
Pre-Impact Fall Detection: Optimal Sensor Positioning
Based on a Machine Learning Paradigm
Dario Martelli1., Fiorenzo Artoni1., Vito Monaco1*, Angelo Maria Sabatini1, Silvestro Micera1,2

1 The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy, 2 Translational Neural Engineering Lab, Center for Neuroprosthetics, Swiss Federal Institute of

Technology Lausanne (EPFL), Lausanne, Switzerland

Abstract

The aim of this study was to identify the best subset of body segments that provides for a rapid and reliable detection of the
transition from steady walking to a slipping event. Fifteen healthy young subjects managed unexpected perturbations
during walking. Whole-body 3D kinematics was recorded and a machine learning algorithm was developed to detect
perturbation events. In particular, the linear acceleration of all the body segments was parsed by Independent Component
Analysis and a Neural Network was used to classify walking from unexpected perturbations. The Mean Detection Time
(MDT) was 3516123 ms with an Accuracy of 95.4%. The procedure was repeated with data related to different subsets of all
body segments whose variability appeared strongly influenced by the perturbation-induced dynamic modifications.
Accordingly, feet and hands accounted for most data information and the performance of the algorithm were slightly
reduced using their combination. Results support the hypothesis that, in the framework of the proposed approach, the
information conveyed by all the body segments is redundant to achieve effective fall detection, and suitable performance
can be obtained by simply observing the kinematics of upper and lower distal extremities. Future studies are required to
assess the extent to which such results can be reproduced in older adults and in different experimental conditions.
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Introduction

Fall-related accidents are among the most serious problems in

elderly people [1,2,3], amputees [4] and subjects with neurological

disorders [5]. About one out of three adults over 65 years of age

falls once a year leading to severe traumatic and psychological

consequences [1,2,3]. Given the increased life expectancy of the

worldwide population, the number of people who are more prone

to fall is growing and fall-prevention programs are rapidly

becoming a key issue to health-care national systems, not only to

reduce costs, but also to benefit society as a whole [3].

In the last years, several research groups have focused their

attention on the design of ‘‘pre-impact fall detectors’’, that is,

wearable devices able to reveal unexpected and potentially

dangerous postural transitions, which can result in a fall. They

have sought to detect an incipient fall early enough to enable

suitable strategies aimed at mitigating the effects of the impact with

the ground or, possibly, avoiding it [6,7,8,9,10,11,12,13]. For

instance, these devices could be combined with air-bag technology

[14,15] to reduce the risk of hip fractures or with exoskeleton/

active prosthesis systems that provide supplementary forces to

regain stability [13,16].

An effective pre-impact detection system is expected to both

increase the sense of security and reduce fall-related injuries

(occurring in 40–60% of cases [1]), ultimately improving users’

quality of life. However, in order to increase the efficacy and,

consequently, the usability of these devices, some efforts are still

needed to overcome the limits of currently adopted approaches.

From a methodological viewpoint, general kinematic features of

falling are usually measured from standing position while subjects

fall either passively [6,7,8,9] or as a result of pushing [10,11], that

is, in very unnatural conditions. Conversely, falls generally occur

during walking [2] and are characterized by a very complex

biomechanics which depends on several factors such as the type of

perturbation [17], the intensity [18], the direction [19], and the

timing with respect to the gait cycle [17,20]. Consequently,

although promising, many of the results reported in literature may

be biased by the unnatural behaviour elicited by these experi-

mental setups.

One of the potential weak points of the pre-impact fall detectors

is related to the body sensors positioning. To the best of our

knowledge, work reported in literature has not yet clarified

whether it is possible to determine the body segments which are

the most sensitive to postural transitions resulting in falls.

Specifically, current approaches are usually based on a small set

of inertial sensors fixed to the pelvis [7,9,11], the thorax [6,7,8,12],

or the thigh [8,9] with the overall goal to minimize their total

number.
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Indeed, Zhao and colleagues [21], after recording data from

nine sensors positioned on trunk and legs, observed that the

acceleration of the chest provides the best performance while

detecting a passively induced fall. Moreover, Aziz and colleagues

[22] analyzed the acceleration of several body segments in order to

reveal, a posteriori, whether the falls were induced by slips, trips or

other causes. They reported that three markers positioned on both

the ankles and the sternum provide the best classification results.

However no study has investigated whole-body kinematics to

maximize speed and efficiency of a pre-impact fall detector.

The aim of the present study was to investigate whole-body 3D

kinematics while managing unexpected perturbations delivered

during steady locomotion. Specifically, our goal was to identify the

combination of body segments that provides for a rapid and

reliable detection of the transition from steady walking to a

slipping event. Our hypothesis was that the linear acceleration of a

limited set of body segments could be very sensitive to underlying

fall-triggering processes in healthy young adults. If confirmed, this

would improve the performance of pre-impact fall detectors based

on an optimized positioning of the sensors.

Since a great amount of falls and fall-related injuries results from

slips [3], an experimental set up was designed to deliver

multidirectional slipping-like perturbations to enrolled subjects

while walking in a steady state. The 3D kinematics was recorded

and a machine learning algorithm was developed to detect

perturbation events. In particular, the linear acceleration of all

body segments was analyzed with a robust Independent Compo-

nent Analysis (ICA) (to parse the input data into maximally

independent components) and a Neural Network (NN) was used to

classify walking from unexpected perturbations.

The pattern-recognition performance using all the body

segments was finally compared with different reduced subsets

(singled out by ICA) whose variability appeared strongly influenced

by the perturbation-induced dynamic modifications.

Materials and Methods

Subjects, experimental setting and protocol
Fifteen healthy adults (10 males and 5 females, 26.161.3 years

old, 68.8612.3 kg, 1.7860.06 m, right dominance of the lower

limb) underwent slipping perturbations during paced walking. The

experimental set-up and the protocol are the same used in our

previous study [23] and briefly reported here.

Perturbations were managed by a mechatronic platform named

SENLY [24], which mainly consists of two parallel and adjacent

treadmills whose longitudinal and transversal speeds can be

independently controlled (Figure 1A). This allows slipping

perturbations to be applied to the horizontal plane by means of

sudden movements of one or both belts.

The experimental protocol consisted in perturbing the steady

locomotion of each subject with a sudden and unexpected

movement of one belt occurring at the heel strike. In order to

guarantee the same dynamical stability for all the subjects, the

walking speed was chosen by imposing a Froude number equal to

0.15 [25]. Each recording session (trial) began while a subject was

walking steadily, started one minute before delivering the

perturbation, and ended after the recovery of balance. Subjects

wore a safety harness attached to an overhead track.

Ten types of perturbations, five on the left (L) foot and five on

the right (R) foot, were delivered. Each involved the combination

of longitudinal (North, N or South, S) and/or transversal (East, E,

or West, W) movements of the belts. Herein, perturbations will be

named with these acronyms: NR, NE, E, SE, SR, NL, NW, W, SW,

SL (Figure 1B).

A 6-camera motion analysis system operating at 100 Hz and a

set of 39 markers were used to quantify the whole-body 3D

kinematics [23]. The 3D kinematics and the onset of the

perturbations were synchronized by means of a logic pulse

generated by SENLY. Two sessions were collected for each subject

and each perturbation. In order to obtain unbiased results due to

habituation, participants did not know whether they would be

perturbed or not (ten trials without perturbation were also

included in the experimental protocol but not in the data analysis)

and perturbations were supplied in random order.

The Local Ethics Committee of the Scuola Superiore

Sant’Anna approved the research procedure and all the subjects

gave their written informed consent, in agreement with the ethical

standards of the declaration of Helsinki, before participating.

Biomechanical Model
A full body model accounting for 15 segments was developed

[23]. The 15 segments (Figure 1C) were: head/neck (H/N), chest

(T), abdomen/pelvis (P), upper arms (LA and RA), forearms (LFA

and RFA), hands (LH and RH), thighs (LT and RT), shanks (LS and

RS) and feet (LF and RF). For each body segment, a right-handed

local reference frame was located in its Centre of Mass (CoM),

calculated using the procedures described by Zatsiorsky and

colleagues [26] and modified by de Leva [27]. For each segment,

the three components of the linear acceleration of the CoM

resolved in the global-reference frame were calculated as the

second derivative of the position data (three-point central

differences method). Only the portion of these signals across the

onset of the perturbation was then used in the fall-detection

algorithm.

Data Processing
Figure 2 shows the overall algorithm used in this study.

A dataset M was constructed for each subject by concatenating

data related to the 20 collected trials (i.e., 2 sessions610

perturbations), each one ranging from five seconds before

(Walking Phase: WP) to one second after (Perturbation Phase:

PP) the onset of the perturbation, for a total of 600 data points

(i.e., for each subject, M was sized as follows: [15 segments63

acceleration components] rows; [20 trials6600 data points]

columns). This dataset was preliminary parsed out by the ICA

(see ICA1 in Figure 2) in order to obtain the Ranking of the

segments based on their informativeness and the optimal number

N of retained Independent Components (ICs; see Appendix S1).

Then, the detection of the perturbation events was achieved by

developing a machine learning algorithm consisting of two parts:

extraction of the most informative components by the ICA (see

ICA2 in Figure 2) followed by pattern recognition implemented by

a NN. The whole process was developed in compliance with leave-

one-out cross validation (LOOCV) specifics.

Processing of the datasets accounting for all

segments. For the dataset M, 19 out of 20 trials (Training

Set: TrSi) were selected to train the model, whereas the excluded

ith trial (Test Set: TeSi) was adopted to test its performance. This

procedure was repeated 20 times (‘‘outer’’ LOOCV) leaving a

different trial as TeSi each time (i.e., 20 TrSi and 20 TeSi for each

subject; see the green box in Figure 2).

The ICA2 was performed on the TrSi with the N components

previously determined. ICA2 produced a time-invariant matrix

(WICAi, sized as follows: N rows; [15 segments63 acceleration

components] columns) which was used to project both the TeSi and

the TrSi into the independent component space. The resultant

projected TrSi (Si, sized as follows: N rows; [19 trials6600 data

points] columns) was passed on to an artificial three-layer
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feedforward NN with 80 hidden neurons and tangent hyperbolic

transfer functions (Neural Networks Toolbox, MATLABH). The

training function chosen was the ‘‘Resilient Backpropagation’’

algorithm (reported to be fast and appropriate when using sigmoid

transfer functions) with ‘‘early stopping’’ feature to prevent

overfitting issues (see Appendix S2) [28].

A further LOOCV step (inner LOOCV) was applied to Si (19

trials): 18 of them (jSi) were selected to train the NN, whereas the jth

excluded trial (Validation Set – jVaSi) was used to determine the

optimal number of iterations as the ‘‘early stopping’’ method

suggests (see the red box in Figure 2).

For each inner LOOCV iteration, the outputs of the NN were

both the Bias (jbi) and the Weight matrices of the hidden (jWhi) and

the output (jWoi) layers, which were later used with an activity

threshold of 0.5 on the projected TeSi (S9i) to calculate the resultant

vector jouti (sized 16600). Each individual time point of jouti was

a dimensionless either W (Walking), P (Perturbation), or N/A

(uncertainty) class.

A potential perturbation was considered as detected if five

consecutive time points were classified as P. A detected potential

perturbation was then labeled as ‘‘True Positive (jTPi)’’ if detected

in the real PP or as ‘‘False Positive (jFPi)’’ if detected in the WP.

Conversely a detected walking condition was labeled as ‘‘False

Negative (jFNi)’’ if detected in the PP or as ‘‘True Negative (jTNi)’’

if detected in the real WP. Only in the jTPi case, the Detection

Time (jDTi) was defined as the time elapsed from the delivery of

the perturbation and the actual detection.

Finally, the Mean Detection Time (MDT) was defined as the

average of all jDTi and the occurrences of jTPi,
jFPi,

jTNi,
jFNi

were counted (TPtot, FPtot, TNtot, FNtot). The Sensitivity, Specificity and

Accuracy of the whole process were calculated as follows:

Sensitivity~TPtot= TPtotzFNtotð Þ

Specificity~TNtot= TNtotzFPtotð Þ

Accuracy~ TPtotzTNtotð Þ= TPtotzFPtotzTNtotzFNtotð Þ

The algorithm run on the whole dataset M provided the reference

performance.

Processing of datasets accounting for a subset of all body

segments. The procedure described above was repeated

accounting for all possible combinations of the most informative

segments singled out by the Ranking performed by the initial

ICA1 (see Figure 2). Specifically, the Total Segment Weight

(TSW) was computed and each segment was ranked according to

its informativeness (see Appendix S1). Moreover, since there is no

way of knowing in advance which side is interested by the

perturbation, segments were chosen bilaterally (i.e., belonging to

both sides). The performance metrics (MDT, Accuracy, Specificity,

and Sensitivity) were finally computed for each combination of

selected body segments.

Noticeably, for this step, the number of retained ICs for each

subject within the ICA2 equalled the dataset dimension, that is the

number of variables (number of segments63 acceleration compo-

nents). In fact, information reduction was already carried out by

determining the meaningful segments.

Statistical Analysis
The effect of direction (i.e., paired NL/NR, NW/NE, W/E, SW/

SE, and SL/SR) and side (i.e., left and right foot) on the MDT

obtained for each subject and each type of perturbation was

analyzed using a two-way ANalysis Of VAriance (ANOVA).

Finally the MDT obtained after processing datasets accounting for

all body segments (ALL) was compared to those obtained with the

reduced subsets by using the t-test on paired samples. Data

analysis was carried out off-line by means of customized MATLAB

(The MathWorks Inc., Cambridge, MA, US) scripts, and the

statistical significance was set at p,0.05.

Figure 1. Experimental setup. The subplot A consists of a picture of the SENLY platform. The subplot B represents the 10 types of perturbations.
Each perturbation involved the combination of longitudinal (i.e., North, N or South, S) and transversal (i.e., East, E, or West, W) movements of the belt
provided while participants were walking steadily. Five perturbations were delivered on the left foot (i.e., NL, NW, W, SW, SL) and five on the right foot
(i.e., NR, NE, E, SE, SR). The subplot C shows an example of the reconstruction of the biomechanical model of a representative subject. The vertexes of
each polygon and the dots represent respectively the markers position and the CoM of each body segment with the corresponding acronyms.
doi:10.1371/journal.pone.0092037.g001
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Figure 2. Algorithm. The scheme shows the entire algorithm used in this study. The red, green and blue boxes represent respectively the inner
LOOCV, the outer LOOCV steps and the repetitions for all the subjects. The gray boxes represent the main core of the algorithm (i.e., ICA1, ICA2 and
NN). The two switches are rigidly interconnected (dotted line) and allow the flow of information coming from the upper layers of the algorithm to go
through either the purple lines (i.e., it occurs when the algorithm processes the dataset accounting for all body segments; see the section titled
Processing of the datasets accounting for all segments) or the blue lines (i.e., it occurs when the algorithm processes the dataset accounting for a
subset of all body segments; see the section titled Processing of the datasets accounting for a subset of all segments). Note that when the switches are
commuted toward the purple (blue) lines no information can go through the blue (purple) lines, that is, the unselected lines are neglected by the
algorithm. M is the initial dataset constructed by concatenating data related to the 20 collected trials and is preliminarily parsed out by ICA1 to
determine the optimal number N of retained ICs and the Ranking concerning their informativeness. These information were respectively used to run
the ICA2 either on the dataset accounting for all body segments (purple line) or on that accounting for a limited number of segments (light blue line).
In this regard the box F selects the subset of segments being processed according to their Ranking. Then, 19 out of 20 trials (Training Set–TrSi) are
selected to train the model, whereas the excluded trial (Test Set–TeSi) is used to test its performance. This procedure is repeated 20 times (‘‘outer’’
LOOCV) leaving a different trial as TeSi each time (i.e., 20 TrSi and 20 TeSi for each subject– see green box). In order to train the model, ICA2 is
performed on the TrSi with the number of components previously determined. ICA2 produces a time-invariant matrix (WICAi) which is used to project
both the TeSi and the TrSi into the independent component space. The resultant projected TrSi (Si) is passed on to the Neural Network (NN). A further
LOOCV step (inner LOOCV) is applied to Si (19 trials): 18 of them (jSi) are selected to train the NN, whereas the excluded trial (Validation Set – jVaSi) is
adopted to determine the optimal number of iterations. For each inner LOOCV iteration, the outputs of the NN box are the Bias (jbi) and the Weight
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Results

Subjects walked at an average speed of 1.1060.03 m/s (range:

1.02–1.14 m/s). After the perturbation, all participants were able

to recover their balance without falling.

Figure 3 shows the MDT for ALL considering each perturbation

direction. On average, the MDT was 3516123 ms with an

Accuracy of 95.4% (Sensitivity = 92.7% and Specificity = 98.0% – see

Table 1).

The two-way ANOVA revealed that the MDT was significantly

affected (p,0.05) by the perturbation direction but not by the side

(Table 1). Noticeably, the perturbations that accounted for a

diagonal movement of the belt (i.e. NW, NE, SW and SE) were the

quickest to detect (Figure 3).

Figure 4 shows the Ranking performed by the ICA1 process based

on the informativeness of each body segment.

According to the Ranking information, the segments chosen for

estimating the performance of the algorithm while processing data

coming from a subset of body segments were feet (LF, RF) and

hands (LH, RH). Consequently the accounted combinations were:

feet (F), hands (H) and feet-hands (F-H). In this respect, the two-

way ANOVA revealed again that the MDT was significantly

affected (p,0.05) by the direction but not by the side of the

perturbation (Table 1). Specifically, pure longitudinal (i.e., NL, NR,

SL and SR) and transversal (i.e., W and E) perturbations were the

longest to be detected respectively for the F and the H

combinations (Figure 3). Accordingly, the concomitant contribu-

tion of both hands and feet (see F-H in Figure 3) to the algorithm

induced a slight decrease of the MDT for all directions, involving

results more similar to ALL. On the whole, the t-test showed that

only the MDT of the H combination (3996128 ms) was

significantly greater than that of ALL (p,0.05) (Table 1).

Concerning the statistical performance, when the algorithm

processed data related to lower extremities (i.e., F combination), it

worsened in Sensitivity (84.8%) but not in Specificity (98%), with an

overall Accuracy of 91.4%. Furthermore, accounting for only hands

(i.e., H combination) or feet and hands (i.e., F-H combination), the

algorithm slightly worsened both in Sensitivity (respectively 90.2%

and 92.1%) and Specificity (96% and 96.3%), with an overall

Accuracy of 93.1% and 94.2%.

Concluding, the best-performance with a reduced-segment

combination was obtained by processing data related to the F-H,

subset and resulted in an Accuracy of 94.2% and a MDT of

3466121 ms.

Discussion

In this study we investigated how to optimize sensor positioning

in order to improve the performance of pre-impact fall detectors

while discriminating walking from falling processes. Specifically,

we hypothesized that the modifications of the linear acceleration of

a subset of body segments can be more sensitive than others in

successfully and quickly sorting walking from unexpected multi-

directional slipping-like events. The performance of our ad-hoc-

designed machine learning algorithm was tested on different

subsets taken from the available data with a view to determining

both the best obtainable performance and the minimum number

of segments needed to maintain good classification performance.

Results showed that the performances obtained when taking

into account the greatest redundancy among data (i.e., when

observing all body segments–ALL combination) were:

MDT = 3516123 ms and Accuracy = 95.4% (Table 1). Moreover,

feet and hands were the body segments accounting for the greatest

amount of informativeness (Figure 4) and, as expected, the

detection of the perturbation based on the combination of them

was only slightly worsened (Table 1).

Our analysis suggests that although whole-body reaction is

important when both walking [29] and managing unexpected

perturbations [30,31], the kinematics of feet and hands during

sudden postural transitions is characterized by the widest

variation. It is presumably due to their lower inertia and higher

distance from the body CoM, and documents that these body

segments are very sensitive to the modifications of the dynamic

stability induced by slipping-like perturbations.

Results were consistent with findings of previous authors [22],

who observed that an a posteriori classifier based on the 3D

acceleration of three markers (the left ankle, right ankle and

matrices of the hidden (jWhi) and output (jWoi) layers, which are later used on the projected TeSi (S9i) to calculate the resultant vector jouti. Each time
point of jouti is a dimensionless either W, P, or N/A (uncertainty) class. A potential perturbation is considered as detected if 5 consecutive time points
are classified as P. A detected potential perturbation is then labelled as True Positive (jTPi), False Negative (jFNi), False Positive or True Negative (jTNi).
Only in the jTPi case, the Detection Time (jDTi) is defined as the time elapsed from the delivery of the perturbation to the subject and the actual
detection. Finally the Mean Detection Time (MDT) is defined as the average of all jDTi and the occurrences of jTPi,

jFPi,
jTNi,

jFNi are counted (TPtot, FPtot,
TNtot, FNtot). The Sensitivity, Specificity and Accuracy of the whole process are finally calculated as explained in Materials and Methods.
doi:10.1371/journal.pone.0092037.g002

Figure 3. Mean Detection Time. The Figure shows the Mean Detection Time (MDT) obtained for each type of perturbation (i.e., NR, NE, E, SE, SR,
NL, NW, W, SW, SL) averaged across all participants (dark gray area) plus one standard deviation (light gray area) considering the all-segments (ALL),
the feet (F), the hands (H) and the feet-hands (F-H) combinations. All the values are expressed in ms.
doi:10.1371/journal.pone.0092037.g003
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sternum) performed better in distinguishing falls due to slips, trips

and other causes than using a higher number of them. This

confirms that the information conveyed by all the segments is

redundant and does not increase classification performance.

Interestingly, the absence of data related to the feet worsened

the performance of the algorithm, increasing significantly (p,0.05)

the MDT (Table 1), in agreement with Zhang and colleagues [13]

who found the acceleration of the prosthetic foot to be sufficient to

detect stumbles with a fast-time response compared to others

variables (e.g., EMG signals, knee angle acceleration, ground

reaction force, CoM-CoP inclination angle etc.). Feet are indeed the

first segments to undergo modifications of the steady biomechan-

ical patterns due to slipping-like perturbations. In this respect,

although upper limb reactions occur at similar latencies as lower

limbs reactions [31], the dynamics of the mechanical chain linking

the lower and the upper limbs may introduce a delay which

negatively affects the performance of the fall detection algorithm.

It is worth noting that the statistical performance of the

algorithm while processing only data related to the feet (F

configuration) resulted in a reduced Sensitivity due to a higher

number of FNtot. The contribution of the hands can hence be

helpful to reduce false alarms. Overall, the optimal trade-off

between good statistical performance and low MDT can be

obtained by processing data related to both the upper and lower

distal extremities.

As expected, results also showed that the MDT for all accounted

combinations of body segments was significantly affected by the

direction (i.e., paired NL/NR, NW/NE, W/E, SW/SE, and SL/SR)

but not by the side (i.e., left or right foot) of the perturbation. This

confirms the need to analyze reactions to unexpected slipping

perturbations in several directions given the context-dependent

reactive responses elicited by subjects and the unpredictability of

real life fall direction [19,23].

Table 1. The table shows the Mean Detection Time (MDT), Sensitivity, Specificity and Accuracy for the all-segments combination
(ALL) and the reduced-segments combinations chosen after the Ranking.

Factor: Side Factor: Direction

MDT [ms] p-value F(1,149) p-value F(4,149) t-test Sensitivity [%] Specificity [%] Accuracy [%]

ALL 3516123 0.417 0.662 ,0.001 8.45 / 92.7 98.0 95.4

F 3446191 0.515 0.43 ,0.001 14.49 0.347 84.8 98.0 91.4

H 3996128 0.939 0 0.001 4.97 ,0.001 90.2 96.0 93.1

F-H 3466121 0.696 0.153 ,0.001 11.60 0.789 92.1 96.3 94.2

The accounted combinations are feet (F), hands (H), and feet-hands (F-H). The p-values are related respectively to the two-ways ANOVA (i.e., effect of the direction and
side of the perturbation) and the t-tests (i.e., difference of each reduced-segments combination with respect to the all-segments one) on the MDT obtained for each
subject and each type of perturbation (see Materials and Methods). When a p-value is statistically significant (p,0.05), it is highlighted in bold.
doi:10.1371/journal.pone.0092037.t001

Figure 4. Total Segment Weight. The Figure shows the mean and one standard deviation (error bar) of the Total Segment Weight (TSW) of each
body segment that is the cumulative weight of the accounted segment on the ICs extracted. The TSW was normalized and expressed as a percentage.
The 15 segments are: head/neck (H/N), chest (T), abdomen/pelvis (P), upper arms (LA and RA), forearms (LFA and RFA), hands (LH and RH), thighs
(LT and RT), shanks (LS and RS) and feet (LF and RF). See Appendix S1 for further details.
doi:10.1371/journal.pone.0092037.g004
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If we analyze the state of the art for pre-impact fall detection,

previous authors have reported higher values of Sensitivity and/or

Specificity [6,7,9,12]. Actually, we believe that our results cannot be

directly compared to those reported in literature for the following

three main reasons. First, it is common practice to impose a free

fall on standing-still subjects [6,7,8,9,11,12] that results in an

abrupt change of the dynamical features. Instead, the protocol

adopted in this work consisted in delivering an unexpected

slipping-like perturbation during steady walking inducing less

blatant modifications of the biomechanical patterns. Second, the

double LOOCV used to validate the algorithm rendered the results

more conservative and better generalizable compared to other

approaches [32]. This was because the TeS of each LOOCV cycle

was always unknown to the algorithm thus making the results

more pessimistic but closer to real-life performance. Finally, in

previous papers, authors have analyzed either the ‘‘lead time’’ (i.e.,

the time elapsed from the fall detection and the actual impact of

the subject on the mattress) [6,7,8,9,10,11,12], or the critical

timing of falling (i.e., the time elapsed from the detection of a fall

and the moment at which the CoM-CoP inclination angle exceeded

a range of 223u to 23u from vertical) [13]. On the contrary, in this

study, we analyzed the time elapsed from the onset of the

perturbation and the actual detection, that is, our attention was

focused on the kinematics of the body segments in the time

window preceding that observed by previous authors.

Concerning the methodological aspects, while current pre-fall

detection approaches compare daily-activity kinematic features to

those related to simulated falls with threshold-based algorithms

[6,7,8,9,10,11,12,13,21], for the first time a machine learning

approach was used to identify the combination of body segments

which provides for a rapid and reliable detection of the transition

from steady walking to a slipping event. Specifically, the

information was firstly disentangled from noise using a reliable

ICA algorithm on linear accelerations, then the NN classifier was

fed with correctly-preprocessed and informative data.

Indeed, we have to acknowledge that there are many possible

techniques for dimensionality reduction (e.g., ICA, Principal

Component Analysis, Nonnegative Matrix Factorization, Factor

Analysis, etc.) and classification (e.g., NN, Linear Discriminant

Analysis, Support Vector Machines, Hidden Markov Models,

etc.). However, determining the combination of techniques that

provide the absolute best results is out of the scope of this work.

We would like to remark that our approach, at this stage, was

not designed or suited to work in real time but was rather aimed to

determine the optimal positioning of a limited number of sensors.

Nonetheless, its output can be potentially applied in a real-time

pre-impact fall detector. For instance, the model could be firstly

trained off-line based on data recorded during daily activities and

later used on-line to identify the current state of the subject. Under

this hypothesis, since the time interval between the loss of balance

during the quite upright stance and the impact with the ground is

longer than about 0.7 s [22,33], it is possible to speculate that our

approach may allow early enabling of several fall prevention

strategies.

Finally, it is important to pinpoint that linear accelerations were

not recorded by inertial units but were estimated from the 3D

kinematics of the whole body by using a well standardized motion

analysis approach, which is not applicable in unconstrained

environments. Nonetheless, the outcome of this study can possibly

be extended to an inertial unit-based approach due to the

algebraic relationship between accelerations estimated with respect

to a fixed and a mobile reference frame. Accordingly, the

presented results are expected to be well suited for all widely used

real-time fall detection systems based on inertial units.

Limits of the study
As all the experimental approaches used in literature, the one

proposed in this work is not fully generalizable. In fact, even if the

adopted paradigm is more realistic compared to other works

[6,7,8,9], it is still constrained and real life falls may differ from

artificially-induced ones. Moreover we investigated the behaviour

of our algorithm while processing only one type of daily living

activity (i.e., walking) and one type of falling cause (i.e., slipping).

Another limitation is that all the experiments were performed

by healthy young subjects. It is well know that elderly people (i.e.,

natural users of pre-impact fall detectors) have a falling dynamics

different to young subjects due to their residual physical/cognitive

capabilities [34,35]. Therefore, further experimental sessions are

required to verify whether the results obtained in this study can be

extended to older subjects. However the analysis of the reaction of

healthy young subjects is the first and necessary step to identify an

approach on which to base further studies on older persons and to

proceed further to the goal of providing effective fall protection

devices.

On the whole, further experiments aimed at monitoring several

daily activities (e.g., sit-to-stand, stair ascending and descending,

laying, etc.) and other falling causes (e.g., trips, miss-steps) in both

young and elderly people are required to assess the extent to which

such results can be reproduced in older adults and in different

experimental conditions.

Conclusions

The paper shows how to optimize sensory positioning with a

view to improving the performance of pre-impact fall detectors.

Results confirm the hypothesis that the linear acceleration of only

a limited set of body segments can be very sensitive to underlying

fall-triggering processes in healthy young adults. On the whole, in

the framework of the proposed approach, the information

conveyed by all the body segments is redundant to achieve

effective fall detection, and suitable performance, in terms of MDT

and Accuracy, can be obtained only by observing feet and hands.

These results could serve as a guideline to improve the

performance of pre-impact fall detectors based on an optimized

positioning of the sensors.
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