A group theoretic characterization of Buekenhout-Metz unitals in $\operatorname{PG}\left(2, q^{2}\right)$ containing conics

Giorgio Donati, Nicola Durante*
Dipartimento di Matematica e Applicazioni "Caccioppoli", Università di Napoli "Federico II", Complesso di Monte S. Angelo - Edificio T, via Cintia - 80126 - Napoli, Italy

ARTICLE INFO

Article history:

Received 21 May 2011
Received in revised form 4 April 2012
Accepted 10 April 2012
Available online 7 May 2012

Keywords:

Unitals
Conics

Abstract

Let U be a unital in $\operatorname{PG}\left(2, q^{2}\right), q=p^{h}$ and let G be the group of projectivities of $\operatorname{PG}\left(2, q^{2}\right)$ stabilizing \mathcal{U}. In this paper we prove that \mathcal{U} is a Buekenhout-Metz unital containing conics and q is odd if, and only if, there exists a point A of U such that the stabilizer of A in G contains an elementary Abelian p-group of order q^{2} with no non-identity elations.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Baker and Ebert [2] and Hirschfeld and Szőnyi [6] independently discovered an orthogonal Buekenhout-Metz unital in $\operatorname{PG}\left(2, q^{2}\right), q=p^{h}, q$ odd, which is the union of q conics of a hyperosculating pencil with base a point A. We call such a unital Buekenhout-Metz of BEHS-type. These are the only Buekenhout-Metz unitals containing conics. In [1] Abatangelo and Larato determine the linear collineation group Γ stabilizing a Buekenhout-Metz unital of BEHS-type and prove that this group has the following properties:
(i) the order of Γ is $2 q^{3}(q-1)$;
(ii) Γ is transitive on the points of the unital different from A;
(iii) the stabilizer of a point of the unital, different from A, in Γ is a cyclic group of order $2(q-1)$;
(iv) Γ is the semidirect product of a normal elementary Abelian subgroup of order q^{3} with a cyclic subgroup of order $2(q-1)$.

They also prove that Γ has an elementary Abelian p-group of order q^{2}, with no non-identity elations, that stabilizes every conic of U. Further, they show that, if the group of projectivities G preserving a unital U in $\operatorname{PG}\left(2, q^{2}\right)$ with q odd satisfies these four conditions, then u is a Buekenhout-Metz unital of BEHS-type. Ebert and Wantz [5] prove that a unital u is orthogonal Buekenhout-Metz if and only if the group of projectivities stabilizing U contains a semidirect product $S \rtimes R$ where S has order q^{3} and R has order $q-1$. Also, S is Abelian if and only if U is of BEHS-type, in which case q is necessarily odd and S is elementary Abelian.

In this paper we obtain the following group theoretic characterization of Buekenhout-Metz unitals of BEHS-type.
Theorem 1.1. Let U be a unital in $\operatorname{PG}\left(2, q^{2}\right)$, with $q=p^{h}$, and let G be the group of projectivities stabilizing \mathcal{U}. If there exists a point A of U such that the stabilizer of A in G contains an elementary Abelian p-group of order q^{2} with no non-identity elations, then \mathcal{U} is a Buekenhout-Metz unital of BEHS-type and q is odd.

[^0]
2. Preliminary results

Let $\operatorname{PG}\left(2, q^{2}\right), q=p^{h}$, be the projective plane over the Galois field $\operatorname{GF}\left(q^{2}\right)$. A unital in $\operatorname{PG}\left(2, q^{2}\right)$ is a set \mathcal{U} of $q^{3}+1$ points meeting every line of $\operatorname{PG}\left(2, q^{2}\right)$ in either 1 or $q+1$ points. Lines meeting a unital u in 1 or $q+1$ points are called tangent or secant lines to u. Through each point of u there pass q^{2} secant lines and one tangent line. Through each point P not on U there pass $q^{2}-q$ secant lines and $q+1$ tangent lines; the points of contact of the tangent lines are called the feet of P.

An example is the non-degenerate Hermitian curve or classical unital, that is, the set of the absolute points of a nondegenerate unitary polarity of $\operatorname{PG}\left(2, q^{2}\right)$. For more information on unitals in projective planes, see [3].

Consider the polynomial $x^{2}-r$, irreducible over $\operatorname{GF}(q)$, and $t \in \operatorname{GF}\left(q^{2}\right)$ such that $t^{2}-r=0$. Let a be an element in $\operatorname{GF}\left(q^{2}\right)$ and let Γ_{a} be the conic of $\operatorname{PG}\left(2, q^{2}\right)$ with equation $x_{1} x_{3}-x_{2}^{2}+a x_{3}^{2}=0$. The set

$$
u=\bigcup_{a \in \operatorname{tGF}(q)} \Gamma_{a}
$$

is an orthogonal Buekenhout-Metz unital in $\operatorname{PG}\left(2, q^{2}\right)$ of BEHS-type; see [6]. Observe that u is the the union of q conics of a hyperosculating pencil with base $(1,0,0)$.

A central collineation of $\operatorname{PG}\left(2, q^{2}\right)$ is a collineation α fixing every point of a line ℓ (the axis of α) and fixing every line through a point C (the center of α). If $C \in \ell$, then α is an elation; otherwise α is a homology. It is known that given a line ℓ and three distinct collinear points C, P, P^{\prime} of $P G\left(2, q^{2}\right)$, with $P, P^{\prime} \notin \ell$ and both different from C, there is a unique central collineation with axis ℓ and center C mapping P onto P^{\prime}.

Note that a non-identity homology f of $\operatorname{PG}\left(2, q^{2}\right)$ stabilizing a unital U has as center a point V not on U and as axis a secant line ℓ to U. Suppose by way of contradiction that V is on U. Let P be a point of $\ell \cap U$. The line VP is a secant line to U, hence for any point Q on $(U \cap V P) \backslash\{V, P\}$ we have that $|\langle f\rangle|=\left|\operatorname{Orb}_{\langle f\rangle}(Q)\right|\left|\operatorname{Stab}_{\langle f\rangle}(Q)\right|$. Since $\operatorname{Stab}_{\langle f\rangle}(Q)$ is the trivial subgroup, it follows that $|\langle f\rangle|$ divides $q-1$. Let m be a secant line to \mathcal{U} through V such that $\ell \cap m \notin \mathcal{U}$. For any point R on $m \cap U$ different from V we have that $|\langle f\rangle|=\left|\operatorname{Orb}_{\langle f\rangle}(R)\right|$, therefore $|\langle f\rangle|$ divides q. As q and $q-1$ are relatively prime, $|\langle f\rangle|=1$ and f is the identity, a contradiction. Suppose now that ℓ is a tangent line to u. The line ℓ contains at most one of the feet of V; so there exists one of the feet of V, say T, not on ℓ. Since $V T$ is the tangent line to U at T, it follows that $f(T)=T$, thus f is the identity, again a contradiction.

From now on we identify, unambiguously, a projectivity of $\operatorname{PG}\left(2, q^{2}\right)$ with its matrix representation with respect to a frame of the plane. Then a group of projectivities of the plane is identified by a group of 3×3 matrices.

3. Characterization

Let U be a unital in $\operatorname{PG}\left(2, q^{2}\right), q=p^{h}$, and let A be a point of U with tangent line ℓ_{∞}. Throughout the paper we will denote by G the linear collineation group preserving U and by G_{A} an elementary Abelian p-group of order q^{2}, with no non-identity elations, contained in the stabilizer of A in G. Let L_{∞} be the group of projectivities of the line ℓ_{∞} into itself. Every element $f \in G_{A}$ induces a projectivity f_{∞} of L_{∞}. Consider the homomorphism

$$
\Psi: f \in G_{A} \longrightarrow f_{\infty} \in L_{\infty}
$$

An element $g \in \operatorname{Ker} \Psi$ induces the identity map on ℓ_{∞}, hence g is a perspectivity with axis ℓ_{∞}. Since g cannot be a nonidentity homology (see Section 2) and G_{A} has no non-identity elations, it follows that g is the identity. The map Ψ is then a monomorphism.

Proposition 3.1. If f is a non-identity element of G_{A}, then f_{∞} has A as a unique fixed point.
Proof. Let P be a point of ℓ_{∞} different from A. There exists an element $h \in G_{A}$ such that $h(P) \neq P$. Indeed, suppose on the contrary that P is fixed by every element of G_{A}. In such a case $\Psi\left(G_{A}\right)$ is a subgroup of the stabilizer $L_{A P}$ of both A and P in L_{∞}. The groups $\Psi\left(G_{A}\right)$ and $L_{A P}$ have size q^{2} and $q^{2}-1$, respectively, a contradiction. Since G_{A} is an Abelian group, for every element $f \in G_{A}$ we have that

$$
f_{\infty}(P)=\left(h_{\infty}^{-1} \circ f_{\infty} \circ h_{\infty}\right)(P)
$$

If $f_{\infty}(P)=P$ then $\left(h_{\infty}^{-1} \circ f_{\infty} \circ h_{\infty}\right)(P)=P$; hence f_{∞} fixes the three distinct points A, P and $h(P)$, so it is the identity. Therefore $f \in \operatorname{Ker} \Psi$; so f is the identity. It follows that, for every non-identity element f of G_{A}, the map f_{∞} has A as unique fixed point.

Proposition 3.2. The group G_{A} has a sharply transitive action on the points of ℓ_{∞} different from A.
Proof. If P is a point of ℓ_{∞} different from A, then

$$
\left|G_{A}\right|=\left|\operatorname{Orb}_{G_{A}}(P)\right|\left|\operatorname{Stab}_{G_{A}}(P)\right| .
$$

From the previous proposition $\operatorname{Stab}_{G_{A}}(P)$ is trivial; thus $\operatorname{Orb}_{G_{A}}(P)$ has size q^{2}. The assertion follows.
By dualizing the previous arguments it can be shown that G_{A} has a sharply transitive action on the lines through A different from ℓ_{∞}. It follows that every non-identity element f of G_{A} has A as unique fixed point and ℓ_{∞} as unique fixed line.

Proposition 3.3. The group G_{A} stabilizes every conic of a hyperosculating pencil with base A containing the line ℓ_{∞} counted twice.

Proof. We may assume, without loss of generality, that $A=(1,0,0)$ and that ℓ_{∞} has equation $x_{3}=0$. A non-identity element $f \in G_{A}$ has A as unique fixed point and ℓ_{∞} as unique fixed line; so it is given by

$$
\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

for some $a, b, c \in \operatorname{GF}\left(q^{2}\right)$.
Every elementary Abelian p-group of order q^{2} is isomorphic to the additive group of $\operatorname{GF}\left(q^{2}\right)$. So there exists an isomorphism

$$
\Phi: x \in \operatorname{GF}\left(q^{2}\right) \longrightarrow\left(\begin{array}{ccc}
1 & \alpha(x) & \gamma(x) \\
0 & 1 & \beta(x) \\
0 & 0 & 1
\end{array}\right) \in G_{A}
$$

where α, β and γ are mappings of $\operatorname{GF}\left(q^{2}\right)$ into itself such that $\alpha(0)=\beta(0)=\gamma(0)=0$. From the condition $\Phi(x+y)=$ $\Phi(x) \Phi(y)$, it follows that

$$
\begin{align*}
& \alpha(x+y)=\alpha(x)+\alpha(y) \\
& \beta(x+y)=\beta(x)+\beta(y) \\
& \gamma(x+y)=\gamma(x)+\gamma(y)+\alpha(x) \beta(y) \tag{1}
\end{align*}
$$

for any x, y in $\operatorname{GF}\left(q^{2}\right)$.
The functions α, β and γ, as any map of $\mathrm{GF}\left(q^{2}\right)$ into itself, are polynomial functions. Also, α and γ are additive maps; hence

$$
\alpha(x)=\sum_{i=1}^{u} a_{i} x^{p^{i}}, \quad \beta(x)=\sum_{j=1}^{v} b_{j} x^{p^{j}}
$$

for some integers u and v and some elements a_{i} and $b_{j} \operatorname{in} \operatorname{GF}\left(q^{2}\right)$.
Let

$$
\gamma(x)=\sum_{k=1}^{t} c_{k} x^{k}
$$

it follows from (1) that

$$
\sum_{k=1}^{t} c_{k}(x+y)^{k}=\sum_{k=1}^{t} c_{k} x^{k}+\sum_{k=1}^{t} c_{k} y^{k}+\sum_{i, j} a_{i} b_{j} x^{p^{i}} y^{p^{j}}
$$

Therefore

$$
\alpha(x)=a x^{p^{n}}, \quad \beta(x)=b x^{p^{n}}, \quad \gamma(x)=\frac{a b}{2} x^{2 p^{n}},
$$

for a suitable integer n and for some elements $a, b \in \operatorname{GF}\left(q^{2}\right)$. We may assume that the point $P=(0,0,1)$ belongs to U and if f is the previously defined non-identity element of G_{A}, then $f(P)=(\gamma(s), \beta(s), 1) \in \mathcal{U}$ for some $s \in \operatorname{GF}\left(q^{2}\right)$. The points A, P and $f(P)$ are non-collinear points, since G_{A} has a sharply transitive action on the lines through A different from ℓ_{∞}. So $f(P)$ is on a line through A, different from ℓ_{∞} and from $A P$. If $f(P)$ is on the line $x_{1}=0$, then $\gamma(s)=0$ and since $\beta(s) \neq 0$, then $a=0$ and hence $\alpha(s)=0$. It follows that f has $B(0,1,0)$ as a fixed point, a contradiction. Therefore, by appropriately choosing s, we may assume that $f(P)=(1,1,1)$ and hence

$$
f=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Thus $a=\frac{2}{s p^{n}}, b=\frac{1}{s p^{n}}$, and so

$$
G_{A}=\left\{\left(\begin{array}{ccc}
1 & \frac{2}{s^{p^{n}}} x^{p^{n}} & \frac{1}{s^{2 p^{n}}} x^{2 p^{n}} \\
0 & 1 & \frac{1}{s^{p^{n}}} x^{p^{n}} \\
0 & 0 & 1
\end{array}\right): x \in \operatorname{GF}\left(q^{2}\right)\right\}
$$

Since the map $x \mapsto x^{p^{n}}$ of $\operatorname{GF}\left(q^{2}\right)$ is an automorphism, it follows that

$$
G_{A}=\left\{\left(\begin{array}{ccc}
1 & 2 d & d^{2} \\
0 & 1 & d \\
0 & 0 & 1
\end{array}\right): d \in \operatorname{GF}\left(q^{2}\right)\right\} .
$$

Finally, observe that G_{A} stabilizes every conic of the hyperosculating pencil \mathcal{P} with equation $x_{1} x_{3}-x_{2}^{2}+w x_{3}^{2}=0$, with $w \in \operatorname{GF}\left(q^{2}\right) \cup\{\infty\}$. Since \mathcal{P} contains the line ℓ_{∞} counted twice and has the point A as base, the assertion follows.
Proof of Theorem 1.1. From the previous result, the unital U is the union of q conics $\Gamma_{1}, \ldots, \Gamma_{q}$ of \mathscr{P} with equations $x_{1} x_{3}-x_{2}^{2}+w_{i} x_{3}^{2}=0, i=1, \ldots, q$. For q even, the tangents to Γ_{1} all contain a common point N, the nucleus of Γ_{1}. Thus there would be $q^{2}+1$ tangents to U on N, a contradiction. Hence q must be odd (see also [3, Chapter 4]). Let P be a point of Γ_{i}. Since the secant lines through P to Γ_{i} are also secant to U, it follows that the tangent line to Γ_{i} at P coincides with the tangent line to U at P. Hence the points of Γ_{j}, for any $j \neq i$, are all internal points with respect to Γ_{i}. From the equations of Γ_{i} and Γ_{j}, it follows that $w_{i}-w_{j}$ is a non-square in $\operatorname{GF}\left(q^{2}\right)$. Without loss of generality we may assume that the point $(1,1,1)$ belongs to U; so the conic with equation $x_{1} x_{3}-x_{2}^{2}=0$ is contained in U and then the set $W=\left\{w_{1}, \ldots, w_{q}\right\}$ is a q-set containing 0 with the property that the difference of any two distinct elements is always a non-square. From [4] it follows that, considering $\operatorname{GF}\left(q^{2}\right)$ in the usual way as the affine plane $\operatorname{AG}(2, q)$, the set W is a line through the origin. Thus W is a set of the form $\operatorname{tGF}(q)$, with t a non-square in $\operatorname{GF}\left(q^{2}\right)$. Then u is a Buekenhout-Metz unital of BEHS-type.

References

[1] V. Abatangelo, B. Larato, A group-theoretical characterization of parabolic Buekenhout-Metz unitals, Boll. Unione Mat. Ital. (9) 5A (1991) 195-206.
[2] R.D. Baker, G.L. Ebert, Intersections of unitals in the Desarguesian plane, Congr. Numer. 70 (1990) 87-94.
[3] S.G. Barwick, G.L. Ebert, Unitals in Projective Planes, in: Springer Monographs in Mathematics, Springer, New York, 2008.
[4] A. Blokhuis, On subsets of GF $\left(q^{2}\right)$ with square differences, Indag. Math. 46 (1984) 369-372.
[5] G.L. Ebert, K. Wantz, A group theoretic characterization of Buekenhout-Metz unitals, J. Combin. Des. 4 (1996) 143-152.
[6] J.W.P. Hirschfeld, T. Szőnyi, Sets in a finite plane with few intersection numbers and a distinguished point, Discrete Math. 97 (1991) $229-242$.

[^0]: * Corresponding author.

 E-mail addresses: giorgio.donati@unina.it (G. Donati), ndurante@unina.it (N. Durante).
 0012-365X/\$ - see front matter © 2012 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2012.04.007

