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The recent identification of the oxygen-sensing mechanism in
plants is a breakthrough in plant physiology. The presence of a
conserved N-terminal motif on some Ethylene Responsive
Factors (ERFs), targets the protein for post-translational
modifications finally leading to degradation under normoxia
and thus providing a mechanism for sensing the presence of
oxygen. The stabilization of the N-terminus under low oxygen
activates these ERFs, which regulate low oxygen core genes
that enable plants to tolerate abiotic stress such as flooding.
Additional mechanisms that signal low-oxygen probably also
exist, and the production of Reactive Oxygen Species (ROS)
has been observed under low oxygen, suggesting that ROS
might be part of the network involved in plant acclimation.
Here, we review the most recent findings related to oxygen
sensing.

Plants are inevitably subject to low oxygen (O2), mainly due to
the metabolic requirement of cells with high O2 demand or
reduced availability, such as in bulky storage organs, seeds,
meristem tissues, and fruits.1 Climatic changes have exacerbated
the shortage of O2, with more frequent excess rainfall leading to
plant submergence in flood-prone river areas and farmlands.
Dramatic flooding often affects marginal lands where food
demand is high, thus tolerant varieties are crucial in order to
increase crop yield.

Decline in O2 availability results in a reduction in the energy
produced by the plant, because of the shift from aerobic to
anaerobic respiration, which is less efficient in terms of ATP
synthesis. A limited reduction in O2 (hypoxia) results in a
reorganization of metabolic fluxes, so that energy usage is
optimized to fulfill the house-keeping activities of the cell which
are required to prevent disorganization and death.2,3 The complete
absence of O2-anoxia—is considerably more problematic for cells,
which under such conditions can only rely on glycolysis for ATP
production, thus rapidly entering into an energy crisis.4

Many plant species have evolved adaptive mechanisms to
survive low O2, which in some cases has led to a tolerance to
flooding. The molecular aspects governing these traits have been
partially elucidated in both rice and Arabidopsis, and the
centrality of Ethylene Responsive Factors (ERFs) has been
identified in plant responses to low O2.5-8 However, other
signaling pathways are also likely involved in tolerance. The ability

to sense the drop in sugar content following submergence and
Reactive Oxygen Species (ROS) production under anoxia are
believed to be potential candidates for such sensing.9-11 These
multiple mechanisms could work in parallel or play a major/minor
role depending on the severity of the stress and the plant’s
developmental stage.

Ethylene is a Central Component
in Rice Adaptation to Low Oxygen

In rice, ethylene plays a crucial role under submergence. When
subjected to flooding, both deep water rice and submergence-
tolerant lowland rice accumulate ethylene. In deep water rice,
ethylene promotes gibberellin-dependent elongation, via the
activation of the two ERF genes SNORKEL1 (SK1) and SK2.
This results in an “escape” strategy to re-establish contact with the
air.6,12 In fact, submergence-induced elongation is one of the most
widespread escape mechanisms in plants, with Rumex palustris
providing an excellent example.13-15 However, this strategy is only
successful if enough energy is available throughout the whole
period of submergence.

Submergence-tolerant lowland rice adopt the opposite strategy:
gibberellin signaling is repressed, thus inhibiting growth, through
the ERF gene SUBMERGENCE 1A (SUB1A) and the down-
stream repressors of gibberellin action, namely SLENDER1
(SLR1) and SLENDER-LIKE1 (SLRL1). This results in a
“quiescence” strategy that reduces energy consumption during
stress.5,16

Ethylene is therefore a central regulator of two opposing
strategies to survive different habitats. Both these regulative
pathways are realized through the action of ERF genes belonging
to group VII, reinforcing the hypothesis that diverging ERFs can
provide distinct tolerance mechanisms in multiple species.1

Direct Low Oxygen Sensing in Arabidopsis

Animals are known to have a direct O2 sensing mechanism since
several years, while until recently a plant-counterpart of this
sensing mechanism remained elusive.17,18 In animals, a transcrip-
tion factor (TF), namely the hypoxia-inducible factor-1-a (HIF-
1a) is the target of proteasomal degradation via O2-dependent
hydroxylation under normoxia. Oxygen depletion strongly
inhibits HIF-1a degradation, with downstream induction of
hypoxia-responsive genes.19 A similar mechanism was thought to
be present in plants too, but no orthologs of HIF1-a have been
found.
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Recently, two independent studies suggested that the N-end
rule pathway (NERP) for protein degradation might be involved
in the regulation of the low O2 response in plants.7,8 The NERP
recognizes a specific N-terminus motif for post-translational
modification, leading finally to the (de)stabilization of the
protein.20 A conserved amino acid motif corresponding to Met-
Cys was found in ERFs of group VII, which had previously been
shown to be involved in low O2 genes regulation.21,22 In fact, a
Met-Cys N-end has been found in HRE1, HRE2, RAP2.2, and
RAP2.12 of Arabidopsis, but also in the rice proteins SUB1A and
SK1/SK2, responsible for “quiescence” and “escape” strategy,
respectively, for tolerance in Oryza sativa. The Cys present at the
N-terminus of these proteins is oxidized in the presence of O2 and
thus leads to post-translational modification ending with their
degradation.7,8 However, under low O2, the N-terminus is
stabilized.

Rice SUB1A-1 regulation has been shown to be uncoupled
from the N-end rule pathway, likely due to the absence of a
crucially positioned lysine downstream of the N-end or to
differences in the tertiary structure.7 The higher stability of
SUB1A may explain the tolerance of SUB1A-containing rice
varieties to abiotic stresses irrespectively of low O2 availability.7

Licausi and colleagues identified one specific ERF protein,
RAP2.12, which is believed to act as an O2 sensor in plants.
RAP2.12 is expressed constitutively and ubiquitously, and the
RAP2.12 protein, which would otherwise be degraded as a
consequence of Cys oxidation in normoxia, is protected from
degradation by docking Acyl-CoA-Binding Proteins ACBP1 and
ACBP2, which are located in the plasma membrane.8 Under
hypoxia, RAP2.12 is released from the plasma membrane and
migrates to the nucleus, thus activating downstream events for
hypoxia tolerance.8 The NERP mutants ate1ate2 and prt6,
which are defective in steps related to proteasomal degradation,
revealed the constitutive expression of hypoxic core genes such
as ADH1, SUS4 and PDC1.7 In addition, plants carrying a
stabilized HRE2, through the modification of the N-terminus,
showed an enhanced survival under hypoxia.7

The identification of an O2 sensing mechanism in plants is a
breakthrough in plant science which opens up important
questions, the most critical being the mechanism of Cys
oxidation and the regulation of downstream signaling that
mediates variations in hypoxia tolerance (Fig. 1).23

Indirect Low Oxygen-Sensing
in Arabidopsis Involves ROS

The depletion of O2 has rapid consequences at a molecular
level, as is demonstrated by several experimental microarray
analyses performed on plants in which both the O2 levels and
length of O2 deprivation was varied.22,24-27 Some meta-analyses
identified low O2 core genes.2,29 It was thus evident that
although several genes modulated by low O2 are related to
anaerobic metabolism, this set of genes also includes many
proteins with an unknown function and oxidative stress-related
genes.2,24 Heat Shock Proteins (HSPs) were found to be a
conserved group of low-oxygen-responsive genes in different

kingdoms and the overexpression of the transcription factor
HsFA2 was shown to increase anoxia tolerance, irrespectively of
the induction of anaerobic genes.24,29

In fact, adh- plants do cross-acclimate to anoxia following a
mild heat-stress treatment, thus indicating that the effects of heat
on anoxia tolerance are unrelated to the fermentative meta-
bolism.30 This would imply a tolerance mechanism that does not
rely on low O2 metabolic acclimation alone, but which is linked
to cell protection from stress. This phenomenon is likely in
common with heat stress, which has been shown to induce cross
protection to anoxia.30 HsfA2 has been suggested to be a sensor of
H2O2 presence and its expression is observed in several systems
producing ROS.31,32 In addition, HSP production as a response to
H2O2 is conserved in several kingdoms.33 A ROS-dependent
acclimation could work in parallel to metabolic acclimation and
could be critical should the latter fail. A link between ROS
production and acclimation to hypoxia was proposed by Baxter-
Burrel and colleagues, who suggested the existence of an anaerobic
H2O2 production mediated by a NADPH oxidase (Rboh)
regulated by a ROP/ROPGAP rheostat.34 RBOHD has been
found to be positively regulated by both low O2 and ROS.11,35

This NADPH isoform is transcriptionally responsive to many
abiotic stresses.35 Interestingly, rbohD- plants are less tolerant to
anoxia tolerance than wild types.11 Indeed, HsfA2 and ZAT12
expression display a lower induction in rbohD- under anoxia,
possibly explaining the lower tolerance.11

The presence of an oxidative burst under low O2 has also been
proposed by Banti and colleagues, who linked heat-anoxia cross-
tolerance to H2O2 production, a common element under both

Figure 1. Arabidopsis signal transduction events under low O2. Under
hypoxia and anoxia, the N-end of some group VII ERFs is stabilized
thus activating anaerobic core genes. Under anoxia, a mitochondrial
imbalance produces ROS that regulate MAPKs. A ROS rheostat mediated
by NADPH oxidase is also activated and TFs related to ROS signaling are
induced, thus promoting ROS-related genes. Both these processes help
plants to be tolerant to low O2.
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heat and anoxia.24 Besides H2O2 production mediated by
NADPH oxidase(s), an alternative (or additional) possible source
of ROS under anoxia may be mETC.10 Anoxic treatment induces
ROS production in mitochondria, probably due to ETC
impairment by O2 depletion.10 A downstream positive regulation
of MPK3, 4 and 6 seems to be dependent on this oxidative burst.
In Chang’s study, overexpression on MPK6 was responsible for
improved tolerance to anoxia but anaerobic core genes were not
markedly altered, neither were they in mpk6 plants.10

The signaling pathway that modulates the expression of HSPs
under anoxia is likely distinct from the one modulating metabolic
acclimation to this stress. Anaerobic core genes are ectopically
activated in N-end rule mutants, whereas the group of HSPs
commonly regulated in several low O2 experiments are not.11

HSPs are significantly induced under anoxia but not hypoxia,
suggesting that the response to hypoxia and anoxia is modulated
by a common signaling pathway for metabolic adaptation alone.
Severe low O2 conditions (such as anoxia) seem to activate a
signaling pathway that includes ROS production. Although ROS
could be produced under anoxia as a general stress, the transient
and rapid peak of H2O2 observed soon after the beginning of an
anoxic treatment indicates a possibly specific mechanism to
modulate ROS production.10,11

Conclusions

Recent results have unveiled the presence of distinct signaling
mechanisms that modulate plant responses to low O2. Together
with a master regulation occurring through the stabilization of the
N-terminus of some group VII-ERF proteins, ROS production
under anoxia likely represents an important component of the
anaerobic signaling network in plants. While NERP-mediated
transcriptional regulation may take place irrespectively of level of
severity of the stress, ROS production and its signaling cascade are
probably related to severe conditions of O2 deprivation only, such
as anoxia. Although the production of ROS under anoxia may be
paradoxical, it has been shown to occur very early and to be
transient, thus not persisting under anoxia.10,11 ROS-related genes
have been found to be systematically modulated by anoxia, but
the cellular localization of ROS production is still a matter of
debate. Recent results support both the mETC and NADPH-
oxidases located at the plasma-membrane as possible sources. Two
intriguing open issues are (1) understanding how distinct sources
of ROS under anoxia might have distinct roles in the way plants
acclimatize to anoxia, and (2) whether O2 sensing through the
N-end rule is affected by ROS produced at the onset of anoxia.
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