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Introduction

In his paper The Analysis of Multivariate Binary Data (1972) Cox foresaw the relevance of binary data analysis.
Dealing with binary attributes, Cox pointed out, the aim of the analysis had to be the study of multiple associ-
ation structures of the attributes rather than the one-to-one or one-to-many dependences. Cox’s intuition turns
out to be strictly relevant still nowadays: that is, the increasing attention towards binary data coding character-
ized the last decade. Such tendency depends on several reasons, some of them overcome what previewed by Sir
Cox. Binary data are the most basic digital data coding and storing, and they represent the most straightforward
coding to automatically collect and store information about studied phenomena. In terms of computational
costs, binary coding of data ensures fast, flexible and low memory storage requirements. A binary data set
consists of a collection of binary sequences, each one arranged in a p-dimensional binary row-vector, being p
the number of considered attributes. Applications involving binary data structures represent a very large set:
Market Basket Analysis (MBA), Web Mining, Microarray Data Analysis are some classical domains. Text
Mining and Image Analysis are further frameworks of application dealing with binary data structures. In all of
these contexts, the number of binary sequences tends usually to be very large.

More recent continuos monitoring systems permit to collect data without interruption over the time, so
that in modern applications it is fair to consider binary data as split in several batches. However, the stratification
in batches of a binary data mart can be also due to other different reasons: the amount of data in question
is too large to be analyzed as a whole; the data batches refer to different occasions in time and/or space.
In this framework the analysis aims to monitor and visualize possible changes in the association structure
characterizing the considered data batches.

The present proposal deals with high-dimensional binary data collected in different occasions in time or
space. Studying the associations of data collected at different occasions, a primary aim is to detect changes
in the association structure from one occasion to another. A suitable exploratory technique for the analysis
of multiple associations in high-dimensional data is the multiple correspondence analysis (MCA; Greenacre,
2007). However, the comparison of MCA factorial displays referring to different occasions is meaningless. A
possible solution to link the association structures of different data batches is to start from an MCA display of
a reference and incrementally update the solution with further batches (Iodice D’Enza and Greenacre, 2010).
In case of sparse data, the co-occurrence of groups of binary attributes suggests a latent statistical unit-wise
cluster structure.
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Then the present proposal takes into account the cluster-structure of the units in order to monitor, describe
and visualize the evolving association among the p attributes. The strategy consists in determining a latent
categorical variable that assigns each statistical unit to a cluster. Such latent variable describes the cluster
structure underlying the statistical units and it is updated at each subsequent data batch: in other words this
variable is determined according to the association structure and represents the ’link’ over the analyzed data
batches.

The strategy is implemented through the combination of clustering and factorial techniques: the clus-
tering phase leads to define the latent variable; the factorial technique leads to synthesize and visualize the
multiple association structure of the attributes, given the latent variable. The analysis consistency of the facts
that both the implemented steps satisfy the same statistical criterion. The combination of clustering and fac-
torial techniques has been already proposed in the literature, yet with different specific aims. Vichi and Kiers
(2001) propose a combination of principal component analysis (PCA) with k-means clustering method. In the
framework of categorical data, another interesting approach combining clustering and multiple correspondence
analysis (MCA) is proposed by Hwang et al. (2006). Similarly, yet dealing with binary data, Palumbo and
Iodice D’Enza (2010) propose a suitable dimension reduction and clustering. However all the above proposals
suitably apply to static data sets: they are based on iterative procedures and hence all the data being analyzed
has to be processed at once. The proposal in question aims to a non-iterative comparative association analysis
of subsequent binary data batches.
The paper is structured as follows: in section 2 the problem is described and formalized;

2 Problem statement

In this section we provide a description of the proposed approach to study the structure of associations in binary
high-dimensional data.
Let n and p be respectively the number of statistical units and the number of binary attributes Z j ( j = 1, . . . , p);
let K be the number of latent groups of statistical units. Assigning a single statistical unit to one of K groups
is a single occurrence of a multinomial experiment with K possible outcomes. The group k, k = 1, . . . ,K, is
coded via the indicator variable Ik, where Ik = 1 if the statistical unit is assigned to the kth group, Ik = 0 oth-
erwise. Considering n trials, the random vector X = (X1,X2, . . . ,XK) follows a multinomial distribution with
parameters (n;π1,π2, . . . ,πK), with πk = Pr(Ik = 1): n is the only known parameter. Assuming the parameters
(π1,π2, . . . ,πK) to be given, the optimal criterion for the allocation of the n statistical units into the K groups is
to randomly assign units to groups proportionally to the corresponding πk parameters.
In this contribution the aim is to estimate πk (that is to optimally assign units to groups) in order to maxi-
mize the heterogeneity among groups with respect to the Z j attributes. Each of the attributes Z j is Bernoulli
distributed (with z indicating success and z̄ failure) distributed with parameter πZ . According to the same crite-
rion, new statistical units are processed in order to update both the clustering solution and the binary attribute
quantifications.

The groups heterogeneity corresponds to the qualitative variance between the K levels of the X variable,
then with n statistical units described by p binary attributes Z1,Z2, . . . ,Z j, . . . ,Zp, the quantity to maximize is

p

∑
j=1

(G(X)−G(X | Z j)).(1)

This expression represents the sum of variances explained by each of the attributes Z j. Consider X as a quali-



tative variable with k = 1, . . . ,K categories and Z a binary variable with attributes {z, z̄}.
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Let F be the cross-classification table (represented above) with general element fkh being the co-occurence
number of the categories k and h, with h = 1,2; the row margin fk+ is the number of occurrences of the
category k and the column margin f+h is the number of occurrences of the category h, with f++ = n being the
grand total of the table.
The variation of X explained by the categories of Z is
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It is worth noting that the quantity in equation 2 can also be expressed in terms of proportional prediction that
refers to the situation when statistical units are randomly assigned to the group k with probability fk+

n . When
additional information is provided by a variabie Z, the proportional prediction becomes fkh

f+h
, h = 1,2. The

average proportion of correct prediction with and without additional information is ∑
K
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K
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respectively (Mirkin, 2001). The generalization of expression 2 to the p−attributes case gives the expression 1.

3 The procedure

This section illustrates the procedure to alternatively determine the factorial structure that better synthesizes
the multiple associations among attributes and the latent variable that links the solutions of each data batch. It
keeps the between groups heterogeneity maximized as new data batches are analysed; the procedure runs over
the following steps:

1. determination of the latent variable X observed on the starting data batch: it is obtained by performing a
K-means clustering of the starting data;

2. determination of the factorial synthesis of the association structure given the X variable;

3. update of X according to new data.

The latter two phases are repeated for each new data batch to analyse. The following algebraic notation is
adopted:

- Z (n×2p) disjunctive coded binary data matrix, with two columns per attribute (presence-absence);

- z j ( j = 1, . . . ,2p) the general column vector of Z.



- X (n×K) matrix that assigns each statistical unit to one of the K modalities of X .

- F= XTZ = [F1,F2, . . . ,F j, . . . ,Fp] is a block matrix, the jth block corresponds to the cross-tabulation of
the categorical variable X with the attribute Z j, it is the same as table previously described.

The X matrix is defined by performing a K-means on Z. The otho-normal basis U of the factorial sub-space
of the multiple association structure is determined by maximizing the criterion in expression 1, which is in
algebraic form is

tr
[
F(∆)−1FT− p

n2

(
XT11TX

)]
≡(3)

≡ tr
[
XTZ(∆)−1ZTX− p

n2

(
XT11TX

)]
where ∆ = diag(ZTZ) and 1 is a n-dimensional vector of ones.
The solution to the problem lies in maximizing the trace of the above matrix, and the least square solution
consists in the eigen-analysis of

1
n

[
XTZ(∆)−1ZTX− p

n

(
XT11TX

)]
U = ΛU.(4)

The statistical unit coordinates on the factorial space are in the matrix Ψ, such that

Ψ =
(

Z(∆)−1ZT− p
n

11T
)

XUΛ
1
2 ;(5)

The centroid matrix G is such that the kth row-vector contains the average coordinates of the statistical units
belonging to the kth group; in particular,

G = XT
ΨC(6)

where C = cTI: c is a K-dimensional vector with elements representing the reciprocal of the size of each group;
I is a K-dimensional identity matrix.
Let Z+ be a (n+×2p) matrix of a new data batch consisting of n+ statistical units. The new data are projected
on the factorial plan defined by the orthonormal basis U according to the following formula

Ψ
+ =

(
Z+(∆)−1ZT− p

n
1+1T

)
XUΛ

1
2 .(7)

The data points in Ψ+ are then assigned to the closest of the centroids in G: then a (n+×K) allocation matrix
X+ for the new data is obtained. The update process requires the orthonormal basis U to be updated, too. Thus,
all the following quantities are updated according to the new available information:

- n∗ = n+n+ is the total number of statistical units;

- F∗ = F+F+, with F+ = Z+TXT;

- ∆∗ = ∆++∆, where ∆+ = diag(ZTZ) is the diagonal matrix of the attributes occurrences.



Figure 1: Statistical units and batch-wise centroid path

The updated orthonormal basis U∗ is obtained via the eigen-analysis of the following quantity

1
n∗

[
F∗(∆∗)−1F∗T− p

n∗

(
f∗f∗T

)]
U∗ = Λ

∗U∗(8)

where f∗ is the row-margin vector of the F∗ matrix.

4 Example on real data

In this section the proposed procedure is applied to the ‘retail’ data set (Brijs et al., 1999). The retail market
basket data set is supplied by an anonymous Belgian retail supermarket store. The data are collected over three
non-consecutive periods, for a time range of approximately 5 months of data. The total amount of receipts
(statistical units) being collected equals n = 88163, whereas the number of products (binary attributes) p =

28549. The data set is very sparse, and the analysis aim is to study the association structures: in a pre-processing
phase the attributes occurring in less than 1% of statistical units are discarded, as well as the receipts with less
than three products. In summary, the analysis considers 60 attributes observed on 20000 statistical units. The
first 4000 statistical units are the starting batch, then the solution is updated according to the further process.
The remaining flow of 16000 units is progressively processed such that each upcoming batch is the 20% of the
whole amount of analyzed data. Then the number of analyzed batches is eight. The proposed strategy leads
to display the multiple association structure of attributes. Results are adaptively updated as new data batches
are processed. For sake of space the choice of the number of groups underlying the statistical units K is not
discussed and it is set K = 5 on the basis of previous studies. Figure 1 shows the final factorial display of
statistical units. The five points represent the final position of the centroids; the path of each centroid along the
batches is also represented.

To appreciate the changes in the attribute associations, refer to figure 2. The factorial representation
in figure 2 represents a common visualization support of the attribute associations for each of the subsequent
batch. In particular, such common support is obtained by performing a multi-way multidimensional scaling
(Borg and Groenen, 2005) on the chi-square distances characterizing the attributes. Figure 2 displays the paths
of the attribute points batch after batch. The longer the path, the larger the change in the association structure
of the corresponding attribute. In order to increase the readability of the display we plotted only the 20% of the
longest trajectories, so that the most changing attributes are highlighted.



Figure 2: Attributes common sub-space batch-wise path

The results confirm that, in general, the buying behavior of customers does not radically change from a month
to another. However, some przales do change over time and a common graphical display of the attributes (figure
2) turns out to be helpful in quickly identifying which attributes changed more. The proposed strategy leads to
display the multiple association structure of attributes. Results are updated adaptively as new data batches are
processed. Furthermore, the procedure does not require all the data batches are permanently stored in memory,
but the last one.
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