
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 2, MAY 2014 903

Experimental Evaluation and Selection of Data
Consistency Mechanisms for Hard Real-Time

Applications on Multicore Platforms
Gang Han, Haibo Zeng, Member, IEEE, Marco Di Natale, Senior Member, IEEE, Xue Liu, Member, IEEE, and

Wenhua Dou

Abstract—Multicore platforms are increasingly used in real-time
embedded applications. In control systems, including automotive,
avionics, and automation, resources shared by tasks on different
cores need to be protected by mechanisms that guarantee access
in a mutually exclusive way with bounded worst case blocking
time. The evaluation of the tradeoffs among the possible protocols
for mutual exclusion requires an estimate of their implementation
overheads. In this paper, we summarize the possible protection
mechanisms and provide code implementations in real-time oper-
ating systems executing on a multicore platform. We discuss the
tradeoffs among the different mechanisms based on experimental
evaluation of their memory and timing overheads as well as their
impact on system schedulability. We propose a heuristic algorithm
to select the optimal combination of mechanisms for shared re-
sources in systems with time constraints to minimize their memory
requirements. The effectiveness of the optimization procedure
is demonstrated by synthetic systems as well as industrial case
studies.

Index Terms—Data consistency, flow preservation, hard
real-time, multicore, multiprocessor stack resource policy
(MSRP), multiprocessor priority ceiling protocol (MPCP),
wait-free, optimization.

I. INTRODUCTION

M ULTICORE architectures have become commonplace
in general computing and multimedia applications and

are rapidly advancing in other typical embedded computing
systems, including automotive and controls. Partitioning the
computing tasks over multiple (on-chip) cores presents several
advantages with respect to power consumption, reliability, and
scalability, but it often requires significant changes to the appli-
cation tasks to leverage the availability of parallel processing.

Manuscript received September 03, 2012; revised March 24, 2013, June 20,
2013; accepted October 31, 2013. Date of publication November 12, 2013; date
of current version May 02, 2014. Paper no. TII-12-0665.
G. Han and W. Dou are with the School of Computer Science, Na-

tional University of Defense Technology, Changsha 410073, China. E-mail:
ganghan@nudt.edu.cn.
H. Zeng is with the Department of Electrical and Computer Engi-

neering, McGill University, Montreal QC, Canada H3A 0E9 (e-mail:
haibo.zeng@mcgill.ca).
M. Di Natale is with Scuola Superiore Sant’Anna, Pisa 56124, Italy (e-mail:

marco@sssup.it).
X. Liu is with the School of Computer Science, McGill University, Montreal

QC, Canada H3A 0E9 (e-mail: xueliu@mcgill.ca).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TII.2013.2290585

In real-time embedded (control) systems, especially those
following a model-based design, the migration to multicore
architectures brings additional challenges. Not only do the
worst case timing properties of inter-core communication and
synchronization primitives need to be accurately estimated,
but communication primitives that can provably preserve the
properties of the functional models (flow preservation) also
need to be developed and evaluated with respect to their time
and memory performance.
In multicore architectures, real-time scheduling techniques

are classified into partitioned, global, or hybrid [15]. Under
partitioned scheduling, tasks are statically assigned to proces-
sors, and the tasks within each processor are scheduled by a
local scheduler. Under global scheduling, all tasks are sched-
uled by a single scheduler. Task management can be done using
a single queue or more complex queue systems [21]. Tasks are
dynamically allocated to cores (inter-processor migration is al-
lowed), and job migration results in significant overheads [22].
On the other hand, fully partitioned approaches may result in
under-utilization, where no single processor has sufficient spare
processing time to schedule further tasks even if in total a large
amount of capacity is unused [5]. Hybrid scheduling combines
the strengths of both partitioned and global scheduling. It can be
further categorized into semi-partitioned scheduling and clus-
tering. In semi-partitioned scheduling, most tasks are allocated
to specific processors to reduce the number of migrations, while
other tasks are allowed to migrate to balance processors uti-
lization. Clustering groups a smaller number of faster proces-
sors into a cluster, and each cluster is scheduled with a different
global scheduler. Interested readers may refer to [5] for a survey
on the topic of hard real-time scheduling for multicore systems.
Partitioned scheduling is adopted and supported by do-

main-specific standards like AUTOSAR [1] and by commercial
real-time operating systems (e.g., VxWorks, LynxOS, and
ThreadX). In addition, most automotive controls are designed
with static priority-based scheduling of tasks. The OSEK [6]
and AUTOSAR [1] operating system standards support this
model. Other scheduling policies, including Earliest Deadline
First (EDF) and its multiprocessor versions, while quite popular
in the research community, are not supported by the industry.
In this work, we assume partitioned scheduling with static
priority, mostly for its practical relevance. Moreover, it should
be noted that the utilization bounds available from the real-time
theory for global scheduling policies are still quite pessimistic

1551-3203 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

904 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 2, MAY 2014

(compared with their counterparts for partitioned scheduling,
which offer necessary-and-sufficient tests) [15].
In this work, we are interested in applications with hard real-

time constraints, where the worst case response time of the com-
putation task must be predictable based on the worst case exe-
cution time of its code. The response time of a task clearly de-
pends not only on the CPU scheduling policy and task priority,
but also on stalls when accessing shared (locked) resources. In
real-time control systems, blocking times occur while accessing
shared resources (i.e., a mailbox that is used for data communi-
cation) which are already owned by some other task. Hence, the
mechanisms for ensuring the consistency of shared data need
to be carefully designed, so that they guarantee an upper bound
on the blocking time. In multicore architectures, intra-core as
well as inter-core shared resources need to be suitably protected
(possibly using different type of access policies).
Moreover, in model-based design development flows, which

are very popular today in the automotive, avionics, and con-
trol domains [33], [34], [36], the signal flow of the implementa-
tion (the sequence data values exchanged over time among two
system functions) should match the one defined in the functional
Synchronous Reactive model [33], [35]. In the following, we
summarize the mechanisms for data consistency in multicore
systems and analyze the subset of mechanisms that can guar-
antee flow preservation. A classification of protocols with a de-
tailed discussion can be found in [37]. Protocols for predictable
access to nested global critical sections are discussed in [41].

A. Data Consistency

Several protocols have been proposed in the past for sup-
porting communication over shared memory or, in general, pro-
tecting shared resources. The available mechanisms belong to
three main categories, given here.
• Lock-based: when a task wants to access the shared re-
source (such as a shared datum) while another task holds
the lock, it blocks. When the lock is released, the task is
restored in the ready state and can access the resource. In
multicore architectures with global locks, two options are
possible. The blocked task is suspended and transferred to a
(global) waiting list to allow another task to execute, or the
task may spin on the lock (busy-waiting) [26], [17], [12].

• Lock-free: each reader accesses the communication data
without blocking. At the end of the operation, it performs
a check. If the reader realizes there was a possible concur-
rent operation by the writer, it repeats the operation. The
number of retries can be upper bounded [18], [7].

• Wait-free: when the global shared resource is a commu-
nication buffer (the case of interest for our study), another
possibility is wait-free methods. The writer and readers are
protected against concurrent access by replicating the com-
munication buffer (the memory used to hold the commu-
nication data) and by leveraging information on the time
instant and order (such as priority and scheduling) of the
access to the buffer [14], [19].

Among lock-based mechanisms, the multiprocessor priority
ceiling protocol (MPCP) [26] and the multiprocessor stack re-
source policy (MSRP) [17] are the most popular for guaran-
teeing a predictable worst case blocking time. Their behavior

can be radically different depending on the execution time of the
global critical sections. The flexible multiprocessor locking pro-
tocol (FMLP) [12] has been proposed to combine the strengths
of the two by managing short resource requests using a busy-
wait mechanism (as in MSRP) and long resource requests using
a suspension approach (as in MPCP). Parallel-PCP is proposed
in [16] for tasks scheduled using a global fixed-priority pre-
emptive algorithm. The multiprocessor hierarchical synchro-
nization protocol (MHSP) [25] uses the hierarchical scheduling
framework to handle both partitioned and global scheduling ap-
proaches. The main subject of the papers is the clustering of
tasks into components so that all communications occur be-
tween tasks allocated onto the same core. Each component is
scheduled with a lower level scheduler, while the higher level
system scheduler is either the global or the core scheduler. In
this case, there are simply no data resources shared among cores,
thus there is no need for inter-core data synchronization mech-
anisms. However, as acknowledged by the authors, in several
cases, their method is simply not applicable. The multiprocessor
synchronization protocol for real-time open systems (MSOS)
[25] is proposed as a suspension-based synchronization protocol
for independently developed systems on multicore platforms.
Each core supports a set of applications developed with pos-
sibly different techniques (and scheduling policies). Since our
focus is on static priority systems with partitioned scheduling,
we only consider MPCP and MSRP in our implementation and
comparison, the other mechanisms are not applicable or similar
in behavior (FMLP).
In wait-free protocols, the only shared resource is the buffer

index, which can be updated atomically or with a very short crit-
ical section. However, this comes at the price of replicating the
resource, which may be costly for large communication mail-
boxes or altogether impossible for physical shared resources
(such as I/O or dedicated hardware peripherals).
The performance tradeoffs between spin-based and suspen-

sion-based synchronization protocols have been studied in sev-
eral papers. Brandenburg et al. [13] show that, even under an
assumption of zero preemption costs, spin-based protocols im-
pose a smaller scheduling penalty than suspension-based. In re-
sponse, Lakshmanan et al. [22] developed new schedulability
analysis. With the new analysis, the authors found that [22] “the
suspension-based protocols in fact behave better than spin under
low preemption costs (less than 160 s per preemption) and
longer critical sections (15 s)” than those studied in [13].
Related topics also include algorithms for the synthesis of

tasks from functional models [38], [39] and the allocation
of tasks to cores in a multicore platform [40]. A field-pro-
grammable gate array (FPGA) implementation of wait-free
semantics-preserving mechanisms like those discussed in this
paper is presented in [42].
There is also a large body of work on synchronization

protocol for many-core embedded architectures (Cell, STM
P2012/STHORM, NUMA, and GPUs). For example, the
authors of [23] perform a scalability analysis targeting syn-
chronization mechanisms on multicluster embedded NUMA
architectures, where each cluster is interconnected through a
scalable communication medium [typically a network-on-chip
(NoC)]. The work in [24] explores and compares synchroniza-
tion latencies for various network sizes, topologies, and lock

HAN et al.: EVALUATION AND SELECTION OF DATA CONSISTENCY MECHANISMS FOR APPLICATIONS ON MULTICORE PLATFORMS 905

position in the NoC. The work in [29] presents hardware imple-
mentations of lock-based synchronization mechanisms. While
interesting, these works present (scalable) communication
mechanisms characterized by their average execution times.
Consequently, none of these approaches are suitable for worst
case formal analysis as required by hard real-time systems. In
addition, we consider multicore architectures that are typical
of control applications (automotive, avionics, automation) and
real-time systems, with memory shared among cores (typically
2 to 16). Scalability to many-core systems (GPUs, many-core
NUMA, NoC, or other massively parallel systems) is not the
focus of our work. Finally, our purpose is not the invention of
new resource-sharing protocols, but rather the synthesis of an
optimal selection of existing ones, based on worst case timing
and memory performance.

B. Flow Preservation

Data consistency in a shared communication buffer is a
typical requirement for hand-written code, but is not sufficient
for software developed using a Model-based design flow, very
popular in automotive, avionics, and controls domains, because
of the possibility to verify the functionality by simulation and
formal methods. Typically the functional model is defined
according to the semantics of Synchronous Reactive (SR)
models [11], like those created in MathWorks Simulink [4].
The functional model is a network of communicating blocks.
Each block reads a set of (discrete-time) input signals and pro-
duces a set of output signals. Any block for which the output
is directly dependent on the input (i.e., with direct feedthrough
input) cannot execute until the blocks driving its input have
executed. The set of topological dependencies implied by the
direct feedthrough relation defines a partial order of execution
among blocks.
When Simulink simulates a model, it orders all blocks based

on their topological dependencies and chooses one total execu-
tion order that is compatible with the partial order. Then, the
virtual time is initialized at zero. The simulator engine scans
the blocks and executes the ones for which the virtual time is an
integer multiple of their period. Executing a block means com-
puting the output function, followed by the state update func-
tion. When the execution of all of the blocks that need to be
triggered at the current virtual time instant is completed, the
simulator advances the virtual clock by one base rate cycle (the
greatest common divisor of block periods) and resumes scan-
ning the block list.
The code generation framework must produce an implemen-

tation with the same behavior (preserving the semantics) of the
simulation. In multitask implementations, the run-time execu-
tion of themodel is performed by running the code in the context
of a set of threads under the control of a priority-based real-time
operating system (RTOS). Fig. 1 shows the difference between
the model behavior (top of the figure) and a possible multi-
task implementation. The th instance of block should use
as input the output of the th instance of .
However, if blocks are executed by tasks as in the bottom part
of the figure, the execution of may be delayed by inter-
ferences from higher priority tasks (striped box), resulting in

. Even worse, if the read/write to the com-
munication data is not atomic, preemption may compromise the

Fig. 1. Issues with the preservation of communication flows (the periods of the
blocks are).

data integrity. To solve these problems, wait-free mechanisms
can be adapted to provide flow preservation [33] (detailed in
Section II-C).

C. Our Contributions

In this paper, we consider the data synchronization protocols
for systems with static priority and partitioned scheduling. To
the best of our knowledge, previous comparisons like [13]
focus on dynamic priority scheduled systems. Other studies
(e.g., [17], [22]) only compare lock-based mechanisms and
do not attempt an evaluation of alternative implementations
using wait-free methods. The protocol behaviors are strongly
dependent on overheads and especially on the length of critical
sections, but there is limited experimental data on what is the
expected length of a critical section when accessing a shared
memory resource in an actual embedded platform. In order to
perform an experimental comparison of the performance of
different synchronization protocols, we implemented MPCP,
MSRP, and wait-free methods on Erika [2], an open-source
RTOS which has been ported to the MPC5668G dual-core
platform [5] for automotive applications. For demonstrating the
generality of the proposed mechanisms, we also implemented
them in another open-source RTOS, Trampoline [10], on the
same dual-core platform. In addition, our paper provides two
additional contributions. First, we propose an algorithm that
leverages the complementary characteristics of the lock-based
and wait-free protection mechanisms to select a combination
of protection mechanisms that satisfies the schedulability
constraints and is memory-efficient. Second, we discuss the im-
plementation options when the system requires the preservation
of communication flows derived from a functional model, and
we compare the possible solutions.
The remainder of this paper is organized as follows. In

Section II, we discuss the mechanisms for data consistency in
multicore systems and analyze the subset that can guarantee
flow preservation. In Section III, we describe their implemen-
tation on the Erika and Trampoline RTOSs for the MPC5668G
multicore platform. In Section IV, we evaluate and compare the
schedulability and memory performance of the mechanisms on
both RTOSs. In Section V, we use industrial case studies and
randomly generated task sets to discuss the tradeoffs of these
mechanisms and define an optimization procedure to minimize
the memory usage while guaranteeing schedulability. Finally, a
conclusion and future work are discussed in Section VI.

906 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 2, MAY 2014

II. MECHANISMS FOR DATA SYNCHRONIZATION

We evaluate and compare wait-free methods and semaphore
locks. Lock-free mechanisms have been introduced for the sake
of providing a classification of methods for data consistency.
However, their use in hard real-time systems and model-based
design is inappropriate, due to the large bound on the worst case
blocking time and high time penalty (because of the need to
repeat the operation in case of a concurrent access). As a matter
of fact, there has been very little work on the use of lock-free
methods for hard real-time systems since the late 1990s.
In the following, we summarize the lock-based and wait-free

mechanisms together with their associated timing analysis. We
assume that each task is activated by a periodic or sporadic
event stream with period or minimum interarrival . The exe-
cution of task is defined as a set of alternating critical sections
and sections in which the task executes without using a (global
or local) shared resource, defined as normal execution segments.
The worst case execution time (WCET) is defined by a tuple

, where is the
number of normal execution segments, is the number
of critical sections, is the WCET of the th normal
execution segment (critical section) of , and denotes the
nominal priority of (the higher the number, the lower the pri-
ority, thus means has a higher priority than), and
its core. The global shared resource associated with the th

critical section of is . The WCET of is

(1)

A. Lock-Based Mechanisms

The MPCP [26] is the first multiprocessor extension of the
priority ceiling protocol (PCP) [27]. In MPCP, tasks use their
nominal priorities for normal execution but inherit the ceiling
priority of the shared resource whenever they execute a critical
section on it. The ceiling priority of a local resource is defined
as the highest priority of any task that can possibly use it. The
priority ceiling of a global resource must be higher than any
task priority in the system. Thus, a base priority higher than any
task is applied to all global ceilings. When tasks try to access a
locked global resource, they are suspended and added to a pri-
ority queue. The suspension of a task blocked on a global re-
source allows other tasks (possibly with a lower priority) to be
executed and possibly lock other resources. The worst case re-
mote blocking time of a task is a function of the duration of crit-
ical sections for other tasks, and does not depend on the normal
execution segments.
TheMSRP [17] is a multiprocessor synchronization protocol,

extended from the stack resource policy (SRP) [8]. For local
resources, the protocol is the same as SRP. Tasks are allowed
to access local resources through nested critical sections, but
global critical sections cannot be nested. A task that fails to lock
a global resource keeps spinning (instead of suspending as in
MPCP), thus keeping its processor busy. To minimize the spin
lock time (wasted CPU time), tasks cannot be preempted when

executing a global critical section. MSRP uses a first-in-first-out
queue (as opposed to the priority-based queue in MPCP) for
tasks that fail to lock global resources.
The FMLP [12] is a flexible approach which combines the

strengths of MPCP and MSRP. It manages short resource re-
quests by a busy-wait mechanism (as in MSRP) and long re-
quests using suspension (as in MPCP). The threshold to deter-
mine whether a resource access is long or short is specified by
the user. Since FMLP allows resource requests be nested, dead-
lock is prevented by grouping resources and allowing only one
task to access resources in any given group at any time. Each
group contains either only short (protected by a nonpreemptive
queue lock) or only long (protected by a semaphore) resources.
The mixture of spin lock and suspension makes the analysis

of FMLP complex. For simplicity, in the following, we only
summarize the timing analysis of MSRP and MPCP. With re-
spect to memory, MPCP is a suspension-based mechanism and
does not allow to share the stack space. With MSRP, the exe-
cution of all tasks allocated to the same core can be perfectly
nested (once a task starts execution, it does not block; it can
only be preempted by higher priority tasks which finish before
it resumes). The tasks can share the same stack.
1) Timing Analysis of MPCP [22]: In MPCP, a global shared

resource is associated with a remote priority ceiling ,
which is the highest priority among all the tasks that can access
job , offsetted by a base priority level greater than that of any
normally executing task in the system. The normal execution
segment of a task can be blocked by the critical section of each
lower priority task on the same core. For each of the normal
execution segments, the worst case local blocking time is the
longest critical section used by any lower priority task. Thus,
the total local blocking time of is

(2)

Once it enters its critical section, can only be interfered by
critical sections with a higher remote priority ceiling. Also,
since the critical section has a higher priority than the normal
execution segment, in each critical section there can be at most
one such interference from each task on the same core. Thus,
the response time of the th critical section is bounded by

(3)

The remote blocking time for the th critical section can
be computed by the following iterative formula:

The total remote blocking time is

(4)

HAN et al.: EVALUATION AND SELECTION OF DATA CONSISTENCY MECHANISMS FOR APPLICATIONS ON MULTICORE PLATFORMS 907

The worst case response time of can be calculated as
the convergence of the following iterative formula:

(5)

2) Timing Analysis of MSRP [17]: The spin block time
that a task needs to spend for accessing a global resource
can be bounded by

(6)

This time is added to the execution of the th critical section of
. Thus, its worst case execution time becomes

(7)

MSRP maintains the same basic property of SRP, that is,
a task cannot be blocked once it starts executing. The local
blocking time and remote blocking time are

(8)

(9)

The blocking time can be computed as

(10)

The worst case response time of can be computed as

(11)

B. Wait-Free Methods for Data Consistency

Wait-free methods avoid blocking by ensuring that each time
a writer needs to update the communication data, it is reserved
with an unused buffer. At the same time, readers use dedicated
buffers that are guaranteed not to be accessed by the writer.
Fig. 2 shows the typical stages performed by the writer and the
reader in a wait-free protocol. These stages have been imple-
mented in [14] bymeans of an atomic compare-and-swap (CAS)
operation. The CAS takes three operands

where the value v2 is written into the memory location mem
only if the current value of mem is equal to v1. Otherwise, the
value at mem is left unchanged.
The algorithm in [14] uses three global sets of data. An

array of buffers (BUFFER[]) is sized so that there is always

Fig. 2. Stages for writer and readers in a wait-free protocol.

an available buffer for the writer to write new data. An array
READING[] keeps track in the th position what is the buffer
index in use by the th reader (where multiple readers may
use the data in the same buffer index). When the reader is in
the process of updating this information, a value 0 is stored
in this entry. Finally, a variable LATEST keeps track of the
latest BUFFER entry that has been updated by the writer.
The code for the writer is shown in Algorithm 1. The writer
updates the view of what buffers are used by readers, then
picks a free buffer using the procedure GetBuf(). Next, it uses
the buffer item to write the newly produced data item and
updates LATEST. Finally, it uses a CAS operation to ensure
the consistency in the updates of the READING[] indexes.
On the reader side, the code is in Algorithm 2. The reader

first looks for the latest entry updated by the writer (which uses
a CAS operation to ensure the consistency in the update of its
READING[] index), stores it in the local variable ridx, and
then reads its contents. It is possible that more than one readers
may access the same buffer.

908 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 2, MAY 2014

This mechanism ensures data consistency with some runtime
overhead, but avoids the introduction of blocking times. How-
ever, it requires a number of buffer replicas and, thus, additional
memory. The buffer size can be defined by the reader instance
method, which relies on the computation of an upper bound
for the maximum number of buffers that can be used at any
given time by reader tasks [14] or by the lifetime boundmethod
based on the computation of an upper bound on the number of
times the writer can produce new values while a given data item
is used by at least one reader [20], [14].
Using the reader instance method, the required buffer size

is equal to the maximum number of reader task instances that
can be active at any time (the number of reader tasks if task
deadlines are not greater than periods), plus two more buffers
[14]. If all readers have a priority lower than the writer, then
only buffers are needed [28]. The proposed protocol is
called Dynamic Buffering Protocol (DBP). This mechanism
ensures data consistency with runtime complexity.
The lifetime bound method for buffer sizing has been first

introduced in [20] (as part of the non-blocking write protocol)
and [14]. The corresponding communication protocol is also re-
ferred to as temporal concurrency control protocol (TCCP).
Its runtime complexity is , and the number of buffers de-
pends on the lifetime of the data. For a reader , the lifetime
can be upper bounded by , where is the worst
case response time of the maximum offset between any
consecutive activations of the writer and . The number of
buffers for writer is

A combination of the two buffer sizing methods can be used
to obtain a better bound, as proposed first in [19] and [9] and
then improved in [32]. Reader tasks are partitioned into two
groups: fast and slow. The buffer bound for the fast readers uses
the lifetime bound method, and the bound for the slow ones
leverages the reader instance method.

C. Wait-Free Methods for Flow Preservation

Lock-based mechanisms do not guarantee the preserva-
tion of SR flows and are not meant to. Wait-free methods that

provide a correct implementation of SR flows require changes
to the ones in Section II-B. The data item used by the reader
must be defined based on the writer and reader task activation
times. However, both tasks are not guaranteed to start execution
right after their activation because of scheduling delays. There-
fore, the assignment of buffer index must be delegated to the
operating system. At execution time, the writer and readers will
use the buffer positions defined at their activation times. Sim-
ilar to the case of data consistency only, the buffer sizes can be
defined by analyzing the relationship between the writer and its
reader task instances. With reference to the algorithm presented
in the previous sections, the writer and reader protocols need to
be partitioned in two sections, one executed at task activation
time, managing the buffer positions (READINGLP[], READ-
INGHP[], PREVIOUS and LATEST), the other at runtime, ex-
ecuting the write and read operations using the buffer positions
defined at their activation time. The pseudo code is shown in
Algorithms 3 and 4.
Readers are divided in two sets. The ones that has priority

lower than the writer read the value produced by the latest writer
instance activated before their activation (the communication
link is direct feedthrough). Readers with priority higher than
the writer read the value produced by the previous writer in-
stance (the communication link has a unit delay). The two cor-
responding buffer entries are indicated by the LATEST and

HAN et al.: EVALUATION AND SELECTION OF DATA CONSISTENCY MECHANISMS FOR APPLICATIONS ON MULTICORE PLATFORMS 909

PREVIOUS variables. Two separate arrays, READINGLP[]
and READINGHP[], contain one entry for each low and
high-priority readers, respectively, even if they are managed
in the same way. The writer updates all zero-valued elements
of READINGHP[] and READINGLP[] with the value of
PREVIOUS and LATEST respectively (lines 28 and 29 in
Algorithm 3). When the reader executes on a different core
than the writer, additional mechanisms need to be used to
ensure the reader starts execution after the data is written. The
execution order can be enforced by an activation signal sent to
the reader (an inter-core interrupt signal), or by synchronized
activations of the writer and reader. The buffer bounds for
the SR flow-preserving wait-free methods are computed in a
similar way to their nonflow-preserving counterparts.

III. IMPLEMENTATION OF COMMUNICATION MECHANISMS

Here, we describe the implementation of the communication
mechanisms on the Erika [2] and Trampoline RTOSes [10] for
the MPC5668G dual-core platform [5].

A. MPC5668G Architecture

MPC5668G is a heterogeneous dual-core system-on-chip
(SoC) 32-bit microcontroller by Freescale. The main core, an
e200z6, has higher computation power and typically performs
the bulk of the application functionality. The smaller core (an
e200z0), also called a co-processor, performs less complex
operations like I/O, redundancy checks, or corrections on the
main functional path. Both cores have access to all memories,
bus masters, the FlexRay and the eDMA controllers, and other
peripherals. A crossbar switch is used to control access and
arbitration, and an interrupt controller is provided to forward
the interrupt requests to any core or both (see Fig. 3).
The MPC5668G provides two hardware mechanisms for the

implementation of mutexes, or the protection of resources glob-

ally shared between cores. The first is typical of Power archi-
tectures, consisting of a pair of instructions lwarx (Load Word
and Reserve Indexed) and stwcx (Store Word Conditional In-
dexed). lwarx loads a word from a memory location and cre-
ates a reservation. Any store operation to the specified location
will cancel the reservation. stwcx performs a store to the lo-
cation only if the reservation still exists. Together they can be
used to implement atomic compare-and-swap operations, which
are universal for achieving consensus in multi-master architec-
tures [18].
To further simplify access to any type of shared resources,

including peripherals and I/O registers, the MPC5668G pro-
vides 16 hardware semaphores. The Erika kernel allocates
two of them for remote (inter-core) notifications, including
sending events and task activation signals. The remaining 14
semaphores are available for mutex operations on applica-
tion-level resources, including shared memory buffers. Erika
provides the library functions LockHardSemaphore() and Un-
lockHardSemaphore() for managing the semaphore locks with
a spin-based mechanism as in Fig. 4. A core accessing a shared
resource first needs to acquire the semaphore lock for that
resource. If the lock is obtained, the core has access; otherwise,
the resource is in use by the other core, and the requesting task
enters a spin lock.

B. Implementation of Wait-Free Methods on Erika

In our implementation, we use the hardware semaphore and
the library functions in Erika (Fig. 4), to replace the Compare-
and-Swap atomic instruction in Algorithms 1–4 for the consis-
tent update of the buffer indexes.
Wait-free implementations can be of two types. The com-

munication mechanism that returns the latest value written by
the writer is simpler as it can be implemented at the applica-
tion-level, but it only guarantees data consistency. The imple-
mentation of wait-free communication with flow preservation
for synchronous reactive models, as described in Section II-C,
requires support at the kernel level. As all of the tasks in our
experiments are triggered by the timer, we implement the oper-
ations at activation time (Writer_activation() and Reader_acti-
vation() functions in Algorithm 3 and 4) in the timer interrupt
service routine.
In addition, flow preservation requires enforcing a partial

order of execution between the writer and its readers. Therefore,
if the readers and the writer are allocated to different cores, the
relative priority order is no longer sufficient to enforce an exe-
cution order, and it is necessary for the lower priority readers
to block until the writer finishes writing to the buffer. This is
achieved using the WaitEvent and SetEvent pair of primitives
supplied by the Erika kernel. When a task calls WaitEvent,
it suspends. When a task sends an event to a waiting task by
calling SetEvent, the waiting task is inserted into the ready
queue, or executed immediately. Readers with lower priority
than the writer call WaitEvent before entering their critical
sections, while the writer invokes the SetEvent function after it
finishes writing into the shared buffer.

910 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 2, MAY 2014

Fig. 3. MPC5668G multicore architecture [5].

Fig. 4. Pseudo code for hardware semaphore operations in the Erika [2].

C. Implementation of MSRP on Erika

The critical sections for lock-based mechanisms (including
MPCP and MSRP) begin with the API GetResource() and end
with a call to ReleaseResource(), as follows:

AsMPC5668G is a dual-core architecture, when a resource is
locked, only one task can be spinning. However, only 14 hard-
ware semaphores are available to manage the access to pos-

sibly more shared resources. Therefore, we implemented a set
of software semaphores sharing a single hardware semaphore
as shown in Algorithm 5. Two methods LockSoftSemaphore()
and UnlockSoftSemaphore() are provided to lock and unlock
a software semaphore. The array SOFTSEMAPHORE[] main-
tains the states of all software semaphores, “1” representing the
lock by core z6, “2” for core z0, and “0” for the unlocked state.
All of the entries of SOFTSEMAPHORE[] are initialized as “0.”
Our software layer uses the Erika APIs LockHardSemaphore()
and UnlockHardSemaphore() to guarantee that the two cores
do not access SOFTSEMAPHORE[] at the same time. All in-
terrupt requests should be disabled before trying to access the
software semaphore and reenabled after the access is finished,
to ensure the consistency of SOFTSEMAPHORE[] from tasks
on the same core.

D. Implementation of MPCP on Erika

As each resource in MPCP has a priority-based waiting
queue for the management of blocked tasks, we use Lock-
HardSemaphore() and UnlockHardSemaphore() to preserve
its consistency. When a task tries to access a locked resource,
it suspends itself by invoking WaitEvent() after it is inserted
into the queue. When a task finishes the execution of the global

HAN et al.: EVALUATION AND SELECTION OF DATA CONSISTENCY MECHANISMS FOR APPLICATIONS ON MULTICORE PLATFORMS 911

critical section, it is removed from the waiting queue, regains
its nominal priority and then informs the first task in the queue
by invoking SetEvent(). The task at the head of the queue
wakes up, raises its priority to the global ceiling, and enters the
global critical section.

E. Implementation on Trampoline

To show the generality of the time/space overhead compar-
ison of the proposed mechanisms, we ported Trampoline [10],
an open-source OSEK/VDX RTOS, to the MPC5668G micro-
controller and then implemented in it the communication and
resource protection mechanisms. We leveraged the resource
access APIs (GetResource, ReleaseResource, WaitEvent,
SetEvent), supported by Trampoline as kernel-level function
calls, to implement the MSRP and MPCP protocols. Whenever
an API is invoked, an sc (system call) instruction is executed
to jump to an exception handler. When entering or leaving the
exception handler, a context switch occurs between the user
and the kernel levels. The wait-free methods are implemented
similarly as in Erika by using the hardware semaphore.

IV. EXPERIMENTAL EVALUATION

We compare the performance of MPCP, MSRP, and wait-free
algorithms on a large number of randomly generated task
configurations, by experiments on an MPC5668G evalua-
tion board. A set of 4 to 20 tasks is randomly generated
on each core. Tasks are activated by timer events with zero
offsets, and their periods are randomly selected from the set

ms. Task priorities
are assigned according to rate-monotonic policy. Different
mechanisms have different time and memory overheads de-
pending on the amount of communication, and we consider
three communication schemes: light, medium, and heavy.
In the light communication scheme, the output of a task is

shared with 1 to 3 other tasks, with a probability of 50%,
40%, and 10% respectively. The size of the output is randomly
selected from 1 (with %), % %
and % bytes.

TABLE I
WORST CASE ACCESS TIME TO BUFFERS FROM EACH CORE (UNIT: CPU

CYCLE)

In the medium communication scheme, the output of a task
is shared with one to four readers, with a probability of 20%,
30%, 30%, and 20%, respectively. The size of the output is ran-
domly selected from 1 (with %), %
% % , and % bytes.
In the heavy communication scheme, the output of a task is

shared by one to five other tasks, with a probability of 10%,
20%, 30%, 30%, and 10%, respectively. The size of the output
is 1 (with %), % %
% % % , and %

bytes.
The total utilization of the tasks (without the overhead from

the communication primitives) is uniformly distributed from
40% to 95%. The length of critical sections is defined in two
ways. For the first set of experiments, we measure the worst
case time consumed by accessing (writing or reading) the com-
munication buffers, as in Table I. In the second set, we assign
each critical section a random worst case execution time, such
that the total length of all critical sections in each task ranges
from 1% to 10% of the task WCET.

A. Time Overhead

For MPCP and MSRP, time overhead is incurred when en-
tering and leaving a critical section, i.e., for calls to the GetRe-
source() and ReleaseResource() APIs. For wait-free methods,
overhead is incurred when finding a buffer and updating the
reader and writer pointers (lines 21, 23, and 24 in Algorithm 1
for the writer and lines 5–8 in Algorithm 2 for the readers). For
wait-free methods with flow preservation, the overheads are at
task activation time, i.e., Writer_activation() and Reader_acti-
vation() functions in Algorithms 3 and 4. We use the Lauter-
bach tracing tool [3] to measure the execution time overheads
on more than 100 million random system configurations on an
MPC5668G with 120 MHz clock frequency. The timing over-
heads are reported on each call to these functions (Tables II and
III and Fig. 5), which is independent from the communication
scheme (light, medium, or heavy).We alsomeasure the accumu-
lated overhead for the task system (Figs. 6–9). In the following,
we use WF and WFFP as the short names for wait-free method
and wait-free method with flow preservation, respectively.
Table II summarizes the overhead value for a single execution

of the API functions. For the MPCP implementation of GetRe-
source(), the time overhead depends on the number of tasks in
the priority-based waiting queue, and the measured value refers
to one execution in which there is already one task queued.
Likewise, the time by DBP to find a free buffer depends on the

912 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 2, MAY 2014

TABLE II
RANGE OF EXECUTION TIMES FOR THE DATA COMMUNICATION API FOR

GLOBAL RESOURCES (TIME UNIT: CPU CYCLE)

TABLE III
PROBABILITY DISTRIBUTION OF OVERHEAD FOR MPCP AND MSRP

Fig. 5. Probability distribution of overhead for WF and WFFP.

number of buffers and readers, and the value in Table II refers
to the case of one reader and a single buffer.
Table III and Fig. 5 summarize the probability distribution of

timing overheads for these communication mechanisms. Each
point in Fig. 5 (or each row in Table III) indicates that
there is a probability that the timing overhead is in the in-
terval . The execution time is almost con-
stant for WF-TCCP and WFFP-TCCP (as expected). There is
some more variability in the time overheads of WF-DBP and
WFFP-DBP as well as the GetResource and ReleaseResource
of MPCP and MSRP. The writer overheads (mainly the cost to
find a free buffer) in the WF-DBP and WFFP-DBP protocols
depend on the number of buffers being used, and are clustered
accordingly. For MSRP and MPCP, the overhead is clustered

Fig. 6. Average overhead of MPCP, MSRP, WF-DBP, and WF-TCCP in each
timer period, measured in Erika.

Fig. 7. Largest overhead of MPCP, MSRP, WF-DBP, and WF-TCCP in each
timer period, measured in Erika.

around two values. This is because local and global resources
are treated in different ways.
The accumulated time overhead in the system (for a given

time interval) is mainly determined by the number of shared
resources, the synchronization policy, and the communication
scheme (light, medium or heavy). We conduct experiments with
1 to 30 shared resources. We generate 500 task configurations
for each number of resources according to the setup previously
described. We measure the maximum and average accumulated
overheads within each 5 millisecond interval, the greatest
common divisor of the task periods. For better readability, we
only plot light and heavy schemes.
The distribution of the average overhead for MPCP, MSRP,

WF-DBP, and WF-TCCP is shown in Fig. 6. For a given syn-
chronization protocol, the light communication always leads to
a smaller overhead while the heavy communication leads to a
larger one. Among the mechanisms, WF-TCCP has the smallest
average overhead while MPCP has the largest. For MPCP, a
waiting queue should be maintained for each global resource,
to store all the tasks currently waiting. When a task is about to
release a global resource, it informs the first task in the waiting
queue to get the global resource. These operations in the soft-
ware implementation of the waiting queue incur large overhead
to MPCP. Overall, the average overhead is approximately linear
to the number of shared resources, with the maximum value of
28 s for 30 shared resources or 0.56% of the utilization.
Fig. 7 presents the largest accumulated overhead during each

timer period. Again, WF-TCCP performs best, while WF-DBP
has greater maximum overhead than the ones of MPCP and

HAN et al.: EVALUATION AND SELECTION OF DATA CONSISTENCY MECHANISMS FOR APPLICATIONS ON MULTICORE PLATFORMS 913

Fig. 8. Average overhead of WF and WFFP in each timer period, in Erika.

Fig. 9. Largest overhead of WF and WFFP in each timer period, in Erika.

Fig. 10. Average overhead of MPCP, MSRP, WF-DBP, and WF-TCCP in each
timer period, measured in Trampoline RTOS.

MSRP. This is because the overhead of wait-free protocols hap-
pens at activation time. In our experiments, the tasks are as-
sumed to be periodic with zero offsets. Thus, there are time in-
stants where all tasks are activated and the WF-DBP overhead
accounts for calling the wait-free procedures for all tasks. For
MPCP and MSRP, the overhead incurs when actually trying to
access the shared resources, thus is distributed over the execu-
tion of the task.
The WF-TCCP, WF-DBP, MSRP, and MPCP protocols only

provide data consistency, but they do not guarantee the preser-
vation of SR flows. Figs. 8 and 9 show the comparison of the
average and largest overheads of wait-free methods with and
without flow preservation. The average overhead of WFFP is
slightly larger than that of WF in each type of communication
scheme. This is mainly because of the need for the lower priority
readers to block (using WaitEvent) until the notification (using

Fig. 11. Largest overhead of MPCP, MSRP, WF-DBP, and WF-TCCP in each
timer period, measured in Trampoline RTOS.

Fig. 12. Average overhead of WF and WFFP in each timer period, measured
in Trampoline RTOS.

Fig. 13. The largest overhead ofWF andWFFP in each timer period, measured
in Trampoline RTOS.

SetEvent) that the writer finishes writing to the buffer. Never-
theless, the increased overhead is relatively small (less than 20%
for 30 resources).
Figs. 10–13 show the overheads of MSRP, MPCP, and the

wait-free methods implemented in the Trampoline RTOS.
MPCP uses all the kernel APIs and, because of the need to exe-
cute all of the required kernel traps, the average time overhead
is noticeably larger than that of Erika, as shown in the figures.
The time overheads of the other mechanisms are approximately
the same as in Erika. In addition, the relative comparison on
the overheads of these mechanisms remains the same.

B. Memory Overhead

We also measured the memory overhead by compiling the
code and analyzing the memory image of the executable. The

914 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 2, MAY 2014

Fig. 14. Memory utilization of MSRP/MPCP, WF-DBP, and WF-TCCP.

measured memory overhead is the same as what predicted by
the estimates (in Section II-B) and shown in Fig. 14. In each
case, we generated 500 task configurations, and, for each task
configuration, we computed the memory utilization of different
protocols. For wait-free methods, each shared resource is as-
signed with multiple replicas; while for MSRP/MPCP, no addi-
tional replicas are required. Accordingly, as we can see in the
figure, MSRP/MPCP consumes the least amount of memory.
On average, WF-TCCP needs more memory than WF-DBP, al-
though it has less time overhead (as shown in Fig. 6).

C. System Schedulability

An additional comparison is performed with respect to the
worst case schedulability performance. As previously shown,
the overheads of the communication mechanisms are compa-
rable on both RTOSes with a slight advantage to Erika. In the
discussion on system schedulability, we use the time overheads
measured on Erika, but the conclusions hold similarly for the
Trampoline implementation. The available protocols have a
quite different worst case blocking time bound. Among the
possible wait-free methods, we select WF-DBP, as its timing
overhead is larger than WF-TCCP. For each value of CPU
utilization (the sum of the ratio between the WCET and period
for all tasks, without including the overhead from the mecha-
nisms), 10 000 task configurations are generated according to
the aforementioned task configuration generation scheme. We
assume task deadlines are equal to their periods. The metric
for system schedulability is the percentage of task sets that are
found schedulable among the generated configurations.
The first set of experiments is performed on task configu-

rations with a random critical section length. Fig. 15 shows
the results. For the wait-free methods, the three curves (light,
medium, and heavy schemes of WF-DBP) coincide with each
other, because the difference of timing overheads for different
communication schemes is far less than the period and the
schedulability results are close. Among the three policies,
WF-DBP outperforms the other two. This is expected, since
tasks do not block when using a wait-free protocol. For a given
communication scheme, MSRP performs better than MPCP

Fig. 15. Percentage of schedulable task configurations with random critical
section length.

Fig. 16. Percentage of schedulable task configurations with buffer size-related
critical section length.

at a low CPU utilization. However, MPCP overtakes MSRP
when CPU utilization exceeds 90%. This is mainly because the
length of critical sections is related to the task WCET, which
grows when the CPU utilization increases, and MPCP is better
than MSRP for long critical sections [17].
In the second set of experiments, the length of the critical

sections is the actual measured time (as in Table I) for accessing
(writing or reading) the corresponding communication buffer.
The results are shown in Fig. 16. Again, WF-DBP is generally
better than MPCP and MSRP, and the three curves of WF-DBP
overlap. However, the difference between WF-DBP and
MSRP/MPCP is much smaller than in Fig. 15. This is because
the measured length of critical sections when accessing shared
buffers is generally short and imposes only a small blocking
time. Based on the same reason, MSRP performs better than
MPCP in the entire range of CPU utilization. The significance
of this result is: for a realistic implementation of the critical
sections for accessing shared buffers (rather than hypothetic
lengths of the critical sections as a fraction of the task WCET),

HAN et al.: EVALUATION AND SELECTION OF DATA CONSISTENCY MECHANISMS FOR APPLICATIONS ON MULTICORE PLATFORMS 915

MSRP outperforms MPCP, and the only competitor is wait-free
method.

V. OPTIMIZATION

As discussed in the previous sections, the available protec-
tion mechanisms have different timing and memory overheads,
and different impact on the system schedulability. MSRP and
MPCP cause blocking times in the worst case response time of
tasks whenever a lower priority (local) tasks may use a global
resource. Wait-free methods avoid the blocking time altogether
by making sure that the writer and its readers do not access the
same buffer at the same time. Their timing overhead is in the
same magnitude as MPCP and MSRP, thus they are typically
advantageous to system schedulability. However, they need to
make copies of the shared data buffers with a possibly large
amount of memory overhead.
In summary, these methods offer tradeoffs between the

amount of additional memory, the runtime overheads, and the
blocking time imposed over tasks. Accordingly, the optimal
system configuration require to use a combination of these
methods, depending on the memory availability of the system,
the size of the data to be transmitted, the task response times
and deadlines, and the duration of the critical sections.
We consider an optimization problem in which the task al-

location and priority assignment are given, and the designers
must select the mechanism to protect each shared resource. We
only focus on the problem of guaranteeing data consistency, as
MPCP and MSRP are not applicable for the purpose of flow
preservation. The optimization objective is to use the smallest
amount of memory while guaranteeing system schedulability.
Between MPCP and MSRP, as pointed out in previous

studies [13], [22], MSRP (or in general spin-based mecha-
nisms) is preferable for shared resources with short global
critical sections. We use the same idea as in FMLP [12], where
short resource requests use a busy-wait mechanism, while
long resource requests use a suspension approach. For the
two wait-free methods, WF-DBP has a slightly larger timing
overhead, but requires less memory than WF-TCCP in most
cases.
Based on the above observations, we propose the optimiza-

tion procedure in Algorithm 6 to minimize the memory usage
while guaranteeing schedulability. The four available mecha-
nisms are classified as lock-based and wait-free, and each shared
resource is assigned with a preferred mechanism for each type.
For wait-free methods (WF-TCCP and WF-DBP), the prefer-
ence is given to the one with a lower memory cost. For lock-
based methods (MPCP and MSRP), the shared resources are
ordered in decreasing length of their longest critical sections
and the list is partitioned in two subsets. As mentioned be-
fore, MPCP has a smaller blocking time than MSRP for shared
resources with long critical sections, so MPCP is assigned as
the preferred lock-based mechanism for the first subset (the
resources with longer critical sections) and MSRP is the de-
fault one for the remaining resources. However, the resource
partitioning is not fixed as in FMLP, but we exhaustively ex-
plore all the possible partitions (the list is tentatively split at each
possible position, i.e., from 0 to where is the number of
resources).

Algorithm 6: Algorithm for Selection of Communication
Mechanisms

1: Assign a preferred wait-free method to the shared
resources

2: for to do
3: Assign MPCP as the preferred mechanism to the first

resources and MSRP for the remaining resources
4: Use wait-free method for all resources
5: Order shared resources by decreasing memory saving
6: for each shared resource do
7: Use the preferred mechanism (MPCP or MSRP)
to protect

8: if system is unschedulable then
9: Use the other lock-based mechanism to protect
10: if system is unschedulable then
11: Reset the mechanism to WF-TCCP/WF-DBP
12: end if
13: end if
14: end for
15: end for

As an initial solution, all resources are protected by their pre-
ferred wait-free method. Then, for each resource, we compute
the amount of memory saving if the wait-free method is re-
placed by MSRP/MPCP. The resources are sorted according to
the amount of memory that can be saved by using a lock-based
method. Starting from the first resource in the list, we first try to
apply to it its preferred locking mechanism (MPCP or MSRP),
and then try the other method if the preferred one fails (resulting
in an unschedulable solution). If both attempts fail, the protec-
tion mechanism is set back to the preferred wait-free method
(WF-TCCP or WF-DBP).
This greedy algorithm can produce a local optimum if some

resource is protected with a lock-based method at the cost of a
large blocking time, which prevents the use of MPCP or MSRP
for the following resources in the list. The decisions taken in
the early steps (the resources with largest memory saving) can
lead to limited options later. For this reason, we refine the algo-
rithm with an exhaustive search limited to a selected neighbor-
hood of the first solution found by the algorithm. After finding
the first feasible solution , we exhaustively explore the use of
wait-free and lock-based mechanisms for the first resources
using a lock-based mechanism in . is the depth of the exhaus-
tive search in this refinement step. The resulting complexity of
the algorithm is , as compared with the total number
of possible solutions . As an alternative, we also tried a
backtracking search with limited depth, but it did not perform
equally well, as shown in our experimental results.

A. Evaluation of the Optimization Algorithm

To evaluate the quality of the results produced by Algorithm
6, we first perform experiments on 10 000 random task configu-
rations with utilization ranging from 45% to 95% and randomly
generated task-critical sections. The results of our algorithm are
compared against the optimum results obtained by an exhaus-
tive search. Our heuristic produces solutions close to the op-

916 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 2, MAY 2014

Fig. 17. Schedulability with MPCP and MSRP only.

Fig. 18. Gap between the heuristic and optimal solution.

timum in most cases. For example, for systems with 20 globally
shared resources, in 55.9% of the cases, the result is exactly the
optimum; 22.9% of the cases, the gap to the optimum is %;
16.0% of the cases, the gap is between 1% and 5%; in 3.6%
of the cases, it is between 5% and 10%; and only in 1.6% of
the cases, the gap is larger than 10%, with a maximum value of
47.1%. The average difference is 0.96%.
Fig. 17 shows the fraction of systems that are schedulable by

using onlyMSRP andMPCP. The percentage of feasible config-
uration starts to drop quite early (for utilizations that are lower
than 50%!) and becomes extremely low at 80%. All of the task
sets considered in this experiment are schedulable using wait-
free methods. The purpose of the graph is to show the improve-
ment on system schedulability that can be obtained by using
wait-free methods together with lock-based methods (restoring
schedulability at the expense of memory).
Fig. 18 shows the gap between the memory requirements

from Algorithm 6 and the optimum solution for different
settings of the depth . As expected, the gap reduces as gets
larger, but very little improvements can be obtained for larger

Fig. 19. Memory usage with respect to system utilization for the case study in
[32].

than 5. As a comparison, using backtracking can only get sim-
ilar results (% for 49.9% cases, % for 21.8%,

% for 18.8%, % for 5.4%, % for
4.1%) with a backtracking depth of 10.
We also apply the optimization procedure to two real case

studies. The first one, provided by a car electronics supplier,
consists of a fuel injection system [32]. The system is a complex
network of functions, in which approximately two hundred
AUTOSAR runnables (functions called in response to events)
execute at different rates and communicate by exchanging data
signals. The runnables are mapped into 16 tasks, with periods
of 4, 5, 10, 12, 50, 100, and 1000 ms, respectively. These tasks
share a total of 46 resources, with size from 1 to 512 bytes and
5032 bytes in total. If WF-TCCP is applied to all resources,
278468 bytes of memory are needed, while WF-DBP only
requires 20 722 bytes of memory. We generate variations of
the system configuration by scaling the WCET of tasks so
that the utilization on each core is between 50% and 95%. As
shown in Fig. 19, the memory requirements of the system con-
figuration produced using Algorithm 6 range from 6773 bytes
to 17 330 bytes. Compared with the use of wait-free methods
(WF-DBP and WF-TCCP) only, our algorithm significantly
reduces the overall memory requirements (more than 50% and
95% of memory is saved, respectively, when CPU utilization is
below 75%). When the CPU utilization is 89% (or more), no
resources can be protected by using MSRP or MPCP and every
resource must be protected using either WF-DBP or WF-TCCP,
depending on which one requires less memory. As a result,
the memory requirements are practically unchanged after this
point.
The second case study is a publicly available system descrip-

tion, defined in [30]. It consists of 42 tasks with periods of 14,
20, 35, and 60 ms, respectively. There are 36 resources in the
case study, with buffer size ranging from 20 to 150 bytes, and
2240 bytes in total. The original WCETs of the tasks refer to
a system configuration that was used to demonstrate a task al-
location algorithm. For our experiments, we use the original
WCETs, but we also scale them to generate additional task sets

HAN et al.: EVALUATION AND SELECTION OF DATA CONSISTENCY MECHANISMS FOR APPLICATIONS ON MULTICORE PLATFORMS 917

Fig. 20. Memory usage with respect to system utilization for the case study in
[30].

with an average core utilization between 70% and 92% (the
system is unschedulable with a utilization higher than 92%).
The memory required for running the system after our optimiza-
tion algorithm selects the protection method for each shared
memory buffer is shown in Fig. 20. For this example, the least
amount of memory that can be possibly required is 2240 bytes
when using only MSRP or MPCP. The implementation with
minimum time overheads and without blocking times, using
WF-DBP (with best schedulability) needs 4480 bytes. Since
each resource in the case study is shared just by two tasks,
the blocking time of MPCP/MSRP is relatively short. As a re-
sult, all systems with average core utilization up to 76%, can be
scheduled with only MPCP and MSRP (using only 2240 bytes
of memory). When the CPU utilization for the application in-
creases, so does the required memory. But at 92%, our opti-
mization algorithm still finds that many resources can be pro-
tected by using MPCP/MSRP with an overall memory require-
ment of 3010 bytes, very close to the best scenario and far
from the amount required by a system-wide use of WF-DBP
(4480 bytes).

VI. CONCLUSION

We describe the issues in the implementation and selection of
shared resource protection mechanisms on multicore platforms.
The requirements for the consistency of communication and
state variables and the possible additional requirements of flow
preservation can be satisfied using several methods. These
methods offer tradeoffs between time response (and time over-
heads) and demand for additional memory. We implement them
on a real-time operating system, to measure time and memory
overheads and compare their impact on system schedulability.
We propose an algorithm to optimally select the communication
mechanisms with minimum memory requirements executing
within the time constraints. The comparison and optimization
are validated using synthetic systems and an industrial case
study.

REFERENCES
[1] “The AUTOSAR Standard,” AUTOSAR consortium, spec. v. 4.0 [On-

line]. Available: http://www.autosar.org
[2] ERIKA Enterprise [Online]. Available: http://erika.tuxfamily.org
[3] “TRACE 32 In-Circuit Debugger,” Lauterbach [Online]. Available:

http://www.lauterbach.com/
[4] “MathWorks Simulink and StateFlow User’s Manuals,” MathWorks

[Online]. Available: http://www.mathworks.com
[5] “MPC5668x Microcontroller Reference Manual,” Freescale [Online].

Available: http://www.freescale.com
[6] OSEK/VDX Operating Systems . ver. 2.2.3, OSEK, 2006 [Online].

Available: http://www.osek-vdx.org
[7] J. Anderson, S. Ramamurthy, and K. Jeffay, “Real-time computing

with lock-free shared objects,” ACM Trans. Comput. Syst., vol. 15, pp.
134–165, May 1997.

[8] T. Baker, “A stack-based resource allocation policy for realtime
processes,” in Proc. 11th IEEE Real-Time Systems Symp., 1990, pp.
191–200.

[9] M. Baleani, A. Ferrari, L. Mangeruca, and A. S. Vincentelli, “Effi-
cient embedded software design with synchronous models,” in Proc.
5th ACM Conf. Embedded Software, 2005, pp. 187–190.

[10] J. Béchennec, M. Briday, S. Faucou, and Y. Trinquet, “Trampo-
line—An open source implementation of the OSEK/VDX RTOS
specification,” in Proc. 11th Int. Conf. Emerging Technol. Factory
Automation, 2006, pp. 62–69.

[11] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone, “The synchronous languages 12 years later,” Proc.
IEEE, vol. 91, no. 1, pp. 64–83, Jan. 2003.

[12] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, “A flexible
real-time locking protocol for multiprocessors,” in Proc. IEEE Conf.
Embedded and Real-Time Computing Syst. Applic., 2007, pp. 47–56.

[13] B. Brandenburg and J. Anderson, “A comparison of the M-PCP,
D-PCP, and FMLP on litmus ,” in Proc. 12th Int. Conf. Principles of
Distrib. Syst., 2008, pp. 105–124.

[14] J. Chen and A. Burns, “Loop-free asynchronous data sharing in multi-
processor real-time systems based on timing properties,” in Proc. Int.
Conf. Real-Time Computing Syst. Applic., 1999, pp. 236–246.

[15] R. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Computing Surveys, vol. 43, no. 4, pp.
35:1–35:44, 2011.

[16] A. Easwaran and B. Andersson, “Resource sharing in global fixed-pri-
ority preemptive multiprocessor scheduling,” in Proc. 30th IEEE Real-
Time Syst. Symp., 2009, pp. 377–386.

[17] P. Gai, G. Lipari, and M. Di Natale, “Minimizing memory utilization
of real-time task sets in single and multi-processor systems-on-a-chip,”
in Proc. 22nd IEEE Real-Time Syst. Symp., 2001, pp. 73–83.

[18] M.Herlihy, “Amethodology for implementing highly concurrent struc-
tures,” in Proc. ACM SIGPLAN Symp. Principles and Practice of Par-
allel Programming, 1990, pp. 197–206.

[19] H. Huang, P. Pillai, and K. G. Shin, “Improving wait-free algorithms
for interprocess communication in embedded real-time systems,” in
Proc. USENIX Annu. Tech. Conf., 2002, pp. 303–316.

[20] H. Kopetz and J. Reisinger, “The non-blocking write protocol NBW: A
solution to a real-time synchronization problem,” in Proc. IEEE Real-
Time Syst. Symp., 1993, pp. 131–137.

[21] S. Kumar, C. Hughes, and A. Nguyen, “Carbon: Architectural support
for fine-grained parallelism on chip multiprocessors,” in Proc. 34th
Annu. Int. Symp. Comput. Architecture, 2007, pp. 162–173.

[22] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Coordinated task
scheduling, allocation and synchronization on multiprocessors,” in
Proc. 30th IEEE Real-Time Syst. Symp., 2009, pp. 469–478.

[23] A. Marongiu, P. Burgio, and L. Benini, “Supporting OpenMP on
a multi-cluster embedded MPSoC,” Microproces. Microsyst.—Em-
bedded Hardware Design, vol. 35, no. 8, pp. 668–682, 2011.

[24] A. Naeem, X. Chen, Z. Lu, and A. Jantsch, “Scalability of weak consis-
tency in NoC based multicore architectures,” in Proc. IEEE Int. Symp.
Circuits Syst., 2010, pp. 3497–3500.

[25] F. Nemati, M. Behnam, and T. Nolte, “Independently-developed real-
time systems on multi-cores with shared resources,” in Proc. 23th Eu-
romicro Conf. Real-Time Syst., 2011, pp. 251–261.

[26] R. Rajkumar, “Real-time synchronization protocols for shared memory
multiprocessors,” in Proc. Int. Conf. Distrib. Computing Syst., 1990,
pp. 116–123.

[27] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Trans. Comput.,
vol. 39, no. 9, pp. 1175–1185, Sep. 1990.

918 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 2, MAY 2014

[28] C. Sofronis, S. Tripakis, and P. Caspi, “A memory-optimal buffering
protocol for preservation of synchronous semantics under preemptive
scheduling,” in Proc. Int. Conf. Embedded Software, 2006, pp. 21–33.

[29] C. Stoif, M. Schoeberl, B. Liccardi, and J. Haase, “Hardware synchro-
nization for embeddedmulti-core processors,” inProc. IEEE Int. Symp.
Circuits Syst., 2011, pp. 2557–2560.

[30] K. W. Tindell, A. Burns, and A. J. Wellings, “Allocating hard real-time
tasks: An NP-Hard problem made easy,” Real-Time Syst., vol. 4, no. 2,
pp. 145–165, June 1992.

[31] S. Tripakis, C. Sofronis, N. Scaife, and P. Caspi, “Semantics-pre-
serving and memory-efficient implementation of inter-task communi-
cation on static-priority or EDF schedulers,” in Proc. 5th ACM Conf.
Embedded Software, 2005, pp. 353–360.

[32] G. Wang, M. Di Natale, and A. Sangiovanni-Vincentelli, “Improving
the size of communication buffers in synchronous models with time
constraints,” IEEE Trans. Ind. Inf., vol. 5, no. 3, pp. 229–240, Aug.
2009.

[33] H. Zeng and M. Di Natale, “Mechanisms for guaranteeing data con-
sistency and flow preservation in AUTOSAR software on multi-core
platforms,” in Proc. 6th IEEE Int. Symp. Ind. Embedded Syst., 2011,
pp. 140–149.

[34] E. Estevez and M. Marcos, “Model-based validation of industrial con-
trol systems,” IEEE Trans. Ind. Inf., vol. 8, no. 2, pp. 302–310, May
2012.

[35] B. Alecsa, M. N. Cirstea, and A. Onea, “Simulink modeling and design
of an efficient hardware-constrained FPGA-based PMSM speed con-
troller,” IEEE Trans. Ind. Inf., vol. 8, no. 3, pp. 554–562, Aug. 2012.

[36] V. Vyatkin, “Software engineering in industrial automation: State-of-
the-art review,” IEEE Trans. Ind. Inf., vol. 9, no. 3, pp. 1234–1249, Jul.
2013.

[37] B. Brandenburg, “A fully preemptive multiprocessor semaphore pro-
tocol for latency-sensitive real-time applications,” in Proc. 25th Eu-
romicro Conf. Real-Time Syst., 2013, pp. 292–302.

[38] Z. Al-Bayati, H. Zeng, M. Di Natale, and Z. Gu, “Multitask imple-
mentation of synchronous reactive models with earliest deadline first
scheduling,” in Proc. 8th IEEE Int. Symp. Ind. Embedded Syst., 2013,
pp. 168–177.

[39] H. Zeng and M. Di Natale, “Efficient implementation of AUTOSAR
components with minimal memory usage,” in Proc. 7th IEEE Int.
Symp. Ind. Embedded Syst., 2012, pp. 130–137.

[40] A.Wieder and B. Brandenburg, “Efficient partitioning of sporadic real-
time tasks with shared resources and spin locks,” in Proc. 8th IEEE Int.
Symp. Ind. Embedded Syst., 2013, pp. 49–58.

[41] B.Ward and J. Anderson, “Supporting nested locking inmultiprocessor
real-time systems,” in Proc. 24th Euromicro Conf. Real-Time Syst.,
2012, pp. 223–232.

[42] B. Nahill, A. Ramdial, H. Zeng, M. Di Natale, and Z. Zilic, “An FPGA
implementation of wait-free data synchronization protocols,” in Proc.
18th IEEE Int. Conf. Emerging Technol. Factory Autom., 2013, pp. 1–8.

Gang Han received the B.E. and M.E. degrees in
computer science and technology from National Uni-
versity of Defense Technology, Changsha, China, in
2006 and 2008, respectively, where he is currently
working toward the Ph.D. degree.
He was a Visiting Scholar with McGill University,

Montreal, QC, Canada, in 2011–2012. His research
interests include design and optimization of real-time
systems, wireless sensor networks, and datacenter
networks.

Haibo Zeng (M’08) received the B.E. and M.E. de-
grees in electrical engineering from TsinghuaUniver-
sity, Beijing, China, in 1999 and 2002, respectively,
and the Ph.D. degree in electrical engineering and
computer sciences from the University of California,
Berkeley, CA, USA, in 2008.
He is currently an Assistant Professor with McGill

University, Montreal QC, Canada. He was a Senior
Researcher with General Motors R&D until October
2011. He has authored or coauthored over 50 papers
in the above fields. His research interests are design

methodology, analysis, and optimization for embedded systems, cyber-physical
systems, and real-time systems.
Dr. Zeng was the recipient of three Best Paper Awards.

Marco Di Natale (SM’13) received the B.S. degree
from the University of Pisa, Pisa, Italy, in 1991, and
the Ph.D. degree from Scuola Superiore S.Anna,
Pisa, in 1995.
is an Associate Professor with the Scuola Supe-

riore Sant’Anna, Pisa, Italy, where he leads the area
on embedded architectures andmodels. Hewas a Vis-
iting Researcher with the University of California,
Berkeley, CA, USA, in 2006 and 2008–2009. He has
authored or coauthoredmore then 150 papers. Hewas
a Senior Scientist and Group Leader for automotive

architectures exploration and selection at General Motors R&D and is currently
a Visiting Fellow with the United Technologies corporation. His research in-
terests are in embedded systems architecture and behavior models, real-time
systems and system analysis.
Dr. Di Natale is a member of the editorial board of the IEEE TRANSACTIONS

ON INDUSTRIAL INFORMATICS and chair of the Real-Time Systems subcom-
mittee of the IEEE IES TCFA. He was the recipient of five Best Paper Awards
and one Best Presentation Award. He has served as a Program and General
Chair for the Real-Time Application Symposium and Track Chair for the DATE
Conference.

Xue Liu (M’06) received the B.S. degree in mathe-
matics andM.S. degree in automatic control from Ts-
inghua University, Beijing, China, in 1996 and 1999,
respectively, and the Ph.D. degree in computer sci-
ence from the University of Illinois at Urbana-Cham-
paign, Urbana, IL, USA, in 2006.
He is an Associate Professor with the School of

Computer Science, McGill University, Montreal
QC, Canada. He has also worked as the Samuel
R. Thompson Associate Professor with the Uni-
versity of Nebraska-Lincoln, Lincoln, NE, USA,

and Hewlett-Packard Labs, Palo Alto, CA, USA. His research interests are in
computer networks and communications, smart grid, real-time and embedded
systems, cyber-physical systems, data centers, and software reliability. He
holds one U.S. patent, has filed four other U.S. patents, and has authored or
coauthored more than 150 research papers in major peer-reviewed international
journals and conference proceedings,
Dr. Liu was the recipient of the 2008 Best Paper Award from the IEEE

TRANSACTIONS ON INDUSTRIAL INFORMATICS and the First Place Best Paper
Award of the ACM Conference on Wireless Network Security.

Wenhua Dou received the B.E. degree in computer
from Harbin Institute of Engineering, Harbin, China,
in 1970.
He is a Professor with the School of Computer

Science, National University of Defense Technology,
Changsha, China. He has authored or coauthored
more than 200 papers in journals and conferences.
His current research interests include high-per-
formance computing, photonic interconnection
and communication, wireless networks, network
calculus, and network coding.

