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 Abstract 

Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts living in the roots of 80% of land 

plant species, and developing extensive, belowground extraradical hyphae fundamental for the 

uptake of soil nutrients and their transfer to host plants. Since AM fungi have a wide host range, 

they are able to colonize and interconnect contiguous plants by means of hyphae extending from 

one root system to another. Such hyphae may fuse due to the widespread occurrence of 

anastomoses, whose formation depends on a highly regulated mechanism of self recognition. 

Here, we examine evidences of self recognition and nonself incompatibility in hyphal networks 

formed by AM fungi and discuss recent results showing that the root systems of plants belonging 

to different species, genera and families may be connected by means of anastomosis formation 

between extraradical mycorrhizal networks, which can create indefinitely large numbers of 

belowground fungal linkages within plant communities. 
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Abstract 

Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts living in the roots of 80% of land 

plant species, and developing extensive, belowground extraradical hyphae fundamental for the 

uptake of soil nutrients and their transfer to host plants. Since AM fungi have a wide host range, 

they are able to colonize and interconnect contiguous plants by means of hyphae extending from 

one root system to another. Such hyphae may fuse due to the widespread occurrence of 

anastomoses, whose formation depends on a highly regulated mechanism of self recognition. 

Here, we examine evidences of self recognition and nonself incompatibility in hyphal networks 

formed by AM fungi and discuss recent results showing that the root systems of plants belonging 

to different species, genera and families may be connected by means of anastomosis formation 

between extraradical mycorrhizal networks, which can create indefinitely large numbers of 

belowground fungal linkages within plant communities. 

 

Introduction 

Most terrestrial plant species establish mutualistic symbioses with arbuscular mycorrhizal (AM) 

fungi, which develop extensive, belowground extraradical hyphae fundamental for the uptake of 

nutrients from soil and their transfer to the host plant (1; 2). Since AM fungi have a wide host 

range, they are able to colonize and interconnect plants of different species, genera and families, 
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by means of hyphae extending from one root system to another. Such mycorrhizal networks, 

first visualized and quantified in vivo by means of two-dimensional experimental systems, spread 

from colonized roots into the surrounding environment at growth rates ranging from 738 to 

1067 mm per day, depending on the host plant, and reach hyphal extent of 10-40 mm per mm of 

root length (3). Moreover, AM extraradical networks may be interconnected by means of the 

widespread occurrence of anastomoses, whose formation depends on a highly regulated 

mechanism of self recognition between compatible hyphae. Successful anastomoses occur 

between hyphae belonging to the same individual and to different individuals of the same isolate, 

during the pre-symbiotic growth of AM fungi (4). By contrast, hyphae of individuals belonging 

to different genera and species, and even to geographic isolates of the same species, are unable 

to fuse, and show rejection responses, either before or after anastomosis, revealing AM hyphal 

ability to discriminate against nonself (5). Extraradical mycorrhizal networks maintain the 

capacity of self recognition, evidenced by the high frequency of anastomosis between hyphae 

originating from the same and different root systems colonized by the same AM fungal isolate 

(6). 

Here, we discuss recent advances in the study of self recognition and nonself incompatibility 

in hyphal networks formed by AM fungal germlings during the pre-symbiotic stage of their life 

cycle. We review evidences for  the characterization of true anastomoses - i. e. complete fusions 

of hyphal walls, cytoplasmic flow and migration of nuclei through hyphal bridges - and for the 

detection of incompatibility responses - i. e. protoplasm retraction from hyphal tips and septum 

formation in approaching hyphae, even before physical contact -, as revealed by time-lapse, 

video-enhanced and epifluorescence microscopy.  

Finally we discuss recent results showing that the root systems of plants belonging to 

different species, genera and families may become linked by means of anastomosis formation 

between mycorrhizal networks, which can create indefinitely large numbers of fungal linkages 

connecting together many plants in a community. 
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Evidence for the existence of anastomosis in pre-symbiotic mycelial networks of AM 

fungi 

Although anastomoses have been extensively studied in vegetative hyphae of Ascomycota 

and Basidiomycota (7; 8), they are believed to be lacking or rare in other fungal phyla (9; 10). 

A few works reported sporadic observations of their occurrence in AM fungi, without giving 

any quantitative data on the frequency of hyphal fusions in the different isolates or on the 

cytological events involved (11; 12; 13; 14). 

The first extensive study on anastomosis in AM fungi reported data on fusions of hyphae 

belonging to the same isolate in different species of the genus Glomus, by using a combination 

of time-lapse and video-enhanced light microscopy, image analysis, and epifluorescence 

microscopy (4). Protoplasmic continuity, the characteristic feature of successful hyphal 

fusions, was evidenced by the complete disappearance of hyphal walls and visualized by 

histochemical localization of formazan salts in hyphal fusions, after SDH (succinate 

dehydrogenase activity) staining (Fig. 1a). Time-course experiments showed that hyphal tips 

were able to fuse with hyphae growing nearby in about 35 min, and that a bidirectional flow of 

particles (vacuoles, mitochondria, nuclei, and fat droplets) moved at the speed of 1.8 ± 0.06 

µm/s through hyphal bridges formed during anastomosis (4; 15).  

The established protoplasmic flow was further demonstrated by the detection of nuclei in 

hyphal bridges, evidenced by DAPI (diamidinophenylindole) staining. Nuclear migration 

occurred between hyphae belonging to the same germling and to different germlings of the 

same AM fungal isolate, in three different Glomus species, G. caledonium, G. intraradices, G. 

mosseae (4). The ability of self compatible hyphae to fuse and exchange nuclei is of critical 

importance for the maintenance of genetic continuity within AM fungi, which are considered 

clonal organisms (16). Since they produce multinucleate spores, containing 1,000 to 5,000 

nuclei each (17), and have been shown to be multigenomic (18; 19),  nuclear exchange during 
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anastomosis within the same germling and between different germlings of the same isolate 

could represent a means for the maintenance of isolate genetic diversity, in the absence of 

sexual recombination (4; 20; 21).  

 The frequency of anastomosis formation between contacting hyphae originating from the 

same germling or from different germlings of the same isolate ranged from 34% to 90%, in G. 

caledonium and G. intraradices, respectively (4). Similar results were found in other studies 

carried out on geographic isolates of G. mosseae originating from Europe (France, United 

Kingdom), USA (Arizona, Indiana) and Middle East (Syria), where anastomosis frequency 

ranged from 60% in the UK isolate IMA1 to 85% in the Arizona isolate AZ225C (5). Such 

values were obtained on total hyphal contacts ranging from 91 to 242, which are relatively 

high numbers, given the inability of AM fungi to grow extensively in the absence of the host 

plant (22; 23; 24). In the experimental data, the length of mycelium varied with the different 

isolates, from 34.5 ± 3.5 mm in the French isolate BEG69 to 119.5 ± 14.4 mm in the UK 

isolate IMA1. It is interesting to note that anastomosis densities detected in AM fungi, unable 

to grow saprophytically, ranged from 0.62 ± 0.06 to 1.3 ± 0.23 per cm of hyphal length, values 

comparable with  those reported for the saprophytic fungi Rhizoctonia solani and  Gibberella 

fujikuroi (25; 26; 27). 

Interactions between hyphae belonging to the same germling of AM fungal species of the 

genera Gigaspora and Scutellospora did never lead to anastomosis formation.  In fact, no 

fusions were found over 220 hyphal contacts in G. rosea and over 460 hyphal contacts in  S. 

castanea. These data were confirmed by other works, carried out in in vitro monoxenic 

cultures on mycelium spreading from Ri T-DNA transformed carrot roots, where no 

anastomoses were detected among main hyphae (runner hyphae) of Scutellospora reticulata, 

while only 1% of fusions was found in branching absorbing structures (28). Interestingly, the 

most important mechanism allowing fungal mycelium to become interconnected was 

represented by wound healing between broken hyphae, previously described by Gerdemann 
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(29). Further studies, aimed at comparing the different anastomosis ability of  two 

phylogenetically distant AM fungal families, Glomeraceae and Gigasporaceae, confirmed their 

fundamental diversity in mycelial developmental structure (Tab. 1) (30). 

    

Evidence for nonself incompatibility in pre-symbiotic mycelial networks of AMF 

When hyphae originating from different species or genera of AM fungi come into contact, 

no anastomoses are formed (4; 13). Different intergeneric and interspecific hyphal pairings 

yielded zero fusions over large numbers of contacts, ranging from 90 in the pairing G.  

mosseae-G. caledonium to 140 in  G. mosseae-G.rosea and 232 in G. caledonium-G. rosea. 

Interestingly, hyphal interactions lead to different responses, ranging from no interference – i. 

e. hyphal intermingling - to the formation of hyphal swellings which become empty and septate 

after the failure of anastomosis formation. These findings, suggesting that AM fungi can 

recognize self entities and discriminate self from nonself, opened the way to tests of vegetative 

compatibility, already used for the identification of genetically different isolates of pathogenic, 

saprophytic and ectomycorrhizal fungi (8; 31; 32; 33; 34; 35). Such tests, carried out on 

geographically different isolates of G. mosseae, showed that hyphal interactions between 

different isolates do never produce anastomosis, suggesting their genetic isolation. 

Accordingly, hyphae intermingled without any response in 49-68% of contacts, while 

developed incompatibility reactions in 32-51% of hyphal contacts, in the different pairings. 

Incompatibility responses were consistent with those detected in hyphae belonging to different 

genera and species after physical contact, and were characterized by hyphal swellings, 

vacuolization, localized wall thickenings, protoplasm withdrawal, retraction septa formation 

and hyphal lysis (Fig. 1b) (5), and comparable to postfusion incompatibility events reported in 

other fungi (7; 8; 36; 37; 38; 39). The strong genetic barriers to hyphal fusions exhibited by G. 

mosseae isolates of different geographic origins could have the function of hindering 

heterokaryon formation between genetically different mycelia, thus permitting the maintenance 
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of the fittest gene combinations. Moreover, such barriers may prevent the exchange of 

cytoplasm and the spread of harmful genetic elements (8; 40).  

The major evidence for the existence of a highly regulated system of self recognition and 

nonself discrimination in AM fungi was represented by the detection of precontact tropism and 

the formation of hyphal swellings and consecutive retraction septa prior to any physical 

contact between neighboring hyphae (5). The occurrence of hyphal tropism, previously studied 

also in other fungal species, Phanerochaete velutina and Stereum spp. (7; 36), suggests that 

specific recognition signals, released by interacting hyphae, are involved in interhyphal 

attraction and in the regulation of hyphal fusion (32; 41). Nevertheless, the nature of the 

specific compounds acting as signals for self recognition and nonself discrimination in AM 

fungi remains to be unravelled. 

 

Visualization of intact mycelial networks spreading from roots colonized by AMF 

The most important AM fungal structure for plant nutrition is represented by the 

extraradical mycelium spreading from mycorrhizal roots into the surrounding soil, which is 

able to uptake mineral nutrients - N, P, S, Ca, K, Fe, Cu, Zn - and to transfer them to root 

cells (1; 42; 43; 44). Mycorrhizal mycelium has been investigated in different experimental 

studies, based on either destructive extraction from soil or root observation chambers or in 

vitro systems, which yielded only qualitative data on its structure and growth (45; 46; 47; 48). 

The first visualization of intact AM mycelium extending from mycorrhizal roots into the 

extraradical environment was obtained by means of a bidimensional model system which 

utilized two cellulose esters membranes “sandwiched” around the roots of individuals plantlets 

(Fig. 2). After only 7 days’ growth, a fine network of extramatrical hyphae growing on the 

membranes was visible to the naked eye, and its length extended from 5169 to 7471 mm 

(hyphal length), in Thymus vulgaris and Allium porrum, respectively (Fig. 3) (3). In order to 

understand the fundamental role played by extraradical mycelium in nutrient uptake and 
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translocation, it is interesting to calculate hyphal length per total root length, which reaches 

40.2 mm mm

-1

 in A. porrum, and the mean growth rate, which ranges from 738 to 1067 mm 

per day, depending on the host plant. Such data are comparable with the higher values of 

hyphal densities previously detected by using destructive extraction from soil, which were 

much variable, ranging from 1.6 to 1420 mm of hyphal length per mm of root (49; 50; 51; 52). 

 The experimental system deviced to visualize the mycorrhizal mycelium also evidenced that 

the mechanism allowing the formation of the network was self recognition and hyphal 

anastomosis. Since AM fungal hyphae showed many branches (0.86-0.97 mm

-1

) the number of 

anastomoses per mm of hypha was very high (0.46-0.51),  as well as their frequency, 75-78% 

of hyphal contact (Tab. 1). The frequency of anastomosis was higher in extraradical mycelium 

(post-symbiotic) than in pre-symbiotic mycelium and also than that reported in self-

anastomosing isolated of Rhizoctonia solani (4; 5; 25). 

It is important to stress that the viability of the mycorrhizal network was 100% and that all 

the anastomoses showed protoplasmic continuity and nuclear occurrence in hyphal bridges, 

confirming the occurrence of nuclear exchange also during fusions between extraradical 

(symbiotic) hyphae. 

 

Visualization of belowground interconnections between plants of different species, 

genera and families 

AM fungi have been reported to be active in mediating nutrient transfer among plants (53; 

54; 55; 56; 57; 58), mainly through the extensive mycelial networks, which, due to the lack 

of host specificity, may link the roots of contiguous plant species (57; 59; 60). Recent studies 

showed a novel mechanism by which plants may become interconnected, that is hyphal 

fusions between extraradical hyphae originating from different individual plant root systems 

of different species, genera and families (6).  
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The bidimensional experimental system utilized allowed the visualization and 

quantification of fusions between mycorrhizal networks spreading from Allium porrum (leek) 

root systems - after inoculation with the AM symbiont Glomus mosseae - and those 

originating from Daucus carota (carrot), Gossypium hirsutum (cotton), Lactuca sativa 

(lettuce), Solanum melongena (eggplant). The use of plants belonging to different species 

allowed the detection of a host plant effect on the development of extraradical mycelium, 

since  hyphal density in  cotton was  6.8 mm mm

-2

, a value statistically different from those of 

all the other plant species, which ranged from 2.9 to 4.1 mm mm

-2

 in lettuce and eggplant, 

respectively (Tab. 1). Cotton was also the species which showed the highest 

interconnectedeness in the mycorrhizal network: the number of anastomoses per mm of 

hyphal length was 0.62 compared to values ranging from 0.21 to 0.38 of the other species. 

The frequency of anastomoses between mycorrhizal networks originating from the 

different plant species was very high, ranging from 44% in the pairing leek-eggplant to 49% 

in the pairing leek-cotton, even though lower than that between networks spreading from the 

same species, leek (62%). 

The occurrence of true anastomoses was verified by means of SDH and DAPI stainings: 

formazan salt depositions and nuclei were detected in the middle of hyphal bridges 

connecting different mycorrhizal networks, whereas no hyphal incompatibility reactions were 

found in interactions between hyphae connecting different mycorrhizal networks.  

The high rate of anastomosis formation between extraradical hyphae spreading from the 

root systems of different plants suggests that plant interconnectedness may be greater than 

previously thought. Accordingly, due to the wide host range of AM fungi, mycorrhizal 

mycelium could give rise to an indefinitely large network of hyphae interconnecting 

contiguous plants, representing a major factor in the distribution of resources in plant 

communities (56; 57; 61; 62). The bi-dimensional experimental system deviced for visualizing 
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the structure of the mycorrhizal network could be further implemented, to detect and 

quantify nutrient and carbon transfer in the "soil food web" (63; 64; 65; 66).  
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Table 1. Extension and interconnectedness of extraradical mycelial networks produced by AM fungi 

living in symbioses with different plant species. 

 

 

Plant species/ Fungal species 

Hyphal 

density 

(mm mm

-2

) 

No. of 

anastomoses per 

hyphal length 

(cm) 

Anastomosis 

frequency 

(%) 

Ref. 

Allium porrum/ Glomus mosseae 

2.7 4.6 75.0 (3) 

Allium porrum/ Glomus mosseae 3.5 3.8 59.3 (6) 

Daucus carota/ Gigaspora margarita *   - 0.0075  9.8 (30) 

Daucus carota/ Gigaspora rosea *   - 0.012  4.2 (30) 

Daucus carota/ Glomus hoi *   - 0.057 100 (30) 

Daucus carota/ Glomus intraradices *   - 0.076 100 (30) 

Daucus carota/ Glomus mosseae 3.9 2.5 45.5 (6) 

Daucus carota/ Glomus proliferum *   - 0.066 100 (30) 

Daucus carota/ Scutellospora reticulata *   - 0.0079  5.2 (30) 

Gossypium hirsutum/ Glomus mosseae 6.8 6.2 53.1 (6) 

Lactuca sativa/ Glomus mosseae 2.9 3.0 63.8 (6) 

Petroselinum crispum/ Glomus caledonium 3.8   - 18.6 § 

Petroselinum crispum/ Glomus intraradices 2.3   - 56.9 § 

Petroselinum crispum/ Glomus mosseae 3.5   - 62.3 § 

Prunus cerasifera/ Glomus mosseae 2.4 5.1 64.0 (3) 

Solanum melongena/ Glomus mosseae 4.1 2.1 47.0 (6) 

Thymus vulgaris/ Glomus mosseae 2.1 5.1 78.0 (3) 

 

* Ri T-DNA transformed carrot roots § Unpublished results. 
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FIGURE LEGENDS 

Fig. 1. Light micrographs showing self recognition (a) and nonself incompatibility (b) between 

AM fungal hyphae. (a) Visualization of complete fusions of hyphal walls and protoplasmic 

continuity, evidenced by formazan salt depositions in hyphal bridges (succinate dehydrogenase 

activity, SDH) in two compatible hyphae of the AM fungus Glomus mosseae.  (b) 

Incompatible interaction between hyphae of two geographically different isolates of the AM 

fungus Glomus mosseae, visualised after SDH and Trypan blue staining, showing protoplasm 

withdrawal and septum formation in the approaching hypha (isolate IN101C) after contact 

with a branch initial (isolate SY710). Scale bar = 10 µm. 

 

Fig. 2. Visualisation of intact extraradical networks produced by the AM fungal species 

Glomus mosseae, spreading from mycorrhizal roots of Prunus cerasifera and uniformly 

colonizing the surrounding environment.  

 

Fig. 3. Visualisation of Glomus mosseae extraradical hyphae spreading from intact (a) and cut 

(b) mycorrhizal roots of Allium porrum. 
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Fig. 1
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Fig. 2
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Fig. 3 

 

 

 

 

 

a b 


