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We estimate final state interactions in the B-meson decays into two pions by the Regge
model. We consider Pomeron exchange and the leading Regge trajectories that can relate
intermediate particles to the final state. In some cases, most notably B → π0π0 and
B → π+π−, the effect is relevant and produces a better agreement between theory and
experiment.
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1. Introduction

Measuring the angle α of the unitarity triangle is one of the major challenges of

the B-factories BaBar at SLAC, BELLE at KEK and the future LHC at CERN.

B → ππ decay channels were identified long ago as a promising candidate for the

extraction of the angle α. Though other channels were subsequently investigated,

the B decay into two pions is still object of intense studies, both experimental and

theoretical. The task of determining precisely the angle α is complicated by the

problem of disentangling two different hadronic matrix elements, each one carry-

ing its own weak phase. They are usually referred to as the tree and penguin

contributions.
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The theoretical uncertainty in the evaluation of these terms stems from the

approximate schemes used to compute the relevant four-quark operators between

the hadronic states. In principle one could avoid these uncertainties, fixing all the

hadronic parameters by a simultaneous measurement of physical observables. This

problem has been addressed by several authors; for example in Ref. 1 the use

of isospin symmetry among the various B → ππ channels was envisaged. This

program represents a significant experimental challenge and is therefore useful to

have some theoretical indications on the results. In the Standard Model one expects

the dominance of tree diagrams in B → ππ decays, differently from the B →
πK decay channels, where penguin contributions should play a key-role. Thus one

naively expects that for B → ππ the hierarchical structure follows the analogous

hierarchy of the Wilson coefficients, namely

B(π0π0) � B(π+π−) ≈ 2B(π+π0) . (1)

As discussed in Sec. 4 below, present experimental data are at odds with Eq. (1).

There can be several factors leading to violations of the expectation (1). First of all

the role of penguin operators should not be neglected. Second, one has to go beyond

naive factorization and use more sophisticated schemes taking into account QCD

in factorization, for example the BBNS approach2,3 or the Soft-Collinear-Effective-

Theory (SCET)4–7 (for a recent discussion of B decay into two light mesons in the

framework of the SCET see Ref. 8). Finally, (1) does not take into account final

state interactions (FSI). To this issue the present paper is devoted. FSI are long

distance effects that in some cases might play a significant role; for example in B

decays into two light mesons a source of long-distance contributions is provided

by the charming penguin diagrams that might produce the discrepancy between

experimental data and the naive factorization findings. Charming penguins are

contributions where the final state is formed only as an effect of a rescattering

process, and is preceded by the formation of an intermediate state containing a cc̄

pair.9–14 In particular for decay channels with a strange light meson in the final

state, e.g. B → πK, these long-distance contributions are not numerically sup-

pressed. In fact, the Cabibbo–Kobayashi–Maskawa (CKM) matrix elements pro-

duce an enhancement ∼ |VcbV
∗
cs|/|VubV

∗
us| which can compensate the parametric

suppression predicted by QCD factorization.

The role of charming penguins in B → ππ is less clear. Due to the lack of

the above-mentioned enhancement, on general ground one expects a minor role

in the B → ππ decay modes. On the other hand in Ref. 8 their role is found to

be significant. This matter should be settled, but in any case FSI must be taken

into account, be they dominated by charming penguins or by other rescattering

processes, involving noncharmed particles in the intermediate state.

The most accurate way to take into account FSI in hadronic B decays is provided

by the Regge model of high energy scattering processes, which can be applied to

hadronic B decays due to the rather large value of s = m2
B . The advantage of the

Regge approach is to evaluate the rescattering not by a Feynman diagram, but by
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unitarity diagrams and the Watson’s theorem.15 In particular there is no extra-

polation of low energy effective theories to the hard momenta regime and therefore

no need to introduce arbitrary cutoffs in the light meson momenta, because the high

energy behavior is completely under control. Some studies on the application of the

Regge model to B decays are in Refs. 16–18. Elastic contributions to high energy

scattering are dominated by the Pomeron exchange, while the inelastic channels get

contributions from both Pomeron and Regge trajectories. Also charming penguins

find a place in this scheme, provided one introduces also charmed Regge trajectories,

as for example in the study performed in Ref. 19 for the charmless B decay into

two light vector mesons.

The aim of this paper is to extend the results of the Regge model to the B → ππ

decay modes. We will show that there are indeed significant rescattering effects in

the B → π0π0 channel, a decay mode that is suppressed in naive factorization. We

include several intermediate states: ππ, ρρ, a1π, DD̄ and we find that the largest

contribution comes from the ππ and ρρ intermediate states with ρ and a2 Regge

exchanges respectively. On the other hand we find no significant role of charm-

ing penguin contributions. The suppression of charming penguins in comparison to

other terms is produced because Regge charmed trajectories have a negative inter-

cept α(0) and therefore a suppression factor (s/s0)
α(0) (s0 ' 1 GeV2, a threshold).

A slightly different result is found by the authors of Ref. 20.

The plan of the paper is as follows. In Sec. 2 we evaluate in the factorization

approximation the bare amplitudes, including tree and penguin contributions with

no FSI (in particular no charming penguins). In Sec. 3 we discuss rescattering effects

parametrized by the Regge model. Finally, in Sec. 4 we present our numerical results

and discuss them.

2. Bare Amplitudes

The ππ final state can be reached from several intermediate states via rescattering.

Clearly one should select the most prominent channels. Among the inelastic chan-

nels we single out the decays B → ρρ and B → a1π since they have large branching

ratios. For example: B(B+ → ρ0ρ+) = (26.4 ± 6.1) × 10−6; B(B0 → ρ−ρ+) =

(30.0 ± 6.0) × 10−6;21 B(B0 → a±
1 π∓) = (48.6 ± 5.7) × 10−6;22 B(B0 → a+

1 π−) =

(40.2± 5.5)× 10−6.23 To these decay processes we have to add the elastic B → ππ

channels, though they have smaller branching ratios. We also add the D(∗)D̄(∗),

having in mind a discussion on the charming penguins. In conclusion the final state

interactions that we consider are the elastic scattering ππ → ππ, and the ρρ → ππ

and a1π → ππ and the D(∗)D̄(∗) → ππ inelastic channels.

We evaluate bare amplitudes in the factorization approximation. To do that one

needs various input parameters. The nonleptonic Hamiltonian is well known and

we do not repeat it here, see e.g. Ref. 24. For the Wilson coefficients we use: a1 =

1.029, a2 = 0.140, and (a3, a4, a5, a6, a7, a8, a9, a10) = (33.33,−246.66,−10,−300,

1.95, 4.81,−93.30,−12.63)× 10−4.25 We use for the parametrization of the CKM
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Table 1. Bare amplitudes for B → ππ and B → ρρ. Results in 10−8 GeV; λ = ±1, 0 refers to
the helicities of the vector particles.

Process Ab Process Ab (λ = +1) Ab (λ = −1) Ab (λ = 0)

B+ → π+π0 +2.02 − 1.24i B+ → ρ+ρ0 −0.02 + 0.01i −1.1 + 0.65i +4.49 − 2.76i

B0 → π0π0 −0.41 + 0.053i B0 → ρ0ρ0 +0.004 − 0.001i +0.20 − 0.07i −0.83 + 0.31i

B0 → π+π− +2.43 − 1.74i B0 → ρ+ρ− −0.02 + 0.02i −1.31 + 0.85i +5.53 − 3.59i

Table 2. Bare amplitudes for B → a1π;
a1 with longitudinal polarization. Units
are 10−8 GeV.

Process Ab

B+ → a+
1 π0 +3.4 − 2.0i

B+ → a0
1π+ +2.2 − 1.6i

B0 → a0
1π0 −0.60 + 0.20i

B0 → a+
1 π− +4.2 − 2.7i

B0 → a−
1 π+ +3.4 − 2.4i

Table 3. Bare amplitudes B → D(∗)D̄(∗); vector particles
have longitudinal polarization. Results in 10−7 GeV.

Process Ab Process Ab

B+ → D+D̄0 −2.8i B+ → D∗+D̄0 +2.5i

B0 → D+D− −2.8i B0 → D∗+D− +2.5i

B+ → D∗+D̄∗0 −2.9i B+ → D+D̄∗0 +2.5i

B0 → D∗+D∗− −2.9i B0 → D+D∗− +2.5i

matrix sin θ12 = 0.2243, sin θ23 = 0.0413, sin θ13 = 0.0037 and δ13 = γ = 1.05.26 As

for the form factors and constant decay we use fπ = 0.132 GeV, fρ = 0.210 GeV,

fa1
≈ 0.21 GeV (see the discussion in Ref. 27) F B→π

1 (0) = 0.26, AB→ρ
1 (0) = 0.26,

AB→ρ
2 (0) = 0.23, V B→a1

0 (0) = AB→ρ
0 (0) = 0.39, where we use the notations of

Ref. 28 for the B → ρ transition and the parametrization of Ref. 29 for the B → a1π

matrix element. All the other parameters are taken from Ref. 26. We get in this

way the results of Tables 1–3 (notice that units of Tables 1 and 2 are 10−8 GeV,

those of Table 3 are 10−7 GeV).

3. Final State Interactions and Regge Behavior

Corrections to the bare amplitudes due to final state interactions are taken into

account by means of the Watson’s theorem:15

A =
√

SAb , (2)
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where S is the S-matrix, Ab and A are the bare and the full amplitudes. An applica-

tion of the Watson’s theorem was first discussed in Ref. 17 and subsequently applied

to other decay channels in Refs. 18 and 19. We briefly review here the formalism.

The two-body S-matrix elements are given by

S
(I)
ij = δij + 2i

√
ρiρj T

(I)
ij (s) , (3)

where i, j run over all the channels involved in the final state interactions. The

J = 0, isospin I amplitude T
(I)
ij (s) is obtained by projecting the J = 0 angular

momentum out of the amplitude T
(I)
ij (s, t):

T
(I)
ij (s) =

1

16π

s
√

`i`j

∫ t−

t+

dt T
(I)
ij (s, t) . (4)

ρj , `j and t± are defined in Ref. 19. For the channel B → ππ we only have the

I = 0 and I = 2 transition amplitudes; the decay amplitude B → π+π0 is only

I = 2.

The phenomenological basis for the application of the Regge model of final state

interactions is the large value of s = m2
B ; therefore a Regge approximation based

on Pomeron exchange and the first leading trajectories should be adequate. The

Pomeron term contributes to the elastic channels. As discussed in previous section

for the inelastic case we include only channels whose bare amplitudes are prominent.

In conclusion in the present approximation we will include, besides the Pomeron,

the ρ and a2 (almost) exchange-degenerate trajectories and π Regge trajectories. We

shall discuss in Subsec. 3.2 the role of charmed Regge trajectories in parametrizing

charming penguins.

For the Pomeron contribution we write (neglecting light meson masses)

S = 1 + 2iTP(s) , TP(s) =
1

16πs

∫ 0

−s

TP(s, t)dt , (5)

and we use the following parametrization:18,30

TP(s, t) = −βPg(t)

(

s

s0

)αP (t)

e−i(π/2)αP (t) , (6)

with s0 = 1 GeV2 and αP (t) = 1.08+0.25t (t in GeV2), as given by fits to hadron–

hadron scattering total cross-sections. For the Pomeron residue βP we assume

factorization with a t-dependence given by18,30

g(t) =
1

(1 − t/m2
ρ)

2
' e2.8t . (7)

The additive quark counting rule allows to compute the Pomeron–pion residue

in terms of the Pomeron–nucleon ones. This gives16,18

βP
π ∼ 2

3
βP

p ∼ 5.1 . (8)
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As observed in Ref. 17 inelasticity effects play an important role in the determina-

tion of the FSI phases. Parametrizing them as in Ref. 17 by one effective state, with

no extra phases would allow to write the S-matrix as follows (neglecting a small

phase ϕ = −0.01 in
√

1 + 2iTP ):

(B → ππ) S ≈
(

0.62 0.82i

0.82 i 0.62

)

,
√

S ≈
(

0.79 0.64(1 + i)

0.64(1 + i) 0.79

)

. (9)

This shows that even neglecting the effect of the nonleading Regge trajectories, final

state interactions due to inelastic effects parametrized by the Pomeron exchange

can produce sizeable strong phases. This result agrees with the analogous findings

of Refs. 17 and 18. However this method is not useful to evaluate rescattering

effect in weak decays. Therefore we prefer to parametrize inelastic effects by Regge

trajectories.

3.1. Regge trajectories

Let us now consider the contribution of the leading Regge trajectories. Including

Regge trajectories the S matrix can be written for the generic B → ππ case as

follows:

S = 1 + 2i
(

TP +
∑

R
)

. (10)

Here P indicates the Pomeron contribution discussed above. Since the Pomeron is

much larger than the others we make the approximation

A(B → ππ)(I) ≈
√

1 + 2iTPA
(I)
b +

1

2
√

1 + 2iTP

∑

k

∑

R

(R)(k,I)A
(k)
b . (11)

Here the sum over k refers to the various intermediate states contributing to the

final state ππ; I is the isospin index.

We write the Regge amplitudes as follows (R = ρ, a2, π):

R(k,I)(s) =
1

16πs

∫ 0

−s

dtR(k,I)(s, t) . (12)

We assume the general parametrization

R(k,I)(s, t) ≈ −βR 1 + (−)sRe−iπαR(t)

2
Γ(lR − αR(t))(α′)1−lR(α′s)αR(t) (13)

as suggested in Ref. 31. The trajectory is given by

αR(t) = sR + α′(t − m2
R) = αR(0) + α′t , (14)

with α′ = 0.91 GeV−2. We notice the Regge poles at lR − αR(t) = 0, −1, −2, . . . .

The parameters we use are reported in Table 4. Near t = m2
R, Eq. (13) reduces to

R ≈ βR ssR

(t − m2
R)

. (15)
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Table 4. Parameters of the Regge trajectories.

Exchange degeneracy is assumed.

Trajectory R sR `R αR(0)

ρ 1 1 0.5

a2 2 1 0.5

π 0 0 ≈ 0

We write βR = βR
1 βR

2 using factorization of the residues at the two (1 and 2)

vertices. Therefore Eq. (15) allows to identify βR as the product of two on-shell

coupling constants. The residues can be obtained by the decay rates ρ → ππ,

a1,2 → ρπ. More precisely we obtain βρ
π+π0 = 8.2 and βρ

a1π ≈ 2 from the ρ → ππ

and a1 → ρπ decay widths, respectively. Due to small value of the residue βρ
a1π we

will neglect the contribution of this channel in the sequel.

Let us now discuss the a2 exchange. The residue βa2

ρ+π0 can be derived from the

strong coupling constant defined by

M(a+
2 (p, η) → ρ+(k, ε)π0(q)) =

ga

ma2

ηµνqµεναβλε∗αpβqλ . (16)

From a2 → ρπ we get ga ≈ 25 GeV−1. To compute the residue we note that the

a2-exchange can only occur when the ρ intermediate particles have transverse polar-

ization. Its residue is related to ga by βa2

ρ+π0 = ga/
√

α′ ≈ 13.1. This phenomeno-

logical value is smaller than the theoretical value given in Ref. 31, on the basis

of the Gell-Mann, Sharp and Wagner model32 for the ω → 3π decay. In view of

the theoretical uncertainties arising from the hypothesis of exchange-degeneracy

and from the procedure we have described, we will let this parameter vary with a

spread of ±50% around a central value, i.e. we assume

βa2

ρ+π0 = 13.1× (1 ± 0.50) . (17)

We note that, though the bare amplitudes B → ρρ with transversely polarized

ρ’s are suppressed (see Table 1), they participate nevertheless in the rescattering

process due to the large residue of the a2 trajectory to the ρ and π.

As shown by Table 4 the π trajectory is exponentially suppressed due to απ ≈ 0.

Similarly we note that we have also computed the parameters of the a1 Regge pole,

but we omit this trajectory from the analysis because its intercept is large and

negative (α(0) ≈ −0.37).

3.2. Charming penguins

Charming penguins are diagrams describing the rescattering of two charmed mesons

to produce two light mesons. Treating them as Feynman diagrams produces a huge

theoretical uncertainty. In fact to compute them one should employ the chiral effec-

tive theory for light and heavy mesons. However this approach cannot be extended

to hard meson momenta and one is forced to introduce a cutoff.11–14 To avoid the
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Table 5. Theoretical branching ratios for B → ππ decay channels with and without final state

interactions and their comparison with experimental data. The column FSI is computed with
β

a2

ρ+π0 in the range given in Eq. (17). Units 10−6.

Process B (without FSI) B (with FSI) B (exp.)

B0 → π0π0 0.08 0.10–0.65 1.17 ± 0.32 ± 0.10 (Refs. 33, 34)

2.3+0.4+0.2
−0.5−0.3 (Refs. 35, 36)

1.45 ± 0.29 (Ref. 21)

B0 → π+π− 8.1 3.8–4.4 4.7 ± 0.6 ± 0.2 (Refs. 33, 34)

4.4 ± 0.6 ± 0.3 (Refs. 35, 36)

4.5 ± 0.4 (Ref. 21)

B+ → π+π0 5.0 3.6–5.0 5.8 ± 0.6 ± 0.4 (Refs. 33, 34)

5.0 ± 1.2 ± 0.5 (Refs. 35, 36)

5.5 ± 0.6 (Ref. 21)

arbitrariness of this procedure one can describe this class of FSI by charmed Regge

trajectories. This approach was followed in Ref. 19 for B → ρρ, K∗ρ, K∗φ decays

and can be easily extended to B → ππ; we refer to this paper for details. Let us

only write down the expression of trajectories αD(t) and αD∗(t). We use Eq. (14)

with sD = 0, sD∗ = 1 and Ref. 19

α0 = −1.8 , α′ = (0.39 ± 0.12) GeV−2 , (18)

which shows that the intercept of these trajectories is negative. Also the residues can

be computed following the procedure of previous subsection, i.e. using the strong

coupling constants gD∗Dπ and gD∗D∗π (for the values of these constants we follow

Ref. 11).

Differently from the case of Kπ or the K∗ρ final states, the bare B → D(∗)D̄(∗)

amplitudes have no CKM enhancement. Therefore the situation is similar to the

study of the B → ρρ channel in Ref. 19 where we found that, for the ρρ final state,

charming penguins are less relevant than, for example, B → K∗ρ. We have checked

numerically that the negative intercept produces a negligible contribution from the

D(∗)D̄(∗) intermediate states to B → ππ.

4. Numerical Results and Discussion

We present our results by taking the γ angle as a parameter and allowing βa2

ρ+π0

to vary in the range in Eq. (17). We compute in Fig. 1 the branching ratios

B(B0 → π0π0), B(B0 → π+π−) and B(B+ → π+π0). A survey of the experi-

mental results is in Table 5. Here we have also reported our results for βa2

ρ+π0 in the

range of values given in Eq. (17). We see that the role of FSI is especially important

for the B → π0π0 channel.
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Since we do not pretend to have presented a complete discussion of final state

interactions, our result should be interpreted as an indication of the relevant role

played by the rescattering effects when the bare amplitudes are for some reason

small. This is confirmed by the results for the other two channels, where charged

current Hamiltonian is involved and therefore FSI play a less relevant role. Never-

theless also for the B0 → π+π− channel we can see that FSI contribution produce

a better agreement with the data.

We have also computed the integrated asymmetries

A00 =
Γ(B̄0 → π0π0) − Γ(B0 → π0π0)

Γ(B̄0 → π0π0) + Γ(B0 → π0π0)
,

A+− =
Γ(B̄0 → π+π−) − Γ(B0 → π+π−)

Γ(B̄0 → π+π−) + Γ(B0 → π+π−)
,

A−0 =
Γ(B− → π−π0) − Γ(B+ → π+π0)

Γ(B− → π−π0) + Γ(B+ → π+π0)
.

(19)

The results are reported in Fig. 2. For A00 the HFAG group reports the average of

the BaBar and Belle Collaborations as follows:21 A00 = 0.28 ± 0.39. For γ ' 60◦

our result is compatible, within error with the experiment. As for A+−, BaBar37

reported the value A+− = 0.09 ± 0.15 ± 0.04, while Belle38 gives A+− = 0.58 ±
0.15±0.07. Our results, for γ ' 60◦, is compatible, within errors, only with BaBar.

Let us finally compare our results with other approaches. The exclusive B → ππ

transitions can be studied, starting from first principles, in the QCD factorization

approach (BBNS).2,3 In this framework, all the charmless two-body decays of B

mesons have amplitudes which are shown to factorize at lowest order in 1/mb. In

other words, neglecting terms suppressed by heavy quark mass, the QCD factor-

ization predicts the naive factorization ansatz.39 In this framework the branching

ratios for the B → ππ decay modes are rather sensitive to the computational

scheme of the relevant form factor. In particular, as discussed in Ref. 2, results for

the π0π0 final state depend on a parameter λb whose precise value is unknown, but

a branching ratio of the order of 10−6 could be reached. In the phenomenological

studies40,41 of these processes, the authors take into account the power-suppressed

and partially unknown weak annihilation contributions. In particular, the last fit to

charmless strangeless final state alone in the BBNS approach, performed in Ref. 41,

reproduces the available experimental data. Our method complements the BBNS

approach as it takes into account in a systematic way part of the power-suppressed

contributions, i.e. those arising from the final state interactions.

Agreement with experimental data on B → ππ is also obtained in Ref. 8, where

the Soft Collinear Effective Theory (SCET)4–7 is employed. The BBNS and the

SCET approaches substantially differ in treating perturbative and nonperturbative

effects. We do not discuss the differences between QCD-factorization and the SCET

as this goes beyond the limits of the present work. We stress however that we do

not find an important role of the long-distance charming penguin diagrams, but
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we find another source of long-distance effects due to rescattering of the ππ and

ρρ channels. Charming penguins play a minor role here because, as discussed in

Sec. 3, in the Regge theory they are strongly suppressed by the negative intercept

of the corresponding Regge trajectory. Our results are confirmed by a different

analysis12 of the charming penguin contributions in B → ππ, based on an effective

Lagrangian approach; also in that paper these contributions play a lesser role the

reason being, there as in the present work, the absence of any CKM enhancement

in the bare amplitudes. Similar conclusions have been obtained in Ref. 42 where

the authors proposed to test the magnitude of charm and charmless rescattering

using experimental data and minimal use of SCET.

Final state interactions in B → ππ decays have been considered also in Ref. 43;

these authors describe rescattering effects by parametrizing them with a set of

Feynman diagrams. Their results are in agreement with ours, i.e. enhancement for

B(π0π0) and a reduction of B(π+π−) with respect to short distance calculations.

Sizable effects are visible also in the asymmetries, but a clear comparison with

experiment has to wait for better quality data.
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