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Abstract. Hierarchical scheduling (HS) systems manage a set of real-
time applications through a scheduling hierarchy, enabling partitioning
and reduction of complexity, confinement of failure modes, and tempo-
ral isolation among system applications. This plays a crucial role in all
industrial areas where high-performance microprocessors allow growing
integration of multiple applications on a single platform.
We propose a formal approach to the development of real-time applica-
tions with non-deterministic Execution Times and local resource shar-
ing managed by a Time Division Multiplexing (TDM) global sched-
uler and preemptive Fixed Priority (FP) local schedulers, according to
the scheduling hierarchy prescribed by the ARINC-653 standard. The
methodology leverages the theory of preemptive Time Petri Nets (pTPNs)
to support exact schedulability analysis, to guide the implementation on
a Real-Time Operating System (RTOS), and to drive functional con-
formance testing of the real-time code. Computational experience is re-
ported to show the feasibility of the approach.

Keywords: Real-time systems, Hierarchical Scheduling, ARINC-653, Time Di-
vision Multiplexing, preemptive Fixed Priority, verification, preemptive Time
Petri Nets, real-time code, real-time testing.

1 Introduction

Hierarchical scheduling (HS) systems consist of real-time applications arranged
in a scheduling hierarchy. They can be generally represented as a tree, or a hier-
archy, of nodes where each node represents an application with its own scheduler
of internal workloads. The tree may have an arbitrary number of levels and each
node may have an arbitrary number of children [29]. Hierarchical scheduling is
receiving an increasing attention due to its effect of partitioning and reduction of
complexity, confinement of failure modes, and temporal isolation among system
applications. Among the disparate architectures that may serve the design of
HS systems, one way of composing existing applications with different timing
characteristics is to use a two-level scheduling paradigm: at the global level, a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/54931881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


scheduler selects which application will be executed next and for how long; at
the local level, a scheduler is used for each application in order to determine
which tasks of the selected application should actually execute.

Various analytical approaches have been proposed to support schedulability
analysis and verification of HS systems under the assumption of local resource
sharing [13], [19], [23], [29], [24], [22], [11], [15]. In [13], a two-level HS scheme is
introduced to manage the execution of both real-time and non real-time appli-
cations on a single processor, assuming an Earliest Deadline First (EDF) global
scheduler and a Total Bandwidth Server (TBS) [30] for each application. The
approach is extended in [19] to encompass Rate Monotonic (RM) scheduling
policy at the global level, although the treatment is restricted to the case of
periodic tasks with harmonic periods. In [23], an exact schedulability condition
is provided for a two-level HS architecture with EDF global scheduling policy
and EDF/RM local scheduling policy. In [22], [24], HS systems are described
through the periodic server abstraction, providing the class of server parameters
that guarantees schedulability for Fixed Priority (FP) local schedulers. Follow-
ing the approach based on server abstraction, in [11], response time analysis
is employed to obtain exact schedulability conditions for HS systems that are
handled by FP preemptive scheduling at both the local and the global level,
comparing Periodic, Sporadic, and Deferrable Servers. The schedulability anal-
ysis techniques of [15], [29] address a hierarchical scheduling framework that
employs the bounded-delay resource partition model of [26], providing a compo-
sitional method according to which the timing requirements of a parent scheduler
are directly derived from the timing requirements of its child schedulers and they
are satisfied if and only if the timing requirements of the child schedulers are
satisfied. The approach supports the integration of applications developed by
independent suppliers, but yields more pessimistic schedulability results.

Recent works address global resource sharing in HS systems. In [12], the
response time analysis of [11] is extended with a global resource access policy
called Hierarchical Stack Resource Policy (HSRP), which bounds priority inver-
sion and limits the interference due to overruns during resource accesses. In [2],
the Subsystem Integration and Resource Allocation Policy (SIRAP) provides
temporal isolation between subsystems that share logical resources and thus fa-
cilitates the integration of applications developed independently of each other.
In [16], compositional techniques support automatic scheduling and correctness
verification of ARINC-653 [1] partitions with global resource sharing.

As a major limit, analytical techniques provide pessimistic results for models
including sporadic tasks, inter-task dependencies in the time of release, inter-task
dependencies due to mutual exclusion on shared resources, and internal sequenc-
ing of tasks. Moreover, analytical approaches do not encompass computations
associated with a non-deterministic Execution Time, providing schedulability re-
sults for assigned values usually coincident with the Worst Case Execution Time
(WCET). For complex task-sets that expose any of these factors, the verifica-
tion of both sequencing and timing correctness may become sufficiently critical
to motivate the use of state space analysis of models based on formalisms such



as StopWatch Automata [9], preemptive Time Petri Nets (pTPNs) [4], Petri
Nets with hyper-arcs [27], and Scheduling-TPNs [21]. As a common trait, these
formalisms encompass temporal parameters varying within an assigned interval
and support the representation of suspension in the advancement of clocks. In
particular, their semantics can be defined in terms of a state transition rule driv-
ing the evolution of a logical location and of a set of densely-valued clocks, which
requires that the state space be covered through equivalence classes. In particu-
lar, in [4], an efficient approach is proposed which enumerates an approximation
of the state space that preserves Difference Bounds Matrix (DBM) encoding [31],
[3], [10], supporting the derivation of the tight timing profile of clocks enabled
along a path through an algorithm that cleans up false behaviors introduced
by the approximation. In [8], the theory of pTPNs is cast in a tailoring of the
V-Model SW life cycle that supports design, implementation, and verification of
real-time applications within a Model Driven Development (MDD) approach.

In this paper, we extend the methodology of [8] to support the develop-
ment of two-level HS systems with local resource sharing managed by a Time
Division Multiplexing (TDM) global scheduler and preemptive Fixed Priority
(FP) local schedulers, according to the scheduling hierarchy prescribed by the
ARINC-653 standard [1]. The approach leverages the theory of pTPNs [4] to
enable exact schedulability analysis of multiple real-time applications made by
periodic, sporadic, and jittering tasks with nondeterministic Execution Times
and semaphore/mailbox synchronizations. To this end, the approach of [8] is
extended to encompass the representation of a TDM global scheduler, exploit-
ing the induced temporal isolation among system applications to manage the
complexity of the model and to keep the analysis viable (Section 2). The pTPN
specification model steers the implementation on a Real-Time Operating System
(RTOS), yielding code that exposes a readable structure, reflects the organiza-
tion of the pTPN model, and, especially, preserves pTPN semantic properties.
In particular, the coding process of [8] is extended to support the emulation of a
TDM global scheduler on RTAI [14] (Section 3). This enables agile verification of
the conformance of the implementation to sequencing and timing requirements
of its pTPN specification, according to the testing approach of [8] (Section 4).
Conclusions are finally drawn in Section 5.

2 Design and verification through pTPNs

We address real-time applications with local resource sharing managed by a
TDM global scheduler and FP local schedulers, according to the scheduling
hierarchy prescribed by the ARINC 653 standard [1]. Each application is a task-
set encompassing usual patterns of real-time concurrency [7]: i) a task-set is made
by recurrent tasks which release jobs with periodic, sporadic, or jittering policy,
depending on whether the release time is deterministic, bounded by a minimum
but not a maximum value, or bounded by a minimum and a maximum value,
respectively; ii) a job is a sequence of chunks, each associated with an entry-point
function that implements its functional behavior, with an expected Execution



Time interval, and with a priority level (low priority numbers run first); iii) a task
is subject to a deadline which is usually coincident with its minimum inter-release
time; iv) tasks belonging to the same application (i.e., running in the same time-
slots) may have dependencies (e.g., binary semaphore synchronizations), while
those belonging to different applications (i.e., running in different time-slots) do
not share critical sections.

time-slot = 50 ms

period = 250 ms

TDM global scheduler

A1 A2 A1 A3 A1

TDM 
global scheduler

Operating System

FP local scheduler

Tsk11 Tsk12 Tsk13

Application A1

FP local scheduler

Tsk21 Tsk22 Tsk23

Application A2

FP local scheduler

Tsk31 Tsk32 Tsk33

Application A3

Tsk14 Tsk24 Tsk34

Fig. 1. A HS system made by a TDM global scheduler and 3 FP local schedulers.

Fig. 1 illustrates the scheme with reference to the case of 3 applications A1,
A2, and A3. The global scheduler partitions a period of 250 ms in 5 time-slots
of equal length of 50 ms and assigns each of them to a single application, i.e.,
T1, T3, and T5 are assigned to A1, T2 is assigned to A2, and T4 is assigned to
A3. While the fixed partitioning is a requirement of the approach, equal slots are
assumed here without loss of generality to simplify the description of the case.
Each application is made by 3 periodic tasks and 1 sporadic task synchronized
on 2 binary semaphores, as illustrated in the workload of Table 1.

2.1 PTPN model of the HS system

PTPNs [5] extend Time Petri Nets (TPNs) [25], [3] with a concept of resource
assignment that makes the progress of timed transitions dependent on the avail-
ability of a set of preemptable resources, enabling the representation of sus-
pension in the advancement of clocks and thus providing an expressivity that
effectively supports the specification of real-time task-sets. In [8], the theory of
pTPNs is cast in a V-Model SW process supporting all the steps of development



Application Task Release Deadline Chunk Priority Exec. Time Sem

A1

Tsk11 [150, 150] 150
C111 1 [1, 2] mux11

C112 1 [10, 20] -

Tsk12 [200, 200] 200
C121 2 [2, 4] mux12

C122 2 [1, 2] -

Tsk13 [250, 250] 250
C131 3 [5, 10] -
C132 3 [1, 2] mux12

Tsk14 [150,∞) 150
C141 4 [1, 2] -
C142 4 [1, 2] mux11

A2

Tsk21 [250, 250] 250
C211 1 [2, 4] mux21

C212 1 [15, 20] -

Tsk22 [280, 280] 280
C221 2 [2, 4] -
C222 2 [1, 2] mux22

C223 2 [1, 2] -

Tsk23 [300, 300] 300
C231 3 [10, 15] -
C232 3 [1, 2] mux21

Tsk24 [250,∞) 250
C241 4 [1, 2] -
C242 4 [1, 2] mux22

A3

Tsk31 [300, 300] 300 C311 1 [1, 2] mux31

Tsk32 [350, 350] 350
C321 2 [1, 2] -
C322 2 [1, 2] mux31

Tsk33 [350, 350] 350 C332 3 [2, 4] mux32

Tsk34 [250,∞) 250 C341 4 [1, 2] mux32

Table 1. The workload of the HS system of Fig.1 (times expressed in ms).

of real-time task-sets running under preemptive FP scheduling. We extend here
the approach of [8] to enable design and verification of HS systems managed by
a TDM global scheduler and FP local schedulers. The temporal isolation among
tasks of different applications permits to specify each application with a different
pTPN model made by the submodels of the task-set and the global scheduler.
This reduces the complexity of the problem and enables exhaustive verification
of sequencing and timing constraints of complex systems, which could not be
afforded through direct analysis of a unique flat model due to the state space
explosion problem. We illustrate the approach with reference to the pTPN model
of application A1 of the HS system of Table 1 (see Fig. 2).

The pTPN submodel of the task-set. Recurrent task releases are modeled by tran-
sitions with neither input places nor resource request, which thus fire repeatedly
with inter-firing times falling within their respective firing intervals, e.g., t110
models recurrent job releases of Tsk11. Chunks are modeled by transitions with
static firing intervals equal to the min-max range of Execution Time, associated
with resource request and static priorities, e.g., t112 models the completion of
the first chunk of Tsk11, which requires resource cpu with priority level 1 for an
Execution Time within [1, 2] ms. Computations in different jobs compete for re-
source cpu and run under FP preemptive scheduling, e.g., both transitions t112
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Fig. 2. The pTPN model of application A1 of the HS system of Table 1.

and t122 require resource cpu with priority level 1 and 2, respectively, and, if
t112 becomes enabled while t122 is progressing, then t112 preempts t112 and t112
becomes suspended. Binary semaphores are modeled as places initially marked
with 1 token; their acquisition operations are represented as immediate transi-
tions, while their release operations are allocated to transitions that also account
for chunk completions, e.g., mux11 models a binary semaphore synchronizing the
first chunk of Tsk11 and the first chunk of Tsk14; wait operations are modeled
by t111 and t142; signal operations are represented by transitions t112 and t143,
which also model the completion of the two chunks. According to the prior-
ity ceiling emulation protocol [28], the priority of any chunk synchronized on a
semaphore is statically raised to the highest priority of any chunk that ever uses
that semaphore, so as to avoid priority inversion. Priority boost operations are
explicitly modeled as immediate transitions, while priority lowering operations
are allocated to transitions that also account for chunk completions. According



to this, the priorities of Tsk13 and Tsk14 are raised to the priority of Tsk12
and Tsk11, respectively, in the sections where they hold a semaphore: priority
boost operations are represented by t132 and t141, which precede semaphore wait
operations; priority lowering operations are represented by t134 and t143, which
also account for chunk completions.

The pTPN submodel of the global scheduler. The submodel of the global sched-
uler is made by as many transitions as the number of time-slots in the period,
each associated with a static firing interval equal to the duration of the cor-
responding time-slot and chained to the transition accounting for the previous
time-slot through its input place, e.g., transitions tgs1, tgs2, tgs3, tgs4, and tgs5
model time-slots T1, T2, T3, T4, and T5, respectively. Transitions modeling time-
slots assigned to the application are not associated with a resource request, while
the other transitions require resource cpu with a higher level of priority than any
task of the application. In so doing, transitions modeling jobs of the task-set sub-
model may be progressing and advance their clocks only during the time-slots in
which the application is scheduled to execute and they are suspended during the
other time-slots. According to this, since tasks of A1 require cpu with a priority
level between 2 and 5 and A1 is scheduled to execute in time-slots T1, T3, and
T5, transitions tgs1, tgs3, and tgs5 are not associated with a resource request,
while transitions tgs2 and tgs4 require cpu with priority level 0.

Generalization to multi-level scheduling hierarchies. The proposed approach ap-
plies to any tree of schedulers where leaf nodes are FP schedulers and non-leaf
nodes are TDM schedulers. The root scheduler partitions its period into a num-
ber of time-slots and exclusively assigns each of them to one of its children
schedulers. The process is repeatedly applied until each sub-slot is assigned to a
leaf FP scheduler. In so doing, each application is exclusively assigned a number
of sub-slots and can thus be analyzed in isolation.

2.2 Architectural verification

The pTPN model of each application is analyzed in isolation, since the em-
bedding environment of the application is completely accounted by the pTPN
submodel of the global scheduler. This supports exact schedulability analysis
based on correctness verification of the model with respect to logical sequencing
and quantitative timing constraints. The analysis is performed through the Oris
Tool [18], which supports enumeration of the space of state classes, selection of
paths attaining specific sequencing and timing conditions, and tight evaluation
of their range of timings. In particular, the identification of all paths that start
with a task release and end with its completion enables the derivation of the Best
Case Completion Time (BCCT) and the Worst Case Completion Time (WCCT)
of each task, thus verifying whether task deadlines are met.

As shown in Table 2, state space analysis enumerates 32084, 183981, and
26147 state classes for A1, A2, and A3, respectively, taking less than 2 minutes
and using approximately 300 MB RAM. Note that architectural verification



could not be afforded through an unique flat model, which exhausts 4 GB RAM
after the enumeration of nearly 106 classes in approximately 13 minutes. In fact,
as usual in techniques based on state space enumeration [4], [9], [27] [21], the
complexity of the analysis notably increases with the number of concurrent tasks
and with the number of sporadic tasks.

Model # Classes RAM Time

model of A1 32084 ∼ 300 MB ∼ 20 sec

model of A2 183981 ∼ 300 MB ∼ 83 sec

model of A3 26147 ∼ 300 MB ∼ 15 sec

flat model > 106 > 4 GB (out of memory) > 13 min

Table 2. Space and time complexity of state space enumeration on the HS system of
Fig.1: structured model vs flat model.

Table 3 shows the number of paths, the BCCT, the WCCT, the deadline, and
the laxity of each task of each application, proving that all deadlines are met. For
instance, tasks Tsk11, Tsk12, Tsk13, and Tsk14 of A1 have 11979, 15023, 11069,
and 15213 paths, respectively, a BCCT of 61 ms, 14 ms, 6 ms, and 66 ms, and
a WCCT of 74 ms, 80 ms, 42 ms, and 82 ms, respectively. This guarantees that
all task deadlines are met, with minimum laxity of 76 ms, 120 ms, 208 ms, and
68 ms for Tsk11, Tsk12, Tsk13, and Tsk14, respectively.

Application Task # Paths BCCT WCCT Deadline Laxity

A1

Tsk11 11979 61 74 150 76
Tsk12 15023 14 80 200 120
Tsk13 11069 6 42 250 208
Tsk14 15213 66 82 150 68

A2

Tsk21 31480 67 74 250 176
Tsk22 66069 39 230 280 50
Tsk23 139417 30 247 300 53
Tsk24 57286 82 249 250 1

A3

Tsk31 13826 101 204 300 96
Tsk32 20742 53 210 350 140
Tsk33 28932 55 212 350 138
Tsk34 13617 156 212 250 38

Table 3. Results of the architectural verification on the structured model of the HS
system of Fig.1, showing the number of paths, the BCCT, the WCCT, the deadline,
and the laxity of the tasks of each application (times expressed in ms).



3 Implementation on RTAI

The specification provided by the pTPN model can be implemented on differ-
ent RTOSs which natively support HS schemes or not. We illustrate here how a
TDM global scheduler can be emulated on RTAI 3.6 [14] by extending the coding
process of [8]. The implementation is guided by the structure of the pTPN model
and produces code that is responsible for: i) task suspension/resumption accord-
ing to the allocation of time-slots to system applications, ii) task releases, iii)
invocation of semaphore and priority handling operations, and, iv) invocation of
entry-points. As a characterizing trait, the code has a manageable architecture
and preserves the pTPN semantic properties, and it could be equivalently de-
rived in automated manner through an MDD approach. The architecture of the
implementation is organized in a kernel module.

Implementation of the entry-point and the exit-point. The kernel module is
loaded into the kernel space through the entry-point init module, which creates
data structures employed by tasks of the applications (e.g., binary semaphores),
creates real-time tasks that implement tasks of the specification, and starts the
timer. The kernel module is unloaded at the end of the execution through the
exit-point cleanup module, which stops the timer and destroys data structures
and real-time tasks.

Implementation of jobs. In order to observe the timely release of jobs, the re-
sponsibility of job releases and job executions is given to different real-time tasks,
synchronized on a semaphore which is supposed to receive a signal at each re-
lease. According to this, each task of the specification is implemented through:
i) a recurrent real-time task that performs job releases by signaling a semaphore
at each activation, and ii) a further real-time task that performs job operations
by executing a loop that acquires the semaphore at the beginning of each repe-
tition. Real-time tasks performing job releases have a higher priority level than
real-time tasks performing job executions.

A code skeleton with two real-time tasks for each task of the specification is
adopted also in [8], where an experimental assessment is carried on to evaluate
the overhead of the code architecture and the confidence of measurements. Ex-
perimental results show that the error due to finite accuracy keeps lower than
nearly 1.2 µs with recurrent peaks in the order of 3-4 µs, which can be ascribed to
timing uncertainties due to processor and bus effects on a general purpose CPU
running a hard RTOS [20], [17]. This highlights that the overhead is negligible
with respect to the precision of temporal parameters in the model.

Implementation of the global scheduler. The TDM global scheduling policy is
emulated through a periodic real-time task with period equal to the duration
of a time-slot and with higher priority level than real-time tasks implementing
job releases and job executions. At each period, the task suspends the real-
time tasks of the applications that are not scheduled to execute during the next
time-slot and resumes the real-time tasks of the application that is assigned the



next time-slot. Listing 1.1 shows a fragment of the entry-point of the task. For
instance, at the beginning of time-slot T2 (i.e., case 2 of the switch control
structure), real-time tasks that implement jobs of A1 (i.e., tsk11job, tsk12job,
tsk13job, and tsk14job) are suspended and those that implement task jobs
of A2 (i.e., tsk21job, tsk22job, tsk23job, and tsk24job) are resumed. Real-
time tasks that implement jobs of A3 do not need to be suspended since they are
suspended also during time-slot T1, which is in fact assigned to A1. If time-slots
have different duration, the global scheduler could anyhow be implemented as a
periodic task by letting it change its period at each activation and set it equal
to the duration of the subsequent time-slot.

static void tskgs_job(int t)
{

static int slot = 1;
while (1) {

switch(slot) {
case 1:

...
slot = 2;
break;

case 2:
rt_task_suspend (& tsk11job);
rt_task_suspend (& tsk12job);
rt_task_suspend (& tsk13job);
rt_task_suspend (& tsk14job);
rt_task_resume (& tsk21job);
rt_task_resume (& tsk22job);
rt_task_resume (& tsk23job);
rt_task_resume (& tsk24job);
slot = 3;
break;

case 3:
...
slot = 4;
break;

case 4:
...
slot = 5;
break;

case 5:
...
slot = 1;
break;

}
rt_task_wait_period ();

}
}

Listing 1.1. Emulation of a TDM global scheduler on RTAI (t is a formal parameter
of the task function, which is actually not used in the context of our experiment).

4 Testing conformance with respect to pTPN semantics

The close adherence of the code architecture to the pTPN semantic properties
enables functional conformance testing of the implementation with respect to
sequencing and timing requirements accounted by the pTPN specification [8],
as illustrated in the schema of Fig. 3. In particular, the abstraction of pTPNs
enables the observation of the following kinds of failures:



– un-sequenced execution: an execution run breaking sequencing requirements
(e.g., a priority inversion);

– time-frame violation: a temporal parameter assuming a value out of its ex-
pected interval (e.g., a computation breaking its Execution Time interval);

– deadline miss: a job breaking its end-to-end timing requirement.

Each action of the implementation is mapped on a transition in the pTPN model
of one of the applications. By construction, these actions are: the completion of
suspensions/resumptions of real-time tasks performed by the global scheduler at
the beginning of a time-slot, the release of a task job, the completion of a chunk,
the completion of a wait operation on a semaphore, the boost of a priority before
a semaphore access. The implementation is then instrumented so as to produce
a time-stamped log that stores: i) each action of the implementation that has a
counterpart in the pTPN model of an application and ii) the time at which the
action occurred. According to this, each run executed by the implementation
provides a finite sequence of timed actions {〈ai, τi〉}Ni=0, where:

– ai is an action of the implementation, univocally mapped on a transition ti
of the global scheduler submodel or the task-set submodel of an application;

– τi is the time at which ai occurred.

The log produced by the execution of the real-time applications is off-line
parsed in order to obtain a separate sub-log for each application, made by the
timed actions that correspond to the firings of transitions belonging to the pTPN
model of the application. In particular, the sub-log of each application comprises
a firing sequence for the pTPN model of the application and it can be compared
in isolation against the model itself, in order to determine whether it represents a
feasible behavior. More specifically, the decision algorithm starts from the initial
state s0, which accounts for conditions at which the system is started, checks
the feasibility of the first timed action 〈a0, τ0〉, and computes the subsequent
state s1; at the i-th step, the algorithm checks whether ti can be fired at time
τi − τi−1 from state si−1 and computes the resulting state si. A failure verdict
is emitted as soon as any timed action 〈ai, τi〉 is not accepted by the simulator,
while a pass verdict is emitted when the run terminates. In so doing, any un-
sequenced execution and any time-frame violation are detected, whereas any
stealing of resources are recognized iff the quantity of stolen time exceeds the
laxity between the actual Execution Time and its expected upper bound.

The code of the implementation is instrumented by letting real-time tasks
write time-stamped actions on an RTAI FIFO, since file operations are not avail-
able in the kernel space and would in any case take time beyond acceptable limits.
The log is subsequently processed and written on a file by a low priority task
running in the user space. On the Intel Core 2 Quad Q6600 desktop processor
employed in the experiment, the run-time overhead introduced by time-stamped
logging is 150 ns on average and it can thus assumed to be negligible with respect
to the time scale of the specification [8].

To provide a comprehensive experimental set-up, a busy-sleep function was
implemented to emulate computations lasting for a controlled duration and re-
place entry-point functions [8]. The implementation was run for several times for



2 hours, which corresponds to more than 28000 releases of the shortest period
task of application A1. Logs produced by the execution runs were evaluated and
no failure was detected, thus highlighting the conformance of the implementation
to its pTPN specification and the feasibility of the proposed approach.
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Fig. 3. A schema illustrating the use of pTPNs in the development of HS systems.

5 Conclusions

In this paper, we extended the methodology of [8] to support formal specification,
architectural verification, implementation, and conformance testing of HS sys-
tems managed by a TDM global scheduler and preemptive FP local schedulers,
according to the scheduling hierarchy prescribed by the ARINC-653 standard
[1]. The approach employs the theory of pTPNs [4] to engineer all the steps of
development, addressing complex HS systems made by real-time applications in-
cluding periodic, sporadic, and jittering tasks, with nondeterministic Execution
Times and local resource sharing.

In the design stage, the temporal isolation among different applications is
conveniently exploited by leveraging the expressive power of pTPNs in the rep-
resentation of suspension in the advancement of clocks, which allows the specifi-
cation of a HS system through a structured model made by a different pTPN for
each application. In particular, the pTPN model of each application is made by
the submodels of the task-set and the global scheduler, and it can be analyzed
in isolation independently of the models of the other applications. This largely
reduces the complexity of the problem, facilitates the scalability of the approach,



and enables exhaustive architectural verification through state space enumera-
tion, which could not be carried out through direct analysis of an unique flat
model due to the state space explosion problem. Moreover, the partitioning of a
high number of tasks into subsets and the specification of each of them through a
different model easies the assignment of task priorities made by the programmer
in the design stage.

In the implementation stage, the coding process of [8] is extended to support
the emulation of a TDM global scheduler on RTAI [14]. As a characterizing
trait, the resulting code has a readable structure and preserves the semantic
properties of the pTPN model. This enables a conformance testing approach
where time-stamped logs produced by execution runs are compared against the
set of feasible behaviors of the pTPN specification in order to verify whether
sequencing and timing requirements are satisfied [8].

The pTPN submodel of the global scheduler of each application comprises
a kind of Required Interface [6] accounting for the environment where the local
application is embedded. Generalization of the structure of this interface seems
a promising way to extend the analysis to more complex schemes of hierarchy
that encompass inter-application communication mechanisms as prescribed by
the ARINC-653 standard [1].
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