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Abstract—Metro and carrier-grade Ethernet networks,
as well as industrial area networks and specific local area
networks (LANs), have to guarantee fast resiliency upon
network failure. However, the current OpenFlow architec-
ture, originally designed for LANs, does not include effec-
tive mechanisms for fast resiliency. In this paper, the
OpenFlow architecture is enhanced to support segment
protection in Ethernet-based networks. Novel mechanisms
have been specifically introduced to maintain working and
backup flows at different priorities and to guarantee effec-
tive network resource utilization when the failed link is
recovered. Emulation and experimental demonstration im-
plementation results show that the proposed architecture
avoids both the utilization of a full-state controller and the
intervention of the controller upon failure, thus guarantee-
ing a recovery time only due to the failure detection time,
i.e., a few tens of milliseconds within the considered
scenario.

Index Terms—Ethernet; OpenFlow; Recovery; Segment
protection; Software-defined networking (SDN).

I. INTRODUCTION

S oftware-defined networks are emerging as an attrac-
tive solution to permit effective separation of data and

control planes while guaranteeing a centralized network
intelligence to control the network (i.e., the controller).
OpenFlow is an example of a software-defined network
in which the controller manages the switching elements
(e.g., Ethernet switches) by installing flow entries within
their flow table [1]. Communications between the control-
ler and the switches use the OpenFlow protocol through a
secure channel. Each flow entry consists of a flow-match
composed of a set of fields to match the incoming packets,
an action to define how to process matching packets (e.g.,
forwarding on a specific output port), and several counters
used for collecting flow statistics. Other information can
also be associated with each entry, such as priority level
and the two timers hard timeout and idle timeout. When
a switch receives a packet not matching any of the installed
entries, that packet is sent to the controller using the se-
cure channel. Upon reception, the controller decides how

to handle the received packets, e.g., it computes a path
and installs a flow entry in each traversed switch to deliver
the matching packets to the proper destination.

OpenFlow was originally designed at Stanford Univer-
sity to be used in local and campus area networks [1,2].
However, because of its centralized control approach it is
currently also under consideration in other scenarios such
as carrier-grade networks [3], optical transport networks
[4–8], and industrial area networks [9]. Specifically, trans-
port network carriers tend to prefer centralized control be-
cause it is simpler, more manageable, and easier to migrate
from the current network management system architec-
ture with respect to the current standard distributed con-
trol plane of transport networks [10], i.e., generalized
multi-protocol label switching (GMPLS).

In all the aforementioned scenarios, network reliability
is a fundamental feature. Indeed, in carrier-grade and op-
tical transport networks, a single failure can disrupt a huge
amount of traffic, implying a service degradation to a great
number of users. In these networks the target recovery
time is 50 ms as guaranteed by the legacy SONET/SDH
networks [11,12]. Similarly, in industrial area networks
the recovery time cannot exceed the typical grace time of
industrial plants (e.g., 20 ms for time critical automation
systems, 200 ms for general automation systems)
[13,14]. Therefore, in all of these cases, fast recovery of net-
work failures is strictly required. However, fast recovery is
not a key feature in local area networks (LANs), and the
current OpenFlow architecture needs several seconds to re-
cover from a network failure [15].

In order to achieve lower recovery times, this paper pro-
poses an OpenFlow-based segment protection (OSP)
scheme enabling fast recovery in case of single link or inter-
face failure in Ethernet-based networks. The concepts
behind the OSP scheme can be applied, with slight modi-
fications, in OpenFlow-based optical transport networks
[4–8]. Therefore, this work also represents a first step to-
ward the introduction of OpenFlow-based fast recovery in
optical transport networks.

The proposed architecture relies on preplanned backup
paths guaranteeing that, upon failure occurrence, recovery
is locally performed by the switch attached to the failed
link, thus minimizing the recovery time. To support backup
paths, several enhancements to the OpenFlow architecture
are proposed. Indeed, in addition to the auto-reject mecha-
nism, the configuration of alternative flow entries withhttp://dx.doi.org/10.1364/JOCN.5.001066
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different priority levels, a renewal mechanism, relying on a
novel renew packet, is introduced to avoid the expiration of
the entries required to support the backup paths. In addi-
tion, a novel mechanism is provided for reverting active
flows to the original working path once the failure has been
physically repaired, thus guaranteeing efficient network
resource utilization.

The proposed OSP scheme has been validated on ring
topologies through emulation and experimental demon-
stration of real implementation, both achieved by extend-
ing OpenFlow version 1.0 [16]. The obtained results show
that the proposed scheme avoids controller scalability is-
sues upon failure occurrence and guarantees a recovery
time only dependent on the failure detection time (i.e., a
few tens of milliseconds in the considered testbed).

II. PREVIOUS WORK

The authors of [15] and [17] designed a restoration
scheme for OpenFlow carrier-grade Ethernet networks. In
the proposed scheme, the switch connected to the disrupted
link directly notifies the controller about the topology
change.Uponnotification, a full-state controller (i.e., storing
the complete path of all the flows established in the net-
work) identifies the disrupted flows, computes the backup
paths, and updates the data plane flow tables considering
the failure. Obtained results show recovery times around
200 ms. However, the authors recognize that, in big net-
works, the full-state controller could be overloaded by recov-
ery requests the full-state architecture of the controllermay
introduce, thus introducing significant scalability issues.

In [18] two different recovery mechanisms are pre-
sented, i.e., restoration and path protection. In the case
of restoration, similarly to in [15,17], the controller reacts
to the failure notification by deleting affected flow entries,
computing backup paths, and installing the new required
entries. In the case of path protection, backup paths are
precomputed and installed using the fast-failover groups
functionality of OpenFlow specification 1.1, and working
path liveness is monitored by the ingress switch with a
mechanism similar to the one proposed in [7]. In the case
of failure, emulation results show that the protection sol-
ution achieves the recovery process in around 50 ms.

The work in [19] considers OpenFlow in IP networks.
The proposed scheme is similar to that of [15,17], consid-
ering a full-state controller that is notified by the switch
upon link failure occurrence. In this case emulation results
provide a failure recovery time in the range of 200–300 ms.

The work in [7] proposes a monitoring mechanism ena-
bling fast failure discovery in transport networks based on
OpenFlow. In the proposed mechanism, each established
flow is monitored by sending frequent probe messages.
Failures are quickly discovered; however, the controller
is then involved for the computation of the backup paths.
Thus, the overall recovery time may still suffer from long
delays and relevant scalability issues.

In [20], a data plane mechanism is proposed to notify,
upon failure, all the switches that are sending traffic

through the disrupted link. Upon notification the switches
stop these traffic flows to avoid waste of bandwidth. The
actual recovery is then performed by the controller relying
on the standard OpenFlow mechanism.

The authors of [21] propose a mechanism enabling the
utilization of a backup controller in an OpenFlow-based
network to avoid the problem of having a single point
of failure, which is a typical weak point of centralized
approaches.

With respect to the restoration schemes proposed in
[15,17–19], the OSP scheme does not involve the controller
upon failure occurrence and does not require a full-state
controller. Moreover, with respect to the path protection
scheme proposed in [18], OSP implements segment protec-
tion; thus it locally switches the traffic on the backup path
and does not require a per-flowmonitoring mechanism. For
the aforementioned reasons the OSP scheme is expected to
be more scalable and to achieve lower recovery time with
respect to existing schemes.

III. OPENFLOW-BASED ARCHITECTURE ENABLING

SEGMENT PROTECTION

In OpenFlow switches each flow entry is installed with
two associated timers, i.e., hard timeout and idle timeout.
The entry is deleted by the switch upon expiration of one of
the two timers. The hard timeout is never refreshed and
is used to set the maximum duration of each entry.
Conversely, the idle timeout is refreshed every time a
packet matches the associated entry; it expires owing to
lack of activity.

Referring to OpenFlow Switch Specification 1.0 [16], fail-
ure recovery operates as follows. When the switch detects a
failure, it notifies the controller with a port status message.
Thus, the controller updates the network topology and the
successive path computations are performed using the up-
dated topology. However, the switch does not delete the en-
tries using the failed link. Therefore, established flows are
not actually recovered till one of the aforementioned timers
expires. Since these timers are usually set to several sec-
onds, current OpenFlow implementations do not guarantee
fast recovery [15].

Therefore, as a first step, an auto-reject mechanism
should be implemented to promptly delete the entries us-
ing the failed link. Specifically, with the auto-reject mecha-
nism, upon failure occurrence, the two switches connected
to the failed link delete all their flow entries having the in-
put or output port on the failed link. Moreover, upon recep-
tion of a new entry to be installed, an auto-reject-enabled
switch checks the status of the ports used by the entry;
when one of the ports uses a failed link, the entry is not
installed.

However, extending OpenFlow with only the auto-reject
mechanism does not guarantee fast recovery; indeed, fail-
ures would be handled as follows. Switches apply auto-
reject and send port status to the controller. Because of
auto-reject, subsequent packets of disrupted flows do not
match any entry and are sent to the controller. While
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the controller is updating the topology, it keeps replying
with flow entries using the disrupted link, which are re-
fused by auto-reject. Only after topology update is a fea-
sible path computed and proper entries installed in all
the involved switches. This procedure requires several sec-
onds. Thus, besides auto-reject, a set of backup entries have
to be preconfigured for enabling fast recovery.

The rest of this section describes the architecture
enabling the proposed OSP scheme. The flow entries

required for each protected data flow are detailed in
Subsection III.A; the mechanism needed for avoiding
the expiration of the installed entries is described in
Subsection III.B. Finally, Subsection III.C summarizes
the actions taken in case of link failure and recovery.

A. Flow Entries Installation

Figure 1 shows the flowchart of the Recovery module
that we have implemented at the controller, for the case
of a flow request protected against single link and interface
failures. Specifically, upon request of a protected data flow
between the hosts (Src-Dst), the controller computes and
installs the entries for supporting the working path (i.e.,
working entries). Then, for providing protection against
link and interface failures only, a backup path is computed
considering a failure in each link traversed by the working
path. Conversely, if protection is also required against sin-
gle node failures, a backup path is computed considering a
failure in each intermediate node traversed by the working
path. After backup path computation the required backup
entries are installed to enable the switching of packets
along the backup paths. During failure-free operation, data
are routed along the working path. If a failure disrupts the
working path, the flow is deviated by the switch attached to
the failed link so that it will reach Dst along the backup
path (see Figs. 2–4).

Working and backup entries are installed with different
priorities. High-priority levels are used for working entries:
Hi in the ingress switch, Ht in transit switches, and He in
the egress switch. Low-priority levels are used for backup
entries: Li in the ingress switch and in switches where a
backup path diverges from the working path (e.g., switch
B in Fig. 2), Lt in transit switches, and Le in the egress
switch). Each received packet is forwarded considering
the currently installed matching entry with the highest
priority.

Figure 2 summarizes the flow entries required in the
illustratedmesh topology when a single protected data flow
is configured between the host pair (Src-Dst). For the sake
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Fig. 1. Flowchart of the Recovery module at the controller. This
flowchart refers to the case of a flow request protected against link
and interface failures.
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Fig. 2. Protected traffic flow in a mesh network. Only the flow entries related to host pair (Src-Dst) are shown.
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of clarity, the flow entries are shown in Fig. 2, just including
the triplet composed of the input port (IN), outport port
(OUT), and priority level (Pri). However, other parameters
[i.e., Src and Dst media access control (MAC) addresses]
are used for flow matching.

Specifically, in Fig. 2 the working path is A–B–C–D.
Backup paths are configured for multiple points of failure
along the working path. At ingress switch A, the flow table
is configured with one working entry �1;2; Hi� and one
backup entry �1; 3; Li�. The working path entry enables
the packet switching from the host Src toward switch B.
The backup path entry is configured for the case of failure
of the adjacent linkA–B to enable the forwarding of packets
toward switch F.

The transit switchesB andC are configured with a work-
ing entry �2;3; Ht� and a backup entry �2; 4; Li�. The backup
entry is configured for a case of a failure of the adjacent link
(B–C for switch B, C–D for switch C). For switch B, this
causes traffic to be sent to switch G, and for switch C this
causes traffic to be sent to switchH. Egress switchD is con-
figured as a working and a backup entry in the sameway as
previously described. The other transit switches along the
backup paths are configured with one or more backup en-
tries, e.g., �2; 3; Lt� in the switches G and H.

Figures 3 and 4 show the backup paths used in the case
of a failure occurring in the working path along link A–B
and linkC–D, respectively. Referring to Fig. 4, the failure of
link C–D is detected by switches C and D; at switch
C the auto-reject mechanism removes the flow entry
�2;3; Ht�. This leaves a flow entry for the configured
backup path �2; 4; Li�. The resulting backup path
is A–B–C–H–E–D.

B. Backup Flow Entries Renewal

Since, in the proposed architecture, no packets are
routed along the backup paths during failure-free opera-
tion, the expiration of the idle timeout may determine
the deletion of backup entries. Therefore, a mechanism
is used to avoid the deletion of backup entries related to

active working flows, without involving either the control-
ler or the hosts Src and Dst.

First, for each flow, the refresh of working entries auto-
matically determines the refresh of all the backup entries
associated with the same flow. With reference to Fig. 2, this
will guarantee the liveness of all backup entries in switches
A, B, C, and D.

Second, a specifically designed renew packet is built and
periodically sent by each switch on the output port of
entries with Li priority (e.g., switch B in Fig. 2). The renew
packet fields are set to match the considered flow. More-
over, a specific field is included so that the egress switch
can distinguish renew packets from data packets. Since
the generation rate of renew packets depends on the con-
sidered idle timeout, they use a negligible amount of band-
width. In Fig. 2, the ingress switch A periodically sends
renew packets along the backup path A–F–I–E–D, these
frames do not reach the host Dst, as they are dropped by
the egress switch C. In this way, the backup entries in
switches F, I, and E are preserved. Finally, switches B
and C periodically send renew packets on port 4 so that
backup entries in switches G and H are also preserved.

C. Failure Recovery and Reversion

If the failure affects a working path, auto-reject is trig-
gered at the switches attached to the failed link. After auto-
reject of the working entry, the related backup flow entry is
automatically used for switching the packets along the
backup path. Data packets are lost only in the period
of time between the failure and the auto-reject (i.e., switch-
over time). Indeed, during this period packets are for-
warded on the failed link. In a similar way, if the failure
affects a backup path, the auto-reject deletes the related
backup entry. In this case, data packets are not affected;
however, renew packets periodically sent along the backup
path arrive at the switch attached to the failed link. These
renew packets do not match any entries and are therefore
forwarded to the controller using OFP_PACKET_IN packets.
To limit requests to the controller, these packets are
handled as described in Subsection IV.C.
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Fig. 3. Actual backup path used upon failure of link A–B.
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When the link failure is physically repaired, the at-
tached switches notify the controller about the topology
change, sending a port status message. Then, for reverting
the routing of the active flows to the original working path
as before the failure, a OFP_FLOW_RESTORE packet is sent,
for each installed flow match, to the controller and handled
as described in Subsection IV.C. For instance, working en-
tries in the switches downstream to a failure occurred
along the working path may expire after the failure.
This rerouting procedure involves the controller and can
therefore require several seconds; however, this is not an
issue because, in the case of link recovery, data traffic is
not disrupted.

IV. IMPLEMENTATION

The proposed OSP scheme has been implemented by ex-
tending the OpenFlow Switch Specification 1.0 [16,22].
More recent specifications include additional features
(i.e., fast-failover groups) that could further facilitate the
OSP implementation. However, stable implementations
of these specifications were not available at the time of
architecture design. This section describes the extensions
to the OpenFlow protocol, to the OpenFlow switch, and to
the OpenFlow controller, which have been implemented to
enable the OSP scheme.

A. OpenFlow Protocol

The standard OpenFlow version 1.0 protocol has been
extended with the novel OFPT_FLOW_RESTORE packet.
Its fields include the standard OpenFlow header object,
the match object specifying the flow-match, the cookie
object, and the priority object as depicted in Fig. 5.

B. OpenFlow Switch

The OpenFlow switch implementation is based on Open
vSwitch version 1.1.1, which is compliant with OpenFlow

Switch Specification 1.0 [16,22]. Moreover, the following
novel features have been implemented.

1) Flow Auto-Reject: As described in Section III, a
switch detecting a failure on a local interface deletes all
the flow entries having the failed interface as an input or
output port. Moreover, a new flow entry is installed only if
the output port is working correctly.

2) Flow Renewal: With reference to Subsection III.B, re-
new packets have been implemented using a specifically
designed Ethernet frame (i.e., ETH_RENEW). In particular,
ETH_RENEW frames are of 64 byte size, source and destina-
tion MAC addresses are set to match the considered flow,
and the EtherType field is set to the specific value 0 × 88dd.
For each flow, one ETH_RENEW frame is sent every 20 s by
backup path ingress switches. A switch is recognized to be a
backup path ingress of a particular flow if its flow table in-
cludes an entry with priority Li. A switch is recognized to be
the egress of a particular flow if its flow table includes an
entry with priority He and Le; see Fig. 2.

3) Flow Restore: As mentioned in Subsection III.C, the
OFPT_FLOW_RESTORE packet is sent 20 s after a link recov-
ery has been detected on a local interface. This 20 s delay is
empirically estimated so that, upon failure, the controller
receives the port status messages from the switches
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Fig. 4. Actual backup path used upon failure of link C–D. Traffic is wrapped at node C.
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|  |
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|  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  |
+ Match +
|  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  |
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|  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 5. OFPT_FLOW_RESTORE packet format.
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attached to the recovered link; then it has time to update
the network topology before the reception of the
OFPT_FLOW_RESTORE.

C. OpenFlow Controller

The OpenFlow controller implementation is based on the
NOX controller version 0.9.1-full-beta [23]. The novel
Recovery module has been implemented to process the
packets arriving from the switches and to install the re-
quired working and backup entries with the proper prior-
ities, according to the flowchart of Fig. 1. Moreover, the
existing Routing module has been slightly extended to en-
able the computation of backup paths. In the considered
scenario, both working and backup entries are installed
using a MAC layer flow-match: input port, source
MAC addresses, and destination MAC address; see
Subsection III.A. Idle timeout of 120 s, and hard timeout
0 s are used; i.e., entries are deleted only upon idle timeout
expiration.

The OFP_PACKET_IN packets are handled depending on
the EtherType field:

1) Packet With EtherType 0 × 800 (IPv4): This is the re-
quest for a new data flow. All data flows are currently
installed with protection; however, hosts can be allowed
to require protected and unprotected data flows, e.g.,
setting specific flags in the IP header.

2) Packet With EtherType 0 × 88dd: This is a renew packet
sent to the controller due to a failure occurring along
the backup path (see Subsection III.C). If the failure
has been recovered, the backup paths are recomputed
and the related entries are reinstalled in the traversed
switches; otherwise a permanent null entry is installed
with a low-priority value (i.e., both hard timeout and
idle timeout set to 0). In such a way the next renew
packets are dropped at the switch to avoid the unnec-
essary overhead of the controller; when the failure is
recovered, the null flow entry is replaced with a new
valid backup flow entry.

The OFP_FLOW_RESTORE packets are handled as follows.
The controller extracts the match, computes working and
backup paths, and installs the proper working and backup
entries in the involved switches.

V. PERFORMANCE EVALUATION

The proposed OSP scheme has been tested through both
emulation and experimental demonstration of real imple-
mentation. In both cases, a ring topology composed of
N � 5 switches has been considered. Indeed, the ring top-
ology is the most common in industrial area networks
[14,24], and it represents the worst case for segment pro-
tection schemes in terms of both recovery time and network
resource utilization. The ring topology is a critical case for
the proposed OSP scheme because backup paths typically
can partially overlap the working path. Specifically, Fig. 6

illustrates the flow entries required in the considered ring
topology when a single protected data flow is configured be-
tween the host pair (Src-Dst). In the case of the failure of
link B–C the traffic is wrapped back to port 2 by switch B;
thus the backup path is A–B–A–E–D–C, where link A–B is
traversed twice.

In the emulation environment, two servers have been
employed. The first server (i.e., Intel Pentium 4 CPU
3.00 GHz, 1 GB RAM, Ubuntu 11.10 kernel 3.0.0-16-
generic) acts as the OpenFlow controller, running the
NOX version 0.9.1-full-beta, extended with the described
recovery functionalities. The second server (i.e., Intel Core
i5-2400 CPU 3.10 GHz, 4 GB RAM, Ubuntu 11.04 kernel
2.6.38-8-generic) emulates the network. In particular, the
Mininet tool is used for emulating rings composed of N
OpenFlow-enabled Ethernet switches, extended with the
new recovery functionalities, and M hosts connected to
each switch [25]. Each emulated OpenFlow switch is con-
figured with two interfaces for the ring links; one interface
is for the connection to the controller, and the other inter-
faces are used for connecting the hosts.

In the experimental demonstration of real implementa-
tion, the server hosting the emulating network was re-
placed with a real OpenFlow-based Ethernet ring
network composed of N � 5 switches. The five switches
were implemented in five personal computers (i.e., Intel
Core 4 CPU 2.40 GHz, 2 GB RAM, Ubuntu 10.04 kernel
2.6.32-25-generic) using an extended release of Open
vSwitch version 1.1.1 to support the proposed recovery
mechanism. Each computer was equipped with a network
interface card (Intel Quad Port server adapter PCI-
Express) providing four Ethernet interfaces, i.e., two for
the ring links, one for the controller, and one for the con-
nection to an end host (M � 1).

Subsections V.A and V.B report the results obtained in
the system performance tests, considering the required
number of flow entries and the time needed to perform
the recovery of the active traffic in ring topologies with
different N and M values.

21
3

A 12

3

C

2
3 D2

3
E

2 3
B

Src Dst

Fig. 6. Protected traffic flow in the test ring network. Only the
flow entries related to host pair (Src-Dst) are shown.
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A. Number of Entries

The emulated environment has been used to assess the
required number of per-switch flow entries. Indeed, as de-
scribed above, to speed up the switchover time, the OSP
scheme performs local traffic protection without involving
the controller in the recovery process. However, considering
working and backup paths, a significant number of flow en-
tries have to be installed in each network switch to support
the OSP scheme.

Figure 7 illustrates the required entries per switch, con-
sidering the worst case in which a protected flow is active
between each couple of hosts connected on different
switches (i.e., any-to-any communication). N values higher
than 13 are not supported by the server running Mininet.
Equations (1) and (2), in accordance with Fig. 7, respec-
tively detail the amount of working entries W and backup
entriesB in each switch of a ring network as a function ofN
and M, in the any-to-any communication worst case:

W � 2M2�N − 1� � 2M2
XN�1
2 −2

i�0

i; (1)

B � M2

2
4N2 �N − 4� 2u�N − 5�

XN−1
2 −2

i�0

i

3
5: (2)

Since in the current field programmable gate-array im-
plementation of OpenFlow switches, up to 64,000 contem-
porarily active entries can be easily supported [2]; the
results illustrated in Fig. 7 show that the OSP scheme
can scale up to rings composed of several tens of switches
and hosts.

Figure 8 details the trend of working, backup, and total
entries in each switch for M � 1. The number of required
backup entries grows faster than the number of required
working entries with the number of network switches N.

B. Switchover Time

As described in Subsection III.C, upon failure occur-
rence, data packets can be lost during the switchover time,
Tf . This section evaluates Tf guaranteed by the OSP
scheme in both emulated and implemented environments.

1) Emulation Environment: In the emulated environ-
ment tests, only one host is connected to each switch,
M � 1. Conversely, two ring topologies have been consid-
ered with N � 5 and N � 13, respectively. With reference
to Fig. 6, the flow between the host Src, attached to the
switch A, and the host Dst, attached to the switch C (see
Fig. 6), uses a ping application to generate a packet every
2 ms so that Tf can be estimated with a precision of�2 ms.
The working path is A–B–C. Data packets are captured at
the Dst host (using the TShark network protocol analyzer
[26]). Upon failure on link B–C, data are wrapped back on
port 2 at nodeB, and the backup path is A–B–A–E–D–C. Tf

is estimated as the time between the reception of the last
packet before the failure and the reception of the first
packet after the failure at the host Dst. The failure on link
B–C is repeated 200 times.

Figure 9 illustrates the obtained Tf distribution with the
only active flow between Src and Dst. Its average value is
79.4 ms. In particular, Tf distribution presents one peak in
the interval 20–30 ms, and most of the samples are distrib-
uted in the range 20–180 ms. Figure 9 shows the obtained
Tf distribution, considering N � 5, M � 1, and any-to-any
communication. In this case the ping application is also
used so that each host generates one packet every 1 s to-
ward all other hosts (i.e., in each switch there are W � 10
and B � 26 active entries). The obtained average of Tf is
79.44 ms with most of the samples concentrated in the
range 20–120 ms. Figure 10 shows the obtained Tf distri-
bution, considering N � 13, M � 1, and any-to-any com-
munication. The obtained result is similar to Fig. 9, with
an average value of 80.96 ms, with most of the samples con-
centrated in the range 20–160 ms. However, in both cases,
some Tf samples higher than 180 ms have been measured.
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Also, it is important to note that, in the considered mea-
sures, no traffic disruption has been detected during traffic
reversion when the failure is physically repaired upon link
recovery.

As explained in Subsection III.C, Tf is due mainly to the
time required by the switch attached to the failed link for
detecting the change of the interface status. This can ex-
plain the obtained results, where Tf can be seen as a ran-
dom variable that is considerably dependent on the used
hardware [14]. For this reason, faster Tf are expected in
experimental demonstration of real implementation,
where each switch has its dedicated hardware, with respect
to the results of Fig. 9 and Fig. 10 obtained using the Mini-
net emulation.

2) Experimental Demonstration in Real Implementation
Environment: Tf has been estimated in several tests using
the Agilent N2X protocol analyzer to generate the required

traffic streams. With reference to Fig. 6, the traffic flow
from Src toDst has been generated at the rate of one packet
every 1 ms. Other traffic flows are generated at the rate of
one packet every 1 s. The failure on link B–C is repeated
100 times, disconnecting the Ethernet cable alternately
from the ports of switches B and C.

Figure 11 illustrates the obtained Tf distribution in the
case of M � 8 hosts and any-to-any communication; i.e.,
2308 entries are active in each network switch. Its average
value is 32.7 ms, most of the samples are distributed in the
range 20–50 ms, and all cases are included within 65 ms.

As in the emulation environment, no traffic disruption
has been detected upon link recovery.

Figure 12 shows the minimum, average, and maximum
values of Tf obtained over 100 repetitions as a function of
the number of entries installed in each switch. Specifically,
the figure reports the cases for M ∈ f2; 4; 6; 8g correspond-
ing to 144, 576, 1296, and 2308 entries per switch.Tf shows

Fig. 9. Emulation Tf distribution with N � 5, M � 1, and any-
to-any communication (i.e., 20 active protected flows).

Fig. 10. Emulation Tf distribution with N � 13, M � 1, and
any-to-any communication (i.e., 156 active protected flows).

Fig. 11. Implementation Tf distribution with M � 8 and any-
to-any communication (i.e., 1120 active protected flows).
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a very limited increase with the number of entries, thus
proving the scalability of the OSP scheme.

VI. CONCLUSION

This work proposed and implemented the OSP scheme,
enabling fast recovery in networks composed of OpenFlow-
based Ethernet switches. The OSP scheme does not require
a full-state controller and, upon failure, it does not involve
the controller in the recovery process. Specifically, The OSP
scheme relies on working and backup entries that are con-
figured in the network switches with different priorities, on
the renewal mechanism to avoid backup flow expiration,
on the auto-reject mechanism deleting the entries involved
in the failure, and on a novel message to enable flow revert-
ing on the working path.

Experimental demonstration implementation results
showed that the OSP scheme also guarantees recovery
below 64 ms with a high number of installed entries, thus
preserving network scalability. Indeed, the achieved recov-
ery time is determined only by the failure detection time.
The emulation environment showed larger variance in the
recovery time. Finally, no traffic disruption has been
detected during reversion of flows when the failure is
physically repaired or resolved.
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