
Regional mapping of myocardial hibernation phenotype in

idiopathic end-stage dilated cardiomyopathy

Vincenzo Lionetti a, b *, #, Marco Matteucci a, #, Marco Ribezzo c, Dario Di Silvestre d,
Francesca Brambilla d, Silvia Agostini a, Pierluigi Mauri d, Luigi Padeletti e, Alessandro Pingitore f,

Luisa Delsedime g, Mauro Rinaldi c, Fabio A. Recchia a, h, Angela Pucci i

a Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
b Fondazione CNR-Regione Toscana “G. Monasterio”, Pisa, Italy

c Cardiac Surgery Department, San Giovanni Battista University Hospital, Turin, Italy
d Institute for Biomedical Technologies (ITB)-CNR, Segrate, Milan, Italy

e Department of Medical and Surgical Critical Care, University of Florence, Florence, Italy
f Institute of Clinical Physiology-CNR, Pisa, Italy

g Histopathology Department, S. Giovanni Battista University Hospital, Turin, Italy
h Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA

i Department of Pathology, University Hospital Pisa, Pisa, Italy

Received: August 6, 2013; Accepted: October 28, 2013

Abstract

Myocardial hibernation (MH) is a well-known feature of human ischaemic cardiomyopathy (ICM), whereas its presence in human idiopathic
dilated cardiomyopathy (DCM) is still controversial. We investigated the histological and molecular features of MH in left ventricle (LV) regions
of failing DCM or ICM hearts. We examined failing hearts from DCM (n = 11; 41.9 � 5.45 years; left ventricle-ejection fraction (LV-EF),
18 � 3.16%) and ICM patients (n = 12; 58.08 � 1.7 years; LVEF, 21.5 � 6.08%) undergoing cardiac transplantation, and normal donor
hearts (N, n = 8). LV inter-ventricular septum (IVS) and antero-lateral free wall (FW) were transmurally (i.e. sub-epicardial, mesocardial and
sub-endocardial layers) analysed. LV glycogen content was shown to be increased in both DCM and ICM as compared with N hearts
(P < 0.001), with a U-shaped transmural distribution (lower values in mesocardium). Capillary density was homogenously reduced in both
DCM and ICM as compared with N (P < 0.05 versus N), with a lower decrease independent of the extent of fibrosis in sub-endocardial and
sub-epicardial layers of DCM as compared with ICM. HIF1-a and nestin, recognized ischaemic molecular hallmarks, were similarly expressed in
DCM-LV and ICM-LV myocardium. The proteomic profile was overlapping by ~50% in DCM and ICM groups. Morphological and molecular fea-
tures of MH were detected in end-stage ICM as well as in end-stage DCM LV, despite epicardial coronary artery patency and lower fibrosis in
DCM hearts. Unravelling the presence of MH in the absence of coronary stenosis may be helpful to design a novel approach in the clinical man-
agement of DCM.

Keywords: pathologic features� hibernating myocardium� chronic heart failure� idiopathic dilated
cardiomyopathy� ischaemic microenvironment� nestin

Introduction

Myocardial hibernation is a well-known feature of ICM. It is clini-
cally characterized by depressed LV resting contractility and perfu-

sion, and recovery of flow-function relations under stress [1–3].
Even if the presence of viable myocardium has been investigated in
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end-stage ICM hearts by different methods, the detection of MH
structural phenotype represents the essential approach [4]. Such
MH phenotype is characterized at cellular and molecular level by
glycogen deposition, myocyte cellular hypertrophy, apoptosis, myo-
fibrillar loss and increased expression of ischaemia-responsive pro-
teins [5–7]. Although DCM is free from flow-limiting coronary
lesions by definition [8], a few consolidated evidence supports a
tight association of DCM with endothelial impairment, coronary
microvascular dysfunction and reduced flow reserve in response to
various stressors [9–11]. According to the ‘microvascular ischemic
hypothesis’ [9], repeated episodes of ischaemia as a result of per-
fusion deficit might harm the myocardium and thus play a patho-
genic role in the development of DCM [12, 13]. However, it is still
controversial whether in DCM, the myocardium might switch to a
less vulnerable phenotype resulting in MH in response to a chronic
ischaemic deficit. We have previously shown structural hallmarks
of MH in tachypacing-induced heart failure (HF) [14], an estab-
lished animal model of DCM, suggesting that similar alterations
might be found in human DCM. So far, no study has clearly shown
the presence of direct hallmarks of hibernated myocardium in
human DCM, a throughout histological and molecular analysis of
explanted hearts being required to investigate such hypothesis [4].
The aim of this study was to fill this lacking information that could
provide significant insights into the pathogenesis of DCM; a com-
bined histological and proteomic analysis approach was used to
investigate structural and molecular hallmarks of MH in the
LV myocardium of end-stage DCM, end-stage ICM and normal
hearts (N).

Materials and methods

Study population

The study population consisted of 23 patients with HF and end-stage

DCM (n = 11) or ICM (n = 12) eligible for and undergoing heart trans-
plantation (HT) according to recent guidelines [15]. Patients with arte-

rial hypertension, recent myocardial infarction (≤6 months before

surgery) or myocarditis, diabetes or evidence of valve disease were

excluded from the study. All patients received conventional therapy for
end-stage HF and were not chronically treated with high-dose catechol-

amine infusions. Dilated cardiomyopathy was diagnosed on the basis

of echocardiographically documented end-diastolic diameter >56 mm,

LV-EF <50% and normal coronary angiography. The selected ICM
patients were affected by three-vessel coronary disease. We selected

patients with known cardiomegaly of more than 6 months’ duration.

All patients had waited a similar time on the waiting list for HT. To
perform histological and proteomic analysis representative of the LV

regions analysed in failing hearts, we used explanted normal hearts

(N, n = 8, LV-EF >55%), with no history of cardiac disease, selected

but not used for transplantation because of unexpected cardiac arrest
after brain death. Baseline characteristics of N and HF patients are

shown in Table 1. The local ethics review committee approved the

study, and the investigation conformed to the Declaration of Helsinki.

All patients gave written informed consent before HT to participate in
the study.

Table 1 Baseline characteristics of normal patients (Control) and

HF patients eligible for cardiac transplantation

Variables
Normal
(n = 11)

DCM
(n = 11)

ICM
(n = 12)

Age (years) 53 � 5 41.9 � 5.45 58.08 � 1.7

Male 9/11 10/11 12/12

LBBB 0/11 9/11 9/12

PM 0/11 1/11 1/12

Beta-Blockers – 11/11 8/12

ACE-inhibitors – 11/11 12/12

Diuretics – 11/11 12/12

Dobutamine – 2/11 0/12

Digoxin – 3/11 4/12

Amiodarone – 3/11 4/12

NO donor – 0/11 4/12

DCM, idiopathic dilated cardiomyopathy; ICM, ischaemic cardiomyopa-
thy; LBBB, left bundle branch block; PM, pacemaker; HF, heart failure.

Table 2 Coronarographic data of HF patients eligible for cardiac

transplantation

Variables DCM (n = 11) ICM (n = 12)

Common Trunk of the LCA

Critical stenosis – 2/11

Occlusion – –

LCX

Critical stenosis – 6/11

Occlusion – –

Proximal and Middle LAD

Critical stenosis – 11/12

Occlusion – 1/12

Obtuse Marginal Branches

Critical stenosis – 5/12

Occlusion – 4/12

RCA

Critical Stenosis – 11/12

Occlusion – –

LCA, left coronary artery; LCX, left circumflex artery; LAD, left anterior
descending artery; RCA, right coronary artery; HF, heart failure.
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Coronarographic, haemodynamic and
echocardiographic evaluation

All HF patients underwent electrocardiography, coronary angiography

and pre-operative non-invasive assessment of coronary arterial pres-

sure, and of cardiac function by transthoracic two-dimensional echo-
cardiography (MY LAB 30; Esaote, Florence, Italy) with a broadband

phased array transducer (2–4 MHz). All measurements were performed

by an expert cardiologist in accord with the recommendations of the
American Society of Echocardiography [16]. We used the ratio between

systolic arterial pressure (SAP) and LV end systolic volume (ESV) as a

load-insensitive index of systolic global LV function [17]. Systemic vas-

cular resistance (SVR, mm Hg/min./l) was calculated as the ratio of
mean arterial pressure to cardiac output [17]. The arterial elastance

(Ea, mm Hg/ml) was calculated as: (SAP90.9)/stroke volume [18].

Histological and morphometrical analysis

To assess the patency of the epicardial coronary arteries, the hearts
were grossly examined as previously described [19]. In all hearts, full-

thickness myocardial samples were harvested from the middle third of

the IVS and from the left ventricle-free wall (LV-FW), formalin fixed and

paraffin embedded. Failing hearts were sampled at the time of HT and
normal hearts at the time of donor explantation. For the purposes of

this study, areas of gross scarring were avoided in ICM hearts. Five-

micrometer serial sections were stained by Haematoxylin-Eosin and

Masson’s trichrome; Periodic acid-Schiff without (PAS) or with diastase
pre-treatment (PAS-D) was used to detect glycogen storage in cardio-

myocytes [14]. Morphometric analysis was performed with a computer-

ized image analysis system (OLYMPUS BX 63, Olympus, Milan, Italy)
and each parameter (myocyte diameter, collagen deposits, PAS-positiv-

ity) was distinctly evaluated in all myocardial (sub-endocardial, meso-

Table 3 Haemodynamic and echocardiographic parameters of global LV performance

Parameters Normal (n = 11) DCM (n = 11) ICM (n = 12)

HR (bpm) 70 � 7 78.62 � 3.9 78.63 � 2.94

SAP (mmHg) – 95.9 � 7.54 97 � 2.88

DAP (mmHg) – 65 � 5.98 61.25 � 2.5

MAP (mmHg) – 75.3 � 5.3 78.3 � 4.2

DP – 7540.61 � 42.76 7624.2 � 37.48

LVEF (%) 64 � 7.1 18 � 3.16* 21.5 � 6.08*

LVEDV (ml) 100 � 35 307.5 � 111.3* 268.5 � 97.5*

LVESV (ml) 36 � 12 250 � 98.8* 217 � 90.1*

LVSV (ml) 64.3 � 17 57.5 � 15.6* 51.5 � 17.2*

CO (ml/min.) 4501 � 910 4422.5 � 1169 4280 � 1200

SVR (mm Hg/min./l) – 18.5 � 4.8 22 � 10

SAP/LVESV – 0.42 � 0.11 0.53 � 0.15

Ea (mmHg/ml) – 1.62 � 0.45 1.9 � 0.9

LVEDFWT (mm) 11.8 � 2.1 9.27 � 1.26* 9.6 � 2.6*

EDIVST (mm) 11.7 � 1.3 8.72 � 1.5* 9.1 � 3.2*

*P < 0.05 versus Control.
Data are expressed as mean � SD.
HR, heart rate; SAP, systolic arterial pressure; DAP, diastolic arterial pressure; MAP, mean arterial pressure; DP, double product; LVEF, left ven-
tricular ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; LVSV, left ventricular stroke
volume; CO, cardiac output; SVR, systemic vascular resistance; Ea, arterial elastance; LVEDFWT, left ventricular end-diastolic free wall thickness;
EDIVST, left ventricular end-diastolic interventricular septum thickness.

Fig. 1 Extent and distribution of regional left ventricle (LV) glycogen deposits as shown by periodic acid-Schiff (PAS) staining on histological sec-

tions. (A–C) Representative images of PAS stained sections for each myocardial layer in the LV-free wall (FW) of normal donor (N) hearts, in the

LV-FW and in the inter-ventricular septum (IVS) of either dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) hearts (magnification
400 9 ); (D) Intracellular glycogen amount in LV-FW and IVS of N (n = 8), of DCM (n = 11) and ICM (n = 12) hearts. Values are means � SEM.

*P < 0.05 versus Normal, # versus mesocardial layer, †P < 0.05 versus corresponding layer of ICM heart.

398 ª 2014 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



Sub - Endocardial Mesocardial Sub - Epicardial

Sub - Endocardial Mesocardial Sub - Epicardial

Sub - Endocardial LV Mesocardial Sub - Endocardial RV

IC
M

 –
 IV

S
D

C
M

 –
 IV

S
D

C
M

 –
 L

V-
FW

IC
M

 –
 L

V-
FW

N
 –

 L
V

#
* *

*

C
ar

di
om

yo
cy

te
s 

P
A

S
+ 

IV
S

 (%
)

C
ar

di
om

yo
cy

te
s 

P
A

S
+ 

(%
)

LV
-F

W
G

LYC
O

G
EN

G
LYC

O
G

EN
G

LYC
O

G
EN

G
LYC

O
G

EN
G

LYC
O

G
EN

*
*

*
# #

* †
#

*

*

†
* †

*

DCM ICMN

Sub-Endocardial
0

7

14

0

7

14

Mesocardial Sub-Epicardial Sub-Endocardial Mesocardial Sub-Epicardial

A

B

C

D

ª 2014 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

399

J. Cell. Mol. Med. Vol 18, No 3, 2014



cardial and subepicardial) layers. In the IVS samples, we separately
analysed the sub-endocardial portion belonging to either the right ven-

tricle (RV) and the LV side, and the mesocardial layer. Glycogen stor-

age, assessed as percentage area of PAS-positivity (and absent after

diastase treatment), was classified according to the tissue layer localiza-
tion and to the cellular distribution pattern, i.e. cytoplasmic (extending

to all cytoplasm on histological section), hob-nail (sub-sarcolemmatic)

or granular (mainly peri-nuclear PAS-positive granules). The size of car-
diomyocytes was measured in longitudinally sectioned myocytes at 409

magnification in a blinded fashion, as previously described [20, 21];

measurements were performed on the myocytes showing: (i ) visible

and round-shaped nuclei located close to the cell centre; and (ii ) intact
cellular basement membranes. The regional population of normo-, hypo-

and hypertrophic cardiomyocytes was expressed as number of cardio-

myocytes (106) per gram of cardiac tissue. Masson’s trichrome staining

was used to detect the interstitial fibrosis, defined as the collagen con-
tent determined in the interstitial spaces [22] and to measure the mean

percentage area of interstitial fibrosis in 60 fields for specimen at 2009

magnification [23].

TUNEL assay and immunohistochemistry

To detect apoptotic cardiomyocytes, we performed a co-staining of
selected LV slides using either TUNEL assay or a mouse monoclonal

antibody raised against human alpha-sarcomeric actinin (dilution 1:100;

Sigma-Aldrich, Milan, Italy) that is a marker of adult mature cardiomyo-

cytes [24]. We measured the myocardial apoptotic index (number of
positive myocytes for field/total myocyte number for field 9100) by

TUNEL technique [terminal transferase (TdT) mediated dUTP nick end-

labelling] corroborated by the immunohistochemical staining for cleaved
caspase-3 on adjacent serial sections [25]. The mean number of capil-

laries surrounding each cardiomyocyte (number of capillaries/number of

cardiomyocytes per field) was determined separately in each LV layer of

failing hearts as previously described [16], using anti-Von Willebrand
Factor antibody (1:300; Abcam, Cambridge, UK). Connexin 43 (Cx-43)

downregulation, a typical feature of MH, was investigated as previously

described [26] using a specific polyclonal antibody (dilution 1:1000; Ab-

cam). The foetal intermediate filament nestin, which is re-expressed in
human adult cardiomyocytes of infarcted myocardium [27], was

revealed using a monoclonal antibody against human nestin (dilution

1:300; Abcam). To detect the nestin-positive cardiomyocytes, we per-
formed a double immunolabelling on selected formalin-fixed LV slices

using two specific antibodies raised against human alpha-sarcomeric

actinin and human Cx 43 (dilution 1:1000; Abcam), which represents

the main connexin isoform in adult cardiomyocytes [28] respectively.
To investigate cardiac extracellular matrix turn-over, we also performed

specific immunostainings for human collagen type I (by a polyclonal

antibody, 1:100 dilution; Santa Cruz Biotechnology, Heidelberg, Ger-

many) [29], human fibronectin, i.e., a structural protein of extracellular
matrix in hibernated myocardium (dilution 1:200; Millipore, Milan, Italy)

[30] and human vimentin (dilution 1:100; Thermo Scientific, Waltham,
MA, USA) that has been previously used as a marker of fibroblasts in

human hibernating myocardium [31]. Single immunostainings were per-

formed using Avidin-Biotin Complex technique, 3-3′ diaminobenzidine

chromogen substrate and Haematoxylin counterstaining, whereas dou-
ble immunostainings were performed using immunofluorescence tech-

nique and DAPI counterstaining.

Western blotting analysis

Proteins were extracted from snap-frozen myocardial samples of IVS,

which represents the most remodelled LV region in the beating failing
heart [32]. The membrane was probed with a specific antibody raised

against HIF-1a (dilution 1:1000; Santa Cruz Biotechnology), a hallmark

of MH in both experimental models and humans [14, 33]. The mem-

branes were reprobed for beta-actin (dilution 1:1000; Santa Cruz Bio-
technology) to verify the uniformity of protein loading (see Data S1).

Proteomic analysis

Human frozen myocardium (5 mg) was collected from viable IVS of

ICM (n = 5), DCM (n = 5) and normal hearts (n = 3) and analysed by

Multidimensional Protein Identification Technology (MudPIT) approach,
as previously described [34, 35] (see Data S1).

Statistical analysis

All data were analysed using SPSS software (version 13; IBM, Armonk,

NY, USA). All quantitative variables are presented as mean � SEM.

One-way ANOVA and Bonferroni post hoc tests were used to compare
data between the two groups. A P < 0.05 was considered to be statisti-

cally significant.

Results

Coronarographic, haemodynamic and
echocardiographic parameters

As shown in Table 2, no critical stenosis or occlusion was found in
the epicardial coronary arteries of DCM patients; in ICM patients, criti-
cal stenosis/stenoses were mainly detected in the proximal and mid-
dle third of the left anterior descending (LAD) and of the right
coronary artery (RCA). Haemodynamic and echocardiographic
parameters of global LV function were similar in the DCM and ICM

Fig. 2 Extent and distribution of regional left ventricle (LV) interstitial collagen. (A–C) Representative images of histological Masson’s trichrome-

stained sections for each myocardial layer in the LV-free wall (FW) of normal donor (N) hearts, in the LV-FW and in the inter-ventricular septum

(IVS) of either dilated cardiomyopathy (DCM) or ischaemic cardiomyopathy (ICM) hearts; (D) Interstitial collagen amount in LV-FW and IVS of N
(n = 8), of DCM (n = 11) and ICM (n = 12) hearts. Values are means � SEM. *P < 0.05 versus Normal, †P < 0.05 versus corresponding layer of

ICM heart, ‡P < 0.05 versus sub-epicardial/sub-endocardial right ventricle (RV) layer.
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groups (Table 3). Finally, the end-diastolic wall thickness of IVS and
LV-FW was similar in HF patients, but significantly reduced as com-
pared with the control group.

Left ventricular PAS-positive cardiomyocytes

Periodic acid-Schiff staining revealed the presence of significant
glycogen storage in a larger fraction of myocytes in either the LV-
FW or the IVS of both DCM and ICM hearts, and undetectable PAS
staining in healthy LV myocardium (data not shown). The zonal
distribution of PAS-positivity was similar in the myocardial layers
of both failing hearts groups, yet the extent of glycogen deposits
in the LV-FW of ICM was higher than in the corresponding layers
of DCM hearts (Fig. 1A and B). Conversely, in the IVS, the amount
of PAS-positive cardiomyocytes was similar in DCM and ICM
hearts (Fig. 1C and D). Moreover, as shown in Figure 1, the popu-
lation of PAS-positive myocytes was significantly lower in mesocar-
dial layer of DCM hearts. Finally, the intracellular localization of the
PAS-positivity showed a variable (cytoplasmic, hob-nail or granular)
distribution pattern, independently from HF aetiology (DCM or
ICM).

Left ventricular interstitial fibrosis, collagen type
I, fibronectin and vimentin

As shown in Figure 2, the interstitial fibrosis was finely distributed in
each layer of LV regions in DCM hearts. Conversely, the ICM LV
showed higher interstitial fibrosis than DCM hearts. At similar impair-
ment of LV function, fibrosis was significantly increased in sub-endo-
cardial layer of ICM as compared with DCM hearts. In healthy LV
myocardium, the interstitial content of collagen was shown to be
within the normal range with undetectable myocardial fibrosis
(Fig. 2A), according to previous studies [22]. Similarly, higher inter-
stitial amount of type I collagen fibres was detected in the corre-
sponding LV layers of ICM as compared with DCM hearts
(Resource S1). Also, the interstitial amount of fibronectin
(Resource S2) and fibroblasts (vimentin-positive cells; Resource S3)
was finely distributed in all layers of LV regions in DCM hearts,
whereas it was larger in ICM LV.

Left ventricular capillary distribution

The ex vivo coronary examination showed no significant stenosis in the
epicardial coronary arteries of either DCM or normal hearts. A homoge-

neously reduced number of capillaries per cardiomyocyte were detected
in all myocardial layers of ICM as compared with N (Fig. 3); in DCM
hearts, the LV capillary density was significantly reduced in the meso-
cardial layer of both IVS and LV-FW, and in the sub-endocardial (RV
side) layer of IVS as compared with N heart (Fig. 3D and E). Finally, in
DCM, the capillary supply was significantly higher in the sub-endocar-
dial layer of the LV-FW and in the sub-endocardial layer (LV side) of the
IVS as compared with the corresponding layers of ICM hearts.

Left ventricle cardiomyocytes size

As shown in Figure 4, the population of hypertrophic cardiomyocytes
was significantly higher than that of normo- and hypo-trophic ones in
each LV layer of either DCM or ICM hearts, whereas hypertrophic
cardiomyocytes were very rare in N LVs. In addition, the absolute num-
ber of hypertrophic cardiomyocytes in mesocardial and sub-epicardial
layer of LV-FW in DCM was higher than in ICM hearts (Fig. 4A). Con-
versely, the population of hypertrophic cardiomyocytes was similarly
increased in each layer of LV-IVS of both failing hearts (Fig. 4B). Small
population of hypotrophic cardiomyocytes were homogenously
detected in each LV layer of both ICM and DCM failing hearts (Fig. 4),
yet they were almost undetectable in N LV. Finally, the population of
normotrophic myocytes in mesocardial and sub-epicardial layer of LV-
FW was more rarefied in DCM than in ICM hearts (Fig. 4A), and the
cardiomyocytes with normal size showed a trend to decrease in LV-IVS
of ICM as compared with DCM hearts (Fig. 4B).

Left ventricular expression of connexin 43

As shown in Figure 5, the myocardial expression of connexin 43 was
homogenously reduced in LV-FW of both failing heart groups as
compared with N hearts, yet the distribution of connexin 43 was less
detectable in the sub-endocardial layer of ICM as compared with DCM
hearts. In addition, the distribution of connexin 43 in IVS of DCM
hearts was similar to N hearts, connexin-43 being less detectable in
sub-endocardial (LV side) and mesocardial layer of IVS in ICM as
compared with DCM.

Left ventricular apoptotic cardiomyocytes

As shown in Figure 6A, we detected apoptotic cardiomyocytes in each
LV region of DCM and ICM hearts. The apoptotic index was similar in
LV-IVS of the failing hearts, yet it was significantly higher in the
LV-FW of ICM as compared with DCM LV-FW (Figure 6B). Apoptotic

Fig. 3 Regional left ventricle (LV) distribution of coronary capillaries surrounding cardiomyocytes. (A–C) Representative images of coronary capillar-

ies detected with an antibody directed against human von Willebrand Factor (vWF) in sections of normal left ventricle (N, n = 8) and in LVFW and

inter-ventricular septum (IVS) of dilated cardiomyopathy (DCM; n = 11) and ischaemic cardiomyopathy (ICM; n = 12) hearts; (D) quantification of
the number of capillaries per number of cardiomyocytes per field for each myocardial layer. Values are means � SEM. *P < 0.05 versus Normal,
†P < 0.05 versus corresponding layer of ICM heart.
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cardiomyocytes were undetectable in normal hearts, in accord with
previous studies [36].

Lef ventricular expression of hallmarks of
ischaemic environment

HIF1-a was expressed in both DCM and ICM hearts (0.95 � 0.16 ver-
sus 0.82 � 0.07 a.u.), independently from the magnitude and distri-

bution of myocardial fibrosis. Similarly, Nestin was detected in
cardiomyocytes of failing DCM and ICM LV (Fig. 7B and C;
Resource S4) and not in normal heart (Fig. 7A; Resource S4).

Left ventricular proteomic profile

The IVS from DCM patients showed protein amounts <22.3 � 1% as
compared to the corresponding region of ICM hearts (Fig. 8). Six
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Fig. 5 Extent and distribution of regional left ventricle (LV) connexin-43 (Cx 43). (A–C) Representative images of Cx 43 detected by immunohisto-

chemistry in N LV (n = 8), and in the LVFW and inter-ventricular septum (IVS) of dilated cardiomyopathy (DCM; n = 11) and ischaemic cardiomyo-

pathy (ICM; n = 12) hearts; (D) quantification of immunodetectable Cx 43 in each LV myocardial layer. Values are expressed as means � SEM.
*P < 0.05 versus Normal, †P < 0.05 versus corresponding layer of ICM heart.
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hundred proteins expressed into LV-IVS were shared between DCM
and ICM hearts. By comparing the protein profiles of failing and nor-
mal hearts, 12 proteins were found to be up-regulated in DCM-IVS
and 20 proteins in ICM-IVS (Table 4), the up-regulated proteins of
ICM being down regulated in DCM, and vice versa (Fig. 8B). The up-
regulated proteins in ICM were down-regulated in DCM, and vice
versa (Fig. 8B). In particular, uridine diphospho-glucose pyrophos-
phorylase, a glycogen synthesizing enzyme [37], alpha-crystallin B,
which is a cardioprotective small heat shock protein [38], aconitate
hydratase, a mitochondrial enzyme of citric acid cycle that is
increased in cardiomyocytes exposed to intermittent hypoxia [39] and

to increased pre-load [40], were significantly up-regulated in the DCM
myocardium as compared with ICM hearts. By analysing the distribu-
tion of subcellular and extracellular myocardial proteins, the amount
of extracellular proteins was found to be higher in ICM than in DCM
myocardium (see Fig. 8C).

Discussion

In this study, the structural hallmarks of chronic MH were detected
in the LV FW and in the IVS of end-stage DCM hearts with coro-
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Fig. 7 Regional detection of ventricular nestin-positive cardiomyocytes. (A–C) Representative immunofluorescence sections of nestin-positive cardio-

myocytes (a-SA-positive cells) in each left ventricle (LV) myocardial layer of N (n = 8) and LVFW and inter-ventricular septum (IVS) of dilated car-
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nary patency and left bundle branch block (LBBB); they were also
shown to be associated with molecular features of ischaemic
microenvironment. Similar hallmarks of chronic MH were also
detectable in the corresponding LV regions of end-stage ICM hearts
harvested from patients with flow-limiting, critically stenotic and
diffuse lesions of the epicardial coronary arteries, and LBBB. The
phenotype of chronic MH was more pronounced in ICM hearts that
constituted the positive control group of this study. The lack of is-
chaemic microenvironment and MH phenotype in the explanted
normal hearts allowed the exclusion of an ischaemic damage
depending on the brain death time, surgical procedure or the car-
diac allograft storage. These findings support the hypothesis that
the long-term exposure of adult human myocardium to an ischae-
mic microenvironment triggers biochemical processes leading up to

hibernation, by interfering on gene and protein myocardial expres-
sion and causing the typical histological alterations that altogether
represent a compensatory mechanism aimed at maintaining myo-
cardial viability despite reduced myocardial blood flow [2].

The development of the chronic MH phenotype in HF patients is
difficult to track, whereas the morphological features of chronic MH
are well-established and characterized by PAS-positive cardiomyo-
cytes, loss of cardiomyocytes by apoptosis, patchy reduction in
Cx-43 content (contributing to impaired myocardial excitation-
contraction coupling), hypertrophic and hypo-/atrophic cardiomyo-
cytes, interstitial fibrosis, increased fibronectin and fibroblasts
(vimentin-positive cells) [2].

Although imaging-based diagnostic tests identified viable and dys-
functional myocardium in LV regions of patients with end-stage DCM
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[41, 42], the ex vivo regional characterization of chronic MH pheno-
type was never performed in full-thickness myocardial samples from
human failing DCM hearts so far. This study is the first to show the
patchy structural hallmarks of chronic MH in the myocardial layers of
full-thickness myocardial samples collected from two different LV
regions of failing human DCM hearts that are characterized by patent
epicardial coronary arteries.

The myocardial extent of intracellular glycogen, a clinically rele-
vant marker of MH detected by PAS staining [6, 14], showed a
U-shaped distribution with larger amounts in the ICM LV-FW as
compared with DCM LV-FW, associated with higher content of
apoptotic cardiomyocytes and of interstitial fibrosis. Conversely,
the myocardial glycogen amount and the number of apoptotic car-
diomyocytes were similar in the IVS of both failing heart groups
(ICM and DCM) despite lower interstitial fibrosis in DCM as com-
pared with ICM hearts. Even if it is very difficult to determine the
natural history of MH in HF patients [2, 43], it is conceivable that
the chronic MH phenotype in HF patients was primed and main-
tained by repeated episodes of ischaemia and subsequent cumula-
tive stunning [7]. The magnitude of the hibernating phenotype was
enhanced in ICM patients that have occlusions of epicardial coro-
nary arteries [31], whereas the smaller extent of the chronic MH
phenotype in DCM failing hearts was very likely related to the
selective dysfunction of coronary microcirculation [44]. Accord-
ingly, we found larger increase in type I collagen, fibronectin and
fibroblasts in ICM rather than in DCM hearts. The patchy expres-
sion of chronic MH phenotype in DCM hearts might correspond to
a mirroring distribution of the ischaemic microenvironment
depending on the impairment of the coronary microcirculation
rather than to the main coronary arteries perfusion areas. In our
DCM failing hearts, the presence of an ischaemic microenviron-
ment was proved by the myocardial expression of HIF-1alpha and
nestin. As HIF-1 alpha is a transcription factor that mediates car-
diac adaptive responses to hypoxia/ischaemia [43] and represents
an established molecular hallmark of chronic MH in failing heart of
animal model and of patients as well [14, 33], it is noteworthy
that in this study, HIF-1 alpha was similarly expressed in both
DCM and ICM hearts.

The main adaptive response to hypoxia/ischaemia observed in
adult myocardium chronically exposed to ischaemic microen-
vironment is the re-expression of foetal genes that has been
previously shown in failing adult LV as a result of chronic MH
[45, 46].

Nestin is a foetal intermediate filament and an endogenous inhibi-
tor of apoptosis [47], which is re-expressed in adult human ventricu-
lar myocytes exposed to chronic ischaemia [27]. We detected an
equal number of nestin-positive cardiomyocytes in both DCM and
ICM hearts, these data supporting the hypothesis that a foetal gene
pattern is expressed in chronically hibernating heart.

A high number of hypertrophic cardiomyocytes were found in the
LV viable myocardium of DCM hearts. Hypertrophic cardiomyocytes
are considered a hallmark of cellular remodelling in response to apop-
tosis [36] and/or to ischaemic signalling [48]. Recent evidence has
shown that ischaemic paracrine mediators lead to cellular hypertro-
phy and to reduced expression of connexin43 in cardiomyocytes

bordering the ischaemic area [48], both changes underlying the elec-
tro-mechanical decoupling typical of the hibernating myocardium
[49]. In particular, the depletion of Cx-43 plays a pathogenic role in
the chronic MH [26]. In our DCM patients, we detected patchy deple-
tion of myocardial connexin-43 in the LV layers; this finding well rep-
resents the jeopardized expression of the structural hallmarks in
chronic MHe.

On the basis of the previous findings, we suggest that the chronic
maintenance of the MH phenotype was strictly dependent on the
presence of an ischaemic microenvironment even in DCM hearts.

Even though the myocardial adaptive response to ischaemic
microenvironment may also be independent of haemodynamic factors
as a result of temporal changes of LV function [11, 50], the above-
mentioned structural phenotype in DCM failing hearts might depend
on the impairment of coronary microcirculation. The LV capillary den-
sity was similarly reduced at the mesocardial level in both DCM and
ICM failing hearts; however, the myocardial microcirculation was less
impaired in the LV sub-endocardial layer of DCM compared with ICM
hearts. Interestingly, the mesocardial capillary supply of DCM hearts
was significantly reduced compared with N in the presence of minimal
interstitial fibrosis and lower intracellular amount of glycogen.

Despite established evidence of severe myocardial hypoperfusion
[11, 13, 41] and defective vessel formation [51] in the LV of patients
with end-stage DCM, the local capillary/glycogen mismatch observed
by us supports the hypothesis that the exposure of myocardium to
persistent ischaemic environment was because of dysfunction rather
than to reduction in coronary capillary network in LV regions of end-
stage DCM heart [52].

To elucidate the coronary microvascular response regardless of
the presence of coronary lesions or capillary depletion in DCM hearts,
we can suggest that chronic LV dyssynchrony following Cx-43 deple-
tion, typical of patients with LBBB and severe contractile dysfunction
[53], might affect the myocardial viability [54].

Despite a recent imaging study did not show consistent changes
of myocardial blood flow in dyssynchronous failing heart of DCM
patients [55], we previously detected functional, histological and
molecular hallmarks of MH in the less perfused and dyssynchronous
LV region of a swine model of non-ischaemic HF [14], where
prolonged LV dyssynchrony leads to myocardial hypoperfusion [56].

Similar to the abovementioned hallmarks of MH, the regional loss
of Cx-43 was also smaller in the end-stage DCM compared with ICM
hearts.

To better define the chronic MH phenotype in human end-stage
DCM, we performed a detailed proteomic characterization of full-
thickness samples collected from IVS, which is the LV region
mainly affected by structural remodelling in the dyssynchronous
failing heart [32] and by broader loss of Cx-43 (Fig. 5). Interest-
ingly, the amount of functionally and structurally intact proteins
was reduced by 20% in DCM as compared with ICM hearts. It is
conceivable that an increased myocardial activation of proteases
takes place in DCM, promoting cellular remodelling and cardiac
dysfunction because of loss of key proteins [57], such as Cx-43.
Finally, we found a 70% homology between intact proteins of DCM
and ICM hearts. It is remarkable that alpha-crystallin B [38] and
aconitate hydratase [39], which are overexpressed in response to
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ischaemic microenvironment, and uridin diphospho-glucose pyro-
phosphorylase, a glycogen synthesizing enzyme [37], were up-reg-
ulated in the presence of reduced capillary density, minimal
interstitial fibrosis and Cx-43 depletion in IVS-DCM. Therefore, we
cannot exclude that the progressive rearrangement or disruption of
cell junctions enables the activation of ischaemic signalling leading
to chronic MH towards degradation of cellular pathways.

Limits of our study

Our study did not provide direct information as to the relationship
between histological and functional features of explanted hearts.
Finally, the limited sample size of patients without LBBB precluded a
comparative analysis between DCM patients with and without LBBB.
Then, further investigations are mandatory to better define if the
abovementioned histological and morphometric changes might be
related to the chronic nature of the HF more than to the mechanisms
of chronic MH.

Conclusions

Structural features of chronic MH that is typical of ischaemic chronic
HF were identified in the LV of patients with end-stage DCM undergo-
ing HT, associated with evidence of ischaemic micro-environment
and dyssynchronous substrate. Our investigation provides new data
by a multimodal ex vivo analysis.

In conclusion, unravelling the basic molecular mechanisms lead-
ing to MH in DCM hearts may be helpful to identify novel
pharmacological targets to halt the progression of remodelling
towards HF, especially in patients not responsive to conventional
treatments.

Acknowledgements

This study was supported in part by Ministero del Lavoro, Salute e Politiche
Sociali - Bando Giovani Ricercatori GR-2007-683407, Italy (V.L.) and in part

by 5x1000 funds of Scuola Superiore Sant’Anna, Pisa, Italy (MCARDI13VL,

V.L.). The authors confirm that there are no conflicts of interest.

Conflicts of interest

The authors confirm that there are no conflicts of interest.

Supporting information

Additional Supporting Information may be found in the online
version of this article:

Resource S1. Extent and distribution of regional LV interstitial type I
collagen. a, b, c: representative images of collagen type I detected
with immunohistochemical staining of sections of N (n = 8) and
LVFW and IVS of DCM (n = 11) and ICM (n = 12) hearts; d: quantifi-
cation of immunodetectable collagen type I in each LV myocardial
layer. Values are means � SEM. *P < 0.05 versus Normal, †P < 0.05
versus corresponding layer of ICM heart, ‡P < 0.05 versus
sub-epicardial layer/sub-endocardial RV layer.

Resource S2. Extent and distribution of regional LV interstitial fibro-
nectin. a, b, c: representative images of fibronectin detected with
immunohistochemical staining of sections of N (n = 8) and LVFW
and IVS of DCM (n = 11) and ICM (n = 12) hearts; d: quantification
of immunodetectable fibronectin in each LV myocardial layer. Values
are means � SEM. *P < 0.05 versus Normal.

Resource S3. Extent and distribution of regional LV interstitial vimen-
tin-positive cells. a, b, c: representative images of vimentin-positive
cells detected with immunohistochemical staining of sections of N
(n = 8) and LVFW and IVS of DCM (n = 11) and ICM (n = 12)
hearts; d: quantification of immunodetectable vimentin-positive cells
in each LV myocardial layer. Values are means � SEM. *P < 0.05
versus Normal.

Resource S4. Regional detection of ventricular nestin-positive cardio-
myocytes. a,b,c: representative immunofluorescence sections of
nestin-positive cardiomyocytes (cx-43-positive cells) in each LV
myocardial layer of N (n = 8) and LVFW and IVS of DCM (n = 11)
and ICM (n = 12) hearts. Cx-43: connexin-43.

Data S1. Expanded methods.
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