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Ventricular remodeling occurs progressively in untreated patients after large myocardial infarction and in those
with cardiomyopathy. The pathologic changes of increased left ventricular (LV) volume and perturbation in the
LV chamber geometry involve not only themyocytes, but also the non-myocyte cells and the extracellularmatrix.
Inflammation, fibrosis, neuro-hormonal activation, and ongoing myocardial damage are themechanisms under-
lying remodeling. The detection of an ongoing remodeling process bymeans of biomarkers such as cytokines, tro-
ponins, neurohormones, metalloproteinases, galectin-3, ST-2 and others, may hold a clinical value and could, to
some extent, drive the therapeutical strategy in patients after a myocardial infarction or with heart failure. For
this reason, there is an increasing interest in the development of new biomarkers and a great number of labora-
tory tests have been recently proposed, whose clinical usefulness, however, is not fully established yet.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Heart failure (HF) has long been considered as an irreversible dis-
ease, willing only to receive palliative therapy. However, the idea of
chronic HF as an irreversible, end-stage process has been challenged
by experimental and clinical evidence that early pharmacological inter-
vention may lead to improvement in the function and structure of the
failing heart [1]. Several biohumoral markers have been proposed for
the diagnosis of HF so far [2], natriuretic peptides and troponins being
the most widely tested and validated in this clinical setting. Besides
early diagnosis, evaluation of the ongoing remodeling process has chal-
lenged clinicians and a specific, accurate, and effective biomarker of this
process is still an unmet need (Fig. 1). For this reason, there is an in-
creasing interest in the development of novel biomarkers and a great
number of laboratory tests have been recently proposed, whose clinical
usefulness, however, is not fully established yet [2].

As amatter of fact, in the last international guidelines on themanage-
ment of HF only 3 groups of biomarkers were taken into account: natri-
uretic peptides (in particular BNP and NT-proBNP both for diagnostic
and prognostic purposes with class I recommendation), markers of myo-
cardial injury (i.e., cardiac troponin I and T,with class I recommendation),

and markers of myocardial fibrosis (such as galectin-3 and sST2, mainly
for risk stratification with class IIb recommendation) [3] (Table 1). Of
course, these recommendations are supported mainly by scientific evi-
dences based on the results of well-designed randomized clinical trials,
which demonstrated the good diagnostic and prognostic efficiency, as
well as the favorable cost/benefit ratio for HF patients and community
of these biomarkers [2,4,5]. However, some methodological consider-
ations should also be taken into account, when a novel biomarker
is recommended for clinical laboratory practice or large population
screening. As an example, a list of some desirable characteristics for
an ideal biomarker, recommended for the routine use in a clinical
laboratory, are reported in Table 2.

Another aspect that should be preliminarily underscored is the
heterogeneity of theHF syndrome, in terms of etiology, pathophysiology
and clinical presentation: this may account for the wide differences in
response to treatment and, therefore, in survival among patients who
received a diagnosis of HF. As an example, HF may be associated with re-
duced (i.e. b40%) ejection fraction (HFrEF) or with preserved ejection
fraction (HFpEF), resulting in similar symptoms and signs, but with pro-
found differences in pathophysiology and response to treatment [3]. Pa-
tients with HFrEF have a higher risk of death than patients with HFpEF,
[6], but absolute mortality is still high in the latter group. Randomized
controlled trials have mainly enrolled patients with HFrEF, and it is only
in these patients that efficacious therapies have been demonstrated to
date [3]. In addition the diagnosis of HFpEF is challenging and generally
posed after excluding other potential noncardiac causes of symptoms
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suggestive of HF. To date, efficacious therapies have not been identified
for HFpEF [7,8].

The aim of this review article is to provide a general overview on the
biomarkers of the different pathways involved in the remodeling
process.

2. Cardiac remodeling

HF is the final result of several etiologies (ischemic heart disease ac-
counting for roughly half of cases) and includes heterogeneous patients
with diverse propensity to ventricular remodeling and clinical outcome
[9]. Despite optimized medical therapy and technologically advanced
device treatment, the majority of patients affected by HF experience
progressive left ventricular dysfunction, worsening of symptoms and
life-threatening arrhythmias. Cardiac death occurs because of arrhyth-
mic event or pump failure, andmid and long term survival is still disap-
pointing (9) (Fig. 2). Following the initial decline of left ventricular (LV)
contractility, patients with HF can remain asymptomatic (stage B of
ACCF/AHA classification) or paucisymptomatic (stage C) for years, as
the result of the compensatory mechanisms sustaining cardiovascular
function. However, these mechanisms promote complex structural
and functional abnormalities of the myocyte and non-myocyte cells,
contributing to LV enlargement and dysfunction (adverse remodeling).
In particular, biomolecular remodeling [10], cardiomyocyte hypertro-
phy and extensive extracellular matrix production [11–13] may be pro-
moted not only by the original noxa (i.e. necrosis, virus, toxics,
autoimmunity), but also by chronicmechanical overload,myocardial is-
chemia due tomicrovascular dysfunction [14–16], and sustained activa-
tion of neurohormonal and cytokine systems [17]. From a clinical point
of view, it is crucial to identify the subgroup of asymptomatic patients at
higher risk, who need a more strict follow-up and an enhanced thera-
peutic effort, especially in the early HF stages (A and B) of disease,
when the clinical status and LV function are yet poor predictors of dis-
ease evolution and clinical outcomes [18].

Myocardial remodeling in ischemic and nonischemic cardiomyopa-
thies involves not only the myocytes, but also the non-myocyte cells
and the extracellular matrix (ECM). ECM constitutes around 6% of the
normal heart and includes fluid, collagen and glycoproteins. In particular,

collagen is secretedbyfibroblasts as procollagen into the ECM,where pro-
tease enzymes remove amino and carboxy-propeptide terminals, and is
then broken down by matrix metalloproteinase enzymes, which are in
turn regulated by their tissue inhibitors. In pathological conditions, the
cardiac interstitium increases as a result of diffuse interstitial (microscop-
ic) fibrosis, post-necrotic replacement (macroscopic) fibrosis, myocardial
edema (as result of inflammatory processes) or pathological infiltration
(e.g. amyloid). The activation of the renin–angiotensin–aldosterone sys-
tem plays a central role in fibroblast activation and collagen deposition,
with the transforming growth factor β (TGF β) as the downstream signal
mediator. Endomyocardial biopsy still represents the current reference
method for the evaluation of the remodeling process at a cellular level, al-
though routine endomyocardial biopsy is not recommended in all cases of
HF [3], but some circulating cardiac biomarkersmayprovideunique infor-
mation regarding cardiovascular remodeling. Indeed, along the complex
path from risk to fully developed HF, there are increasing numbers of in-
jury, remodeling and neurohormonal activation substances discovered,
whose assays might provide important information about HF. Some, as
natriuretic peptides and troponins, are well validated and established ac-
cording to evidence-based laboratory medicine principles [3–5], while
several other biomarkers are still being explored for potential use in the
clinical practice.

3. The pathophysiological role of cytokines in myocardial fibrosis

Inflammation mechanisms should be considered as an essential
component of the normal wound healing process [19–22]. However,
when the injury cannot be repaired in a short time, a chronic inflamma-
tory response may be established. In this case, a chronic inflammatory
response allows a pathological wound repair, with accumulation of per-
manentfibrotic tissue at the site of injury. The final result of this dysreg-
ulated inflammatory process is the impossibility for the tissue to restore
the normal function.

Fibrosis can affect any organ including the lung, skin, heart, kidney
and liver and it is estimated that 45% of deaths in the western world
can now be attributed to diseases where fibrosis plays a major patho-
physiological role [19]. In particular, the clinical syndrome of HF is char-
acterized by a systemic inflammatory response that contributes to end
organ damage in the heart and circulation and thus, can lead to progres-
sive worsening of cardiovascular function. The inflammatory mediators
in HFpatients include pro-inflammatory cytokines and their cognate re-
ceptors, as well as molecules secreted/released by macrophages (such
as galectin-3 and pentraxin-3-PTX3) [21]. Inflammatory biomarkers
usually correlate with disease severity and prognosis across the broad
spectrum of HF syndromes [21–23].

Levine et al. [23] reported for the first time that HF patients usually
show elevated circulating levels of tumor necrosis factor (TNF). Further
studies have then expanded this observation by demonstrating that
proinflammatory cytokines and their receptors, cell adhesion mole-
cules, and chemokines are elevated in patientswithHFwith a decreased
ejection fraction [9]. In addition, themost important pathophysiological
mechanisms underlying HFwith a preserved ejection fraction are fibro-
sis and reduced ventricular compliance, which in turn cause the devel-
opment of left ventricular diastolic dysfunction. In Tables 3 and 4 we
reported a list of these inflammatory agents, more frequently suggested
as possible biomarkers for HF [19–24].

Inflammation is one of the earliest events in cardiac stress situations
such as pressure and/or volume overload and involves elevated levels of
endothelial/vascular (VCAM) and intercellular adhesion molecules
(ICAM), aswell as increased production and release of inflammatory cy-
tokines and chemokines in the tissue [18–21,23]. Cytokines and
chemokines recruit activated inflammatory cells, particularly mono-
cytes, from circulation into the cardiac tissue. Increased monocyte infil-
tration is seen in the early and late stages of HF [23]. Once inside the
cardiac tissue, monocytes differentiate into macrophages and promote
inflammation, tissue injury, and fibrosis of myocardial tissue. Activated

Fig. 1. Potential clinical usefulness of biomarkers of fibrosis and remodeling.

Table 1
Established biomarkers for HF management.
Adapted from 2013 ACCF/AHA Heart Failure Guidelines [3].

Biomarker Setting Application Class Evidence

BNP/NT-proBNP Acute/chronic Diagnosis I A
BNP/NT-proBNP Acute/chronic Risk stratification I A
BNP/NT-proBNP Chronic Guide for treatment IIa B
BNP/NT-proBNP Acute Guide for treatment IIb C
Troponins Chronic Risk stratification I A
Soluble ST2 Acute/chronic Risk stratification IIb A/B
Galectin-3 Acute/chronic Risk stratification IIb A/B
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macrophages produce and secrete several inflammatory mediators,
such as monocyte chemotactic protein-1 (MCP1) and TNF-alpha (TNF-
α), and fibrogenic activators, such as TGF-β, and in this way support
pro-inflammatory and pro-fibrotic processes [24,25]. Activated macro-
phages also secrete galectin-3, whichmay induce cardiacfibroblast pro-
liferation, collagen deposition, and ventricular dysfunction [26,27].
PTX3 is a novel inflammatory marker and member of the pentraxin su-
perfamily of cytokines, which has also recently been identified in pa-
tients with HF [21]. PTX3 synthesis is produced/released by
endothelial cells, macrophages, myeloid cells, and dendritic cells stimu-
lated by cytokines and endotoxins such as bacterial products,
interleukin-1 (IL-1), and TNF [21,28].

According to the pathophysiological mechanisms reported above,
circulating levels of the inflammatory mediators and agents are found
with increasingly higher concentrations in the blood from HF patients
with asymptomatic left ventricular dysfunction [29] to those with
more severe disease according to the NYHA functional class [30]. In par-
ticular, soluble type 1 and type 2 TNF receptors (sTNFR1 and sTNFR2, re-
spectively) and soluble transmembrane glycoprotein 130 (gp130, one
of the receptors related to the IL-6) are increased according to worsen-
ing HF functional class [21,22]. Furthermore, elevated circulating levels
of some pro-inflammatory cytokines correlate not only with disease se-
verity, but alsowith increasedmortality in HF patients [21,22]. In partic-
ular, TNF, IL-6, sTNFR1, and sTNFR2 have been reported to be associated
to increased mortality [31,32]. There are relatively few studies, which
evaluated the prognostic relevance of pro-inflammatory cytokine levels

in HF patients with preserved ejection fraction: only TNF levels have
been shown to correlate with increased mortality in this setting [33].

Growth differentiation factor 15 (GDF15), a member of the
transforming growth factor-beta cytokine superfamily, is anothermark-
er of cell injury and inflammation that has been shown to circulate in
higher concentrations in patients with HFrEF with reduced ejection
fraction [34,35] and also in HFpEF [36], compared with controls. In a
more recent study, GDF15 was shown to be able to discriminate
HFpEF from controls at least as well as NT-proBNP [37] and the ratio
of NT-proBNP to GDF15 provided the best discriminatory ability be-
tween HFpEF and HFrEF [37].

Finally, increased levels of some inflammatory mediators were
found to be significantly associated with disease severity and prognosis
also in patients with acute decompensated HF [3]. In particular, C-
reactive Protein (CRP), ST-2, galectin-3, and IL-6 showed a significant
association with an increased mortality rate in patients with acute HF
[38–44]. However, inflammatory biomarkers alone show much lower
diagnostic and prognostic accuracy than natriuretic peptides in HF pa-
tients admitted with acute dyspnea in emergency department [21,42].

4. Biomarker of ECM

The ECM in the healthy heart is dynamic and can adapt to differing
environmental factors [45]. In pathological states, it can increase as a re-
sult of diffuse myocardial fibrosis (reactive or interstitial fibrosis, sec-
ondary to mechanical, toxic, infective or autoimmune insults) or of

Table 2
Desirable features fitted by biomarkers measured by the laboratory test.

Desirable feature of biomarker Tests fitting the feature Tests not fitting the feature or no available data References

Evaluation of in vivo and in vitro stability cTnI, cTnT, NT-proBNP, BNP MMP assay, cytokines assays, galectin-3, sST2 [60,64,77,121]
Evaluation of analytical performance according
to the EBLM criteria

cTnI, cTnT, NT-proBNP, BNP,
galectin-3, sST2

MMP assay, cytokine assays [2,3,5,21,77,118–121,123,124]

Complete automation cTnI, cTnT, NT-proBNP, BNP, galectin-3 MMP assay, cytokine assays, sST2 [2,60,64,77,118–120,122–125]
Acceptable harmonization between methods cTnT, NT-proBNP, galectin-3, sST2 BNP, MMP assay, cytokine assays [60,64,77,121]
Evaluation of biological variation cTnI, cTnT, BNP, NT-proBNP MMP assay, cytokines assays, galectin-3, sST2 [75,77]
Cardiac specificity cTnI, cTnT, BNP, NT-proBNP MMP assay, cytokines assays, galectin-3, sST2 [2,21,22,77]
Evaluation of reference interval tested for gender,
age and ethnicity dependence

cTnI, cTnT, BNP, NT-proBNP MMP assay, cytokines assays, galectin-3, sST2 [3,17,77,87]

Diagnostic and prognostic accuracy tested by large
randomized clinical trials according to the EBLM
criteria (level of evidence IA)

cTnI, cTnT, BNP, NT-proBNP MMP assay, cytokines assays, galectin-3, sST2 [2–4,21,22,77]

Cost–benefit ratio favorable tested by randomized
clinical trials

cTnI, cTnT, BNP, NT-proBNP MMP assay, cytokines assays, galectin-3, sST2 [2–4,77]

Cytokine assays include all the immunoassays for the interleukin/cytokine superfamilies (such TNF, IL-1, IL-2, IL-6).

Fig. 2. Survival plots in the Pisa cohort of systolic heart failure patients (N=1546 patients) on optimalmedical therapy, according to theNewYorkHeart Association (NYHA) classification
(left) or to the left ventricular ejection fraction (right); cardiac death was considered as an end-point.
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Table 3
Some biochemical and physiological characteristics of TNF superfamily cytokines and other pro-inflammatory and regulatory cytokines suggested as biomarkers for heart failure.

Biomarker MW (kDa)a Biochemical structure Biological characteristics

TNF superfamily The TNF superfamily currently consists of 19 ligands and 29 receptors in humans. Most TNF
ligands are type II transmembrane proteins whose extracellular domains can be cleaved by
specific metalloproteinases to generate soluble cytokines. TNF superfamily ligands and
receptors play a role in normal developmental processes, apoptosis, regulation of immune
cell functions, and also in cancer and autoimmune diseases.

TNFa About 17 kDa
(recombinant, mouse)

156 aa protein (recombinant
mouse)

Adipokine/cytokine involved in systemic inflammation and the acute phase reaction

TWEAK (TNFSF12) About 17 kDa soluble
protein (recombinant,
human)

249 aa membrane protein,
156 aa soluble protein

Transmembrane and soluble (cytokine) protein of the TNF ligand superfamily.

FasL (TNFSF6 or
CD95L)

About 40 kDa as a
tramsmenbrane protein
(human)
About 18 kDa as a soluble
protein (recombinant,
human)

157 aa soluble protein
(recombinant, human)

Transmembrane and soluble protein of the TNF ligand superfamily

LIGHT (TNFSF14 or
CD258)

About 23 kDa
(recombinant, human)

183 aa (recombinant, human) Member of the TNF ligand superfamily, which acts as a ligand for TNFRSF14

Pro-inflammatory
and regulatory
cytokines

A pro-inflammatory cytokines are agents promoting systemic inflammation (such as IL-1
and TNF). Regulatory cytokines include IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21, which play a
role in the maturation of lymphocytes.

IL-1β 17.4 kDa (recombinant,
mouse)
17.4 kDa (recombinant,
human)

152 aa (recombinant, mouse)
153 aa (recombinant, human)

IL-1β is a member of the interleukin 1 family of cytokines, which is an important mediator
of the inflammatory response, and is involved in a variety of cellular activities (such as cell
proliferation, differentiation, and apoptosis).

IL-2 15.3 kDa (recombinant,
human)

About 134 aa IL-2 is a regulatory cytokine necessary for the growth, proliferation, and differentiation of
thymic-derived lymphocytes (T cells) to become ‘effector’ T cells.

IL-6 23.7 kDa (human) 212 aa (human) IL-6 is a pro-inflammatory cytokine, secreted by macrophages and T cells to stimulate
immune response during infection, trauma, and burns.

IL-18 18 kDa (recombinant,
human)

157 aa (recombinant, human) IL-18, also known as interferon-gamma inducing factor, is a proinflammatory cytokine of
the IL-1 superfamily.

IL-33 18 kDa (recombinant,
human)

159 aa (recombinant, human) IL-33 is a proinflammatory cytokine expressed on a wide variety of cell types, including
fibroblasts, mast cells, dendritic cells, macrophages, osteoblasts, endothelial cells, and
epithelial cells.

FasL: Fas ligand; LIGHT, an acronymderived from: homologous to Lymphotoxins, Inducible expression, competeswith HSVGlycoprotein D for HVEM, a receptor expressed on T-lymphocytes;
IL-1β: interleukin-1β; IL-2: interleukin-2; IL-6: interleukin-6; IL-18: interleukin-18; IL-33: interleukin-33; TNF: tumor necrosis factor; TNFSF: tumor necrosis factor superfamily; TWEAK: TNF-
like weak inducer of apoptosis.

a The values of MW reported in the table are only indicative because several circulating and tissue isoforms of the same protein are present in humans.

Table 4
Biochemical and physiological characteristics of some cytokine receptors and macrophage products suggested as biomarkers for heart failure.

Biomarker MW (kDa)a Biochemical structure Biological characteristics

Cytokines receptors
TNFR1 (TNFRSF1A or
CD120a) and sTNFR1

18.3 kDa (sTNFR1 recombinant,
human)

162 aa (sTNFR1
recombinant, human)

TNFR1 belongs to the TNFR superfamily of transmembrane proteins. sTNFR1 (the
soluble form of the receptor) is capable of inhibiting TNFa and TNFb activities by
acting as a decoy receptor binding the TNF ligands

TNFR2 (TNFRAF1B or
CD120b) and sTNFR2
(soluble form)

24.5 kDa (TNFR1 recombinant,
human)

184 aa (TNFR1
recombinant, human)

TNFR2 is a lower activator of signaling pathways related to TNF compared to TNFR1.

gp130 (IL6ST, IL6-beta or
CD130a) and sgp130

103.5 kDa (human) 918 aa (human) gp130 is a transmembrane protein, which is the founding member of the class of all
cytokine receptors.

IL-1RA (IL-1F3) About 17 kDa (there are several
isoforms from 16 to 18 kDa)

143 aa (16 kDa) and 152
aa (17 kDa)

IL-1RA is the natural receptor antagonist of IL-1 because it is able to bind the same
specific receptor of IL-1.

ST2 (IL-1RL1) and sST2 About 63 kDa (ST2 or IL-1RL1)
39.5 kDa (recombinant, human
sST2)

556 aa (ST2 or IL-1RL1) 310
aa (recombinant, human
sST2)

ST2 is a member of the interleukin 1 receptor family. The ST2 protein has two
isoforms: a soluble form (sST2) and a membrane-bound receptor form (ST2). The
ligand for ST2 is IL-33.

Macrophage products
Galectin-3 26 kDa (recombinant, human) 250 aa (recombinant,

human)
Galectin-3 is a member of the lectin family, of which 14 mammalian galectins have
been identified. Galectin-3 contains a carbohydrate-recognition-binding domain
which specifically binds the β-galactosides. Galectin-3 plays a role in cell adhesion,
cell activation and chemoattraction, cell growth and differentiation, cell cycle, and
apoptosis.

Pentraxin-3 About 42 kDa (monomer,
human)

381 aa (human) Pentraxin-3 is a member of the pentraxin superfamily, which is characterized by
cyclic multimeric structure. This protein is rapidly produced and released by several
cell types, in particular by mononuclear phagocytes, dendritic cells, fibroblasts and
endothelial cells in response to primary inflammatory signals.

gp130: glycoprotein 130; sgp130: soluble gp130; IL1-F: interleukin-1 family; IL-1RA: interleukin-1 receptor antagonist; IL-1RL1: interleukin-1 receptor-like-1; sST2: soluble ST2 receptor;
sTNFR1: soluble TNF type1 receptor; sTNFR2: soluble TNF receptor type 2; TNFSF: tumor necrosis factor superfamily; TNFSFR: tumor necrosis factor superfamily receptor.

a The values of MW reported in the table are only indicative because several circulating and tissue isoforms of the same protein are present in humans.
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replacementfibrosis (e.g. in response to a large loss ofmyocytes, such as
in myocardial infarction) (Table 5). The ECM can also increase because
of myocardial edema (in myocarditis) or infiltration (for example with
amyloid protein), and its expansion has been shown to correlate with
arrhythmias, sudden cardiac death and HF in a number of cardiac dis-
eases [46].

Some enzymes and molecules involved in ECM metabolism may be
assayed in the peripheral blood and are therefore promising biomarkers
for the assessment of cardiac fibrosis and clinical management in HF pa-
tients. Collagen network is the main structural component of ECM, and
collagen types I and III are the most abundantly expressed in the heart
[47]. Collagen concentration is affected by different stimuli, such as ische-
mia, autocrine/paracrine factors, myocardial stretch, or inflammation,
through the regulation of the expression of matrix metalloproteinases
(MMPs) and tissue inhibitor of matrix metalloproteinases (TIMPs). In
particular, MMP-1 and TIMP-1 are co-expressed in cardiac fibroblasts
and are tightly regulated tomaintain the architecture of the ECM. Indeed
higher levels of both MMP-1 and TIMP-1 are detected in the coronary
sinus compared to the peripheral blood in patients with cardiovascular
diseases (e.g. hypertension) [48]. The balance between MMPs and
TIMPs likely reflects the extent of collagen turnover and may therefore
influence the progression of cardiac remodeling. Consistently, the
serumMMP-1:TIMP-1 ratio is associated with the degree of left ventric-
ular dilatation and systolic dysfunction. [48].

Carboxy-terminal and amino-terminal propeptides of collagens I
(PICP and PINP) and III (PIIICP and PIIINP), are cleaved during the con-
version of procollagen molecules into mature collagen and are related
to ECM synthesis. On the other hand MMPs – in particular MMP-1,
MMP-2 and MMP-9 – are responsible for collagen digestion, collagen I
carboxy-terminal telopeptide (ICTP) being the principal by-product
[49,50].

All the aforementionedmolecules reach the blood and their circulat-
ing levels have been tested as biomarkers of ventricular fibrosis and re-
modeling in HF settings. In some biopsy studies about the association
between serum biomarkers and myocardial collagen content, serum
concentrations of PICP, PIIINP and ICTPwere correlatedwith thefibrillar
collagen fraction in the myocardium [51,52]. Among community-living
older adults, PIIINP was associated with cardiovascular disease and
heart failure [53]; both ICTP and PIIINP have been shown to be signifi-
cantly associated with an adverse outcome in individuals at risk of de-
veloping HF (stages A–B) [54]. Serum PIIINP correlates well with its
tissue analogue (i.e. collagen type III) [51] and significantly associated
with clinical status and outcome in cohorts of patients with dilated car-
diomyopathy of both ischemic and non-ischemic etiologies [51,55]. A
prognostic role for ICTP has been also demonstrated in both the acute
and chronic phases following myocardial infarction [56] and elevated
ICTP plasma levels have been associated with a worse prognosis in HF
[57]. The PICP/ICTP serum level ratio reflects the extent of collagen accu-
mulation. Izawa and colleagues have reported that patients with dilated
cardiomyopathy and a high PICP/ICTP ratio show more abundant
perivascular fibrosis and interstitial fibrosis, as assessed by collagen-
specific staining on cardiac bioptic samples [58]. Interestingly, in the

same study an increased diastolic left ventricular stiffness was also re-
ported in patients with an elevated PICP/ICTP ratio. It could be hypoth-
esized that ECM remodeling may indeed underlie the transition from
subclinical cardiac damage and early stages (A/B) to clinically overt HF
(stage C) either with or without reduced ejection fraction. Differential
balances between MMP-1 and TIMP-1 (evaluated by the ratio of their
circulating levels) seem to be specific of normotensive patients com-
pared to hypertensive subjects who have developed HFpEF or HFrEF
[59]. The MMP-1 to TIMP-1 ratio, measured in the peripheral vein
blood, is correlated with left ventricular ejection fraction and end-
diastolic diameter in an inverse and direct fashion, respectively. Further,
plasma TIMP-1 was positively associated with left ventricular mass and
wall thickness in a cohort ofmore than 1000 patients from the Framing-
ham Heart Study [60], and predicts the presence of symptoms of con-
gestive HF in hypertensive patients [61]. In recent years, the
relationship between circulating ECM-associated molecules and left
ventricular fibrosis and remodeling has been more and more often in-
vestigated by means of cardiac magnetic resonance; given the in vivo
histological information this technique is able to provide. Eschalier
et al. reported a correlation between early cardiac structural abnormal-
ities, detected by magnetic resonance imaging, and PIIINP circulating
concentration in obese patients [62].

Interestingly, antifibrotic treatmentwithmineralocorticoid receptor
antagonists influences peripheral levels of biomarkers of ECM metabo-
lism. In a subset of patients from the Randomized Aldactone Evaluation
Study (RALES), PIIINP levels were decreased by treatment with
spironolactone and identified those subjects with a significant prognos-
tic benefit from the use of aldosterone antagonists [63], suggesting a po-
tential value of this assay for tailoring medical treatment.

Although several studies support the potential clinical utility of ECM
related biomarkers, their circulating levels are altered in several other
extra-cardiac conditions, including cancer, bone diseases and inflamma-
tory diseases, likely acting as confounding factors. Moreover,
preanalytical issues should be taken into account in interpreting the as-
says of ECM related molecules. For example, significant higher values
have been reported for serum compared to plasma MMP-9, due to the
release ofMMP-9 by polymorphonuclears during clot formation [64]. Fi-
nally, somedifficulties still exist in comparing the results obtained using
different commercial kits, given the lack of standardized assay proce-
dures [60].

5. The renin–angiotensin-aldosterone system, the transforming
growth factor beta and cardiac fibrosis

While myocyte hypertrophy has been demonstrated to be load-
dependent, the activation of the renin–angiotensin–aldosterone system
is a major determinant of fibroblast activation and collagen deposition
[11], with the TGF-β as the downstream signal mediator [65]. For in-
stance, in animal models of high-output HF (e.g. arterio-venous fistula
model of HF), the remodeling of the myocardium involves exclusively
myocytes without relevant interstitial fibrosis, whereas in low-output
HFmodels (e.g. pacing-induced HF), characterized by enhanced neuro-
hormonal activation, extensive interstitial fibrosis is documented [66].
Angiotensin II partially mediates its effects through TGF-β, resulting in
the upregulation of myocardial procollagens 1 and 3 production [67]:
alongwith alterations in MMP breakdown enzymes, this leads to an ex-
cess of collagen in the extracellular space and hence fibrosis (Fig. 3).

Many cells secrete TGF-β as an inactive complex, its activation being
precipitated by a number of factors including MMPs and integrins. In
health, it appears to play a crucial role in embryogenesis, extracellular
matrix homeostasis andmaybe in antiatherogenesis. In disease, it regu-
lates the expression and function of all the cells involved in tissue repair
and remodeling [68]. Mice overexpressing TGF-β have been shown to
develop cardiac hypertrophy and interstitial fibrosis [69]. Myocardial
TGF-β levels have been shown to be elevated in patients with dilated
or hypertrophic cardiomyopathy (HCM) [47].

Table 5
Phenotypes of the cardiac fibrous tissue.

Myocardial fibrosis
The fibrous tissue infiltrating the myocardial can be divided into two distinct types:
1. Replacement fibrosis, which occurs throughout the myocardium and is
associated with the loss of cardiomyocyte mass (myocardial scar).
2. Reactive myocardial fibrosis, which originates from areas surrounding the
microvasculature (perivascular fibrosis subtype) and spreads throughout the
myocardium (interstitial fibrosis subtype).

Valvular fibrosis
Valvular fibrosis is an inappropriate proliferation of fibroblasts causing thickening
and fibrosis of the tricuspid valve, but also occurring on the pulmonary valve. The
thickening and loss of flexibility eventually may lead to valvular dysfunction and
right-sided heart failure.

33C. Passino et al. / Clinica Chimica Acta 443 (2015) 29–38



Author's personal copy

6. Markers of ongoing myocardial damage: troponins

Ongoingmyocardial damage (OMD)has beenproposed as a possible
mechanism of cardiac remodeling and disease progression in chronic
HF. Independent of the presence of coronary artery disease, OMD pro-
duces chronic cardiac troponin (cTn) release in patients with HF,
whose plasma levels hold a prognostic value [70]. A recent study report-
ed an association between cTnT release into the coronary circulation (by
simultaneous assay of serum cTnT levels in the aortic root and coronary
sinus) and the presence and extent of myocardial fibrosis assessed by
late gadolinium enhancement at cardiac magnetic resonance in
nonischemic patients with HF [71]. Activation of adrenergic signalling
pathways [72] andmechanical stress, due to cardiac output impairment
and hemodynamic overload during exercise [73], have been proposed
as pathophysiological mechanisms responsible for OMD in HF.

It is well known that a relatively large fraction of patients with HF
(from 25% to 45%), especially those with clinical history of coronary ar-
tery disease, share increased levels of cTnI and cTnT, even if measured
by standard (not highly sensitive) methods [74]. More recent studies
[71,75,76] reported that the fraction of HF patients with troponin values
above the 99th percentile upper reference population limit (99th URL)
greatly increase when the high sensitive immunoassay methods are
used for cTnI and cTnT measurement. In particular, considering the
large population of patients with chronic HF of the ValHeFT study
(4053 patients randomized), only 10.4% of these patients showed mea-
surable cTnTwith the standard assay,while this fraction increased up to
92% when samples were reassessed with a more sensitive method [70].
These premises, together with the recognized prognostic role of

increased troponin in HF [70], support the hypothesis that troponin-
related proteolysis could somehow be also implicated in the develop-
ment of cardiac damage promoting progression to HF. Indeed, it is con-
ceivable that repetitive bouts of ischemia are able to promote
cardiomyocyte death, replacement fibrosis, and ventricular remodeling,
which in turn can produce aworsening of diastolic and systolic function.
In addition, apoptotic cells have been described in the healthy adult
heart [77] and cardiomyocytes have been shown to renew in humans
[78]. Both processes, to different extent, are likely impaired in HF. At
present time, there are no experimental data indicating that during ap-
optosis troponins are degradedwithin the cardiomyocytes and released
into the interstitial space. There are two potential explanations for the
troponin release in the absence of fatal sarcolemmal disruption: 1) cel-
lular release of proteolytic troponin degradation products and 2) tropo-
nin leaks from reversibly damaged cardiomyocytes, as an intact non-
degraded protein chain [74,79]. As these degradation mechanisms
have been evaluated only in experimental studies using culture of
cardiomyocytes, further studies are needed to evaluate the relevance
of these pathophysiological mechanisms in vivo in patients with cardio-
vascular diseases. Furthermore, it is well known that a small fraction
(about 4–8% of the total) of cTnI and cTnT content of cardiomyocyte is
present in the monomeric form in the sarcoplasm, and so this protein
fractionmaybe released in the circulation during a reversiblemyocardi-
al injury [80]. Mechanical stretch of cardiomyocytes, as it occurs during
pressure or volume overload, may activate some intracellular proteases,
such as MMPs, which are able degrade cardiac troponin within the cell
[81]. Overload-induced stretch at the cardiomyocyte level is sensed by
integrins, which are mechanotransducer molecules that link the

Fig. 3.Main enzymatic steps leading to the synthesis of the renin–angiotensin–aldosterone-synthesis (RAAS) effectors; interactions and feedbacks aremarked by blue arrows. Angiotensin II,
by binding to the angiotensin II type 1 receptor (AT1), activates the TGFbeta and SMAD3 signaling pathway and decreases the expression and activity of matrixmetalloproteinase (MMP)-1.
Angiotensin II also stimulates the intracellular generation of reactive oxygen species (ROS) in cardiac fibroblasts,finally contributing to thedevelopment of organfibrosis. Green arrow: stim-
ulatory signal; red arrow: inhibitory signal.
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extracellular matrix to the intracellular cytoskeleton [82]. Hence, this
mechanism may be involved in the stretch-induced release of troponin
and its degradation products [79]. Furthermore, several findings obtain-
ed in healthy individuals and even in well-trained athletes after endur-
ance exercise support this hypothesis [83–85]. These findings suggest
that the stretch stimulation of viable cardiomyocytes may lead to intact
cTnI release. As discussed in detail in other recent reviews [86,87], the
increased analytical sensitivity of cTnI and cTnT methods will likely
help to spread more light on the process of “non-necrotic” troponin re-
lease into the blood and should be considered a powerful tool to moni-
tor the processes related both to physiological renewal and pathologic
remodeling of myocardial tissue.

7. “Novel” biomarkers of myocardial fibrosis and remodeling

7.1. ST2

ST2 is a member of the IL-1 receptor superfamily and it exists in two
forms, a transmembrane (ST2L) and a soluble one (sST2), which is pres-
ent in extracellular space aswell as in circulation. ST2L is the specific re-
ceptor of IL-33, a cytokine generally released by myocytes after
myocardial stress (e.g. pressure overload) [88], whose role is to blunt
cardiac remodeling and fibrosis [89,90], as well as hypertrophy in me-
chanically strained tissues [91]. ST2L transduces to the cell the effects
of IL-33, while sST2 acts as a decoy receptor and sequesters it, reducing
its positive effects. In stress conditions sST2 increases, thus leading to a
higher incidence of deleterious cardiac events, including adverse cardiac
remodeling.

Due to its functional role, sST2 has been studied in various different
cardiac diseases, with a special concern tomyocardial infarction andHF,
and it has been recently included in the ACCF/AHA guidelines for the
management of HF [3]. Recent studies reported that circulating sST2
values correlate with the clinical severity of HF, LV ejection fraction,
BNP and NT-proBNP [43,92]. The sST2 levels at presentation were
higher among patients who died by 1 year. In a multivariable Cox
model analysis containing several established clinical and biochemical
predictive variables, sST2 remained an independent predictor ofmortal-
ity and it showed an incremental prognostic value over natriuretic pep-
tides [43,92]. In patients with decompensated HF, sST2 plasma
concentration in the upper tertile at presentationwas a strong and inde-
pendent predictor of all-causemortality after one year of follow-up [93].
Similar results have been obtained in acute myocardial infarction, with
higher sST2 levels correlating to a more impaired hemodynamic, a
worse ischemic profile on admission, and higher mortality rate at one
month [94].

Recently sST2 has been studied as a prognosticmarker togetherwith
troponins and GDF 15. Their combined measurement improved the
prognostic information of the patients, independent of NT-proBNP
[95], confirming the importance of amultimarker strategywhen dealing
with risk stratification in HF patients.

7.2. Galectin-3

Initially studied as a mediator of cancer growth and progression,
galectin-3 is, among lectins, a unique chimera-like galectin, which can
interact with several extracellular matrix proteins, carbohydrates and
nonglycosylated proteins. Galectin-3 is localizedwithin the cytoplasmic
space of several cell types. In particular, macrophages can secrete
galectin-3 in the extracellular space and activate resting fibroblasts
into a matrix-producing phenotype [27,96].

Sharma and colleagues first reported a causal relationship between
galectin-3 and cardiac damage in a rat model overexpressing the mu-
rine Ren-2d renin gene [27]. They observed a 5-fold increase in the ex-
pression of galectin-3 gene in rats with overt HF, as well as a higher
degree of interstitial collagen and galectin-3 protein content, co-
localized with macrophage-specific staining, compared to rats with

compensated HF and to wild type [97]. They also performed intra-
pericardial infusion of galectin-3 in healthy rats, observing thereafter a
reduction in LVejection fraction and an increase in collagen content ver-
sus placebo. Interestingly, genetic disruption of galectin-3 produced
blunted cardiac hypertrophy and dysfunction, after treatment with ei-
ther angiotensin II infusion or transverse aortic constriction [98].

Although not conclusive, there is some experimental evidence that
the RAAS and galectin-3 share some signaling pathways and interplay
in the development of cardiacfibrosis. Azibani showed that in hyperten-
sive mice with cardiac hyperaldosteronism, aldosterone elicited a mas-
sive macrophage infiltration and an increase in cardiac galectin-3
expression and protein content, especially in the fibrotic areas [99].

As a whole, the abovementioned experimental findings envisage a
causative involvement of galectin-3, as a key mediator of maladaptive
tissue response to damage, in inflammation andfibrogenesis, andfinally
in the pathophysiology of cardiac remodeling. Indeed, some human
studies have demonstrated a correlation between galectin-3 and circu-
latingmarkers of ECMmetabolismand that galectin-3 elevation is an in-
dependent predictor of left ventricular adverse remodeling (defined as
a percentage change in the left ventricular end-diastolic volume along
a 3-month follow-up) in patients with systolic HF [100,101].

7.3. Biglycan and decorin

Biglycan is a small leucine-rich proteoglycan expressed in many tis-
sues in vivo, including the skin, kidney and heart [102]. Several roles of
biglycan have been demonstrated: ECM organization, cellular adhesion
and migration [103]. Biglycan, together with other small leucine-rich
proteins, can bind various collagen types (I, II, III, VI) [104,105] and
plays a major role in modulating inflammatory processes by binding
Toll-like receptors 2 and 4 [106–108]. Furthermore, in transgenic mice
overexpressing human biglycan, the up-regulation of several proteins
of the TGF-β and nitric oxide family has been described [109]. Given
these physiological actions, the role of biglycan in cardiac remodeling
has been further investigated, particularly after myocardial infarction.
Westermann has demonstrated that biglycan induction is critical in
the mechanisms of scar formation, since biglycan knock-out mice
showed increased mortality, left ventricular ruptures and HF after ex-
perimental myocardial infarction [110]. Moreover, biglycan seems to
be secreted in a RAAS dependent manner [111,112] and its secretion
could be prevented by AT1 receptor antagonists [112].

Like biglycan, decorin is a proteoglycan that regulates collagen for-
mation and organization by binding to collagens I and III [113,114]. It
is expressed by several tissues including the heart, and its concentration
rises in cardiovascular diseases such as myocardial infarction and dilat-
ed and hypertrophic cardiomyopathy [115]. Decorin has been demon-
strated to interact with the TGFβ/SMAD2 pathway. Indeed, decorin
binds TGFβ [116,117] and inhibits its profibrotic effects, thus likely
blunting the development of adverse remodeling.

8. Analytical performance of biomarkers for heart failure: some
general considerations

From an analytical point of view, all the biomarkers suggested in the
previous paragraphs are usually measured by means of immunoassay
methods. However, only a small part of these biomarkers are measured
with immunoassaymethods using fully automated platforms (Table 2).
For example, considering the 3 groups of biomarkers actually recom-
mended by the most recent international guidelines [3], it is possible
to measure BNP, troponins I and T, and galectin-3 with fully automated
platforms, while, at present time, sST2, is still measured by an EIAmeth-
od. Furthermore, even if the first immunoassay methods for B-type na-
triuretic peptides (i.e., BNP andNT-proBNP) and cardiac troponin I were
set up 30 years ago, there is not an international standardization of
these methods. Indeed, BNP immunoassay methods actually show sys-
tematic differences up to 50% [118–120], while even a greater bias is
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on average found between cTnI immunoassaymethods [121]. As an ex-
ample, in Table 6, a comparison between the analytical characteristics of
the immunoassaymethods for galectin-3 is reported. Even if all thema-
terials and standards used by these laboratory tests are supplied by the
same company (BG Medicine, Waltham, MA), these methods show
some differences in the analytical performance, as demonstrated by
the data reported in Table 6. In particular, the ELISA method shows a
longer turnaround time (TAT) than the two automated immunoassays,
suggesting that this method has a lower practicability than those using
the Architect and VIDAS automated platforms. However, the ELISA
method shows an analytical sensitivity similar (if not better) than the
two automated systems [122–124].

From a clinical point of view, it is important to note that tissue levels
of several biomarkers (including some cytokines, chemokines, tissue
proteases, and neuro-hormones, such as noradrenaline, angiotensin II
and aldosterone) described in the previous paragraphs could be little
(or even not at all) correlated with their respective circulating levels,
thus suggesting that themeasurement of plasma/serum concentrations
of these biomarkers could have little pathophysiological relevance. Fur-
thermore, these substances, if used as biomarkers, are not cardiac-
specific, because they are expressed in all human tissues, when an in-
flammatory process or tissue damage is promoted. As a result, it is not
possible, when several organs are together injured, to differentiate the
fraction of biomarker circulating levels derived from cardiac tissue or
other tissues. This is an important limitation of these biomarkers com-
pared to cardiac troponins and natriuretic peptides, which can be recog-
nized as cardiac specific biomarkers.

9. Perspectives

A large number of biomarkers with a plausible biological link with
HF pathophysiology, mainly associated with immuno-inflammatory
and neurohormonal response to heart damage, have been identified
so far [2].Many of these biomarkers share the ability to define the sever-
ity of the ongoing ventricular remodeling process, but often lack of car-
diac specificity and levels can be influenced by both systemic
inflammatory and infective processes, which occur frequently in HF pa-
tients. In this clinical context, a new generation of point-of-care testing
(POCT)methods for theseHF biomarkers, characterized by an improved
degree of sensitivity and imprecision, could be utilized in inpatients,
outpatients and emergency department settings to aid in the rapid diag-
nosis, risk andmanagement of patients presentingwith symptoms con-
sistent with HF. In particular, the implementation of POCT methods for
BNP/NT-proBNP into home-monitoring strategies could help patients
and physicians to avoid unnecessary hospitalization or anticipate ad-
mission in the clinical ward when it is actually needed [125]. Of course,
for the greater part of these novel biomarkers as well as newmethodol-
ogies, usefulness in driving the clinical and therapeutic decision-making
process is still to be proved.

In the recent years, some imaging techniques (cardiacmagnetic res-
onance, cardiac ultrasoundwith backscatter analysis, positron emission
tomography) have been also developed for in vivo tissue characteriza-
tion. In particular, cardiacmagnetic resonance bymeans of the late gad-
olinium enhancement technique resulted in a goodmeans for detection
of gross myocardial fibrosis in HF [41,126]. In addition, other cardiac
magnetic resonance techniques, as T1 mapping, are giving encouraging

results for definition and quantification of interstitial fibrosis [127], po-
tentially providing early information on the ongoing remodeling pro-
cess. Integration of circulating biomarkers with those derived from
imaging techniques, as cardiac magnetic resonance, may represent an
innovative and effective strategy for a thoroughdefinition of the remod-
eling process.

Despite clinical guidelines [3] do not routinely recommend
endomyocardial biopsies for the management of HF due to an unfavor-
able risk/benefit ratio, in the clinical setting there is an unmet need for a
specific, accurate, and effective biomarker of the ongoing remodeling
process in HF. Besides natriuretic peptides and troponins, up-to-date
soluble ST2 and galectin-3 are themost studied remodeling biomarkers
in the clinical setting but have not yet reached the highest class of rec-
ommendation/evidences. Indeed, further studies are needed, in select-
ed, large populations, to test the efficacy of these and other new
markers preferably within a multi-marker strategy for patient manage-
ment, including diagnostic information provided by cardiovascular im-
aging [128]. Finally, the development of more automated, easily
accessible assays, together with a careful evaluation of analytical and
clinical performances aswell as of their cost-effectiveness, is mandatory
for a transfer to routine practices.
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