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Gene silencing of endothelial von 
Willebrand Factor attenuates 
angiotensin II-induced endothelin-1 
expression in porcine aortic 
endothelial cells
Anar Dushpanova1,*, Silvia Agostini1,*, Enrica Ciofini1,2, Manuela Cabiati3, Valentina Casieri1, 
Marco Matteucci1, Silvia Del Ry3, Aldo Clerico1,2, Sergio Berti2 & Vincenzo Lionetti1,2

Expression of endothelin (ET)-1 is increased in endothelial cells exposed to angiotensin II (Ang II), 
leading to endothelial dysfunction and cardiovascular disorders. Since von Willebrand Factor (vWF) 
blockade improves endothelial function in coronary patients, we hypothesized that targeting 
endothelial vWF with short interference RNA (siRNA) prevents Ang II-induced ET-1 upregulation. Nearly 
65 ± 2% silencing of vWF in porcine aortic endothelial cells (PAOECs) was achieved with vWF-specific 
siRNA without affecting cell viability and growth. While showing ET-1 similar to wild type cells at rest, 
vWF-silenced cells did not present ET-1 upregulation during exposure to Ang II (100 nM/24 h), preserving 
levels of endothelial nitric oxide synthase activity similar to wild type. vWF silencing prevented AngII-
induced increase in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity 
and superoxide anion (O2−) levels, known triggers of ET-1 expression. Moreover, no increase in 
O2− or ET-1 levels was found in silenced cells treated with AngII or NOX-agonist phorbol ester (PMA 
5 nM/48 h). Finally, vWF was required for overexpression of NOX4 and NOX2 in response to AngII and 
PMA. In conclusion, endothelial vWF knockdown prevented Ang II-induced ET-1 upregulation through 
attenuation of NOX-mediated O2− production. Our findings reveal a new role of vWF in preventing of 
Ang II-induced endothelial dysfunction.

Endothelin (ET)-1, a potent vasoconstrictor and pro-inflammatory peptide, maintains the vascular tone in 
healthy humans1,2, but its expression is upregulated in various cardiovascular disorders like systemic and pulmo-
nary hypertension3,4, myocardial infarction5,6 and fibrosis7. High levels of angiotensin II (Ang II), a biologically 
active hormone, increase ET-1 expression in endothelial cells8,9, impair endothelial nitric oxide synthase (eNOS) 
activity10 and promote endothelial oxidant stress, which together contribute to the development of endothelial 
dysfunction11.

High levels of ET-1 create a sustained and self-perpetuating loop of vascular dysfunction12 characterized by 
endothelial eNOS impairment13 and enhanced release of superoxide anion (O2− ) following the activation of 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase14. Even if the maintenance of eNOS activity15 
and the attenuation of O2−  generation16 may in part counteract ET-1 detrimental effects, prevention of Ang 
II-induced ET-1 expression without interfering with endothelial function remains a desirable achievement. Since 
endothelial function directly depends on the cell phenotype17, we hypothesized that von Willebrand factor (vWF) 
may modulate ET-1 expression during Ang II stimulation, despite being so far mostly a hallmark of endothelial 
phenotype mainly involved in hemostasis18.

ET-1 increases either endothelial or circulating levels of vWF19,20 in different diseases like systemic hyperten-
sion21 or acute coronary syndrome22. Even though some studies observed that plasma vWF levels are reduced after 
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pharmacological treatment with angiotensin-converting enzyme (ACE) inhibitors and/or angiotensin-receptor 
blockers (ARBs)23,24, it is still unknown whether disabling the endothelial vWF expression could prevent Ang 
II-induced ET-1 upregulation. It is noticeable that vWF blockade improves endothelial function in coronary 
patients25 and protects the murine heart against ischemia/reperfusion injury26, but the underlying mechanisms 
are still unknown. Unraveling how endothelial vWF prevents the onset of endothelial dysfunction could provide 
new avenues for protection against Ang II-induced cardiovascular injury.

In our study, we tested the effects of short interfering RNA (siRNA)-mediated gene silencing of endothelial 
vWF during chronic exposure to high levels of Ang II in primary porcine aortic endothelial cells (PAOECs), 
a well-established in vitro culture system for studying the molecular mechanisms underlie alterations of vWF 
expression27 and endothelial function in general28. Our findings reveal a hitherto unsuspected role of endothe-
lial vWF downregulation in preventing Ang II-induced ET-1 upregulation through reduced NADPH oxidase 
(NOX)-mediated oxidative stress, without impairing nitric oxide (NO) production.

Results
Targeting vWF expression in PAOECs with siRNA. Transfection of 25 nM siRNA anti-vWF produced a 
significant reduction of porcine vWF protein expression in target cells (Fig. 1A,B) and the selected silencing dose 
was used in all of the following experiments. The reduction of vWF protein expression did not affect cell viability 
and growth in each experimental condition (Suppl. File: Fig. 1A).

RT-PCR analysis with efficiency in the range of 95–105% was performed to assess the vWF gene expression in 
PAOECs transfected with siRNA-vWF. vWF gene expression was markedly reduced in transfected PAOECs and 
the expression of the corresponding reference gene was revealed (Suppl. File: Fig. 2).

Gene silencing of endothelial vWF prevents Ang II-induced vWF upregulation. 24 h treatment 
with Ang II (100 nM) was used to mimic the microenvironment to which endothelial cells are exposed during 
cardiac dysfunction. As expected, Ang II induced an upregulation of vWF expression in wild-type cells, which 
was effectively prevented in vWF-knockdown cells (Fig. 1C,D). Ang II treatment and reduction of vWF protein 
expression did not affect cell viability and growth in each experimental condition (Suppl. File: Fig. 1B). In addi-
tion, ATR1 was similarly expressed in vWF-knockdown and wild type cells under stressed conditions (2.9 ±  1.6 
vs 2.0 ±  0.6).

Figure 1. Targeting vWF expression in PAOECs with siRNA. Dose-dependent effects of cell transfection with anti-
von Willebrand Factor (vWF) smart pool short interference RNA (siRNA). (A) representative western blot; (B) vWF 
levels are shown as arbitrary units of vWF (250 kDa, MW)/alpha-Tubulin (50 kDa, MW) ratio. (C) AngII-induced 
(100 nM for 24 h) vWF upregulation was prevented in vWF- knockdown cells. Representative western blot is shown. 
(D) Levels of vWF are expressed as arbitrary units of vWF (250 kDa, MW)/alpha-Tubulin (50 kDa, MW) ratio. Mock: 
mock treated cells; AngII: angiotensin II (100 nM AngII for 24 h); siRNA NT: non-targeting siRNA; siRNA vWF: 
anti-vWF siRNA. All measurements are mean ±  SD, n =  3 independent experiments performed in triplicate.  
* p <  0.05 vs. mock at rest; §p <  0.05 vs. AngII.
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Gene silencing of endothelial vWF prevents Ang II-induced ET-1 upregulation. In our culture 
system, we found that vWF downregulation did not significantly affect endothelial ET-1 expression in wild-type 
cells. Conversely, Ang II-induced ET-1 upregulation was disabled in vWF knockdown PAOECs (Fig. 2A,B).

Gene silencing of endothelial vWF did not affect eNOS protein expression and activity. An 
interaction between ET-1 and NO systems under the influence of Ang II has been described13. The chronic expo-
sure to Ang II reduced the levels of Ser1177-phospho-eNOS/eNOS ratio (Fig. 3A,C) regardless of an increase of 
the total eNOS expression (Fig. 3B) in wild-type PAOECs. Conversely, the treatment with siRNA-vWF reduced 
eNOS protein expression (Fig. 3B) without producing any significant changes in Ser1177-phospho-eNOS/eNOS 
ratio both in normal conditions and under chronic exposure to Ang II (Fig. 3C).

In order to better analysis the ability of PAOECs in producing NO, we performed DAF-FM diacetate stain-
ing of cells in each experimental condition at rest and following bradykinin stimulation. As shown in Fig. 3D, 
bradykinin-induced NO production was significantly increased in resting wild-type and vWF-knockdown cells. 
Even though NO production was significantly reduced in wild-type cells chronically exposed to Ang II, the 
response to bradykinin stimulation of vWF-knockdown cells was preserved in presence of Ang II (Fig. 3E).

Gene silencing of endothelial vWF prevents Ang II-induced O2− production, peroxynitrite 
levels, NOX expression and NADPH oxidase activity. As shown in Fig. 4A,B, the increase of O2− 
production induced by Ang II was prevented in vWF-knockdown cells. In addition, peroxynitrite levels, which 
were increased upon AngII treatment in control cells, remained unaltered in vWF-silenced cells (Fig. 4C,D). 
Similarly, the rise of Ang II-induced NADPH oxidase (NOX) activity detected in wild-type cells was prevented in 
vWF-knockdown cells exposed to Ang II (Fig. 4E).

Gene silencing of endothelial vWF prevents PMA-induced O2− production, peroxynitrite lev-
els, NOX and ET-1 expression. In order to better clarify the role of NOX in regulating the ET-1 expression 
in stressed silenced cells, we long-term incubated wild-type and vWF knockdown PAOECs with PMA, which 
increases NOX4-dependent O2−  generation29.

As shown in Fig. 5A,B, the increase of O2−  generation induced by PMA was prevented in vWF knockdown 
cells. Similarly, peroxynitrite levels, which were increased upon PMA treatment in control cells, remained unal-
tered in vWF-silenced cells (Fig. 5C,D).

PMA treatment caused an upregulation of both NOX2 (Fig. 5C,D) and NOX4 (Fig. 5E,F) expression, but such 
effects were prevented in vWF knockdown cells.

NOX4 expression was also detected by immunofluorescence (Suppl. File: Fig. 3). Interestingly, ET-1 expres-
sion was not increased in vWF knockdown cells during chronic treatment with PMA (Fig. 5G,H). No changes 
were revealed in PKC expression, cell viability and growth after PMA treatment (Suppl. File: Fig. 4).

Gene silencing of endothelial vWF prevents SAPK/JNK activation. To further elucidate how vWF 
knockdown prevent the PMA-induced increase in O2−  generation and NOX4 expression, we investigated the 
phosphorylation levels of SAPK-JNK, a known regulator of NOX4 activation pathway.

As show in Fig. 6A,B, PMA treatment significantly increased the pSAPK-JNK/SAPK-JNK ratio in control 
cells, while this effect was prevented by vWF silencing.

The activation of signal pathway investigated in PMA-treated cells was confirmed in PAOECs chronically 
exposed to AngII. In fact, vWF silencing prevented the rise of pSAPK-JNK/SAPK-JNK ratio induced by AngII 
(Fig. 6C,D). Finally, NOX2 and NOX4 protein levels of vWF-knockdown cells were not increased in presence of 
Ang II (Suppl. File: Fig. 5).

Figure 2. Effects of gene silencing of endothelial vWF on ET-1 protein expression. (A) vWF downregulation 
did not affect the endothelial expression of endothelian-1 (ET-1) in the presence of normal microenvironment, 
while strongly impairing ET-1 expression during chronic exposure to AngII. Representative western blot is 
shown. (B) Levels of ET-1 are expressed as arbitrary units of ET-1 (24 kDa, MW)/alpha-Tubulin (50 kDa, MW) 
ratio. siRNA NT: non-targeting siRNA; siRNA vWF: anti-vWF siRNA; AngII: angiotensin II. All measurements 
are mean ±  SD, n =  3 independent experiments performed in triplicate. * p <  0.05 vs. siRNA-NT at rest; 
#p <  0.05 vs. siRNA-vWF at rest; §p <  0.01 vs. siRNA-NT under AngII.
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Discussion
In the present study, we have demonstrated that endothelial vWF plays a key role in modulating ET-1 expres-
sion under stress. The rise in ET-1 levels induced by chronic exposure to Ang II was safely abolished in 
vWF-knockdown PAOECs. In fact, siRNA-based downregulation of endothelial vWF did not impair viability, 
growth and function of porcine aortic endothelial cells. Our data revealed, for the first time, that vWF plays a 
hitherto unsuspected pivotal role in attenuating the endothelial response to Ang II, which leads to endothelial 
dysfunction11.

Figure 3. Effects of gene silencing of endothelial vWF on NO production. (A) vWF downregulation reduced 
total eNOS protein expression in resting conditions and in cells exposed to AngII. Representative western 
blot is shown. (B) total eNOS protein expression in resting conditions and in cells exposed to AngII is shown 
as eNOS (140 kDa, MW)/alpha-Tubulin (50 kDa, MW) ratio. (C) vWF downregulation did not affect the 
phospho-eNOS/eNOS ratio under each microenvironment. * p <  0,05 vs siRNA-NT at rest; #p <  0.05 vs siRNA-
vWF at rest; §p <  0.05 vs siRNA-NT under AngII. (D) effect of vWF silencing on NO production (green) in 
resting, AngII-treated cells, and cells treated with AngII and Bradykinin. (E) Green fluorescence intensity was 
quantified as Arbitrary Units by confocal microscopy (see methods sections). SiRNA NT: non-targeting siRNA; 
siRNA vWF: anti-vWF siRNA; AngII: angiotensin II. * p <  0.05 vs siRNA-NT at rest; #p <  0.05 vs siRNA-vWF 
under AngII +  Bradykinin. All measurements are mean ±  SD, n =  3 independent experiments performed in 
triplicate.
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It has long been known that Ang II impairs eNOS activity10 and simultaneously increases endothelial levels of 
ET-19, O2− 30 and vWF31, leading to the development of vascular dysfunction12 and microthrombotic coronary 
occlusions19.

Although high levels of circulating Ang II, ET-1 and vWF in the human coronary sinus reflect the occurrence 
of coronary endothelial injury32, vWF blockade improves endothelial function in coronary patients25 by a so far 
unknown mechanism.

Figure 4. Effects of gene silencing of endothelial vWF on Ang II-induced O2− production, peroxynitrite 
levels and NADPH oxidase activity. (A) Representative images of DHE staining of wild type and vWF-
knockdown cell in resting conditions and after the exposure to AngII. (B) vWF downregulation prevented the 
increase of anion superoxide generation; the results are shown as number of DHE positive cells per sample; 
(C) vWF downregulation prevented the increase in peroxynitrite levels observed in control cells after exposure 
to AngII. In panel D, results are shown as arbitrary units of fluorescence intensity; (E) vWF downregulation 
prevented the increase in NADPH activity levels observed in control cells after exposure to AngII. Results are 
shown as arbitrary units of luminescence intensity. siRNA NT: non-targeting siRNA; siRNA vWF: anti-vWF 
siRNA; AngII: angiotensin II. All measurements are mean ±  SD, n =  3 independent experiments performed in 
triplicate. * p <  0.05 vs. control at rest; §p <  0.05 vs. siRNA-NT under AngII.
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Figure 5. Effects of gene silencing of endothelial vWF during NOX activation. (A) Representative images 
of DHE (dihydroethidium) staining of wild type and vWF-knockdown cell in resting conditions and after the 
exposure to PMA. vWF downregulation prevented the increase of anion superoxide generation; in panel B, the 
results are shown as number of DHE positive cells per sample; (C) vWF downregulation prevented the increase 
in peroxynitrite levels observed in control cells after exposure to PMA; in panel D, results are shown as arbitrary 
units of fluorescence intensity. (E) vWF downregulation prevented the increase in NOX-4 subunit expression 
observed in control cells after exposure to PMA. In panel F, levels of NOX-4 are expressed as arbitrary units 
of NOX-4 (70 kDa, MW)/GAPDH (37 kDa, MW) ratio. (G) vWF downregulation prevented the increase 
in NOX-2 subunit expression observed in control cells after exposure to PMA. In panel H, levels of NOX-2 
are expressed as arbitrary units of NOX-2 (67 kDa, MW)/GAPDH (37 kDa, MW) ratio. (I) vWF silencing 
downregulates ET-1 expression after exposure to PMA. ET-1 levels do not increase in response to PMA in vWF 
silenced cells. In panel L, levels of ET-1 are expressed as arbitrary units of ET-1 (24 kDa, MW)/alpha-Tubulin 
(50 kDa, MW) ratio. experiments performed in triplicate. * p <  0.05 vs. siRNA-NT at rest; #p <  0.05 vs. siRNA-
vWF at rest; §p <  0.01 vs. siRNA-NT under PMA.
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We therefore hypothesized that downregulation of endothelial vWF expression could protect endothelial cells 
against Ang II exposure through inhibition of ET-1 expression.

Our hypothesis is also supported by evidence that gene silencing of endothelial vWF enhances vasculogenesis33,  
which is one of the main adaptive response of mature endothelial cells to Ang II-induced oxidative damage34. 
Accordingly, we found that an effective downregulation of vWF protein expression (− 65 ±  2%), consistent with 
real time RT-PCR analysis, does not impair the viability and growth of our cells even during chronic exposure to 
Ang II.

Although the Ang II-induced upregulation of vWF is prevented in silenced cells, the vWF protein levels in 
stressed knockdown cells are similar to resting wild-type cells. Since Ang II does not affect vWF release from 
endothelial cells35, it is conceivable that the higher vWF levels in knockdown cells during stress rather than at rest 
depend on the reduction in vWF degradation induced by Ang II36. Our suggestion is well supported by previous 
clinical observations showing how the activity of ADAMTS13, a zinc containing metalloprotease that cleaves 
vWF, is reduced in malignant hypertension37 where endothelial cells are chronically exposed to high levels of 
Ang II38.

Resting ET-1 production in vWF-knockdown cells is similar to wild-type cells, but Ang II-induced ET-1 
expression is abolished in PAOECs transfected with siRNA anti-vWF. It is conceivable that Ang II might syner-
gize with ET-1 gene downregulation. In fact, the trigger of Ang II receptors activates PKC39, which even induces 
neutral endopeptidase 24.11, a membrane-bound metallopeptidase that cleaves prepro-ET140. The cleavage of 
prepro-ET1 may enhance the deficiency of de novo synthesis of ET-1 by reducing its levels below baseline. Our 
data candidate vWF as a new upstream modulator of endothelial response to Ang II as ATR1 mRNA levels are 
similar in stressed wild-type and knockdown cells.

Since NO is important for endothelial cells viability and may counteract ET-1 expression15, we first have eval-
uated eNOS activity in each experimental condition. Despite the relative eNOS expression is significantly reduced 
in knockdown cells, the levels of phospho-Ser1177eNOS/eNOS ratio, a major hallmark of eNOS activity41, is 
similar in both cell types even during Ang II treatment. It is reasonable that compensatory mechanisms may con-
tribute to the maintenance of eNOS enzymatic activity. In order to support our hypothesis, we have also measured 
the levels of NO produced in both wild-type and vWF knockdown cells after stimulation by bradykinin, a peptide 
that induces NO production28. We found that NO response to bradykinin in vWF-knockdown cells is preserved 

Figure 6. Effects of gene silencing of endothelial vWF on SAPK/JNK activation. (A) vWF downregulation 
prevented the increase in SAPK-JNK activation observed in control cells after exposure to PMA; SAPK-JNK, 
pSAPK-JNK (50 kDa, MW), GAPDH (37 kDa, MW). (B) SAPK-JNK activation is expressed as arbitrary units 
of pSAPK-JNK/SAPK-JNK ratio. All measurements are mean ±  SD, n =  3 independent experiments performed 
in triplicate. * p <  0.05 vs. siRNA-NT at rest; #p <  0.05 vs. siRNA-vWF at rest; §p <  0.01 vs. siRNA-NT under 
PMA. (C) vWF downregulation prevented the increase in SAPK-JNK activation observed in control cells 
after exposure to AngII; SAPK-JNK, pSAPK-JNK (50 kDa, MW), GAPDH (37 kDa, MW). (D) SAPK-JNK 
activation is expressed as arbitrary units of pSAPK-JNK/SAPK-JNK (50 kDa, MW) ratio. All measurements are 
mean ±  SD, n =  3 independent experiments performed in triplicate. * * p <  0.05 vs. siRNA-NT at rest. siRNA 
NT: non-targeting siRNA; siRNA vWF: anti-vWF smart pool siRNA; AngII: angiotensin II; PMA: phorbol 
12-myristate 13-acetate; SAPK/JNK: stress-activated kinase/c-Jun N-terminal kinase.
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in each experimental condition. Our results strongly support the hypothesis that eNOS activity is preserved in 
vWF knockdown cells and plays more relevant role in endothelial NO production than total eNOS protein levels, 
as previously demonstrated by Iwakiri and colleagues42. It is noteworthy that endothelial vWF plays a key role in 
preventing Ang II-induced ET-1 expression independently of changes in NO production. We cannot exclude that 
other mechanisms are involved in regulating vWF/ET-1 pathway under stress.

It is well known that Ang II increases the levels of endothelial O2− 36, which is a strong activator of the ET-1 
expression36,43. In our study, Ang II-induced O2−  production is increased in wild-type but not in knockdown 
cells. To best of our knowledge, NADPH oxidase (NOX) is the main modulator of O2−  rate of production in 
endothelial cells exposed to Ang II36. Surprisingly, we found that the increase of Ang II-induced NOX activity is 
prevented in vWF-knockdown cells.

In order to better assess the positive ratio between O2−  and NO production in silenced cells, we measured 
intracellular levels of peroxynitrite, a highly reactive intermediate known to induce serious oxidative damage at 
higher concentrations44. The chronic exposure to AngII or PMA has stimulated a marked increase of peroxyni-
trite levels in wild-type cells, which is prevented in vWF-knockdown cells.

Unraveling the mechanisms underlying vWF-dependent modulation of NOX activity and O2−  production, 
we have chronically treated additional wild type and knockdown cells with PMA, which directly activates the 
expression of NOX subunits30 and simultaneously reduces eNOS activity through dephosphorylation of Ser-
1177-eNOS45. Therefore, PMA is an appropriate stimulus control in order to investigate the role of vWF on NOX 
activity during simultaneous exposure to eNOS deficiency and superoxide overload.

NOX-2 and NOX-4 are the most expressed NOX isoforms in endothelial cells46 and the main source of super-
oxide in Ang II-stimulated cells47–49. Compared to wild type cells, long-term PMA treatment did not increase the 
O2−  levels in vWF-knockdown cells showing lower levels of eNOS activity and ET-1 protein expression, as well 
as lower levels of peroxynitrite.

Interestingly, we found similar levels of NOX2 and NOX4 expression in vWF knockdown cells exposed to 
PMA or AngII. In fact, the lack of NOX2 and NOX4 expression is proportionally related to deficiency of NADPH 
oxidase activity in endothelial cells50. Taken together, our results highlight that endothelial vWF plays a key role 
in attenuating NADPH oxidase activation through the modulation of NOX2 and NOX4 expression, even if NOX2 
is not always involved in increasing cardiac oxidative/nitrosative stress51. Although, vWF downregulation blocks 
the superoxide-induced ET-1 expression in stressed endothelial cells. How vWF deals with distinct NOX isoforms 
remains poorly understood.

It has already demonstrated that vWF is essential to activate c-Jun amino-terminal kinase (SAP/JNK)52, which 
is required for activation of c-jun53, a well-known activator of NOX4 promoter region50,54. In our study, we have 
demonstrated that SAPK/JNK is not phosphorylated in stressed vWF-knockdown cells exhibiting lower levels of 
O2−  and ET-1.

In addition, previous study has reported that NOX2 expression is related to activation of JNK by phosphoryl-
ation55. Our results suggest that inhibition of SAPK-JNK phosphorylation may interfere with endothelial expres-
sion of NOX4 and NOX2 as well.

Therefore, by means of blocking superoxide-driven SAPK-JNK activation, vWF gene silencing may prevent 
the onset of the self-perpetuating loop of vascular dysfunction due to enhanced NOX activation by ET-114 during 
continuous exposure to Ang II (the proposed mechanism is summarized in Fig. 7).

Limitations of the study. Even if PAOECs are a well-established in vitro model to investigate cellular 
response to vascular insult56, clinically relevant in vivo studies are mandatory to confirm our findings. However, 
our results support previous studies demonstrating that sudden reduction in coronary blood flow following acute 
injury is prevented in von Willebrand’s Disease (vWD) pigs57 and the endothelium of vWD pigs is protected 

Figure 7. Scheme of the proposed mechanism of vWF-mediated regulation of ET-1 expression. (A) Scheme 
of mechanism leading to the onset of ET-1/O2−  “vicious circle” in wild type endothelial cells chronically 
exposed to AngII. (B) Scheme of proposed mechanism of gene silencing of endothelial vWF in disabling 
ET-1/O2−  “vicious circle” through inhibition of SAPK/JNK activation by Ang II. AngII: angiotensin II; O2− : 
superoxide anion; ET-1 endothelin 1; vWF: von Willebrand factor; SAPK/JNK: stress-activated kinase/c-Jun 
N-terminal kinase.



www.nature.com/scientificreports/

9Scientific RepoRts | 6:30048 | DOI: 10.1038/srep30048

from developing endothelial lesions during intake of high-cholesterol diet58, which is a well-established source of 
oxidative/nitrative stress51.

Conclusions
This is the first study to show in vitro data demonstrating that gene silencing of endothelial vWF prevents Ang 
II-induced ET-1 upregulation without interfering with the ability of porcine endothelial cells to produce NO and 
to sense Ang II. Lower ET-1 levels in stressed knockdown PAOECs is due to lower responsiveness of NOX to Ang 
II, which decreases the endogenous production of O2− , a major trigger of endogenous ET-1 synthesis. NOX 
unresponsiveness to common activators is driven by the blocking of SAPK/JNK pathway due to lack of vWF, 
which normally mediates NOX4 expression and increases superoxide production.

Our findings reveal a hitherto unsuspected role of vWF in the modulation of vascular tone and will be helpful 
to design a novel therapeutic approach in the clinical management of prevention of Ang II-induced vascular 
endothelial dysfunction.

Methods
Reagents. Ang II (Sigma Chemical Co, MO, USA) was dissolved in sterile water and stored at − 20 °C. 
Phorbol 12-myristate 13-acetate (PMA) (Sigma Chemical Co, MO, USA) was dissolved in dimethyl-sulfoxide 
(DMSO) at a concentration of 62 mg/ml and stored at − 20 °C until needed for experiments. Bradykinin (Sigma 
Chemical Co, MO, USA), a well-known trigger of NO production28, was dissolved in water at a concentration 
of 1 mM and stored at − 20 °C until further use. DAF-FM (4-Amino-5-Methylamino-2′ ,7′ -Difluorofluorescein) 
diacetate (Sigma Chemical Co, MO, USA) was dissolved in DMSO at a concentration of 5 mM and stored at 
− 20 °C in the dark until further use.

Endothelial cell culture. Primary porcine aortic endothelial cells (PAOECs) were purchased from Cell 
Applications, Inc. (San Diego, CA, USA) and cultured in specific porcine endothelial cell growth medium 
(PECGM) (Cell Applications, Inc., CA, USA) supplemented with 5% fetal bovine serum in humidified air with 
5% CO2 at 37 °C. Cell were seeded initially into 75 cm2 tissue culture flasks and grown until they reached conflu-
ence, usually 5–7 days. Complete medium was replaced every 2 days. All experiments were performed in cells 
between passages 2 and 8.

RNA interference. RNA interference was carried out using siRNAs that specifically target vWF (10 or 25 nM 
final concentration) (siGENOME SMARTpool M-009754-01-0005 human vWF, Dharmacon-Fisher Scientific, 
Italy) (Suppl. File:Table 1). Alternatively, control cells were transfected with non- targeting scrambled siRNA 
(siRNA-NT; silencer negative control siRNA; Shanghai GenePharma Co,Ltd., China):-5′ -UUC UCC GAA CGU 
GUC ACG UTT-3′ ; Cell cultures between 80% and 90% confluence were transiently transfected with selected 
siRNAs using INTERFERin (Polyplus -transfection, France) following manufacturer’s instructions. After 5 h of 
cell incubation with transfection cocktail, PAOECs were incubated in fresh growth medium for 48 h. Western blot 
and Real-Time PCR assay were used to assess the efficiency of siRNAs transfection.

Experimental protocol. At 24 h of incubation after siRNA-based transfection, PAOECs were washed twice 
with phosphate buffered solution (PBS) and treated for the following 24 h with vehicle (sterile water) or AngII 
(100 nM). The dose of Ang II was selected in accord to previous studies59. Cells transfected with siRNA-NT 
(wild-type cells) were treated with similar dose of AngII. In order to evaluate the ability of endothelial cells to 
produce nitric oxide (NO), wild-type and vWF-knockdown PAOECs were transiently stimulated with bradykinin 
(30 nM for 10 min), as previously described28.

In additional experiments, confluent PAOECs transfected with siRNA-NT or siRNA-vWF were long-term 
treated with PMA (5 nM/48 h), a potent activator of NOX4 gene expression, which increases endogenous O2−  
production29. The final concentration of DMSO (PMA vehicle) in the culture medium was less than 0.1%.

Western blotting assay. Cell pellets were lysed in RIPA buffer containing protease and phosphatase inhib-
itors (Thermo Fisher Scientific, MA, US). Homogenates were then centrifuged at 10000 rpm for 10 min at 4 °C 
to remove nuclei and cell debris. All samples were stored at − 80 °C until use. Total protein concentration was 
assessed using Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, MA, US). Equal amounts of protein 
were resolved on 12% and 15% SDS-polyacrylamide gel and transferred to polyvinylidene difluoride (PVDF) 
membrane. Membranes were blocked with 5% milk in TBS/Tween (0, 01%) at room temperature for 1 hour, and 
then incubated with primary antibodies at a predetermined concentration overnight at 4 °C. Primary antibodies 
were used to detect vWF (1:1000; Abcam Inc., Cambridge, UK), prepro-ET-1 (1:500; Abcam Inc., Cambridge, 
UK), eNOS (1:1000; BD Transduction Laboratories, CA, USA), phospho-Ser1177-eNOS (1:1000; Cell signaling 
Technology, USA), alpha-tubulin (1:1000, Thermo Fisher Scientific, MA, US), GAPDH (Thermo Fisher Scientific, 
MA, US), NOX-2 (1:1000, Abcam Inc., Cambridge, UK), NOX4 (1:1000; Novus Biologicals, Littleton CO), SAPK/
JNK (1:1000; Cell Signaling Technology, USA) and Phospho-SAPK/JNK (Thr183/Tyr185) (1:1000; Cell Signaling 
Technology, USA) .

Prepro-ET1 is a proper hallmark of ET-1 gene transcription which is the main regulator of its expression. 
The ratio of phospho-Ser1177eNOS (p-eNOS) and total eNOS, a hallmark of eNOS activity41, was deter-
mined as previously described60. After incubation with the abovementioned antibodies, and rinsing with 
TBS/Tween 20 (0.01%) 3 times for 10 min, the membranes were then incubated with appropriate horserad-
ish peroxidase-conjugated (HRP-conjugated) anti-rabbit or anti-mouse secondary antibodies (Abcam Inc., 
Cambridge, UK) for 1 hour at room temperature. Specific protein bands were detected using Pierce ECL Western 
blotting substrate (Thermo Fisher Scientific, MA, US). Protein bands were quantified using ImageJ software.
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NO production fluorescent assay. DAF-FM diacetate staining for the determination of intracellular 
nitric oxide bioavailability in PAOEC cells was performed as described elsewhere61. Briefly, PAOECs were seeded 
on WillCo-dish®  glass bottom dishes (Willco Wells, Amsterdam, NL). Wild-type (siRNA-NT) and siRNA-vWF 
transfected cells were treated for 24 h with 100 nM AngII or saline solution (Vehicle) and then stimulated with 
bradykinin, as abovementioned. Unstimulated cells served as the negative control. In order to assess NO produc-
tion, cells were loaded with 10 uM of the NO-sensitive fluorescence probe DAF-FM diacetate (Sigma Chemical 
Co, MO, USA) in the dark at 37 °C for 30 min; cells were then washed and incubated for further 15 min in fresh 
medium at 37 °C to allow complete de-esterification of the probe. At the end of an experiment, fluorescence was 
detected within 10 fields for each condition and analyzed with a Leica DM IRE 2 confocal microscope with a 
setting of 40x magnification. Relative fluorescence intensity per cell was quantified using ImageJ software. The 
experiments were performed in triplicate.

Superoxide Anion assay. Endothelial superoxide generation was determined by staining PAOECs with 
fluorescent-labeled dihydroethidium (DHE; Invitrogen, CA, USA). DHE is cell permeable and reacts with super-
oxide to form ethidium, which in turn intercalates with DNA and produces nuclear fluorescence.

Cells were treated with 5 mol/L DHE in phosphate buffered saline for 30 min at 37 °C as previously 
described61,62. Positive nuclear DHE staining is an indicator of superoxide generation in cells. In general, 5 to 6 
images of cells were captured randomly by a Leica DM2500 fluorescence microscope with a setting of 40x magni-
fication. The total number of nuclear DHE positive cells in all images was counted by using threshold ImageJ algo-
rithms to discriminate the features of interest from background. Individual images were converted to grayscale 
by RGB splitting, and the red channel was used for DHE staining. Images were thresholded to separate positively 
stained areas, which were then sujected to cell counting. The colour threshold was set the same for each image.

NADP/NADPH activity luminescent assay. The NADP/NADPH-Glo™  Assay (Promega Italia S.R.L., 
Milan, Italy) was used to detect total oxidized and reduced nicotinamide adenine dinucleotide phosphates in 
PAOECs. Bioluminescent detection assay was performed following manufacturer’s instruction. Briefly, PAOECs 
were seeded at the same concentration (104 per well) in triplicate in 24 well plates for 6 h prior to the addition 
of an equal volume (50 μ l) of the NADP/NADPH-Glo TM detection reagent to each cell suspension (50 μ l). The 
luminescence was read after incubation with the detection reagent for 60 min at room temperature on a GloMax 
luminometer (Promega Italia S.R.L., Milan, Italy). All readings were performed in triplicate, and the graph shows 
the result of three independent experiments.

Fluorimetric Intracellular Peroxynitrite Assay. Intracellular levels of peroxynitrite were determined 
using Cell Meter Fluorimetric Intracellular Peroxynitrite Assay kit (AAT Bioquest Inc., Sunnyvale, CA,US), 
according to manufactorer’s instructions.

DAX-J2™  PON Green is developed as an excellent fluorescent probe, which can specifically react with inter-
cellular ONOO− to generate a bright green fluorescent product. Briefly, after the silencing protocol and treat-
ment with AngII or PMA, cells were washed, tryspinized, resuspended in fresh complete medium, and incubated 
with DAX-J2 PON probe, for 1 h at 37 °C. Finally, cell fluorescence was quantified by flow cytometry using a 
FACScalibur (BD biosciences, San Jose, CA, US).

Statistical Analysis. The statistical analysis was performed using GraphPad Prism ver. 5. All results are 
presented as mean ±  SD. All experiments were performed in triplicate. Statistical comparisons were made by 
analysis of variance (ANOVA) and Bonferroni test was used as the post-hoc test. p <  0.05 was considered statis-
tically significant.
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