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SUMMARY

Systems biology approaches are extensively used to
model and reverse engineer gene regulatory
networks from experimental data. Conversely,
synthetic biology allows ‘‘de novo’’ construction of
a regulatory network to seed new functions in the
cell. At present, the usefulness and predictive ability
of modeling and reverse engineering cannot be
assessed and compared rigorously. We built in
the yeast Saccharomyces cerevisiae a synthetic
network, IRMA, for in vivo ‘‘benchmarking’’ of
reverse-engineering and modeling approaches. The
network is composed of five genes regulating each
other through a variety of regulatory interactions; it
is negligibly affected by endogenous genes, and it
is responsive to small molecules. We measured
time series and steady-state expression data after
multiple perturbations. These data were used to
assess state-of-the-art modeling and reverse-engi-
neering techniques. A semiquantitative model was
able to capture and predict the behavior of the
network. Reverse engineering based on differential
equations and Bayesian networks correctly inferred
regulatory interactions from the experimental data.

INTRODUCTION

Cellular complexity stems from the interactions among
thousands of different molecular species. Thanks to the
emerging fields of systems and synthetic biology (Hasty et al.,
2002; Hayete et al., 2007; Kaern et al., 2003; Sprinzak and
Elowitz, 2005), scientists are beginning to unravel these regula-
tory, signaling, and metabolic interactions and to understand
their coordinated action.

Systems biology aims to develop a formal understanding of
biological processes via the development of quantitative mathe-
matical models. A model is a mathematical formalism to

describe changes in concentration of each gene transcript and
protein in a network, as a function of their regulatory interactions
(gene regulatory network).
The usefulness of a model lies in its ability to formalize the

knowledge about the biological process at hand, to identify
inconsistencies between hypotheses and observations, and to
predict the behavior of the biological process in yet untested
conditions. There are a variety of mathematical formalisms
proposed in literature (Di Ventura et al., 2006; Szallasi et al.,
2006) to model biological circuits, with ordinary differential
equations being the most common.
Synthetic biology aims to use such models to design unique

biological ‘‘circuits’’ (synthetic networks) in the cell able to
perform specific tasks (e.g., periodic expression of a gene of
interest) or to change a biological process in a desired way
(e.g., modify metabolism to produce a specific compound of
interest) (Gardner et al., 2000; Khosla and Keasling, 2003; Ro
et al., 2006).
Interactions among genes, when unknown, can be identified

from gene expression data using reverse-engineering methods.
Typically, the data consist of measurements at steady state after
multiple perturbations (i.e., gene overexpression, knockdown, or
drug treatment) or at multiple time points after one perturbation
(i.e., time series data). Successful applications of these
approaches have been demonstrated in bacteria, yeast, and,
recently, in mammalian systems (Basso et al., 2005; Della Gatta
et al., 2008; di Bernardo et al., 2005; Faith et al., 2007; Gardner
et al., 2003). A plethora of reverse-engineering approaches
is being proposed, and their assessment and evaluation is of
critical importance (Stolovitzky et al., 2007). There are three
well-established reverse-engineering approaches: ordinary
differential equations (ODEs), Bayesian networks, and informa-
tion theory.
ODEs relate changes in gene transcripts concentration to

each other and to an external perturbation. The model consists
of a differential equation for each of the genes in the network,
describing the transcription rate of the gene as a function of
the other genes and of the perturbation. The parameters of the
equations have to be inferred from the expression data.
A Bayesian network is a graphical model of probabilistic

relationships among a set of random variables, with each
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variable representing one of the genes in the network. These
relationships (i.e., the gene-gene interactions) are encoded in
a directed graph without cycles (i.e., a gene cannot directly, or
indirectly, regulate itself). In order to reverse engineer gene
networks using a Bayesian approach, we must find the directed
acyclic graph that best describes the gene expression data (in
the case of time series data, the directed graph can also contain
cycles).
In information-theoretic approaches, the network among n

genes is reconstructed by considering one pair of genes at the
time and checking whether the two genes are coexpressed
across the experimental data set. Coexpression can be
measured either by correlation or by a more robust measure
called mutual information (Bansal et al., 2007).
Here, we constructed, in the yeast Saccharomyces cerevisiae,

a synthetic network of five genes regulating each other for in vivo
reverse-engineering and modeling assessment (IRMA). We
chose the simplest eukaryotic organism, Saccharomyces cerevi-
siae, because it can easily be grown and manipulated. The
synthetic network includes a variety of regulatory interactions,
thus capturing the behavior of larger eukaryotic gene networks
on a smaller scale. The network was designed to be negligibly
affected by endogenous genes, and to respond to galactose,

which triggers transcription of its genes. Our network, apparently
simple, is in fact very articulated in its interconnections, which
include regulator chains, single-input motifs, and multiple
feedback loops, generated by the combination of transcriptional
activators and repressors.
We analyzed the transcriptional response of network genes

after two different perturbation strategies: performing a single
perturbation and measuring mRNA changes at different time
points, or performing multiple perturbations and collecting
mRNA measurements at steady state.
We tested the usefulness of IRMA as a simplified biological

model to benchmark both modeling and reverse-engineering
approaches.

RESULTS

Construction of a Gene Synthetic Network in Yeast
The network, shown in Figure 1A, is organized in such a way that
each gene controls transcription of at least another gene in the
network. In addition, it can be ‘‘switched’’ on or off by culturing
cells in galactose or in glucose, respectively.
We chose promoters for which a single transcription factor (TF)

is sufficient and essential to activate transcription (Figure S1
available online). Thus, by removing the endogenous TF, we
maximally reduced influences from the cellular environment
on each promoter. We selected well-characterized promoter/
TF-encoding gene pairs, belonging to distinct and nonredundant
pathways, to further minimize external feedbacks on the network
due to pathway crosstalk. We chose nonessential and nonre-
dundant TF genes, which can be knocked out without affecting
yeast viability—specifically, as activators and repressors encod-
ing genes SWI5, ASH1, CBF1, GAL4, and GAL80, and as
promoter genes HO, ASH1, MET16, and GAL10 (Figure 1A).
The first selected promoter/TF gene pair in the network is the

HO promoter controlled by two TFs: a cell cycle-independent
Swi5 mutant (swi5AAA) and Ash1 (Moll et al., 1991; Nasmyth
et al., 1987). Since ASH1 transcription is also controlled by
Swi5, we chose as the second promoter/TF gene pair the
ASH1 promoter controlled by swi5AAA.
Swi5 mediates specific HO expression in the late G1 phase

(Nasmyth et al., 1990). It is retained in the cytoplasm by Cdk8
phosphorylation and enters the nucleus to regulate transcription
only in late anaphase, when Cdc14 dephosphorylates it (Visintin
et al., 1998).
In order to overcome Swi5-mediated cell cycle control of

the HO promoter in the network, we used the swi5AAA mutant
in which the three phosphorylated serine residues (Ser-522,
Ser-646, and Ser-664) are substituted by alanines. These muta-
tions lead to constant Swi5 accumulation into the nucleus
throughout the cell cycle (Moll et al., 1991).
Specific expression ofHO inmother cells is achieved via Ash1-

mediated repression of HO in daughter cells only (Bobola et al.,
1996; Cosma, 2004; Jansen et al., 1996). In order to obtain
a symmetrical Ash1 distribution in both mother and daughter
cells, we deleted the SHE2 gene whose mRNA localizes Ash1
in daughters (Gonsalvez et al., 2003; Long et al., 1997). We
thus obtained a homogeneous population of cells, where HO
transcription is not developmentally regulated. In addition, we

Figure 1. Construction of IRMA, a Synthetic Network in Yeast
(A) Schematic diagram of the synthetic gene network is represented. New

transcriptional units (rectangles) were built by assembling promoters (red)

with nonself coding sequences (blue). Genes were tagged at the 30 end with

the specified sequences (green). Each cassette encodes for a protein

(represented as a circle) regulating the transcription of another gene in the

network (solid green lines). The resulting network, IRMA, is fully active when

cells are grown in presence of galactose, while it is inhibited by the Gal80-

Gal4 interaction in presence of glucose.

(B) Schematic diagram of genomic integrations of IRMA genes. Each cloned

cassette was integrated by homologous recombination in a specified genomic

locus of a Dgal4 Dgal80 Saccharomyces cerevisiae strain to contemporarily

delete (CBF1, SWI5, SHE2) or to modify (ASH1 tagging, CBF1 integration

under HO promoter) endogenous genes. ACE2 gene deletion was achieved

by integration of a drug resistance cassette, natMX4 (not shown).
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deleted Ace2 that cooperates with Swi5 in regulating the ASH1
promoter (Voth et al., 2007).

The third selected promoter/TF gene pair was the MET16
promoter/CBF1. Cbf1 is a DNA binding protein that controls
chromosome segregation and sulfur amino acids metabolism
(Mellor et al., 1990). We chose MET16 since it is the only MET
gene that strictly depends on the binding of Cbf1 (Ferreiro
et al., 2004; O’Connell et al., 1995), while the others can still be
expressed at a lower level in its absence (Kuras and Thomas,
1995).

In order to add a signaling molecule able to activate expres-
sion of network genes, we chose as the fourth and last
promoter/TF gene pair the GAL1-10 promoter, which is tightly
regulated by the carbon source via the Gal4 transcription factor.
In the presence of galactose, Gal4 activator binds to the multiple
UASGAL elements in the promoter and leads to activation of
transcription. In absence of galactose, Gal4 is inactive because
of the binding of Gal80 repressor to its activation domain,
preventing interaction of the transcription machinery (Traven
et al., 2006).

We assembled the chosen promoters upstream of nonself
gene coding sequences to obtain the IRMA network. The
network (Figure 1A) includes positive and negative feedback
loops and one protein-protein interaction. These interactions
coexist normally in many transcriptional pathways in higher
eukaryotes (Lee et al., 2002).

Figure 2. Galactose Triggers Activation of
IRMA Synthetic Network
(A and B) Network genes, and cell genes that are

network targets, are expressed only in presence

of galactose. Semiquantitative PCR to amplify

IRMA and IRMA-dependent genes was carried

out with total RNA extracted from cells grown

in glucose (Glc)- or galactose-raffinose (Gal)-

containing medium.

(C) Live imaging of IRMA cells grown in glucose-

and galactose-containing medium. Scale bars

represent 10 mm; 633 magnification.

We combined minimal regions of the
chosen promoters upstream of the
chosen TF-encoding genes, in vectors
containing different yeast selectable
markers. Thus, we built the following
new transcriptional units: HO promoter/
CBF1-GFP, MET16 promoter/GAL4,
GAL1-10 promoter/SWI5-MYC9, ASH1
promoter/GAL80-3XFLAG, and ASH1
promoter/ASH1-2XHA (Figure 1A). A
fluorescence tag was cloned at the 30

end of the CBF1 open reading frame
(ORF) to easilymonitor its proteinproduct.
We integrated these cassettes in the

genome of gal4D542 gal80D538 yeast
strain YM4271, whose GAL4 and GAL80
loci were deleted (Liu et al., 1993). We
targeted the cassettes in specific

genomic loci to simultaneously integrate the newly built tran-
scriptional units, and delete all the endogenous counterparts of
our network genes, thus minimizing influences from endogenous
genes (Figure 1B).

Network Genes, and Their Endogenous Targets,
Are Transcriptionally Activated by Galactose
We tested transcription of network genes upon culturing cells in
presence of galactose or glucose. Galactose activates the
GAL1-10 promoter, cloned upstream of swi5AAA in the network,
and it is able to activate transcription of all the five network genes
(Figure 2A).
We also checked for protein expression of Cbf1-GFP. Living

yeast cells grown with different carbon sources (galactose or
glucose) were analyzed by fluorescent microscopy. As shown
in Figure 2C, positive green cells were visualized only when
IRMA was cultured in galactose-containing medium.
Endogenous yeast genes, not included in the synthetic

network, but under transcriptional control of IRMA genes, such
as PCL9, RME1, CDC6, SIC1, and PCL2, targets of Swi5, and
MET16, target of Cbf1, which are not controlled by galactose
in wild-type yeast, became galactose dependent; furthermore,
GAL10, which is not expressed in the YM4271 background,
became network and galactose dependent (Figure 2B). These
genes should not influence the network behavior by means of
direct or indirect feedback loops, since their functions are
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unrelated to any known regulation of the chosen promoters. In
conclusion, the synthetic network can regulate external genes
but is very robust against regulatory inputs from the rest of the
genome.

Gene Expression Profiling of IRMA to Study Its Static
and Dynamic Behavior
In order to analyze the dynamic behavior of the network, we
performed perturbation experiments by shifting cells from
glucose to galactose (‘‘switch-on’’ experiments) and from galac-
tose to glucose (‘‘switch-off’’ experiments). We collected
samples every 20 min up to 5 hr in five independent experiments
for the switch-on data set, and every 10 min up to 3 hr in four
independent experiments for the switch-off data set. We
analyzed expression profiles of network genes by quantitative
real-time RT-PCR (q-PCR). In the switch-on experiment in
Figure 3, the activation ofGAL4 by galactose led to transcription
of all the other network genes. Their dynamic behavior is evident;
a seemingly oscillatory behavior is present in SWI5 with two
peaks at 40 min and 180 min. The Swi5 targets, CBF1, GAL80,
and ASH1, are activated with different types of kinetics: CBF1

Figure 3. In Vivo and In Silico Gene Expres-
sion Profiles Show the Dynamic Behavior
of the Network in Response toMedium Shift
Perturbations
Expression profiles of network genes after

a shift from glucose- to galactose-raffinose-con-

taining medium—switch on—(left) and after a shift

from galactose-raffinose- to glucose-containing

medium—switch off—(right) are shown. Circles

represent average expression data for each of

the IRMA genes at different time points. Dashed

lines represent standard errors. Continuous

colored lines represent in silico data obtained

from the ODE-based model and show how the

model fits the experimental data. Gray bars indi-

cate the 10 min interval during which the washing

steps and subsequent medium shift are performed

(seemain text). The first point in the switch-on time

series (left) is measured in glucose right before

shifting of the cells to galactose; the second point

at 10 min is the first one in galactose just after the

shift has occurred. Similarly (right), the first point in

the switch-off time series is measured in galactose

before shifting of the cells to glucose. In the

switch-off experimental data, the first point of

SWI5 at time 0 is off scale, with a value of 0.18.

This was done to better show its behavior in the

figure. Represented data are the 2-DCt (mean ±

SEM; n = 5 for switch on, and n = 4 for switch

off), which were processed as explained in

Supplemental Data.

is delayed with respect to the other two
genes. This delay is due to the sequential
recruitment of chromatin-modifying
complexes to the HO promoter, which
follow binding of Swi5 and other tran-
scription factors. These events occur
with a precise timing beforeHO transcrip-

tion is finally triggered (Bhoite et al., 2001; Cosma et al., 1999). Of
note, dynamics ofGAL80 and ASH1mRNAs are different. This is
due both to differences in their degradation rates and to the
effect of cell manipulation on GAL80 and GAL4. Specifically,
the first point of the switch-on time series, in Figure 3, was
measured in glucose, right before shifting of cells from glucose
to galactose. During the standard washing steps, when the
glucose medium is removed and the fresh new galactose-
containingmedium is added to the cells, we observed a transient
increase in mRNA levels ofGAL4 andGAL80 (Figure 3, gray bar).
In order to check whether this effect was independent from
galactose administration, we performed an ad hoc glucose-to-
glucose shift experiment (Figure S2). GAL4 and GAL80 showed
the same increase, once the cells were transferred back in the
glucose medium, after the washing steps. We believe that this
increase is due to the transient deprivation of carbon source
during thewashing steps,whichattenuates thedegradation levels
ofGAL4 andGAL80mRNAs (Jona et al., 2000). This effect is unre-
lated to their transcriptional regulation because these two genes
are controlled by different promoters. Moreover, the expression
levels of the MET16 endogenous gene, whose promoter, in our
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network, is the samepromoter asGAL4, donot showany increase
in the glucose-to-glucose shift experiment, further excluding
dependence on transcriptional regulation (Figure S2).

In the switch-off experiment (Figure 3), as expected, the
transcription of the whole network is rapidly turned off with
a delay in the silencing of CBF1 expression.

In addition, we analyzed the response of the network to
genetic perturbations by overexpressing each of the five network
genes under the control of the strong constitutiveGPD promoter,
in cells that were grown either in glucose or galactose. We then
measured steady-state expression levels of IRMA genes by
q-PCR. We thus obtained two data sets, one in glucose and
one in galactose, consisting of the response of the five network
genes to each of the five perturbations. We will refer to these two

experimental data sets as the ‘‘glucose steady state’’ and
‘‘galactose steady state’’ (Figures 4A–4C and S3A–S3C).
In vivo, upon overexpression of each of the five network genes,

the other genes were either upregulated or downregulated with
respect to their basal level (transformation with an empty vector)
both in galactose and in glucose (Figures 4A–4C and S3A–S3C).
After overexpression of the three activators (CBF1, GAL4, and
SWI5), network genes’ transcription increased in both growing
conditions, reaching higher levels in galactose, when Gal80
repressor was inactive. In the CBF1 overexpression experiment,
SWI5 responded with a significant increase, whereas GAL4,
a direct target of Cbf1, and the regulator of SWI5 in the network,
responded weakly. Gal4 protein is stable (Muratani et al., 2005;
Nalley et al., 2006), and therefore even a small, or transient,

Figure 4. Experimental and Simulated Gene Expression Profiles Show the Static Behavior of IRMA in Response to Overexpression Pertur-
bation Experiments
(A andC) In vivo expression levels of IRMA genes after overexpression of each gene (perturbed gene, indicated by the black dots on the bars) from the constitutive

GPD promoter (gray bars) and after transformation of the empty vector (white bars). IRMA cells were transformedwith each of the constructs containing one of the

five genes or with the empty vector. At least three different colonies were grown in glucose (C) and in galactose-raffinose (A) up to the steady-state levels of gene

expression. Quantitative PCR data are represented as 2-DCt (mean ± SEM; n R 3).

(B and D) In silico expression levels of IRMA genes obtained by simulating the overexpression of each gene with the ODE-based model.
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increase in its mRNA level in galactose is able to induce the
GAL10 promoter regulating SWI5 in our network.
Overexpression of ASH1 induced smaller transcriptional vari-

ations, although a slight downregulation of the network genes is
evident in galactose-containing medium, when the network is
on. Remarkably, in the inducing medium, overexpression of
GAL80 resulted in a downregulation of the other genes, implying
that the excess of Gal80 binds and represses the Gal4 protein,
even in the presence of galactose.

Mathematical Model of the Network
The most common strategy for modeling gene networks is the
one based on nonlinear differential equations (DEs) obtained
from standard mass-balance kinetic laws (Alon, 2006; Szallasi
et al., 2006). We derived a DE model of the network (Supple-
mental Results). For the sake of simplicity, we ignored protein
levels (assuming proportionality between proteins and their
corresponding mRNAs) and considered transcription and trans-
lation processes as a single synthesis step. The DE model
consists of five equations describing the transcription of the
five mRNAs—CBF1, GAL4, SWI5, GAL80, ASH1—with 33
unknown parameters.We usedHill kinetics functions to describe
transcription and considered first-order degradation terms.
In deriving the model, we took particular care in modeling the

galactose pathway (Gal4 and Gal80 proteins in the network), in
order to capture its main features, but without increasing model
complexity. We used a phenomenological rate law to describe
the activation of the GAL10 promoter driving the transcription
of SWI5. This promoter is activated by the amount of Gal4 that
is not involved in the formation of a protein-protein complex
with Gal80. In the inducing medium, the inhibition of Gal80 is
relieved by the activated form of the Gal3 protein. Thus, we
assumed that SWI5 is also inhibited by a Michaelis-Menten-
like term proportional to the concentration of the GAL80 mRNA.
We included an explicit delay in the activation of CBF1 by

Swi5. This delay is apparent in the switch-on and switch-off
data in Figure 3 and has been well described in the literature
regarding the HO promoter activation by Swi5 (Bhoite et al.,
2001; Cosma, 2002; Cosma et al., 1999).
We modeled the effect of cell manipulation as an additional

transient perturbation to the degradation rates of GAL4 and
GAL80 mRNAs lasting 10 min (the time estimated to perform
the washing steps).
In order to estimate the unknown parameters, we experimen-

tally measured promoters’ strength of GAL10, MET16, ASH1,
and HO. We stably expressed each TF genes at different levels
andmeasured, by q-PCR, the transcription of the corresponding
promoter gene, at steady state, for a total of 165 data points
(Figures S4 and S5). We then estimated 16 (out of the 33) param-
eters (Michaelis-Menten and the relative Hill coefficients) from
these data using a stochastic optimization algorithm (described
in the Supplemental Results). In addition, GAL10 promoter was
assessed in both galactose and glucose growing conditions
(Figure S5, Supplemental Results, and Supplemental Experi-
mental Procedures).
The remaining 17 unknown parameters, which could not be

computed from promoters’ data, were estimated from the
switch-on time series (described in the Supplemental Results).

The switch-off data were used to test the model predictive
performance.
Figure 3 shows the experimental data and the model-

simulated data for the switch-on and switch-off time series
experiments. In order to simulate the switch-on data, we chose
as initial conditions the steady-state equilibrium of the model in
glucose, recapitulating the experimental conditions.
Simulated data fitted semiquantitatively in vivo data, despite

the simplifying assumptions, being on average within the exper-
imental standard errors (Figure 3).
The model was able to predict, semiquantitatively, the

behavior of the network during the switch-off experiment
(Figure 3). Specifically, the model correctly predicted the delay
in CBF1 silencing, in contrast to the fast switch-off dynamics
of SWI5. Furthermore, the small variations of GAL4 and
GAL80, which are due to the low expression level of these two
genes in glucose-containing medium, were captured by the
model. Differences in the starting amount of CBF1, SWI5, and
ASH1 during the switch off may be due to the unmodeled effect
of protein accumulation of network genes. Indeed, the switch-off
experiment is performed after cells have been grown overnight in
galactose, prior to galactose removal.
In order to further validate the predictive power of the model,

we performed the previously described glucose steady-state
and galactose steady-state overexpression experiments
in silico, by simulating an overexpression of each of the five
genes using the model. In Figures 4 and S3, we compared
in vivo and in silico experiments. There is a semiquantitative
agreement, both in the galactose and glucose steady-state
experiments. The model, despite some discrepancies in the pre-
dicted transcription levels, correctly captured the overall trend
among each perturbed set of genes. We observed that SWI5
predicted expression levels are smaller than their experimental
counterparts, and this effect propagates in turn to its targets.
To explain this behavior, we noticed that the Gal4 protein is

stable (Muratani et al., 2005; Nalley et al., 2006), and therefore,
even a small, or transient, increase in its mRNA level is able to
induce the GAL10 promoter, regulating SWI5 in our network.
Since we did not explicitly model protein dynamics, a small
increase inGAL4mRNA cannot fully activateGAL10 in themodel
and does not cause the increase in SWI5 mRNA seen in vivo.
The model was able to recapitulate some of the expected

biological features, such as the higher expression levels in the
galactose-containing medium and the Gal80 repression activity
when GAL80 is overexpressed in the presence of galactose.
The model can also be used to link the observed dynamics to

the topology of the network; we show by simulation that both the
positive feedback loop (Swi5-Cbf1-Gal4) and the delay in the
activation of the CBF1 promoter are essential for the nonmono-
tonic behavior characterized by damped oscillations in the levels
of SWI5 and CBF1. Removing any of the interactions in the
positive loop, or the delay, makes the oscillations smaller or
totally disappear (Figures S6 and S7).

Reconstructing the Network: A Reverse-Engineering
Approach
The synthetic network can be used to assess the ability of
experimental and computational approaches to infer regulatory
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interactions from gene expression data. We used the switch-on
and switch-off time series, and the steady-state perturbations in
galactose and glucose, in conjunction with four published algo-
rithms as representatives of reverse-engineering approaches,
BANJO (Bayesian network) (Yu et al., 2004), NIR and TSNI
(ordinary differential equations) (Della Gatta et al., 2008; Gardner
et al., 2003), and ARACNE (information theoretic) (Basso et al.,
2005). ARACNE was not applied to the time series data since it
is not appropriate in this case.

Figures 5, S8, and S9 show the results of the ODE, Bayesian,
and information-theoretic reverse-engineering approaches,
respectively.

Reverse-engineering performance was quantified in terms of
percentage of correctly predicted interactions out of the total
number of predicted interactions (i.e., positive predictive value,
PPV) and in terms of percentage of all the true interactions that
have been correctly identified by the algorithm (i.e., sensitivity,
Se) (Bansal et al., 2007).

In order to test the significance of the algorithms,wecomputed
the ‘‘random’’ performance, which refers to the expected perfor-

mance of an algorithm that randomly assigns edges betweenpair
of genes. For example, for a fully connected network, the random
algorithmwould have a 100%accuracy (PPV = 1) for all the levels
of sensitivity (as any pair of genes is connected in the real
network). In our network, the expected PPV for a random guess
of directed interactions among genes is PPV = 0.40 (40%), so
any value higher than 0.4 will be significant. In the case of
undirected interactions, the random PPV = 0.70 (70%).
On time series data, the best performance both in terms of

PPV and of Se was achieved by the ODE approach (TSNI) on
the switch-on data with a PPV = 0.80 and a Se = 0.50 (Figure 5A).
ODE performed better than random (PPV = 0.60, Se = 0.38) also
on the switch-off data, in Figure 5B, albeit with a lower precision.
Dynamic Bayesian networks (BANJO) performed better than

random (PPV = 0.60, Se = 0.38) only on the switch-off experi-
ment, with the same performance as TSNI for this data set
(Figure S8B). Bayesian networks failed to perform better than
random on the switch-on data (Figure S8A) probably because
of the lower number of points (16) as compared to the switch-
off time series (21 points).
By comparison of the inferred networks fromBANJO and TSNI

in the switch-on and switch-off experiments, it is clear that both
methods are extracting similar information, albeit with less preci-
sion in the case of BANJO. If we consider only the interactions
inferred by both methods on the same data set (compare
Figure 5A with Figure S8A, and Figures 5B and S8B), we ob-
tained only two interactions, both correct (PPV = 1). This result
hints to the possibility that meta-algorithms, combining results
from multiple reverse-engineering algorithms, may improve
reverse-engineering performance.
When reverse engineering from steady-state data, NIR was

able to recover the network with a PPV = 0.60 and a Se = 0.38
in the galactose data set (Figure 5C), but it did not perform better
than random (PPV = 0.40 and Se = 0.25) in the glucose data set
(Figure 5D). NIR and TSNI correctly recovered the same three
regulatory interactions of Swi5, in galactose steady-state and
switch-on time series, respectively. BANJO was better than
random both in the galactose data set (PPV = 0.60, Se = 0.38)
and the glucose one (PPV = 0.50, Se = 0.38), albeit with a lower
precision in the latter (Figures S8C and S8D). BANJO extracted
very similar information from both steady-state and switch-off
time series, inferring on all of them the same two interactions,
among the three correct ones (Figures S8B–S8D). These results
imply that both dynamic time series data and static steady state
are informative for reverse engineering.
By considering only interactions inferred by both methods on

the same data set, in the case of galactose, we selected only one
interaction, albeit correctly (PPV = 1); whereas in the glucose
experiment, no interactions were in common. This is a further
hint that combing results frommultiple reverse-engineering algo-
rithms may be beneficial. ARACNE did not perform better than
random, which in the case of undirected graph is very high
(PPV = 0.70) (Figure S9). ARACNE was designed for inference
of large networks (of the order of thousands of genes), and it is
not directly comparable to the other two approaches (Basso
et al., 2005).
From these data, we can conclude that ODE-based algorithms

and BANJO performed similarly for the steady-state data, but

Figure 5. Reverse Engineering of the IRMA Gene Network
from Steady-State and Time Series Experimental Data Using the
ODE-Based Approach
The true network shows the regulatory interactions among genes in IRMA.

Dashed lines represent protein-protein interactions. Directed edges with an

arrow end represent activation, whereas a dash end represents inhibition.

(A and B) Inferred network using the TSNI reverse-engineering algorithm and

the switch-on and switch-off time series experiments. Solid gray lines

represent inferred interactions that are not present in the real network, or

that have the wrong direction (FP, false positive). PPV [Positive Predictive

Value = TP/(TP + FP)] and Se [Sensitivity = TP/(TP + FN)] values show the

performance of the algorithm for an unsigned directed graph. TP, true positive;

FN, false negative. The random PPV for the unsigned directed graph is equal

to 0.40.

(C and D) Inferred network using the NIR reverse-engineering algorithm and

the steady-state experimental data from network gene overexpression in cells

grown in galactose or glucose medium, respectively.
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ODE-based algorithms require more information, that is, the
genes that have been directly perturbed in the experiment
(Bansal et al., 2007). Information-theoretic approaches should
not be applied to small networks, because of their inability of
inferring the direction of regulation. However, they are superior
to other methods in the case of large networks because of their
ability to require a minimal amount of data to infer gene-gene
undirected interactions (Faith et al., 2007).
The networks inferred from the in vivo data sets (Figure 5)

contain correctly identified interactions, but also false positive
interactions. We observed that most of these false interactions
involved the Gal4 and Gal80 proteins. By taking into account
that these proteins form a complex, we can consider GAL4
and GAL80 as a single component, rather than as two different
ones, and simplify the true network accordingly, as shown in
Figure 6 (‘‘True Network—Simplified’’). This simplification is
justified by considering that reverse engineering is performed
on mRNA concentration measurements, but not on protein
levels, and therefore a complete recovery of the protein-protein
interaction is unlikely.

The number of correctly inferred interactions for the ODE
approach increased when checked against this simplified true
network. All of the inferred interactions are correct in switch-on
data set (PPV = 1 and Se = 0.67), as shown in Figure 6A. The
same correct interactions are inferred from galactose steady-
state data set (Figure 6C) even if with a lower precision (PPV =
0.80 and Se = 0.67). Results of glucose steady state are still
not better than random (in this case random PPV = 0.50)
(Figure 6D). In the case of the switch-off time series, the perfor-
mance remained the same (the ratio between the obtained PPV
and the random PPV is 1.5 both in the simplified and in the
original network inference). This happens because the wrongly
inferred interactions do not involve the Gal4-Gal80 complex
(Figure 6B).

DISCUSSION

In this paper, we developed a synthetic network to assess and
benchmark modeling and reverse-engineering strategies. We
showed that the semiquantitative prediction of cell behavior is
possible, even with a simplified phenomenological differential
equation model. One of the difficulties in obtaining a predictive
and quantitative model in biology is the choice of the unknown
kinetic parameters, especially for complex networks like the
one in this work (33 parameters). A different set of parameters
may yield similar results. Ideally, the kinetic parameters should
be identified by appropriate experiments, and this is not always
possible, particularly if one wants to obtain quantitative values
(Rosenfeld et al., 2005). In this work, we were able to measure,
semiquantitatively, the strength of the promoters, and we esti-
mated 16 out of 33 parameters from these data. Remarkably,
despite all of the simplifications made, the model showed
predictive power, albeit semiquantitative. In order for there to
be more quantitative predictions, the predictive ‘‘scope’’ of the
model has to be considered. In our case, the model was learned
from a dynamic time series of 5 hr after galactose addition, but
then used to predict the behavior of the system at long time
scales (i.e., steady state, or switch off after cells were grown
overnight in galactose). Since proteins were not modeled explic-
itly, their accumulation will have larger effects in this case.
More accurate models, including, for example, a detailed

description of the galactose system, or those based on different
formalisms, can be developed, depending on the biological
question to be investigated, and assessed against the same
ground truth provided by our synthetic network.
We also confirmed the usefulness of the network as a bench-

mark for assessing reverse engineering. Our results enabled us
to draw some definite conclusions: (1) When the data sets are
informative, reverse-engineering algorithms are able to correctly
identify direct regulatory interactions, but some precautions
must be taken when Bayesian networks are used on dynamic
time series regarding the number of time points. It is likely that
the larger number of experimental time points in the switch-off
experiment (21 points) as compared to the switch-on experiment
(16 points) improved the performance of dynamic Bayesian
networks, since this method needs to estimate joint probabili-
ties, whereas the ODE approach is not greatly affected by the
number of points, as long as the dynamics are well captured

Figure 6. Reverse Engineering the IRMA Gene Network from
Steady-State and Time Series Experimental Data Using the ODE-
Based Approach—Comparison with the Simplified True Network
Simplified true network shows only the regulatory transcriptional interactions

among genes in IRMA. We grouped the Gal4 and Gal80 proteins as a single

component, so that all the interactions represent only transcriptional regula-

tion. Directed edges with an arrow end represent activation, whereas a dash

end represents inhibition.

(A and B) Inferred network using the TSNI reverse-engineering algorithm and

the switch-on and switch-off time series experiments. Solid gray lines repre-

sent inferred interactions that are not present in the real network, or that

have the wrong direction (FP, false positive). PPV and Se values summarize

the performance of the algorithm for an unsigned directed graph. The random

PPV for the unsigned directed graph is equal to 0.50.

(C and D) Inferred network using the NIR reverse-engineering algorithm and

the steady-state experimental data after gene overexpression in cells grown

in galactose or glucose medium, respectively.
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by the sampling time. (2) By comparing the results of different
reverse-engineering algorithms on the same data set, it is
possible to increase the accuracy of the predictions. (3) Time
series and steady-state data are both useful for reverse engi-
neering, but they can convey different information. (4) If knowl-
edge of the perturbation effect is available (i.e., which gene has
been overexpressed) and data points are limited, ODEs are
superior to Bayesian networks. These conclusions were drawn
from our small-scale network consisting of five genes only, yet
they should hold also for large-scale networks. Comparison of
reverse-engineering methods with in silico expression data has
shown that performances on small networks (in the order of
ten genes) are in line with those on larger networks (in the order
of 100 or 1000 genes) (Bansal et al., 2007; Stolovitzky et al.,
2007). Namely, if an algorithm works better than another on
a small network, it will do so also on larger networks, as long
as the number of experimental data points scales with the size
of the network. IRMA, therefore, can be used to test algorithms
designed for large-scale networks, with some exceptions. Asso-
ciation-based algorithms (such as ARACNE) cannot be properly
assessed, since the random precision for a small undirected
network is too high. We observe, however, that transcription
factor genes in the network regulate additional endogenous
‘‘non-network’’ genes (i.e., their well-characterized transcrip-
tional targets). Thus, if a sufficient amount of genome-wide
expression data is collected, then our network could be a useful
benchmark, also in the case of large-scale networks.

In addition, IRMA transcriptional cassettes canbe swapped, or
substituted with different ones, to yield different topologies. It is
also possible to extend the network, thus increasing both the
number of genes and the number of interactions, by adding
newcassettes. In our strain, one resistance gene (His) is available
for integration of additional cassettes; furthermore, new domi-
nant resistance markers such as ble(r) and pat, which confer
resistance to the antibiotic phleomycin and biaphalos, respec-
tively, have been flanked by LoxP sites (Gueldener et al., 2002).
Thus, they can be Cre-excised and reintegrated in association
with different transcriptional cassettes, multiple times.

High-throughput approaches often generate lists of target
genes or proteins that need a heroic effort to be validated. On
the other hand, computational approaches can help in inferring
the regulatory interactions within a complex biological process;
in reality, however, it is difficult to identify the appropriate
computational approach to solve a specific biological problem,
without an experimental validation of the computational predic-
tions.

IRMA will help reducing the in vivo validation steps and repre-
sents a comprehensive resource, providing both a yeast strain
and gold-standard data to benchmark network reconstruction
and modeling strategies with an ‘‘a priori’’ known network.

EXPERIMENTAL PROCEDURES

Yeast Culture, Strains, and Plasmids
All S. cerevisiae strains used to construct IRMA were YM4271 background

(MATa ura3-52 his3-D200 ade2-101 lys2-801 leu2-3 trp1-901 gal4-D542

gal80-D538 ade5::hisG) kindly provided by M. Johnston (Liu et al., 1993).

PCR-generated cassettes were used for both integration of the new transcrip-

tional units and contemporary gene deletion. Genotypes of strains and plas-

mids generated in this study are listed respectively in Tables S3 and S4. Details

of strain construction are given in the Supplemental Experimental Procedures.

For time series experiments, yeast cells of an IRMA-containing strain (P340)

were grown at 30!C in YEP containing 2% glucose (YEPD) or 2% galactose

and 2% raffinose (YEPGR) until mid-log phase. Cells were then collected by

filtration, washed twice with YEP, shifted respectively in YEPGR (for switch-

on experiments) or YEPD (for switch-off experiments), and grown at 28!C.

Cells were harvested at different time points for mRNA extraction.

For steady-state perturbation experiments, centromeric plasmids were con-

structed as follows. CBF1, GAL4, SWI5, ASH1, and GAL80 ORFs were ampli-

fied from W303 genome and cloned in pENTR/D-TOPO vector (Invitrogen).

Each of these ‘‘entry clones’’ was then recombined with pAG413GPD-ccdB

(Addgene 14142) destination vectors by LR Clonase II enzyme, as previously

described by Alberti et al. (2007). The IRMA-containing strain was then trans-

formed with the obtained plasmids. Transformed cells were grown at 30!C in

synthetic complete (SC) medium lacking histidine with 2% glucose or 2%

galactose plus 2% raffinose to 0.6–0.8 OD600 and then harvested for mRNA

extraction.

Mathematical Model of the IRMA Network
The mathematical model consists of five nonlinear delay differential equations

describing the rate of change in mRNA levels of the five genes. It was derived

using Hill kinetics for the gene interactions and a phenomenological law to

describe the interactions between the galactose pathway and the genes in

the network. The problem of estimating parameter values was defined as

a nonlinear programming problem (NLP) and handled using a hybrid genetic

algorithm to the purpose of merging the global search properties of GAs

with the fast local convergence of least square (LS) methods. The in silico

experiments, mirroring the glucose steady-state and galactose steady-state

in vivo experiments, were carried out by numerical solving of the mathematical

model. As initial conditions, we used the steady states predicted by the model

in unperturbed conditions (either in glucose or in galactose), and in addition we

applied a constant input, corresponding to the gene overexpression, to each of

the five equations. Details for modeling and parameter identification can be

found in the Supplemental Results.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Results, Supplemental Experi-

mental Procedures, nine figures, six tables, and IRMA in vivo data sets and

can be found with this article online at http://www.cell.com/supplemental/

S0092-8674(09)00156-1.
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