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Exact Analytical Evaluation of Second-Order
PMD Impact on the Outage Probability

for a Compensated System
Enrico Forestieri, Fellow, IEEE, and Giancarlo Prati, Member, IEEE

Abstract—An exact analytical method for evaluating the outage
probability due to second-order polarization mode dispersion in a
system with first-order compensation is presented. In an uncom-
pensated system the outage is mainly due to the mean differen-
tial group delay, whereas higher order effects have low impact.
It is shown that in a compensated system all orders contribute to
the outage probability, whereas accounting for exact second-order
only gives a slight overestimate. Approximate second-order models
leaving residual higher order effects may lead to very different
outage probabilities.

Index Terms—Communication system performance, optical
equalizers, optical fiber communication, optical fiber polarization,
polarization mode dispersion (PMD).

I. INTRODUCTION

POLARIZATION-MODE dispersion (PMD) causes pulse
distortion and broadening and is an important source of

limitation for the performance of high bit rate optical systems
because of the arising intersymbol interference (ISI). In the first-
order approximation, its effect is simply a differential group
delay (DGD) of the pulse components travelling on the two
orthogonal polarization states known as principal states (PSPs)
[1]. The DGD is equal to the modulus of the PMD vector

, which is assumed to be independent of frequency over the
signal bandwidth.

When has a nonnegligible dependence on frequency, higher
order distortions take place. We point out that we use the Fos-
chini and Poole interpretation of higher order PMD [2]. Even if
alternative definitions exist [3], [4], a complete statistical char-
acterization is currently available only for the dispersion vector
and its derivative, so outage probabilities can be analytically
evaluated only through their joint statistics, making Foschini
and Poole’s the natural interpretation of higher order PMD. In
this second-order approximation, the dispersion vector is taken
as linearly varying with frequency
being the derivative of with respect to evaluated at the car-
rier angular frequency . This frequency dependence is known
to produce polarization dependent chromatic dispersion (PCD),
through the component of parallel to , and signal depo-
larization, through the component of orthogonal to .
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To the authors’ knowledge, there is only one work [5] on the
theoretical outage probability evaluation in the presence of first-
and second-order PMD, but using approximate second-order
statistics, and a Gaussian assumption on the noise after pho-
todetection. An analytical evaluation of the impact of first- and
second-order PMD on a preamplified direct detection system
using exact second-order statistics, evaluated as in [6], is pre-
sented here, confirming that higher order PMD impairments are
masked in an uncompensated system [7], [8]. Indeed, in this
case, the various analytical second-order approximations for the
fiber Jones matrix taken into account [9]–[11] turn out to be
almost equivalent in terms of resulting outage probability for
the uncompensated system, but produce significant differences
when a first order compensator is introduced in the system. As
also observed in [3], it is rumored that when second-order PMD
becomes important, then all other higher order terms become
important too. The fiber Jones matrix model in [11] is an exact
second-order model in the sense that second and higher order
derivatives of its PMD vector vanish. By comparing the results
from this model with those from simulations accounting for all
PMD orders, we can investigate this aspect and also state the va-
lidity of the other second-order models when averaging is done
through the joint statistics of the first- and second-order PMD
vectors.

The paper is organized as follows. In Section II the theory
of first- and second-order PMD is briefly reviewed and analyt-
ical formulas for the outage probability evaluation are presented
for both the uncompensated and compensated cases. Section III
deals with uncompensated systems, giving an accurate closed
form approximation for the outage probability in the first-order
case and showing that higher orders have no impact. Finally,
in Section IV the case of exact first-order compensation is an-
alyzed and the impact of second and residual higher PMD or-
ders established by evaluating the outage probability and com-
paring the results when using various approximations of the
second-order fiber Jones matrix.

II. THEORETICAL MODEL

The uncompensated system model and its lowpass equiva-
lent are shown in Fig. 1(a) and (b), respectively, where double
arrows denote optical signals. In Fig. 1(b) ,
where is the input polarization state Jones vector and

is the lowpass equivalent of the transmitted bandpass
signal is the fiber Jones
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Fig. 1. (a) System model. (b) Corresponding lowpass equivalent.

matrix1 ; , where and
are independent complex additive white Gaussian noises
(AWGN), accounting for the amplified spontaneous emission
(ASE) noise, each with twosided power spectral density

being the sponta-
neous emission parameter, being the fiber amplifier gain
and the photon energy; and are the (lowpass
equivalent) transfer functions of the optical and postdetection
filters, respectively. It is assumed that the preamplifier has
a high-gain such that the ASE noise dominates over the
thermal and shot noises.

Without loss of generality, we assume that the carrier polar-
ization state remains unchanged, so that the fiber Jones matrix
is taken as , where is one of the
second-order approximations in [9]–[11], all referred to a refer-
ence frame in which, at the carrier frequency, their PMD vector
is aligned with the axis in the Stokes space and such that

. The matrix is then a generalized Jones matrix.
All the second-order approximations for the fiber Jones matrix

depend on three parameters evaluated at the carrier fre-
quency, i.e., the DGD , the DGD derivative with respect to
angular frequency , and the PMD vector rotation rate
[12].

As the PMD versor , which we can assume to
be coincident with the fast PSP at the carrier frequency, is uni-
formly distributed over the Poincaré sphere, turns out to be
a random rotation matrix, independent of frequency, and repre-
senting a change of basis polarization states. Its effect is to rotate
the PMD vector such as to realize a uniformly distributed signal
power splitting between the PSP’s at the carrier frequency. The
explicit expression for is

(1)

where

(2)

and are independent random variables, representing the fast
PSP azimuth and ellipticity angle, respectively, with probability
density functions

(3)

(4)

1We use boldface symbols to denote matrices, a cap for Jones vectors and an
arrow for Stokes vectors.

Please note that it is the premultiplication by that causes
the PMD vector rotation, i.e., the matrix has the same
dispersion vector of , which, at the carrier frequency, is

, where

(5)

whereas the matrix would have the same disper-
sion vector of , namely . Also notice that the
columns of are the PSPs at the carrier frequency only, and that
they are uniformly distributed over the Poincaré sphere, too.

A. First-Order PMD

In the first-order approximation , the matrix is
diagonal

(6)

and the photodetected signal has a very simple expression, as
shown in the following. Letting and

, where

(7)

and being the signal polarization state azimuth and ellip-
ticity angle, respectively, at the optical filter output the Jones
vector of the electric field is

(8)

where

(9)

Denoting by the angle between the fast PSP in (5) and the
signal polarization state in Stokes space

(10)

we have that , where

(11)

Letting and
, where means Fourier antitransformation,
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as , the photodetected signal before
postdetection filtering is given by

(12)

and taking into account (2), (7), and (11), a simple calculation
shows that

Hence, after postdetection filtering

(13)

where is the signal in the absence of
PMD, being the postdetection filter impulse response and

denoting convolution, whereas is the signal power
splitting ratio between the PSPs. From (13), it can be seen that in
the first-order approximation the photodetected signal depends
only upon the DGD and the power splitting and is in-
dependent of the PMD vector orientation (given ). This is no
longer true for a second-order approximation where, other than
the (further distorted) replicas in (13), other terms arise, some-
what complicating the expression for the photodetected signal.
In the next section, we will give an expression for the output
sample suitable for calculation, taking also into account the ASE
noise.

B. Second-Order PMD

As long as an optical PMD compensator performs linearly
with respect to the electrical field and can be modeled by a uni-
tary Jones matrix, the compensated and uncompensated cases
can be treated unitedly, as explained in the following for the the-
oretical example case of exact first-order compensation. So, let
us assume to have a PMD compensator that perfectly compen-
sate for first-order PMD. This goal can be achieved by inserting
after the optical filter a polarization controller which is able to
rotate the fiber PMD vector such that, at the carrier frequency, it
is antiparallel to that of a retarded plate whose adjustable retar-
dation is made equal to . As the polarization controller and
the retarded plate are characterized by unitary Jones matrices,
they leave unchanged the ASE noise statistics, so we could have
inserted them right at the fiber output with the same effect. This
means that we can simply substitute the Jones matrix in
Fig. 1(b) with ,
where

(14)

is the Jones matrix of the retarded plate whose fast and slow
axes are exchanged with respect to those of .

By extending the analysis in [13] to the present case, as shown
in Appendix A, and denoting by the bit time, the sample
corresponding to a periodic -bit pattern can be written as

(15)

where

(16)

is the signal, whereas

(17)

is the noise due to signal-ASE and ASE-ASE beat, respectively,
the subscripts 1 and 2 referring to the two reference orthogonal
polarizations. We defer to Appendix A and [13] the explanation
of the parameters appearing in (16) and (17).

At the carrier frequency, denoting by the angle between
the fast PSP (assumed to have the same direction of ) and the
signal polarization state in Stokes space (taken, without loss of
generality, aligned along the axis), the signal power splitting
ratio between the two PSPs may be written as2

. Hence, to make a link with the first-order
PMD case, we can equivalently describe the orientation of
through the power splitting ratio , which can be shown to be
uniformly distributed between 0 and 1

(18)

and the fast PSP ellipticity angle , whose probability density
function (pdf), conditional upon , can be shown to be

(19)

Being the decision threshold and letting ,
the conditional average probability of error , given a -bit
information sequence , can be expressed as

(20)

where

(21)

and, for simplicity, the conditioning on the PMD parameters
has been omitted on the right-end side term. The probabili-

ties in (21) may be evaluated with high accuracy

2For a generic signal polarization state it would be  = [1 + cos(2� �
2� ) cos 2� cos 2� + sin 2� sin 2� ]=2, where � and � are the signal polar-
ization state azimuth and ellipticity angle, respectively.
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by using the saddle point approximation [13], requiring only
knowledge of the noise sample conditional moment gener-
ating function

(22)

where (see Appendix A) and
, the parameter being the variance of the real and imag-

inary parts of the noise components and [13].
Defining the outage probability as the probability that

the bit error rate (BER) exceeds given 3-dB sensitivity
penalty with respect to the case of PMD absence, and averaging
out second-order effects, the conditional (upon ) outage prob-
ability is

(23)

where is the unit step function. The unconditional outage
probability may then be evaluated as

(24)

The purpose of this two-step evaluation for the outage proba-
bility is that by averaging out second-order effects, as in (23), we
can judge about their impact. As regards the averaging in (24),
the pdfs and are as in (18) and (19), respectively,
whereas the pdf is the well-known Maxwellian [14]

(25)

where is the standard deviation of each com-
ponent of the dispersion vector being the mean DGD
value. Notice that in the first-order approximation the condi-
tional outage probability in (23) is simply equal to 0 or 1 as in
this case

and in (24) the ellipticity angle pdf directly in-
tegrates to 1 as the conditional outage probability does not de-
pend on (given ). For the second-order approximation, the
joint pdf , needed to perform the averaging

in (23), may be evaluated as follows. Denoting by

and the PMD vector and its derivative normal-
ized to and , respectively, and by and

the parallel and (modulus of) the orthogonal
components of with respect to , we have that

(26)

where can be efficiently evaluated as ex-
plained in [6].

III. UNCOMPENSATED SYSTEMS

In this section, we evaluate the outage probability due to first-
and second-order PMD in the case of uncompensated systems.
The first-order case has been extensively treated in the literature

Fig. 2. BER contour plots for 3-dB sensitivity penalty.

[15]–[17], but we give here a short account to present an upper
bound closed form expression for the outage probability which
we will relate to the approximation given in [16] to show how
its range of validity can be extended. In this and the following
sections a Gaussian shaped optical filter and a 5th order Bessel
postdetection filter with 3-dB bandwidths equal to and

, respectively, were assumed for the calculations (
is the bit rate). The signal format is NRZ and the electric field

pulse shape is that of a rectangular pulse filtered by a Gaussian
filter with 3-dB bandwidth . A -bit de Bruijn sequence
was chosen such that to account for the ISI due to four adjacent
bits [13].

A. First-Order PMD

In this case, (24) becomes

(27)

where is the region of the plane where .
In this plane, the iso-BER curves have a typical U-shape, as
shown in Fig. 2, suggesting a simple closed form upper bound
for . Indeed, we see that there is a value for the power
splitting such that for , or , the BER is always
less than whatever the DGD , and, similarly, there is
a value for the DGD such that, for

whatever the value of . So, integrating
over the rectangular region , we
obtain the upper bound

(28)

where we used the inequality . No-
tice that the U-shaped iso-BER curves are symmetric around

only if the postdetection filter impulse response is sym-
metric, but usually their asymmetry is not noticeable.
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Fig. 3. Outage probability due to first-order PMD for 3-dB sensitivity penalty.

The outage probability evaluated as in (27) and the upper
bound (28) are shown in Fig. 3 for the cases of optimum and
fixed detection threshold. In the optimum threshold case, the
BER was evaluated by optimizing the threshold for each PMD
realization, whereas in the fixed threshold case the threshold was
set to its optimum value in the absence of PMD and then was
held fixed. This last case is more realistic as in a real receiver
the threshold is usually set once for all and not changed after-
wards. It can be seen that this could lead to outage probabilities
larger than an order of magnitude. We point out that this anal-
ysis is not possible by using one of the various Gaussian ap-
proximations in the literature, as they are accurate only when
optimizing the threshold, which, however, is not the real op-
timum threshold [18]. Anyhow, we verified that using a fixed
threshold only slightly larger than the optimum one in the ab-
sence of PMD, leads to the same outage probability obtained by
optimizing the threshold for each PMD outcome, thus justifying
the use of Gaussian approximations in the PMD case, too.

Sometimes the outage probability is defined as the probability
that the sensitivity penalty in dB exceeds a given value to
maintain a given BER [16]. It is easy to show that this defini-
tion is equivalent to the one we use, i.e., the probability that the
BER exceeds given the sensitivity penalty . The advantage
of our definition is that it is easier to generate the iso-BER curves
of Fig. 2 rather than the corresponding iso-penalty curves. The
advantage of the other definition is that an approximate expres-
sion for , expressed in dB, is available [16]

(29)

where depends on the pulse shape and receiver characteristics,
and thus the outage probability can be evaluated in closed form.
Indeed, from (29) and taking into account (18) and (25), we have
that the pdf of is [16]

(30)

where

(31)

and, thus

(32)

Fig. 4. Penalty contour plots for BER = 10 .

Fig. 5. Sensitivity penalty versus normalized DGD.

In [16], (32) was only used with dB as (29) is valid only
for small penalties. Despite this fact, we will now show that (32)
can be also used for larger values of and that it is a very close
approximation to when parameter is properly chosen.
In Fig. 4 the analytically evaluated iso-penalty curves are drawn
in solid lines, whereas dashed lines were obtained from (29)
with and 3 dB, respectively, and a proper choice for
parameter . Parameter is usually chosen by a quadratic fit
of the PMD penalty according to (29) for [17]. We
make here a different choice and consider as a function of

, obtaining it from (29), by setting
and , as

(33)

where can be acquired from the corresponding iso-penalty
curve obtained by analysis, as illustrated in Fig. 4, or, simply, as
the instantaneous DGD corresponding to for , as
illustrated in Fig. 5. Notice from this last figure that for
dB, this choice for gives a parameter from (33) making
(29) a quadratic fit to the PMD penalty. It turned out that

and , in this case, and using these values for
parameter in (31) the outage probability evaluated as in (32)
is shown in Fig. 6 together with that evaluated through (27),
where now is the region of the plane where .
Notice that the iso-penalty curve for dB in Fig. 4 exactly
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Fig. 6. Outage probability due to first-order PMD for 1- and 3-dB sensitivity
penalty.

Fig. 7. Conditional outage probability due to first- and second-order PMD for
3-dB sensitivity penalty. The contours are at 10 ; 10 ; 10 , and 1.

corresponds to the curve in Fig. 2 and that, for
our choice of parameter and except for a multiplicative factor

(34)

is practically equal to (28), playing the same role of .
Also, notice that (28) is an upper bound, whereas (34) is an
approximation.

B. Second-Order PMD

In this case, is no longer equal to 0 or 1,
and Fig. 7 shows the conditional probability ,
evaluated as in (23) and further averaged over the ellipticity
angle , through , for a mean DGD equal to 40% of bit
time when using the model in [10] for . We noticed that
the dependence of on is not marked and this
means that, for a given power splitting , the orientation of
is not so important (remember that in the first-order case even
the photodetected signal was independent of this orientation).
As can be seen from Fig. 7, the conditional outage probability
changes very rapidly from low values to 1 when the instanta-
neous DGD and power splitting approach the values enclosed in
the region delimited by the contour curve. For a first-order
PMD we would have a similar region in which the conditional
outage probability would be equal to 1 and outside of which it
would be exactly equal to zero. Whatever the value of and ,
the conditional outage probability is not negligible, even when

Fig. 8. Outage probability for 3-dB sensitivity penalty.

Fig. 9. Conditional outage probability due to second-order PMD for exact
first-order compensation and 3-dB sensitivity penalty.

launching the signal with a polarization aligned with one of the
PSPs at the carrier frequency, i.e., for or . However,
the unconditional outage probability is not affected by
higher orders, as can be seen from Fig. 8, reporting as
a function of the mean DGD and showing that the models in
[9]–[11] are practically equivalent, that in [10] being slightly
more accurate. Fig. 8 also reports the outage probability com-
puted by a Monte Carlo method by modeling the fiber through
the random waveplate model with 100 sections. A sufficient
number of fiber realizations was used such that the confidence
interval is smaller than the circle used for representation. Notice
that whereas the second-order analytical models for give
slightly larger outages, the first-order model is in excellent
agreement with the random waveplate model. Our results agree
with those reported in [19], where the same approximate joint
pdf as that in [5] was used for averaging, further demonstrating
that, when not compensating, higher PMD orders are not of
concern. This can also be confirmed by comparing the curve for

dB in Fig. 6, accounting for first-order only PMD, with
the curve for the OOK-NRZ case in [[20] Fig. 5(a)], accounting
for all-order PMD.3 For example, to have , Fig. 6
prescribes , whereas from [[20] Fig. 5(a)] we
have . Although from this comparison it may
seem that first-order PMD overestimates the power penalty, this
is not the case as our simulations for all-orders PMD exactly
match those in Fig. 6. We think that the small difference between
Figs. 6 and 5(a) in [20] is to be attributed to the fact that we use
exact statistics for the post-detection noise and not Gaussian

3Please note that thex axis of Fig. 6 reports h��i=T , whereas that of Fig. 5(a)
in [20] reports h�� i=T .
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Fig. 10. Contour plot for BER = 10 (solid) and for p (x; y j��) at 10 ; n = 2; 4; 6; 8; 10;12;14;16. Power splitting  = 0:5 and PSP
ellipticity angle " = 0.

approximations. However, we point out that if the outage prob-
ability is defined in a different manner, different conclusions
may be drawn, as shown in [21].

IV. EXACT FIRST-ORDER COMPENSATION

As explained in Section II-B, by using a polarization controller
and a retarded plate with adjustable retardation, we can theoreti-
cally cancel the vector so that the performance is solely deter-
mined by higher PMD orders. All the models for the fiber Jones
matrix in [9]–[11] agree on first- and second-order PMD, in the
sense that they give the same dispersion vector and first-order
derivative , but whereas the model in [11] is an exact second-
order model for which all higher order derivatives of vanish,
the models in [9], [10] introduce higher orders. As seen in the
previous section, in uncompensated systems the outage proba-
bility is due to first-order only, and indeed all theoretical models
for turn out to be almost equivalent in this respect. When
cancelling , it is expected that this no more true.

Let us first see what is the effect of exact first-order compen-
sation on the conditional outage probability . As
the results are qualitatively almost the same, we consider in our
examples the model in [10]. Fig. 9, to be compared with Fig. 7,
reports for the mean DGD and
it is evident that the conditional outage has not been changed
for values of smaller than about , has been reduced

by more than 2 orders of magnitude around and by
more than three orders of magnitude for larger values of the
DGD. The fact that for small DGD values does
not change should be expected as, for these values, the higher
orders and not the DGD are the cause of outage, whereas, in part
as guessed in [22], the impact of second-order PMD initially
increases but then decreases for larger values of the instanta-
neous DGD. Taking now into consideration the impact of the
components parallel and orthogonal to , we report in Fig. 10
the iso-BER curve at (solid) and contour plots of the
joint pdf (dashed), where
and are the aforementioned components
normalized to , for and various values.
By integrating over the region outside the

curve we would obtain the conditional outage
probability due to and . Fig. 10 shows that for large
DGD values the primary cause of outage is the orthogonal
component , whereas for small DGD values it is the parallel
component . In fact, for , Fig. 10(a) tells us that if

, i.e., if , no outage would occur. However,
we point out that this result comes from the model in [10], as
the other models in [9], [11], for small DGD values, produce
iso-BER curves similar to the ones in Fig. 10(b), (c), and (d).
However, when evaluating the unconditional outage, we see that
the model in [10] is the most accurate, giving outages nearly
equal to those obtained by the random waveplate model and
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Fig. 11. Outage probability for exact first-order compensation and 3-dB
sensitivity penalty.

Monte Carlo estimation, as shown in Fig. 11, where, for com-
parison, the outage probability for the uncompensated system
is also reported. As can be seen, the model in [9] overestimates
the outage by even two orders of magnitude, whereas the exact
second-order model in [11] by only a factor . From these
results we infer that in compensated systems all PMD orders
contribute in determining the performance and that the impact
of higher than second orders is beneficial. As observed in [11],
the model in [10] seemingly is not a so good second-order only
approximation, and, indeed, we think that it is to be considered an
approximation to all orders obtained with first- and second-order
only parameters. This seems reasonable as the various orders are
correlated [23],[24] and thus higher orders are also partly deter-
mined by lower orders. Thus, the higher orders introduced by the
model in [10] are, in this sense, appropriate. On the contrary,
the model in [9] introduces inappropriate higher orders, leading
to orders-of-magnitude outage probability overestimation.

V. CONCLUSION

An exact analytical evaluation of the impact of second-order
PMD on a preamplified direct detection system using exact
second-order statistics has been presented. The analytical tool
allows to establish the impact of second-order PMD through
conditional results not otherwise possible by Monte Carlo simu-
lations, even, perhaps, by using importance sampling techniques,
and in a very reasonable time. As an example, to obtain outage
probabilities in the order of with a sufficiently small con-
fidence interval through simulation, a few days computing time
are necessary using current high speed computers, whereas a few
hours suffice by analysis for any outage values. However, simula-
tion still remains a necessary tool to account for all PMD orders
and comparison with results obtained by Monte Carlo methods
shows that exact second-order only turns out to be slightly pes-
simistic, whereas attention must be paid in using approximate
second-order models leaving residual higher order effects as
this may lead to orders-of-magnitude outage overestimation.

APPENDIX A

In this appendix, we give an expression for the sample in
Fig. 1 by extending the results of [13, App. A]. The expression in
[13] for the sample was given by neglecting the ASE noise
in the polarization orthogonal to the signal as no polarization dis-
persion was taken into account and thus it could be eliminated by

a polarizer. Anyway, in the absence of PMD, even if accounted
for, it would give a signal independent noise term in the output,
i.e., only an ASE-ASE beat term which can be neglected with
respect to the other noise terms (its impact would be maximum,
and in the order of about 0.3 dB, in a back-to-back configuration
only). Here, instead, we are in the presence of polarization mode
dispersion and we must take into account both signal and noise
components in the two reference orthogonal polarizations.

Denoting by and , the signal and noise
components in the two orthogonal reference polarizations at the
optical filter output, the signal at the decision gate is given
by

(A.1)

where, given a periodic -bit pattern, each term
, is as [13, eq. (A.7)], and thus the output

sample can be written as

(A.2)

where each , is as in [13, eq. (A.27)], for conve-
nience rewritten here for polarization as

(A.3)

Taking into account that

(A.4)

Equation (A.3) can also be written as

(A.5)

where, in the right-hand side, the first term is the signal whereas
the second and third are the signal-ASE and ASE-ASE beat,
respectively. All parameters appearing in (A.5) are as in [13],
and in particular: i) are the coefficients of the Fourier
series expansion of the squared modulus of the signal compo-
nents on the two reference orthogonal polarizations; ii)
are the components of the independent random Gaussian vec-
tors with zero mean and covariance matrix

, where being a time in-
terval depending only upon the optical and postdetection fil-
ters [13]; iii) are the eigenvalues of the Hermitian matrix

, where is the matrix with
elements4

4Please, note that [13] erroneously reports q = H ((i � j)=T ).
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and are diagonal matrices with elements
and , respectively, and is the matrix of the normalized
eigenvectors; iv) are the components of the vectors

, where the vectors are as in
[13, eq. (A.13)], but referred to the signal components on the
two reference orthogonal polarizations.
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