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1 INTRODUCTION

In this paper we present a semi-automated search pro-
cedure to deal with the problem of the identification of
the contemporaneous causal structure connected to a
large class of multivariate time series models. We refer
in particular to multivariate models, such as vector au-
toregressive (VAR) and dynamic factor (DF) model, in
which the background or theoretical knowledge is not
sufficient or enough reliable to build a structural equa-
tions model. VAR models deal with a small number of
time series models (the maximum number is typically
between 6 and 8), while DF models deal with a large
number of time series, possibly larger than the number
of observation (T ) over time. Both VAR and DF mod-
els have proven to be very efficient in the macroeco-
nomic and financial literature to address different em-
pirical issues, such as forecasting, summarizing the sta-
tistical properties of the data, and building economics
indicators (of business cycles, for instance). Moreover,
DF models can be used in the financial literature to
estimate insurable risk and in the macroeconomic lit-
erature to learn about aggregate behavior on the basis
of microeconomic data (sectors, regions). (Forni and
Lippi (1997), Forni et al. (2000), and Stock and Wat-
son (2001) are useful references).

However, there is another important task that macro-
econometricians usually try to address. This is the
task of identifying and measuring the structure of the
economy, namely the complex set of causal processes
that have generated the data. Such task is called struc-
tural analysis and is intimately connected with the
possibility of giving policy advice and answering coun-
terfactual questions (asking what would happen to the
economy if the policymaker intervened on a particular
variable). However, it is fraught with the problem that
many different structural relations are consistent with
the same data, usually called the problem of identifi-
cation.

In this paper we propose to use graphical causal mod-

els for constructing partial information about the con-
temporaneous causal structure of the data generating
process starting from statistical properties (partial cor-
relations) of the data. In other words, our method will
permit the exclusion of a large set of causal structures
which are not consistent with some statistical proper-
ties, under the assumption that any causal structure
among random variables is tied to a particular con-
figuration of partial correlations over the same ran-
dom variables. We will recover only causal structures
concerning contemporaneous variables, but, as shown
below, this is sufficient to identify the model.

Our work makes a step forward in the literature con-
cerned with the applications of techniques based on
graph-theory to the problem of residuals orthogonal-
ization in VAR models, developed by Bessler and Lee
(2002), Demiralp and Hoover (2003), Moneta (2004),
Reale and Tunnicliffe Wilson (2001), and Swanson and
Granger (1997). The main innovations are the exten-
sion to a more general framework which includes DF
models, the possibility of dealing with feedbacks or
common shocks and the adaptation of the algorithms
developed by Spirtes et al. (2000) to the multivariate
time series framework.

2 THE PROBLEM OF
IDENTIFICATION

Let us briefly illustrate the problem of identification
in VAR and DF models.

2.1 VAR Model

A zero-mean stationary VAR model can be written as:

Yt = A1Yt−1 + . . .+ApYt−p + ut, (1)

where Yt = (y1t, . . . , ykt)
′, ut = (u1t, . . . , ukt)

′, and
A1, . . . , Ap are (k × k) matrices. The components of
ut are white noise innovation terms: E(ut) = 0 and
ut and us are independent for s 6= t. The matrix

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/54932004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Σu = E(utu
′
t) is in general nondiagonal. The rela-

tions among the contemporaneous components of Yt,
instead of appearing in the functional form (as in si-
multaneous equation models), are embedded in the
covariance matrix of the innovations. From the es-
timation of equation (1), which is straightforwardly
obtained by OLS, one does not get, in general, the
structural relations among the variables, because nu-
merous structures are compatible with a particular set
of statistical associations. It is useful to assume (with-
out loosing generality as to the family of linear models)
that the data are generated by a structural equation
of the form:

ΓYt = B1Yt−1 + . . . BpYt−p + vt, (2)

where vt is a (k × 1) vector of serially uncorrelated
structural disturbances with a mean of zero and a di-
agonal covariance matrix Σv .

The identification problem consists in finding a way
to infer the unobserved parameters in (2) from the
estimated form (1), where Ai = Γ−1Bi for i = 1, . . . , p
and ut = Γ−1vt. The problem is that at most k(k +
1)/2 unique, non-zero elements can be obtained from
Σ̂u. On the other hand, there are k(k+ 1) parameters
in Γ. Thus, at least k(k−1)/2 restrictions are required
to satisfy the order condition for identification.

2.2 Dynamic Factor Model

A DF model is a vector of n time series represented as
the sum of two unobservable orthogonal components, a
common component driven by few (fewer than n) com-
mon factors, and an idiosyncratic component driven
by n idiosyncratic factors. The formal representation
of a DFM is the following:

xit = Ai1(L)u1t + . . .+Aiq(L)uqt + ξit, (3)

for i = 1, . . . , n, where Ut = (u1t, . . . , uqt)
′ is an or-

thonormal white-noise vector (i.e. ujt has unit vari-
ance and is orthogonal to ust for any j 6= s), and
Aij(L) =

∑∞
k=0 aij,kL

k is a polynomial (finite or in-
finite) in the lag operator L. The polynomial χit =
Ai1(L)u1t+ . . .+Aiq(L)uqt is the common component,
while the elements u1t, . . . , uqt are the common factors
(or common shocks). The idiosyncratic component is
represented by ξit.

Let us suppose we have estimated (with the method
proposed by Forni et al. (2000) the DFM represented
in equation (3). The estimation of the common com-
ponents χit does not imply identification of the com-
mon shocks. Indeed, there exists an infinite number of
representations which are observationally equivalent to
(3), like

χit = Bi1(L)v1t + . . .+Biq(L)vqt, (4)

where Vt = (v1t, . . . , vqt)
′ is an orthonormal white-

noise vector such that Vt = S′Ut, S being a unitary
matrix (i.e. SS′ = I , see Forni et al. (2004)). Sup-
pose a specific equation (4) is the structural model
and we have estimated (3). In the typical economic
and financial applications, it is crucial to give a pre-
cise economic interpretation to the common shocks,
while the idiosyncratic shocks can be left in the re-
duced form. This is sufficient, for instance, to study
the dynamic effect of common macroeconomic shocks
to the economic system.

The identification problem of the common shocks con-
sists in justifying the imposition of enough (at least
q(q − 1)/2) restrictions on the matrix S ′, in order to
recover Vt. Notice the analogy with the VAR model
case, in which the restrictions are to be imposed on
Γ. The main difference between VAR and DF model
case is that in the latter the number of shocks does
not increase with the number of variables, while in the
former the restrictions required to achieve identifica-
tion increases as the square of the number of variables
included in the model.

3 RECOVERING THE
STRUCTURAL FORM WITH
GRAPHICAL MODELS

The last section has shown that to solve the problem
of identification, once we have estimated the reduced
form shocks Ut = (u1t, . . . , urt)

′ (where r = k in the
VAR case and r = q in the DF case), we have to re-
cover the structural shocks Vt = (v1t, . . . , vrt)

′, impos-
ing at least r(r + 1)/2 zero-restrictions on the matrix
H entering the following equation:

Vt = HUt, (5)

where H = Γ in the VAR case, and H = S ′ in the
DF case. The application of graphical models aims to
infer the causal structures among the elements of Ut
starting from the partial correlations among the same
elements. What is is usually recovered is not a unique
causal structure, but a set of possible causal structures,
which in almost all of the cases is sufficient to identify
the model. In the VAR case, as shown in Swanson
and Granger (1997) and Moneta (2003), the causal
structure among the elements of Ut corresponds to the
causal structure among the contemporaneous elements
of Yt. We consider two different algorithms for causal
inference.

3.1 Directed Acyclic Graphs

The first algorithm is applied in the case we assume
that the causal relations among the elements of Ut are



direct and they do not form ant cycle (feedback loops
are not allowed). In this case the causal structures
can be described by Directed Acyclic Graphs (DAG),
as the one shown in Figure 1.

Figure 1: DAG
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The algorithm (see extended version of the paper) is
based on two general conditions about the connections
between causation and partial correlations (Spirtes et
al. (2000)):

1. Causal Markov Condition: Any random variable
(with probability distribution P ) corresponding to the
vertices of the DAG G is conditionally independent of
its graphical nondescendants (excluded its graphical
parents), given its graphical parents, under P .

2. Faithfulness Condition: G and P satisfy the Faith-
fulness Condition if and only if every conditional inde-
pendence relation true in P is entailed by the Causal
Markov Condition applied to G.

The algorithm, which is an adaptation of the PC
algorithm of Spirtes et al. (2000) to the time-series
framework, starts from a complete undirected graph C
among the k components of Yt (in which each vertex is
connected with every other vertex) and uses vanishing
partial correlations to eliminate and direct as many
edges as it is possible.

3.2 Feedbacks and Latent Variables

The preceding sections complied with a sometimes use-
ful simplification, namely that the statistical depen-
dencies among the components of Ut are due only to
direct causes, ruling out the possibility of feedbacks
or of unmeasured common causes. In this section the
search procedure is extended to consider the possibil-
ity that the data generating process is representable
through a structure in which feedbacks (namely bi-
directed causes) and particular latent variables are al-
lowed.

Spirtes et al. (2000) develop an algorithm (FCI algo-
rithm), which infers features of the DAGs from a prob-
ability distribution when there may be latent common
causes, while Richardson and Spirtes (1999) develop
an algorithm (CCD algorithm), which infers features
of directed cyclic graphs from a probability distribu-
tion when there are no latent common causes. An
open question is whether there are comparable algo-
rithms for inferring features of directed graphs (cyclic
or acyclic) even when there may be latent common

causes. In fact distinguishing between feedbacks and
latent variables is a difficult task, which the analysis of
vanishing partial correlation alone seems not to solve.

We propose an automatic search procedure that pro-
duces as output an undirected graph. The undirected
edges that form the undirected graph reflect an epis-
temological (more than ontological) reason: in many
cases, we cannot tell whether the presence of an undi-
rected edge denotes a feedback, a latent variable or a
directed cause in the data generating process. In par-
ticular cases, an undirected edge may correspond to no
direct connection at all in the data generating process
(see extended version of the paper).

The search algorithm, that is presented in the ex-
tended version of the paper, is an adaptation of the
common first and second part of the PC, FCI, and
CCD algorithm and the PC algorithm. The algorithm
starts from a complete undirected graph among the
contemporaneous variables and eliminates some edges
using information on vanishing partial correlations.
We leave to background knowledge the criterion to
decide whether the undirected edge represents a feed-
back, a latent variable, a direct cause, or actually no
direct connection. However, there is another statisti-
cal check: if the restrictions on the contemporaneous
variables are over-identifying, they can be tested ac-
cording to a χ2 statistics.

4 EMPIRICAL APPLICATIONS

In this section we discuss three empirical examples
that utilize our method. The first and second exam-
ple use macroeconomic US data to study the dynamic
effect of structural shocks (impulse response functions
analysis), which are given precise economic interpre-
tation (shock to productivity, monetary policy shock,
etc.). In order to get a reliable interpretation of the
shocks, one has to find that transformation of the re-
duced form system of equations, which is consistent
with the causal structure among the data. Since such
transformations consist in imposing a contemporane-
ous causal structure on the data, this method permits
the choice of the most reliable transformations. In the
first example we build a VAR model using the data of
Moneta (2003) (which are an extension of the King et
al. (1991) data). In the second example we build a DF
model using the data of Forni et al. (2004) (which are
also an extension of the King et al. (1991) data). Both
examples use the search algorithm described in section
3.1 to identify the contemporaneous causal structure
and the structural shocks associated with the follow-
ing US macroeconomic variables: output, consump-
tion, investment, money, interest rate, and inflation.
The results point out that not only shocks associated



to real macroeconomic variables (output, consumption
and investment) but also shocks associated to nominal
variables (money, inflation and interest rates) have a
considerable effect on macroeconomic fluctuations (at
all frequencies). This result shows how US data are
not consistent with the Real Business Cycle hypoth-
esis, which claims that a single productivity shock is
driving output fluctuations.

A third example deals with the problem of finding
the most appropriate measure of the exogenous mon-
etary policy shock in US economy. We build a VAR
model using the Bernanke and Mihov (1998) and Mon-
eta (2004) data. The method allows cycles and com-
mon shocks among contemporaneous variables (using
the search algorithm described in section 3.2). Fig-
ure 2 displays the output of the search algorithm,
that is the causal structure among the contempora-
neous variables: GDP, PGDP (GDP deflator), PSC-
COM (Dow-Jones index of spot commodity prices),
FFR (federal funds rate), TR (total bank reserves),
NBR (nonborrowed reserves). Background knowledge
about the central bank operating procedures is used
to further discriminate among the causal structures
output of the algorithm. The results suggest that a
good measure of monetary policy shock is that por-
tion of shock to nonborrowed reserves orthogonal to
shock to total reserve. Figure 3 shows the effects
of an exogenous monetary policy shocks on GDP for
the different specifications of the causal structure.
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Figure 2: contemporaneous causal structure.

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 48 36 24 12
Months

Response of GDP

M. 0
α=0

NB/TR
BR

Figure 3: responses of GDP to one-standard-deviation
monetary shock for the sample 1965:1-1996:12
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