
An Exception Based Approach to Timing

Constraints Violations in Real-Time and Multimedia

Applications.

Tommaso Cucinotta and Dario Faggioli

Real-Time Systems Lab, CEIICP

Scuola Superiore Sant’Anna, Pisa (Italy)

Email: {t.cucinotta, d.faggioli}@sssup.it

Abstract—In this paper, an exception-based programming
paradigm is envisioned to deal with timing constraints violations
occurring in soft real-time and multimedia applications written
in the C language. In order to prove viability of the approach, a
mechanism allowing to use such paradigm has been designed and
implemented as an open-source library of C macros making use
of the standard POSIX API (a few Linux-specific optimizations
are also briefly discussed).

The envisioned approach has been validated by modifying
mplayer, one of the most widely used multimedia player for
Linux, so as to use the introduced library. Experimental results
demonstrate how the exception-based paradigm is effective in
improving the audio/video delay exhibited by the player.

I. INTRODUCTION

General Purpose Operating Systems (GOPSes) are being

continuously enriched with more and more features for handier

development of time-sensitive, soft real-time and multimedia

applications. This would allow the development of applications

with stringent timing requirements, provided the programmer

were also given some mechanism for specifying these timing

constraints within the application, and if necessary for dealing

with their violation.

It is, in fact, becoming quite common to have, even in

small embedded devices, a multiplicity of activities, running

concurrently under the super visioning of an Operating System

(OS). Moreover, some of the involved tasks may fall into the

category of “real-time applications”, i.e., they must comply

with precise timing behavior by which the output of the

computation must be ready. Most of the time they are soft

real-time applications, what distinguishes them from hard real-

time ones, on a number of different points. First, the typical

knowledge, by developers/designers, of the main timing pa-

rameters of the application, such as the execution time of a

code segment, is somewhat limited. In fact, it is not worth to

recur to precise worst-case analysis techniques, and there is

a need for using commonly available hardware architectures

(that are optimized for average-case performance, penalizing

predictability) and compression technologies (which cause the

The research leading to these results has received funding from the Eu-
ropean Communitys Seventh Framework Programme FP7 under grant agree-
ment n.214777 “IRMOS — Interactive Realtime Multimedia Applications on
Service Oriented Infrastructures” and n.248465 “S(o)OS — Service-oriented
Operating Systems”.

execution times to heavily vary from job to job, depending

on the actual application data). Furthermore, in order to scale

down production costs, a good resources saturation level is

needed. Finally, timing requirements in this context may be

stringent, but they are definitely not safe-critical, therefore

it may be sufficient to fulfil them with a high probability.

Typical examples are multimedia players available, e.g., on

modern smart-phones or set top boxes, and coexisting with

wireless link management tasks or with planned recording of

TV shows.

Therefore, timing constraints violations should be expected

to occur at run-time, and developers must somehow cope

with them. This paper presents a framework that enables

the adoption of the well-known exception-based management

programming paradigm to handle timing constraints violations

in C applications, making it possible to deal with such events

similarly to how exceptions are managed in languages like

C++, Java or Ada. Specifically, two main forms of timing con-

straints can be specified: deadline constraints, i.e., a software

component needs to complete within a certain (wall-clock)

time, and WCET constraints, i.e., a software component needs

to exhibit an execution time that is bounded.

Because of the space limitations, in this paper it is then

assumed that the reader is familiar with the concept of

exception, the possibility of it being raised during program

execution either explicitly — i.e., throwing (with a function

usually called throw) — or implicitly, because of some

illegal operation such as non existing file, forbidden access

to memory, etc. Moreover, the application programmer is

generally asked to specify which are the code segments that

may be affected by this phenomenon by enclosing them in a

special block (e.g., try ...).

a) Contribution of This Paper: This paper presents and

experimentally validates a mechanism that allows C program-

mers to take advantage of exception-based management of

time constraints. To the best of the authors’ knowledge, no

similar mechanism has been previously presented for such

programming language, with the same completeness, with no

need to modify the C compiler, and only relying on standard

POSIX features. A preliminary paper on the topic by the

same authors has previously appeared [1], however in this

work the proposed technique is validated experimentally by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/54930444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

showing results gathered modifying a real existing multimedia

applications.

b) Organization of the Paper: After a brief overview of

the related work in Section II, Section III describes some

possible utilization scenarios for the framework. Section IV

identifies the main technical requirements that need to be

supported by the mechanism, and Section V describes the fun-

damentals characteristics of the library implementing such re-

quirements. Section VI illustrates the POSIX-based implemen-

tation realized for the Linux OS. Finally, Section VII reports

some performance evaluation measurements, highlighting the

impact of the Linux kernel configuration on the mechanism

precision, while Section VIII describes how the mplayer1

application has been modified to utilize the framework and the

experimental analysis conducted on it. Conclusions are drawn

in Section IX along with directions for future work.

II. RELATED WORK

The need for having more and more predictable timing

behavior of system components is well-known within the real-

time community, to the point that modern general-purpose

(GP) hardware architectures are deemed as inappropriate for

dealing with applications with critical real-time constraints.

In fact, there exist such approaches as Predictable Timed

Architecture [2], a paradigm for designing hardware systems

that provide a high degree of predictability of the software

behavior. However, such approaches are appropriate for hard

real-time applications, but cannot be applied for predictable

computing in the domain of soft real-time systems running

GP hardware. Yet, the concept of deadline exception has been

actually inspired by the concept of deadline instruction as

presented in [3].

Coming to software approaches relying on the services

of the Operating System (OS) and standard libraries, the

POSIX.1b standard [4] exhibits a set of real-time extensions

that suffice to the enforcement of real-time constraints, as

well as to the development of software components exhibiting

a predictable timing behavior. However, working directly

with these very basic building blocks is definitely non-trivial.

The code for handling timing constraints violations, as well

as other types of error conditions, needs to be intermixed

with regular application code, making the development and

maintenance of the code overly complex. As it will be more

clear later, the proposed framework improves usability of these

building blocks, by enabling the adoption of an exception-

based management of these conditions.

Such an approach is not new, in fact it is used in other

higher-level programming languages, such as Java, with the

Real-Time Specification for Java (RTSJ) [5] extensions. These,

beyond overcoming the traditional issue of the unpredictable

interferences of the Garbage Collector with normal application

code, also include a set of constructs and specialized excep-

tions in order to deal with timing constraints specification, en-

forcement and violation. Also, the Ada 2005 language [6] has

1More information is available at: http://www.mplayerhq.hu/.

a mechanism that is very similar to the one presented in this

paper, namely the Asynchronous Transfer of Control (ATC),

that allows for raising an exception in case of an absolute or

relative deadline miss, and/or of a task WCET violation, that

cause a jump to a recovery code segment. However, the focus

of this paper is on the C language, probably still the most

widely used language for embedded applications with high

performance and scarce resource availability constraints. By

making such a mechanism easily and safely available in C,

the work presented in this paper contributes in enriching the

language with an essential feature useful for the development

of real-time systems.

Focusing on the C language, the RTC approach proposed

by Lee et al. [7] is very similar to the one that is introduced in

this paper. They theorized and implemented a set of extensions

to the C language allowing one to express typical real-time

concurrency constraints at the language level, and deal with

the possible run-time violations of them, and treat these events

as exceptions. However, while RTC introduces new syntactic

constructs into the C language, requiring a non-standard com-

piler, this paper presents a solution based on a set of well-

designed macros that are C compliant and may be portable

across a wide range of Operating Systems. Furthermore, RTC

explicitly forbids nesting of timing constraints, while the

approach presented in this paper does not suffer of such a

limitation.

Finally, the concept of time-scope introduced in [8] is

also similar to the “try within” code block that is presented

in this paper. However, that work is merely theoretic and

language-independent, and it does not present any concrete

implementation of the mechanism.

III. POSSIBLE UTILIZATION SCENARIOS

In order to derive the requirements for the mechanism

presented in this work, two typical use cases have been consid-

ered, as illustrated in the next section: (i) a component based

multimedia player, and (ii) an embedded control scenario

making use of an “anytime algorithm”.

A. Video Player

For (i), consider a multimedia player, designed as a single

thread of execution activated periodically or sporadically. A

possible behavior for the Video Decoder component of such

application is outlined in the UML Activity Diagram of Fig. 1.

From a run-time perspective, both audio samples and video

frames must be decoded and played within precise timing,

depending on the type of the media and on the format of

the stream. It is well-known that, if data are not ready on

time, it may be better to abort the operation on the current

frame and start working on the next frame, since the user

perception would not benefit from the reproduction of late

samples2. Similar considerations can be made for the frame

post-processing part, which might be skipped if the decoder

2Whether or not it is better to abort the decoding as well, or to just skip
the visualization of the late frames, is highly dependant on both the frame
and the encoding algorithm.

Fig. 1. UML Activity diagram for the example video decoder thread.

is lacking time. Therefore, the player described by Fig. 1 may

be implemented as follows:

void FrameDecoder(raw_frame_t f, dec_frame_t *d) {

AudioDecoder(f, d);

VideoDecoder(f, d);

}

void Decoder(stream_t *s) {

raw_frame_t f;

dec_frame_t d;

while (1) {

f = StreamParser(s);

try(T) {

/* Aborted if still inside at time T */

FrameDecoder(f, &d);

ImagePostProcessing(&d);

}

/* If aborted, re-use last decoded frame */

Visualization(d);

wait_for_next_frame(s);

}

}

On the other hand, from a designer perspective, it would be

highly desirable to characterize each component with a WCET

(or with some other appropriate statistic of execution time

distribution). Also, it might be desirable that Video Decoder

actually respects such WCET, even in cases of overload —

e.g., when a frame is particularly difficult to decode. Due to the

in-place timing requirements, it would be useful to characterize

the Frame Decoder invocations that happen inside the Video

Decoder with the WCET to be expected at run-time as well,

since the sum of such value, plus the WCETs of the Stream

Parser, Filtering and Visualization components, turns out to be

WCET of the Video Decoder itself. Moreover, video decoding

architectures are highly modular, and make heavy use of third-

party video and audio decoding plug-ins, e.g., depending on

the stream format. Thus, in order to allow for an appropriate

use of Frame Decoder within real-time applications, it would

be highly desirable for libraries developers to have some

mechanism for specifying a WCET estimation such that either:

(1) the decoding operation terminates within the WCET limit,

or (2) it is aborted.

B. Anytime Algorithms

For what concerns anytime algorithms, they have been

theorized in real-time systems from long time, for enhancing

flexibility [9], [10]. Thus, whenever it is possible, the com-

putation done at each activation is split in a mandatory part,

that needs to be completed, and one or more optional parts,

that may be executed if there is enough time. They are also

utilized in embedded control, as in Quagli et al. [11], where

such paradigm is applied for controlling the stability of an

helicopter simulator.

If an accurate enough estimation of the duration of the

mandatory and all the optional computation phases is avail-

able, and if a call rmng_computation_time(), capable

of reading the time left for the current instance, is provided,

then an anytime algorithm may be coded just checking,

before entering each optional computation, if there will be

enough time to complete it. However, if the optional parts

exhibit fluctuations in their actual execution time, relying on

a conservative estimate for Di may result in dropping them

more often than strictly required. Thus, an alternative solution

is to always attempt to execute the entire computation, having

the optional parts asynchronously interrupted by an exception

if they are lasting longer than allowed, as it is shown below:

int C; /* Computation time for the whole instance */

int D1, D2; /* Computation time of optional parts */

while (1) {

set_computation_time(C);

start_computation();

res = mandatory_computation();

try(C) { /* Aborted if execution exceeds C */

res = optional_computation_1(res);

res = optional_computation_2(res);

} catch {

end_computation(res);

}

wait_next_period();

}

Notice that in both cases the overall results comes from the

“merge” of the intermediate results of the various computation

phase, performed by each computation phase itself (this is

why the result of the i-th phase is passed as argument to the

(i + 1)-th one), and actually utilized only at the time of the

end_computation() call. In fact, should any optional part

be aborted by an asynchronous exception, the result of the

computation should either completely include the last optional

computation results or completely ignore them.

C. Some Shortcomings

One of the main issue that comes to mind while envisioning

such approach is that, in some cases, it may not be possible

to asynchronously jump from an arbitrary position in the

application code, to the exception handling logic. This implies

the application should be designed so as to tolerate this kind

of operation abortion, avoid possible memory leaks, and to

properly cleanup any resources that might be associated with

the aborting code segment.

Generally speaking, there always may be some special

code segments the asynchronous interruption of which should

be avoided. For this reason, it would be useful to have a

mechanism to temporarily stop the notification of an exception

and the jump to the recovery logic for a group of statements.

Obviously, the notification should reach the application any-

way, and remain pending till the end of the “protected” code

section. This way, the proposed approach can be used for

detecting violation of a timing constraint even in these cases,

and, moreover, the recovery logic can, in such cases, rely on

the application data to be consistent, since the computation

was not interrupted asynchronously. Obviously, should the

application need to compensate for the accumulated delay,

then it would be desirable to have a means provided by the

framework that allows to retrieve how much such delay is.

IV. REQUIREMENTS DEFINITION

From the above considerations, the following set of high-

level requirements may be identified for the mechanism envi-

sioned in this paper.

• Mandatory requirements:

Requirement 1: it should be possible to associate a

deadline constraint to a code segment, either specifying

relative or absolute time values;

Requirement 2: it should be possible to associate a

WCET constraint to a code segment;

Requirement 3: when a timing constraint is violated, it

should be possible to activate appropriate recovery logic

that allows for a gracefully abort of the monitored code

segment; also, it should be possible for the recovery code

to either be associated to a generic timing constraint

violation, or more specifically to a particular type of

violation (deadline or WCET);

Requirement 4: it should be possible to use the mecha-

nism at the same time in multiple applications, as well

as in multiple threads of the same application;

Requirement 5: nesting of timing constraints should be

allowed, at least up to a certain (configurable) nesting

level;

Requirement 6: if there are two (or more) nested timing

constraints, a violation should be propagated in such a

way that it is caught by the recovery logic associated

with the code segment that caused it to occur;

Requirement 7: it should be possible to cancel a timing

constraint violation enforcement if the program flow runs

out of the boundary of the associated code segment, e.g.,

when it ends normally or when another kind of exception

requests abort of the code segment;

Requirement 8: the latency between the occurrence of

the timing constraint violation and the activation of

the application recovery code should be known to the

designer/developer, and it should be possibly negligible

with respect to the task execution time;

Requirement 9: the mechanism should allow the pro-

grammer to specify some “protected” section of a code

segment that will never be interrupted by a timing con-

straint violation notification. Thus, if that happens, the

execution of recovery code would be delayed while inside

such a section.

• Optional requirements:

Requirement 10: the mechanism could provide a method

for monitoring the time remaining before the specified

constraint violation to occur;

Requirement 11: the mechanism could provide a method

for checking if a constraint violation has been notified

with the correct timing and, if not, how much is the

difference between the expected and the actual (i.e., the

latency) notification of such violation;

Requirement 12: the mechanism could provide support

for gathering benchmarking data of the code segments,

instead of enforcing their timing-constraints. This opera-

tional mode could be enabled at compile time, and used

for tuning the actual parameters used as timing constraints

for the various code segments;

Requirement 13: the mechanism could be portable to as

many Operating Systems as possible.

V. PROPOSED APPROACH

Here a mechanism complying with the requirements identi-

fied in Sec. IV is presented, with a focus on the programming

paradigm and syntax.

A. Exceptions for the C language

The first step is to have the possibility of dealing with

exceptions in a C program. This has been made possible

throughout a generic framework distributed as a part of the

open-source project Open Macro Library (OML) 3. Providing

details about both OML and OML support for exceptions is

impossible here for space reasons; it is enough to say that

it supports hierarchical arrangement of exceptions, that the

user can define new exceptions with typical super-type/subtype

relationships between them and that it is both process and

thread safe. Some more details are also available in [1].

B. Timing Constraints Based Exceptions

OML timing constraints related exceptions can be specified

and handled by means of the following constructs (the oml_

prefix is omitted here to improve readability):

• try_within_abs (try_within_rel): starts a try

block with an absolute (relative) deadline constraint;

• try_within_wcet: starts try block with a maximum

allowed execution time;

• try_within_disable and try_within_enable:

suspend and re-enable, respectively, the notification of a

timing exception. Notifications that reach the application

after a disable are not lost, rather they are deferred

until the next enable;

• ex_timing_constraint_violation: is the basic

type for timing constraint violation exceptions; catching

this will actually intercept any kind of timing constraint

violation, without distinguishing between them;

3More information at: http://oml.sourceforge.net

• ex_deadline_violation: is what occurs when a

try_within_rel (or try_within_abs) segment

does not terminate within the specified time;

• ex_wcet_violation: is what occurs when a

try_within_wcet segment executes more than the

specified time.

Below it is shown, again, how the decoder imagined in

Fig. 1 can be implemented, this time using OML exceptions

support. It is supposed that an estimation of the decoding time

is known to be 12ms, and that the presentation time (pts) of

the next frame extracted from the stream can be used as the

deadline for the decoding and the visualization of such frame.

#include <oml_exceptions.h>

int FrameDecoder(raw_frame_t f, dec_frame_t *d) {

int rv = 0;

oml_try_within_wcet(12000) {

AudioDecoder(f, d);

VideoDecoder(f, d);

}

oml_handle

when (oml_ex_wcet_violation) {

rv = -1;

}

oml_end;

return rv;

}

void Decoder(stream_t *s) {

raw_frame_t f;

dec_frame_t d, d_old;

while(1) {

f = StreamParser(s);

oml_try_within_rel(f->next_frame_pts) {

if (FrameDecoder(f, &d) == 0)

ImagePostProcessing(&d);

}

oml_handle

when (oml_ex_deadline_violation) {

d = d_old;

}

oml_end;

Visualization(d);

d_old = d;

wait_for_next_frame(s);

}

}

As a final remark, the example code below shows a typ-

ical usage of the disable/enable mechanism to protect code

segments that must not be interrupted asynchronously. Both

the memory allocation for the new object and its construction

(which in turn may involve further allocation of memory

segments, and/or other OS resources) are made atomic with

respect to deadline exceptions. Also, destruction of the object

occurs in the finally statement, what ensures it always hap-

pens, even if an exception is raised within the application body,

which is not caught by the oml_when clause immediately

following.

...

struct my_object *p_obj = NULL;

oml_try_within_abs(next_dl) {

/* safely interruptible computations */

...

oml_try_within_disable();

p_obj = malloc(sizeof(struct my_object));

if (p_obj == NULL)

throw(ENoMemoryException);

my_object_init(p_obj); /* Constructor */

oml_try_within_enable();

/* safely interruptible computations */

...

} oml_finally {

/* Free allocated resources */

if (p_obj != NULL) {

my_object_cleanup(p_obj); / * Destructor */

free(p_obj);

p_obj = NULL;

}

}

oml_handle

oml_when (oml_ex_deadline_exception) {

/* Recovery logic */

}

oml_end;

OML Exceptions complies with all of the requirements

introduced in Sec. IV, with the few notes outlined in the

following sections.

VI. IMPLEMENTATION

This section provides an overview of how the proposed

mechanism has been implemented, always bearing the outlined

requirements in mind.

A. Time-Scoped Segment Implementation

OML Exceptions has been realized by means of the POSIX

sigsetjmp() and siglongjmp()4 functions. The former

saves the execution context such that the latter is able to restore

it, and continue program execution from that point.

For the try_within_abs and try_within_rel con-

structs, the time reference is the POSIX CLOCK_MONOTONIC

clock. For the try_within_wcet macro, the time reference

is the POSIX CLOCK_THREAD_CPUTIME_ID clock. In fact,

while CLOCK_MONOTONIC provides an absolute time refer-

ence, useful for deadline constraints, CPUTIME_IDs clocks

measure the actual execution time of a specific thread, which

is exactly what is needed for WCET constraints. Events are

posted using interval timers (POSIX itimer).

Notification of asynchronous constraint violations is done

by delivering to the faulting thread a real-time signal i.e., a

signal that is queued and guaranteed not to be lost. The OML

Exceptions signal handler performs a siglongjmp to the ap-

propriate context, jumping to the handle...handle_end

block for the check of the exception type. This implementation

is portable to any Operating System providing support for

POSIX real-time extensions.

B. Deadline and WCET Signal Handling

Every time a constraint is violated, the signal has to be sent

to the correct thread (Requirement 4). However, signal deliv-

ery to a specific thread is not covered by POSIX, according to

which, signals can only be directed to entire processes. What

the standard suggests is to have a special thread sensible to

4http://www.opengroup.org/onlinepubs/007908799/xsh/siglongjmp.html

the signal(s), with all the others ignoring it (them), and to

use it to perform the intra-process part of the notification.

However, such an approach would imply that every time a

timing constraint is violated, the CPU incurs additional context

switches, not to mention the additional overheads of managing

(creating and destroying) the “signal router” thread.

On the other hand, Linux supports delivery of signals to

specific threads thanks to an extension of the POSIX semantics

built into the kernel. Therefore, on Linux platforms, a much

more efficient implementation is possible by using this feature.

A POSIX compliant version of the library is available as

well, and it is possible to choose which one to use at library

compile-time.

C. Non-Interruptible Code Sections

The two macros, oml_within_disable and

oml_within_enable make it possible to fulfil

Requirement 9 about atomic code segments. They simply

disable and enable (respectively) delivery of the time

constraint violation signals. If a signal occurs in the middle

of such a protected code region, then it is enqueued by the

OS, and notified immediately at the end of the section.

D. Gathering Timing Information

Optional Requirements 10 and 11 are fulfilled by

the availability of the try_within_rmng_time and

try_within_expr_delay macro. They are implemented

by querying the timer that is being utilized for the enforcing

of the try_within block for the amount of time remaining

or passed to/from the expiration instant, respectively.

E. Benchmarking Operational Mode

Coping with Requirement 12 happens by means of a

compile-time switch that, when enabled, gathers information

on the duration of all the try...handle code segments.

This allows developers to easily obtain statistics about execu-

tion times of the time-scoped sections.

F. Precision Limitations and Latency Issues

With respect to the maximum precision with which timing

constraints are checked and enforced, this is limited by the

time-keeping precision of the underlying OS.

For example, on Linux, from version 2.6.21, the kernel has

been enriched with high resolution timers. Thanks to them,

timers are no longer coupled with the periodic system tick,

and thus they can achieve as high resolution as permitted

by the hardware platform. Nowadays, large number of micro-

processors, either designed for general purpose or embedded

systems, are provided with precise timer hardware that the OS

can exploit, e.g., the TSC cycle counter register of the CPU5

or the Intel HPET [12]. Therefore, since this is how timers

based on CLOCK_MONOTONIC are implemented, a Linux task

requesting a deadline exception to occur at a certain instant,

could expect to be notified about such event quite close to that

point in time.

5http://www.intel.com/Assets/PDF/manual/253668.pdf

On the other hand, per-thread CPU-time clocks are still

based on the standard process accounting, which basically

means their resolution depends on the OS periodic tick fre-

quency, which typically is 100, 250 or 1000 Hz. Thus, the

notification latency of a WCET violation will be dependant

on how the kernel has been configured, with 1000 Hz tick

frequency being probably the best choice.

VII. PERFORMANCE EVALUATION

The performance metric that it is interesting to evaluate, as

identified by Requirement 8, is the notification latency, i.e.,

the time interval between the actual constraint violation and

the instant the proper thread in the application is notified.

In fact — even if it is not strictly necessary to achieve an

exact worst case case upper bound to such value, since the

framework is mainly aimed at soft real-time systems — the

developer must know that the latency is small, if compared

to the execution times and deadlines of its code segments,

otherwise the whole mechanism would become useless.

In order to perform this measurements, a standard distribu-

tion of the GNU/Linux OS, with kernel version 2.6.31, has

been used, running on a commonly available desktop PC,

with 3.0 GHz Intel CPU and 2 GB of RAM. The Linux

kernel configuration was hand-tailored so to ensure it included

high-resolution timers and the support for high precision

hardware timing sources. The simple test application used for

latency evaluation was composed by only one thread, and it

was the only application running in the system (obviously,

together with the minimum possible set of system daemons

and maintenance programs), such that the measurements are

not affected by “external” sources of latencies, e.g., determined

by the scheduler, just to cite the most relevant one6. The

WCET, relative deadline and period of the test application

were equal to (C,D, T) = (50, 50, 100) msec, and 1000
consecutive instances of it have been run. All the experiments

have been performed three times, with the OS periodic tick

frequency set to 100, 250 and 1000 Hz, respectively.

In the first experiment, the latency of a deadline violation

is measured 1000 times. This is done by forcing the thread

to execute more than 50 msec inside a try_within_rel

block, and then subtracting the ideal deadline violation in-

stance — i · T + D — from the actual time instant Ḋ at

which the deadline miss signal handler is invoked. Results are

shown in Table I and Fig. 2. They clearly demonstrate that the

notification latency of a deadline constraint is both (i) small

and (ii) independent from the tick frequency, thanks to the

high resolution timers. This can be easily deducted by the fact

that values in Table I are comparable, and the three CDF in

Fig. 2 are completely superimposed. The measured latency

values are in the order of the µs, what constitutes a more than

acceptable performance.

In the second experiment, the thread again executes more

than 50 msec, this time from inside a try_within_wcet

6Notice that, if coping with that specific source of latency is necessary,
proper actions have to be undertaken, such as adopting a real-time scheduler
and application design strategy.

max mean std. dev.

HZ=100 28.61 1.724 1.189

HZ=250 17.202 1.595 0.711

HZ=1000 33.394 1.603 1.023

TABLE I
DEADLINE LATENCY IN µs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5000 10000 15000 20000 25000 30000 35000

P
ro

b
{D

e
a

d
lin

e
 L

a
te

n
c
y
 <

=
 t

}

t

HZ=100
HZ=250

HZ=1000

Fig. 2. Cumulative Distribution Function of the deadline violation latencies.
Time on x-axis is in ns.

block, so to cause a WCET violation and measure its latency

as well. Results are available in Table II and in Fig. 3. This

time, what appears quite clear is that the precision of a WCET

violation is tightly coupled with the system tick frequency

HZ. Table II also shows how the mean WCET latency is close

to HZ

2
, as obviously expected. Therefore, for the mechanism

to be useful in dealing with WCET violations, the value of

HZ = 1000 is strongly recommended.

Minimum achieved latency values are not reported since

they are highly dependant on how close to a system tick

(or, in general, an accounting event) a timing violation event

occurs. Thus, since they depend on the actual alignment of the

task and the OS events, they turn out to be unrelated to the

system configuration and provide few information about the

performance of the mechanism this section wanted to examine.

max mean std. dev.

HZ=100 18727.747 5748.948 4474.772

HZ=250 4423.164 1233.955 844.593

HZ=1000 1999.752 522.229 390.837

TABLE II
WCET LATENCY IN µs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

P
ro

b
{W

C
E

T
 L

a
te

n
c
y
 <

=
 t

}

t

HZ=100
HZ=250

HZ=1000

Fig. 3. Cumulative Distribution Function of the WCET violation latencies.
Time on x-axis in ns

VIII. A CASE STUDY: THE mplayer

According to the project website7 “MPlayer is a movie

player which runs on many systems. It plays most MPEG/VOB,

AVI, Ogg/OGM, VIVO, ASF/WMA/WMV, QT/MOV/MP4, Real-

Media, Matroska, NUT, NuppelVideo, FLI, YUV4MPEG,

FILM, RoQ, PVA files, supported by many native, XAnim, and

Win32 DLL codecs. You can watch VideoCD, SVCD, DVD,

3ivx, DivX 3/4/5, WMV and even H.264 movies”. It is free

and open-source software and the starting of its development

dates back to 2000. Born to run only on Linux it is now a

cross-platform application, capable of running also on almost

all other Unix-like systems, on Microsoft Windows, on Mac

OS and on many other (minor) operating systems.

In order to provide the user with the best possible playback

experience, mplayer utilizes the Audio/Video delay (A/V

delay) as the prominent metric of its own performance. This

means that, if the time passing between the playback of an

audio sample and the showing on the screen of the frame

associated with such audio data starts growing too large,

something must be done to avoid loosing the synchronization

among audio and video, possibly before this start being noticed

by the user. The action that is undertaken in such cases is to

drop one or more video frames. Dropping a frame means the

decoder is asked to avoid processing it, unless it is a key or a

reference frame (missing reference frame would cause serious

artifacts in the video playback that can not be tolerated). Even

if a frame has been decoded but it is not visualized, still for

timing reasons, it is said to be dropped as well. For example,

when dealing with an MPEG stream, all the frames can be

dropped — in the sense that they may not be visualized on

the screen — but skipping the decode is only allowed for B

type frames8.

The mplayer modified to use OML Exceptions, referred

to as mplayer-dlex in the remainder of the paper, can

be downloaded from http://gitorious.org/mplayer-dlexceptions,

either in the form of full source code or as a set of patches.

A. Frame Dropping in mplayer

In its original configuration mplayer uses, in order of de-

ciding if a frame should be dropped, the following information:

• an estimation of the current A/V delay;

• the number of frames that are being dropped in the current

dropping burst (i.e., how much frames have been dropped

continuously, one right after the other; it is reset to zero

as soon as one frame is not dropped);

• the timestamp of the next frame, which depends on the

stream format.

These are put together into an heuristic. The objectives are:

• keeping the A/V delay under control, ideally below

100ms;

• dropping as few frames as possible, with special attention

to avoiding bursts of dropped frames.

7More information at: http://www.mplayerhq.hu/.
8More information is available at: http://www.mpeg.org/MPEG/video/.

This approach has repeatedly proven to be effective, during

the many years of development of the mplayer, and leads

to a remarkable performance. However, at least two main

drawbacks can be recognized:

1) it is not immediate to understand how the heuristic

works, even looking carefully at the code and trying

to track from where each term comes from;

2) the drop/no-drop decision is taken in advance, i.e.,

without being sure about the fact that the actual decoding

of that frame will negatively affect the A/V delay or not.

Therefore, because of the latter point, there might be situations

in which frames that it would have been possible to decode in

time are dropped or, on the other hand, in which the heuristic

decides to decode a frame that pushes the A/V delay outside

of the desired window because it reveals to be unexpectedly

complex.

B. Frame Dropping in mplayer-dlex

Both audio and video data in a typical multimedia stream

have some temporal information attached to them, the so-

called presentation timestamp (a pts and v pts). Therefore,

in order to introduce a deadline constraint for the decoding of

a video frame, it seems reasonable to ask that frame i must be

decoded by its ptsi. However, since mplayer is interested

in controlling the A/V delay, if t is the current time when

the decoding deadline di for the i-th frame is set, di may be

defined as:

di = (v ptsi − t) + (a ptsi − t)

In order to avoid dropping of too many frames, it is useful to

provider the decoder with some extra time, which in this work

has been set to 50ms.

Therefore, the exceptions mechanism described in the pre-

vious sections has been leveraged to modify the A/V control

loop inside mplayer as follows. First, the frame decoding

function has been enclosed into a try_within_rel block.

Second, the decoder itself has been configured so as to never

drop a frame. In fact, frame dropping is automatically enforced

by the deadline exception as soon as the imposed deadline is

reached. However, it must also be guaranteed that, even if the

deadline is being violated, a reference frame (i.e., e non B

frame in MPEG and in H.264 too) is always decoded. This

is possible in the OML exceptions framework thanks to the

atomic code sections. In fact, it is sufficient to disable the

notification of timing constraints violations until the decoding

library retrieves enough information to decide which type

of frame it is manipulating. At this point, if the frame is

droppable, the notification mechanism is re-enabled, and if

the deadline expired during the atomicity period, the violation

is immediately notified.

Therefore, here it is how the most important code segments

of mplayer-dlex look like:

static double update_video() {

...

t = GetTimer();

audio_pts = written_audio_pts(mpctx->sh_audio) -

mpctx->delay + audio_delay;

video_pts = sh_video->pts : mpctx->d_video->pts;

dl = (video_pts - dt) + (audio_pts - dt)

+ VA_THRESHOLD;

dl_ts = usec_to_timespec(dl * 1E6);

oml_try_within_rel(dl_ts) {

oml_try_within_disable();

decoded_frame = decode_video(sh_video,

sh_video->pts);

...

}

oml_handle

oml_when(oml_ex_deadline_violation) {

decoded_frame = NULL;

++drop_frame_cnt;

}

oml_end;

++total_frame_cnt;

...

}

...

/* Then, in the H.264 decoding function */

if (hx->slice_type_nos==FF_B_TYPE)

oml_try_within_enable();

...

}

Notice how the code above looks similar to the one already

shown as an example in Sec. III.

C. Experimental Evaluation

An experimental evaluation of the performance of

mplayer and mplayer-dlex has been done by playing

100 times a video with a 33s duration, with different configu-

ration with respect to frame dropping policy, and in different

system load conditions. This resulted in more than 55 hours of

playback, the most notable and representative results of which

are summarized in this section.

The platform utilized is the same already described in

Sec. VII, while the results reported here have been obtained

playing the “Big Buck Bunny” movie trailer9 in H.264 format

at 1920x1080 resolution. The total number of frame of such

video is 812.

In the experiments, the number of dropped frames, the max-

imum and average A/V delay, and the maximum inter-frame

time (IFT) exhibited by both mplayer and mplayer-dlex

have been measured, for each of the 100 runs and in different

system load conditions. What would be desirable is the number

of dropped frames and the A/V delay to be as small as possible

— ideally 0, and the IFT, given the video is 25fps, to stay

around 40ms for a regular playback.

In the first set of graphs in Fig. 4, for each one of the 100
run (i.e., each point represents one of them), the total number

of dropped frames, the maximum IFT, and the maximum and

average A/V delay are reported. In all the plots, the two

curves are quite similar, if not super-imposed, which means the

behavior of the original and the modified version matches, and

thus that introducing the exception-based handling of frame

dropping does not entail misbehavior of mplayer-dlex as

compared to mplayer in this scenario.

9http://www.bigbuckbunny.org

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80 90 100

M
A

X
.

#
 o

f
D

ro
p

p
ed

 F
ra

m
es

Run

(a) dropped frames

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250 300

M
A

X
.

In
te

rF
ra

m
e

T
im

e

Run

ORIG No load
DLEX No load

(b) Max. of the Inter Frame Time

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0 10 20 30 40 50 60 70 80 90 100

A
V

G
.

A
/V

 D
el

ay

Run

(c) Avg. of the A/V delay

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80 90 100

M
A

X
.

A
/V

 D
el

ay

Run

(d) Max. of the A/V delay

Fig. 4. Total number of dropped frames; maximum inter-frame time; average and maximum of the A/V delay. Each for all the 100 runs of mplayer, ORIG
curve, and mplayer-dlex, DLEX curve. No system load present except the video player.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

M
A

X
.

#
 o

f
D

ro
p

p
ed

 F
ra

m
es

Run

(a) dropped Frames

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

M
A

X
.

In
te

rF
ra

m
e

T
im

e

Run

ORIG Light CPU load
DLEX Light CPU load
ORIG Heavy CPU load
DLEX Heavy CPU load

(b) Max. of the Inter Frame Time

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 10 20 30 40 50 60 70 80 90 100

A
V

G
.

A
/V

 D
el

ay

Run

(c) avg. of the A/V delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

M
A

X
.

A
/V

 D
el

ay

Run

(d) max. of the A/V delay

Fig. 5. Total number of dropped frames; maximum inter-frame time; average and maximum of the A/V delay. Each for all the 100 runs of mplayer, ORIG
curve, and mplayer-dlex, DLEX curve. Light or heavy system load were present.

The second set of results follows the same scheme, with the

following differences:

• “ORIG and DLEX Light CPU Load” refers to runs

of mplayer and mplayer-dlex disturbed by the

stress benchmarking program10 running 1 CPU and

memory intensive thread plus 1 HDD massive read-

er/writer thread;

• “ORIG and DLEX Heavy CPU Load” refers to runs of

mplayer and mplayer-dlex disturbed by, this time,

2 CPU and memory intensive threads and still 1 HDD

10http://weather.ou.edu/∼apw/projects/stress/

massive reader/writer thread.

2 applications that are always trying to execute on the CPU

and continuously malloc()-ing and free()-ing memory

are considered — together with the movie player — a heavy

load since the machine only has a single processor. Therefore,

given the best effort, fairness oriented, scheduling policy under

which all these tasks are scheduled, and with 2 such CPU

hogs and the resulting stress on memory, the player task

can only access quite a small share of CPU time. This said,

Fig. 5 shows, again, the total number of dropped frames, the

maximum IFT, the average and the maximum A/V delay of

each run. What emerges from the plot in Fig. 5a is that using

the original heuristic or the exception based approach does

not make much difference in the number of dropped frames

for the various runs. In fact, there is no clear domination of

one curve on the other spanning all the runs, in neither of

the two scenarios, and the number of frames dropped by the

two versions is always comparable. On the contrary, Fig. 5b

shows that, if the maximum IFT observed for each run is

considered, DLEX curves exhibits fewer and smaller peaks,

under both light and heavy system load. This means that

mplayer-dlex is able to achieve more regular behavior

than original mplayer. Finally, looking at Fig 5c and 5d, it

appears quite clear that mplayer-dlex is often performing

better, especially in the lightly loaded case, where the DLEX

curve is practically always below the ORIG curve, in both

graphs.

Therefore, it is possible to conclude that mplayer-dlex

behaves better than mplayer, since it is capable of a more

regular playback with smaller A/V delay while dropping

almost the same number of frames. Thus, it can be said

that the deadline-exception based frame dropping — that this

case study attempted — succeeded in capturing the specific

timing behavior of the video player, and it helps in dropping

the frames that would otherwise be detrimental for the syn-

chronous playback of audio and video, as well as in “saving”

the others.

IX. CONCLUSIONS AND FUTURE WORKS

In this paper, a mechanism for the management of timing

constraints violations according to the well-known exception-

based paradigm has been envisioned. A set of basic require-

ments have been identified, inspired by real-world multimedia

and control scenarios, and a framework that fulfils all of them

has been presented, along with its implementation as a part of

an open-source library for C applications. This constitutes a

valuable support for developers of embedded soft real-time and

control applications, since it allows them to concentrate on the

main application flow of control which will be executed most

of the times. The code that deals with anomalies, even in the

timing behavior of the application, will be then provided in the

form of an exception handler, with the framework responsible

for jumping and executing it whenever it is the case.

An implementation of the proposed mechanism for POSIX

compliant Operating Systems has been presented. Also, a

performance evaluation has been carried out under Linux,

where the latency involved in the activation of the management

code has also been measured. Moreover, a real multimedia

player (the mplayer) for Linux has been instrumented to use

the framework. The gathered experimental results demonstrate

that the proposed mechanism allows for better adherence to

the intrinsic timing of the application, bringing an increase in

the performance in the form of a reduced audio-video delay

with similar number of dropped frames, which is something

tightly related to the actual user experience while watching a

video.

Concerning possible directions for future work, a kernel-

level mechanism is being investigated for Linux, that will lead

to a further reduction of the notification latency. Furthermore, a

more ambitious macro-based framework for C is under design

that will enrich OML with generic constructs for threads cre-

ation, management, synchronization etc. Finally, investigation

is in progress on how to integrate the proposed framework

with the many existing real-time schedulers available for the

Linux kernel, such as SCHED DEADLINE [13], the hybrid

EDF/FP scheduler presented in [14], the POSIX compliant

Sporadic Server [15] or the Adaptive QoS Architecture for

Linux [16].

REFERENCES

[1] T. Cucinotta, D. Faggioli, and A. Evangelista, “Exception-based man-
agement of timing constraints violations for soft real-time applications,”
in Proceedings of the 5

th International Workshop on Operating Sys-

tems Platforms for Embedded Real-Time Applications (OSPERT 2009),
Dublin, Ireland, June 2009.

[2] S. A. Edwards and E. A. Lee, “The case for the precision timed (pret)
machine,” in Proceedings of the 44

th annual conference on Design

automation (DAC’07). New York, NY, USA: ACM, 2007, pp. 264–
265.

[3] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A.
Lee, “Predictable programming on a precision timed architecture,” in
Proceedings of the International Conference on Compilers, Architecture,

Synthesis for Embedded Systems (CASES), Atlanta, Georgia, United
States, October 2008, pp. 137–146.

[4] IEEE, Information Technology -Portable Operating System Interface

(POSIX)- Part 1: System Application Program Interface (API) Amend-

ment: Additional Realtime Extensions., 2004.
[5] G. Bollella and J. Gosling, “The real-time specification for java,”

Computer, vol. 33, no. 6, pp. 47–54, 2000.
[6] A. Burns and A. Wellings, Concurrent and Real-Time Programming in

Ada 2005. Cambridge University Press, 2007.
[7] I. Lee, S. Davidson, and V. Wolfe, “RTC: language support for

real-time concurrency,” in Proceedings of the IEEE Real-Time Systems

Symposium (RTSS 91). San Antonio, TX, USA: IEEE, December
1991. [Online]. Available: http://repository.upenn.edu/cis reports/368

[8] I. Lee and V. Gehlot, “Language Constructs for Distributed Real-Time
Programming ,” University of Pennsylvania, Tech. Rep., May 1985.

[9] J. W. S. Liu, K.-J. Lin, R. Bettati, D. Hull, and A. Yu, Foundations

of Dependable Computing, ser. The International Series in Engineering
and Computer Science. Springer US, November 1994, vol. 284, ch.
Use of Imprecise Computation to Enhance Dependability of Real-Time
Systems, pp. 157–182.

[10] D. Hull, W. chun Feng, and J. W. Liu, “Operating system support
for imprecise computation,” in In Flexible Computation in Intelligent

Systems: Results, Issues, and Opportunities, 1996, pp. 96–99.
[11] A. Quagli, D. Fontanelli, L. Greco, L. Palopoli, and A. Bicchi, “De-

signing real-time embedded controllers using the anytime computing
paradigm,” sept. 2009, pp. 1 –8.

[12] Intel, IA-PC HPET (High Precision Event Timers) Specification

(revision 1.0a), October 2004. [Online]. Available: http://www.intel.
com/hardwaredesign/hpetspec 1.pdf

[13] D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino, “An EDF
scheduling class for the Linux kernel,” in Proceedings of the Eleventh

Real-Time Linux Workshop, Dresden, Germany, September 2009.
[14] F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari, “Hierarchical

multiprocessor CPU reservations for the linux kernel,” in Proceedings

of the 5
th International Workshop on Operating Systems Platforms for

Embedded Real-Time Applications (OSPERT 2009), Dublin, Ireland,
June 2009.

[15] D. Faggioli, G. Lipari, and T. Cucinotta, “An efficient implementation of
the bandwidth inheritance protocol for handling hard and soft real-time
applications in the linux kernel,” in Proceedings of the 4th International

Workshop on Operating Systems Platforms for Embedded Real-Time

Applications (OSPERT 2008), Prague, Czech Republic, July 2008.
[16] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari, “AQuoSA — adap-

tive quality of service architecture,” Software – Practice and Experience,
vol. 39, no. 1, pp. 1–31, 2009.

