentages (25–30%) [12]. The mean weekly warfarin dose was

also lower in our patients bearing both the CYP2C9 and

VKORC1-1639 G.A polymorphic genotypes, namely between

34.8% and 84.0% lower than in wild-type patients, which

compares well with previously reported reductions (34%–75%

and 41%–79%) [2,30]. In the two previous studies that typed

smaller than our Italian populations (148/147 vs 266 patients)

[1,35] for VKORC1 1173 C.T but not for -1639 G.A SNP, a

different degree of association between VKORC1 1173C.T and

warfarin dosing was observed, 0.8% (this study) vs 20% and 13,8%

[1,35]. These data support a large population-based variability in

gene polymorphism-dependent warfarin dosing.

In our population, we did not find any linkage disequilibrium

(D9: 0.186) between VKORC1-1639 G.A and 1173 C.T, in

Table 2. Allele and genotype frequencies of CYP2C9*2, CYP2C9*3, VKORC1 (-1639 G.A, 1173 C.T, 3730 G.A) and CYP4F2
1297G.A polymorphisms obtained in our population and in other Caucasian populations.

Genotype frequencies Allelic frequencies

Our data Other studies* Our data Other studies*

Gene N % %(min-max) % %(min-max)

CYP2C9

*1/*1 159 60.2 56.4–66.9 *1 77.5 50.3–83.0

*1/*2 58 22.0 16.4–23.8 *2 15.7 11.9–32.0

*1/*3 33 12.5 8.9–12.7 *3 9.8 5.7 –17.2

*2/*2 6 2.3 1.7–2.3

*2/*3 5 1.9 1.1–3.6

*3/*3 3 1.1 0.3–9.1

CYP4F2 1297G.A

G/G 121 45.8 39.2–46.0 G 69.1 65.8–70.3

G/A 123 46.6 42.0–48.2 A 30.9 34.2–29.7

A/A 20 7.6 9.4–12.6

VKORC1 -1639G.A

G/G 67 25.4 32.2–37.3 G 50.2 58.2–59.4

G/A 131 49.6 46.9–55.1 A 49.8 40.6–41.8

A/A 66 25.0 7.6–20.8

VKORC1 1173C.T

C/C 114 43.2 26.4–40.8 C 65.1 57.8–62.2

C/T 116 43.9 43.2–50.8 T 34.9 37.8–42.2

T/T 34 12.9 8.3–25.0

VKORC1 3730G.A

G/G 132 50.0 38.2–48.0 G 71.4 62.6–66.4

G/A 113 42.8 39.5–52.7 A 28.6 37.4–33.6

A/A 19 7.2 4.0–15.0

*Refs. [33–39].
doi:10.1371/journal.pone.0071505.t002

Warfarin: A Pharmacogenetics-Based Dosing Model
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contrast with those reported in other ethnic groups [43,44].

Population differences in minor allele frequencies observed at level

of the tested polymorphisms VKORC1 -1639G.A and 1173

C.T could drive interethnic differences detected among Cauca-

sian populations, also from different Italian regions [1,35], and

these genetic factors together to different cultural and lifestyle

factors could in part explain the above discrepancies. Higher

warfarin doses were required by both the heterozygous and

mutated homozygous VKORC1 3730 G.A patients with respect

to subjects carrying the wild-type allele, which suggests that this

Figure 1. Relationship between the weekly warfarin dose and CYP2C9 (Panel A) or VKORC1 -1639G.A (Panel B) genotypes. Each
box indicates the values from 25u to 75u percentile (interquartile range), the horizontal lines represent the median value of weekly warfarin dose, the
maximum length of whisker is 1.5 fold the interquartile range. * p,0.05, ** p,0.001at ANOVA test.
doi:10.1371/journal.pone.0071505.g001

Warfarin: A Pharmacogenetics-Based Dosing Model
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polymorphism has less impact on warfarin dosage than

VKORC1-1639 G.A, in agreement with the meta-analysis

reported by Yang et al. [38].

In the regression model, the variant CYP4F2*3 polymorphism

entered with an R2 of 1.7%, and the difference in warfarin dose

between CYP4F2 A/A vs CYP4F2 wild type was 0.6 mg/day.

This observation is in line with a previous finding that CYP4F2*3

has only a small effect on warfarin dose variability [23]. However,

the effect of CYP4F2*3 on warfarin dose-response variability is

debatable; in fact, it ranges from 1%–7% [23,33,34] to not

significant [26,27].

Among non genetic factors, regression analysis revealed that age

(p,0.0001; R2 = 8.5%) and gender (p = 0.001; R2 = 2.0%) contrib-

uted to the overall variability in warfarin dose, which is in

agreement with a previous report [34]. Warfarin dosages predicted

by our algorithm significantly correlated with those predicted by the

Warfarindosing and Pharmgkb algorithms. The algorithms explain

similar to ours the percentages of the warfarin response (47%–58%)

in other Caucasian populations [45–46], but they use more data.

In conclusion, by exploring the most relevant genetic variants

and by applying a user-friendly algorithm, our study contributes to

the field of warfarin pharmacogenetics in a Southern Italy

population. One may envisage that a genotype-guided and

clinical-guided (versus clinical-guided) warfarin dosing algorithm

could improve patient care in terms of dosage particularly in the

initial phase of therapy, resulting in a decreased time below the

therapeutic range and consequently in a reduction of adverse drug

reactions.

Materials and Methods

Subjects
Two hundred and sixty-six warfarin-treated patients from

Southern Italy, 45% female, were enrolled at the Department of

Figure 2. Combined effect of CYP2C9 and VKORC1 -1639 G.A polymorphic genotypes on stable weekly warfarin dose (mg/week).
Each box indicates the values from 25u to 75u percentile (interquartile range), the white lines represent the median value of weekly warfarin dose, the
maximum length of whisker is 1.5 fold the interquartile range. In detail below are shown the specific statistical significances for each comparison.
CYP2C9 *1/*1+VKORC1 -1639 G/G vs CYP2C9 *1/*1+VKORC1 -1639A/A, p,0.001.
CYP2C9 *1/*1+VKORC1 -1639 G/G vs CYP2C9 *1/*1+VKORC1 -1639G/A, p,0.05.
CYP2C9 *1/*1+VKORC1 -1639 G/A vs CYP2C9 *1/*1+VKORC1 -1639A/A, p,0.001.
CYP2C9 *1/*2+VKORC1 -1639 G/G vs CYP2C9 *1/*2+VKORC1 -1639A/A, p,0.001.
CYP2C9 *1/*2+VKORC1 -1639 G/G vs CYP2C9 *1/*2+VKORC1 -1639G/A, p,0.05.
CYP2C9 *1/*2+VKORC1 -1639 G/A vs CYP2C9 *1/*2+VKORC1 -1639A/A, p,0.001.
CYP2C9 *1/*3+VKORC1 -1639 G/G vs CYP2C9 *1/*3+VKORC1 -1639A/A, p,0.05.
CYP2C9 *1/*3+VKORC1 -1639 G/A vs CYP2C9 *1/*3+VKORC1 -1639A/A, p,0.05.
doi:10.1371/journal.pone.0071505.g002

Warfarin: A Pharmacogenetics-Based Dosing Model
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Internal Medicine, University of Naples Federico II, at the

Foundation Salvatore Maugeri IRCCS Istitute of Campoli Telese,

Benevento, at the Santobono Pausilipon Hospital, Naples, and at

the Department of Experimental Medicine, Second University of

Naples, Italy. The study was performed according to the second

Helsinki Declaration, all subjects provided written informed

consent to participate in the study which was approved by the

Ethics Committees of the above institutions. At enrolment all

patients had been taking a stable dose of warfarin for at least 3

months, which is warfarin dose to achieve INR 2–3. Anamnestic,

clinical and lifestyle information were recorded on a structured

interview form. Hypertension, systolic blood pressure above

130 mmHg and diastolic blood pressure above 85 mmHg, and

body mass index (body weight [kg] divided by squared height

[m2]) were also recorded. Liver dysfunction (aspartate amino-

transferase .35 U/L women, .40 U/L men; alanine amino-

transferase .35 U/L women, .40 U/L men), and dyslipidemia

(serum total cholesterol and/or triglycerides levels above 190 mg/

dL or 150 mg/dL, respectively) were also measured.

Samples and Methods
Three fasted blood samples (one with EDTA for DNA

extraction, one with sodium citrate and one without anticoagulant

for haematological and biochemical investigation, respectively)

were collected from each patient. DNA was extracted with the

Nucleon BACC2 kit (Amersham Life Science, England). Coagu-

lation and biochemical tests were performed by routinely methods

using reagent and equipment from Siemens, (Germany) and from

Roche Diagnostics (Germany), respectively.

We genotyped patients for the CYP2C9 (CYP2C9*2,

rs1799853, exon 3, c.430 C.T, p.Arg144Cys; CYP2C9*3,

rs1057910, exon 7, c.1075 A.C, p.Ile359Leu), CYP4F2*3

(rs2108622, c.1297G.A, p.V433M) and VKORC1 -1639 G.A

(rs9923231) (also known as 3673 G.A) polymorphisms, together

with positive and negative quality control samples, using the Real-

Time TaqMan method [47,48] and commercial kits, namely Pre-

developed TaqMan Assay Reagents Human Allelic Discrimina-

tion (CYP2C9*2 and *3) (probe code 4312568 and 4312569) and

TaqMan Drug Metabolism Genotyping Assay (CYP4F2*3 and

VKORC1) Applied Biosystems, CA, USA.

The PCR was set up in a 96-well plate with a 25 mL mix

reaction, 10–20 ng of genomic DNA per assay. The amplification

protocol was performed according to the manufacturer’s indica-

tions. Variants VKORC1 1173 C.T, (rs9934438) (also known as

6484 C.T) and VKORC1 3730 G.A, (rs7294) (also known as

9041G.A) were detected by denaturing high performance liquid

chromatography on Wave 2.0 Transgenomic instruments (Oma-

Table 3. Factors affecting weekly warfarin dose requirements
in regression model*.

Variable P value Partial R2 Coefficient B (95% CI)

VKORC1 -1639 G.A 29.7

-1639 G/A 0.439 20.033 (20.116, 20.050)

-1639 A/A ,0.0001 20.278 (20.335, 20.221)

CYP2C9*3 11.8

(*1/*3) ,0.0001 20.149 (20.201, 20.097)

(*3/*3) ,0.0001 20.475 (20.672, 20.278)

AGE ,0.0001 8.5 20.050 (20.007, 20.003)

CYP2C9*2 3.5

(*1/*2) ,0.0001 20.090 (20.132, 20.047)

(*2/*2) 0.009 20.218 (20.381, 20.054)

GENDER 0.001 2.0 0.061 (0.024,0.098)

CYP4F2*3 1.7

(*1/*3) 0.121 0.030 (0.008,0.069)

(*3/*3) 0.015 0.087 (0.017,0.158)

VKORC1 1173 C.T 0.8

1173 C/T 0.037 20.085 (20.165, 20.050)

1173 T/T 0.437 20.022 (20.079,0.034)

VKORC1 3730 G.A 0.4

3730 G/A 0.022 0.054 (0.008,0.100)

3730 A/A 0.100 0.060 (20.012,0.132)

*(Total R2 for the model 58.4%).
doi:10.1371/journal.pone.0071505.t003

Figure 3. Correlation analysis (Pearson coefficient) between our predicted warfarin dosage by Jackknife and that predicted by
www.warfarindosing.org (panel A, p,0.001, R2 = 0.805) and www.pharmgkb.org (panel B, p,0.001, R2 = 0.773). The solid line
represent a good correlation between the two doses. Open circles represent individuals for whom no variants in CYP2C9 and VKORC1 -1639 G.A
were detected. Gray circles represent individuals with only one polymorphic gene (either VKORC1 -1639 G.A or CYP2C9* 2 or *3). Black circles
represent individuals with at least two polymorphic genes.
doi:10.1371/journal.pone.0071505.g003

Warfarin: A Pharmacogenetics-Based Dosing Model
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ha, NE, USA). Each suspicious chromatogram was then

sequenced. The PCR primers and conditions are listed in

Appendix S1.

Statistical Analysis
The Hardy-Weinberg equilibrium was verified for all investi-

gated polymorphisms by the x2 test.

The Kolmogorov-Smirnov test was performed to evaluate the

distribution of continuous variables.

Data were expressed as average 6 standard deviation (SD)

(continuous variables) or in percentage (categorical variables).

We evaluated differences of clinical and genetic variables among

groups by the Student t test and analysis of variance (ANOVA),

followed by post hoc test with Bonferroni correction. A p,0.05

was considered statistically significant. Linkage analysis was

performed by Haploview 4.0 software [49]. Multivariate linear

regression was performed to identify the factors associated with

the weekly warfarin dose expressed on a logarithmic scale.

Global and partial R2 were measured, these latters assessing the

percentage of the dose variability explained by the full model

and by each factor included in the model. In order to obtain an

unbiased estimate of the prediction ability of our algorithm we

validated it using the Jackknife procedure [50], i.e., the

predicted dose of each patient was obtained using the linear

coefficients developed using the remaining patients in the data

set, thus avoiding the bias introduced by scoring a patient with

coefficients optimized with data of the patient himself. Weekly

warfarin dose predictions were also obtained by two dosing

algorithms published by the Warfarin Dose Refinement

Collaboration (www.warfarindosing.org, accessed September

2011) and by the International Warfarin Pharmacogenetics

Consortium (www.pharmgkb.org, accessed September 2011).

These predicted doses were then correlated with those obtained

by our validated algorithm. Statistical analysis was performed

with the STATA 11.2 software (StataCorp LP).

Supporting Information

Appendix S1 Specific PCR primers (for: VKORC1 1173 C.T

and VKORC1 3730G.A) and conditions.

(DOC)

Figure S1 Relationship between the weekly warfarin dose and

VKORC1 3730 G.A genotypes. Each box indicates the values

from 25u to 75u percentile (interquartile range), the black central

line represents the median value of weekly warfarin dose, the

maximum length of whisker is 1.5 fold the interquartile range.

* p,0.05.

(PDF)
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