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Abstract. Since the first results published in 1973 by Liu and Layland on the Rate Monotonic (RM) and Earliest
Deadline First (EDF) algorithms, a lot of progress has been made in the schedulability analysis of periodic task
sets. Unfortunately, many misconceptions still exist about the properties of these two scheduling methods, which
usually tend to favor RM more than EDF. Typical wrong statements often heard in technical conferences and even
in research papers claim that RM is easier to analyze than EDF, it introduces less runtime overhead, it is more
predictable in overload conditions, and causes less jitter in task execution.

Since the above statements are either wrong, or not precise, it is time to clarify these issues in a systematic
fashion, because the use of EDF allows a better exploitation of the available resources and significantly improves
system’s performance.

This paper compares RM against EDF under several aspects, using existing theoretical results, specific simulation
experiments, or simple counterexamples to show that many common beliefs are either false or only restricted to
specific situations.
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1. Introduction

Periodic task scheduling is one of the most studied topics within the field of real-time
systems, due to the large number of control applications that require cyclical activities.
Before a comprehensive theory was available, the most critical control applications were
developed using an off-line table-driven approach (timeline scheduling), according to which
the time line is divided into slots of fixed length (minor cycle) and tasks are statically
allocated in each slot based on their rates and execution requirements (Locke, 1997). The
schedule is then constructed up to the least common multiple of all the periods (called
the hyperperiod or the major cycle) and stored in a table. At runtime, tasks are dispatched
according to the table and synchronized by a timer at the beginning of each minor cycle.
On one hand, timeline scheduling is straightforward to implement and does not introduce
significant runtime overhead (since scheduling decisions are taken off-line). Moreover, tasks
always execute in their preallocated slots, so the experienced jitter is very small.

On the other hand, timeline scheduling is fragile during overload situations, since a task
exceeding its predicted execution time could generate (if not aborted) a domino effect on
the subsequent tasks, causing their execution to exceed the minor cycle boundary (timeline
break). In addition, timeline scheduling is not flexible enough for handling dynamic situa-
tions. In fact, a creation of a new task, or a little change in a task rate, might modify the values
of the minor and major cycles, thus requiring a complete redesign of the scheduling table.

Such problems can be solved by using a priority-based approach, according to which each
task is assigned a priority (which can be fixed or dynamic) and the schedule is generated
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on line based on the current priority value. In 1973, Liu and Layland (1973) analyzed the
properties of two basic priority assignment rules: the Rate Monotonic (RM) algorithm and
the Earliest Deadline First (EDF) algorithm. According to RM, tasks are assigned fixed pri-
orities ordered as the rates, so the task with the smallest period receives the highest priority.
According to EDF, priorities are assigned dynamically and are inversely proportional to the
absolute deadlines of the active jobs.

The major contribution of Liu and Layland was to derive a simple guarantee test to verify
the schedulability of a periodic task set under both algorithms. Their results refer to the
following task model. Each periodic task τi is considered as an infinite sequence of jobs τi,k

(k = 1, 2, . . .), where the first job τi,1 is released at time ri,1 = �i (the task phase) and the
generic k-th job τi,k is released at time ri,k = �i + (k − 1) Ti , where Ti is the task period.
Each job is characterized by a worst-case execution time Ci , a relative deadline Di and an
absolute deadline di,k = ri,k + Di . The ratio Ui = Ci/Ti is called the utilization factor of
task τi and represents the fraction of processor time used by that task. The value

Up =
n∑

i=1

Ui

is called the total processor utilization factor and represents the fraction of processor time
used by the periodic task set. Clearly, if Up > 1 no feasible schedule exists for the task
set with any algorithm. If Up ≤ 1, the feasibility of the schedule depends on the task set
parameters and on the scheduling algorithm used in the system.

The RM algorithm is probably the most used priority assignment in real-time applications,
because it is very easy to implement on top of those commercial kernels that do not support
explicit timing constraints on the task set. Indeed, an RM scheduler can be implemented just
by assigning each task a fixed priority level inversely proportional to its period. On the other
hand, implementing a dynamic scheme, like EDF, on top of a priority-based kernel would
require the kernel to keep track of all absolute deadlines and perform a dynamic mapping
between absolute deadlines and priorities. Such a mapping should be done every time a new
task receives a priority falling between two adjacent priority levels, or outside the range of
available priorities. Such an additional implementation complexity and runtime overhead
due to dynamic priority management often prevents EDF from being implemented on top of
commercial real-time kernels, even though it would increase the total processor utilization.

Certainly, the use of EDF would significantly increase if commercial kernels provided
direct support for time and deadline management at the task level, because EDF allows
a better exploitation of the available resources and would significant improve system’s
performance. At present, however, the majority of commercial real-time operating systems
are still based on a limited set of fixed priority levels, and only a few research kernels support
EDF as a native scheduling scheme. Examples of such kernels are Hartik (Buttazzo, 1993),
Shark (Gai et al., 2001b), Erika (Gai et al., 2001a), Spring (Stankovic and Ramamritham,
1987), and Yartos (Jeffay et al., 1992). A new trend in some recent operating system is to
provide support for the development of a user level scheduler. This is the approach followed
in MarteOS (Rivas and Harbour, 2001).

In addition to resource exploitation and implementation complexity, there are other eval-
uation criteria that should be taken into account when selecting a scheduling algorithm for
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a real-time application. Moreover, there are a lot of misconceptions about the properties
of these two scheduling algorithms, that for a number of reasons unfairly penalize EDF.
The typical motivations that are usually given in favor of RM state that RM is easier to
implement, it introduces less runtime overhead, it is easier to analyze, it is more predictable
in overload conditions, and causes less jitter in task execution.

In the following sections we show that most of the claims stated above are either false or
do not hold in the general case. Although some discussion of the relative costs of RM and
EDF appear in Stankovic et al. (1998), in this paper the behavior of these two algorithms is
analyzed under several perspectives, including implementation complexity, runtime over-
head, schedulability analysis, robustness during transient and permanent overloads, and
response time jitter. Moreover, the two algorithms are also compared with respect to other
issues, including resource sharing, aperiodic task handling, and QoS management.

The rest of the paper is organized as follows: Section 2 discusses the implementation
complexity of the two algorithms, considering not only the problem of priority mapping,
but also the basic kernel operations for a low-level implementation. Section 3 analyzes
the runtime overhead introduced in task execution by the two methods; both activation
overhead and context switches are taken into account. Section 4 briefly summarizes the
methods proposed in the literature (with their computational complexity) used to analyze
the feasibility of a task set under different simplifying assumptions. Section 5 discusses
the robustness of the two algorithms during transient and permanent overload conditions.
Section 6 analyzes the behavior of RM and EDF with respect to response time jitter and
input-output latency. Section 7 discusses other evaluation criteria that should be considered
when selecting a scheduling algorithm for a real-time application; they include protocols
for resource sharing, aperiodic task handling, and resource reservation approaches. Finally,
Section 8 states our conclusions.

2. Implementation Complexity

When talking about the implementation complexity of a scheduling algorithm, we have to
distinguish the case in which the algorithm is developed on top of a generic priority based
operating system, from the case in which the algorithm is implemented from scratch, as a
basic scheduling mechanism in the kernel.

When considering the development of the scheduling algorithm on top of a kernel based
on a set of fixed priority levels, it is indeed true that the EDF implementation is not easy,
nor efficient. In fact, even though the kernel allows task priorities to be changed at runtime,
mapping dynamic deadlines to priorities cannot always be straightforward, especially when,
as common in most commercial kernels, the number of priority levels is small (typically,
not greater than 256). For example, consider the case in which two deadlines da and db are
mapped into two adjacent priority levels and a new periodic instance is released with an
absolute deadline dc, such that da < dc < db. In this situation, there is not a priority level
that can be selected to map dc, even when the number of active tasks is less than the number
of priority levels in the kernel. This problem can only be solved by remapping da and db

into two new priority levels which are not consecutive. Notice that, in the worst case, all
current deadlines may need to be remapped, increasing the cost of the operation.
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If the algorithm is developed from scratch in the kernel using a list for the ready queue,
then the only difference between the two approaches is that, while in RM the ready queue
is ordered by decreasing fixed priority levels, under EDF it has to be ordered by increasing
absolute deadlines. Thus, once the absolute deadline is available in the task control block,
the basic kernel operations (e.g., insertion, extraction, getfirst, dispatch) have the same
complexity, both under RM and EDF.

An advantage of RM with respect to EDF is that, if the number of priority levels is not
high, the RM algorithm can be implemented more efficiently by splitting the ready queue
into several FIFO queues, one for each priority level. In this case, the insertion of a task
in the ready queue can be performed in O(1). Unfortunately, the same solution cannot be
adopted for EDF, because the number of queues would be too large (e.g., equal to 232 if
system time is represented by four byte variables).

Another disadvantage of EDF is that absolute deadlines change from a job to the other
and need to be computed at each job activation. Such a runtime overhead is not present
under RM, since periods are typically fixed. However, the problem of evaluating the runtime
overhead introduced by the two algorithms is more complex, as discussed in the next section.

3. Runtime Overhead

It is commonly believed that EDF introduces a larger runtime overhead than RM, because
in EDF absolute deadlines need to be updated from a job to the other, so slightly increasing
the time needed to execute the job activation primitive.

It is indeed true that, under EDF, deadlines need to be updated by the kernel at each
job activation, because in a periodic task the absolute deadline changes from a job to the
other. Whenever the k-th job of task τi is released at time ri,k , its absolute deadline has to
be computed as di,k = ri,k + Di . Such a computation is not needed under RM, because the
priority of task τi is assigned based on its period Ti or, if using Deadline Monotonic, based
on its relative deadline Di , which does not change from a job to the other.

In spite of the extra computation needed for updating the absolute deadline, however, EDF
introduces less runtime overhead than RM, when context switches are taken into account.
In fact, to enforce the fixed priority order, the number of preemptions that typically occur
under RM is much higher than under EDF.

The example illustrated in Figure 1 shows that, under RM, to respect the priority order
given by periods, the high priority task τ1 must preempt every instance of τ2, whereas
under EDF preemption occurs only once in the entire hyperperiod.1 For larger task sets,
the number of preemptions caused by RM increases, thus the overhead due to the context
switch time is higher under RM than EDF.

To evaluate the behavior of the two algorithms with respect to preemptions, a number
of simulation experiments have been performed using synthetic task sets with random
parameters.

Figure 2 shows the average number of preemptions introduced by RM and EDF as a
function of the number of tasks. For each point in the graph, the average was computed
over 1000 independent simulations, each running for 1000 units of time. In each simulation,
periods were generated as random variables with uniform distribution in the range of 10
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Figure 1. Preemptions introduced by RM (a) and EDF (b) on a set of two periodic tasks. Adjacent jobs of τ2 are
depicted with different colours to better distinguish them.

Figure 2. Preemptions introduced by RM and EDF as a function of the number of tasks.

to 100 units of time, whereas execution times were computed to create a total processor
utilization U = 0.9.

As shown in the plot, each curve has two phases: the number of preemptions occurring
in both schedules increases for small task sets and decreases for larger task sets. This can
be explained as follows. For small task sets, the number of preemptions increases because
the chances for a task to be preempted increase with the number of tasks in the system. As
the number of tasks gets higher, however, task execution times get smaller in the average, to
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Figure 3. Preemptions introduced by RM and EDF on a set of 10 periodic tasks as a function of the load.

keep the total processor utilization constant, hence the chances for a task to be preempted
reduce. As evident from the graph, such a reduction is much more significant under EDF.

In another experiment, we tested the behavior of RM and EDF as a function of the pro-
cessor load, for a fixed number of tasks. Figure 3 shows the average number of preemptions
as a function of the load for a set of 10 periodic tasks. Periods and computation times were
generated with the same criterion used in the previous experiment, but to create an average
load ranging from 0.5 to 0.95.

It is interesting to observe the different behavior of RM and EDF for high processor
loads. Under RM, the number of preemptions constantly increases with the load, because
tasks with longer execution times have more chances to be preempted by tasks with higher
priorities. Under EDF, however, increasing task execution times does not always imply a
higher number of preemptions, because a task with a long period could have an absolute
deadline shorter than that of a task with smaller period. In certain situations, an increased
execution time can also cause a lower number of preemptions.

This phenomenon is illustrated in Figure 4, which shows what happens when the execution
time of τ3 is increased from 4 to 8 units of time. When C3 = 4, the second instance of τ2

is preempted by τ1, that has a shorter absolute deadline. If C3 = 8, however, the longer
execution of τ3 (which has the earliest deadline among the active tasks) pushes τ2 after
the arrival of τ1, so avoiding its preemption. Clearly, for a higher number of tasks, this
situation occurs more frequently, offering more advantage to EDF. Such a phenomenon does
not occur under RM, because tasks with small periods always preempt tasks with longer
period, independently of their absolute deadlines. The result of the experiment illustrated
in Figure 3 shows that the number of preemptions increases almost linearly with the load
under RM, while it decreases for high loads under EDF.
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Figure 4. Under EDF, the number of preemptions may decrease when execution times increase: in case (a),
where C3 is small, τ2 is preempted by τ1, but this does not occur in case (b), where τ3 has a higher execution time.

4. Schedulability Analysis

The basic schedulability conditions for RM and EDF proposed by Liu and Layland (1973)
were derived for a set � of n periodic tasks under the assumptions that all tasks start
simultaneously at time t = 0 (that is, �i = 0 for all i = 1, . . . , n), relative deadlines are
equal to periods (that is, di,k = k Ti ) and tasks are independent (that is, they do not have
resource constraints, nor precedence relations). Under such assumptions, a set of n periodic
tasks is schedulable by the RM algorithm if

n∑
i=1

Ui ≤ n (21/n − 1) (1)

Under the same assumptions, a set of n periodic tasks is schedulable by the EDF algorithm
if and only if

n∑
i=1

Ui ≤ 1 (2)
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The schedulability bound of RM is a function of the number of tasks, and it decreases with
n. We recall that

lim
n→∞ n (21/n − 1) = ln 2 � 0.69

meaning that any task set can be scheduled by RM if U ≤ 0.69, but not all task sets can be
scheduled if 0.69 < U ≤ 1.

Lehoczky et al. (1989) performed a statistical study and showed that for task sets with
randomly generated parameters the RM algorithm is able to feasibly schedule task sets with
a processor utilization up to about 88%. However, this is only a statistical result and cannot
be taken as an absolute bound for performing a precise guarantee test.

A more efficient schedulability test, known as the Hyperbolic Bound (HB), was proposed
by Bini et al. (2001). This test has the same complexity as the Liu and Layland one, but
improves the acceptance ratio up to a limit of

√
2, for large n. According to this method, a

set of periodic tasks is schedulable by RM if

n∏
i=1

(Ui + 1) ≤ 2 (3)

For RM, the schedulability bound improves when periods have harmonic relations. A
common misconception, however, is to believe that the schedulability bound becomes 1.00
when the periods are multiple of the smallest period. This is not true, as it can be seen from
the example reported in Figure 5.

Here, tasks τ2 and τ3 have periods T2 = 8 and T3 = 12, which are multiple of T1 = 4. Since
all tasks have a computation time equal to two, the total processor utilization is

U = 1

2
+ 1

4
+ 1

6
= 11

12
� 0.917

and, as we can see from the figure, the schedule produced by RM is feasible. However, it
is easy to see that increasing the computation time of any task by a small amount τ3 will

Figure 5. The condition in which all periods are multiple of the shortest period is not sufficient to guarantee a
schedulability bound equal to one.
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Figure 6. When all pairs of periods are in harmonic relation the schedulability bound of RM is equal to one.

miss its deadline. This means that, for this particular task set, the utilization factor cannot
be higher than 11/12.

The correct result is that the schedulability bound becomes 1.00 only when all pairs of
periods in the task set are in harmonic relation. As an example, Figure 6 shows that, if
T3 = 16, then not only T2 and T3 are multiple of T1, but also T3 is multiple of T2. In this case,
the RM generates a feasible schedule even when C3 = 4, that is when the total processor
utilization is equal to 1.00.

In the general case, exact schedulability tests for RM yielding to necessary and sufficient
conditions have been independently derived by Lehoczky et al. (1989), Audsley et al. (1993),
Joseph and Pandya (1986). Using the Response Time Analysis (RTA) proposed in Audsley
et al. (2004), a periodic task set (with deadlines less than or equal to periods) is schedulable
with the Deadline Monotonic algorithm if and only if the worst-case response time of each
task is less than or equal to its relative deadline. The worst-case response time Ri of a task
can be computed using the following iterative formula:




R(0)
i = Ci

R(k)
i = Ci +

∑
j :D j <Di

⌈
R(k−1)

i

Tj

⌉
C j

(4)

where the worst-case response time of task τi is given by the smallest value of R(k)
i such that

R(k)
i = R(k−1)

i . It is worth noting, however, that the complexity of the exact test is pseudo-
polynomial, thus it is not suited to be used for online admission control in applications
with large task sets. To solve this problem, an approximate fesibility test with a tunable
complexity has been proposed by Bini and Buttazzo in Bini and Buttazzo (2002).

Under EDF, the schedulability analysis of periodic tasks with relative deadlines less than
periods can be performed using the Processor Demand Criterion PDC proposed by Baruah
et al. (1990). According to this method, a set of tasks is schedulable by EDF if and only if

∀L > 0,

n∑
i=1

⌊
L + Ti − Di

Ti

⌋
Ci ≤ L (5)
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As the response time analysis, this test has also a pseudo-polynomial complexity. It can
be shown that the number of points in which the test has to be performed can be significantly
restricted to those L equal to deadlines less than a certain value L∗, that is:

∀L ∈ D, D= {dk : dk < min(L∗, H )}

where H = lcm(T1, . . . , Tn) is the hyperperiod and

L∗ =
∑n

i=1 Ui (Ti − Di )

1 − U
.

In conclusion, if relative deadlines are equal to periods, exact schedulabilty analysis can
be performed in O(n) under EDF, whereas is pseudo-polynomial under RM. When rela-
tive deadlines are less than periods, the analysis is pseudo-polynomial for both scheduling
algorithms, although, in the average, the PDC requires more computational steps. Fig-
ure 7 shows the average number of steps required to run the RTA and the PDC as a
function of the number of tasks. The tests were performed on randomly generated task
sets with periods Ti uniformly distributed in [10, 200], relative deadlines uniformly dis-
tributed in [Ti/2, Ti ], and utilization factor U = 0.8. The average was computed on 1000
samples.

Figure 7. Average number of steps required for the RTA and for the PDC as a function of the number of
tasks.
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5. Robustness During Overloads

In this section we compare the behavior of RM and EDF during overload conditions, that
is when the total demand of the task set exceeds the processor capacity. We first consider
the two algorithms under permanent overload situations (occurring when U > 1), and then
under transient overload conditions, caused by sporadic execution overruns in some of the
jobs.

5.1. Permanent Overload

An interesting property of EDF during permanent overloads is that it automatically performs
a period rescaling, and tasks start behaving as they were executing at a lower rate. This
property has been proved by Cervin et al. (2002) and it is formally stated in the following
theorem.

Theorem 1 [Cervin]. Assume a set of n periodic tasks, where each task is described by a
fixed period Ti , a fixed execution time Ci , a relative deadline Di , and a release offset �i .
If U > 1 and tasks are scheduled by EDF, then, in stationarity, the average period T̄i of
each task τi is given by T̄i = TiU.

Notice that under RM, a permanent overload may cause a complete blocking of the lower
priority tasks. Figure 8 illustrates the schedules produced by EDF and RM for a set of three
periodic tasks in a permanent overload condition. The three tasks, in fact, generate a total
processor workload U = 4/8 + 6/12 + 5/20 = 1.25. According to the previous theorem,
this means that EDF schedules the tasks as they were executing with periods T ′

1 = T1U = 10,

Figure 8. Schedules produced by EDF (a) and RM (b) for a set of three periodic tasks in a permanent overload
condition.
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T ′
2 = T2U = 15, and T ′

3 = T3U = 25 (note that U ′ = 4/10 + 6/15 + 5/25 = 1). Indeed, it
can be easily verified that in the first interval of 120 units of time, τ1 executes 12 times
(120/10 = 12), τ2 executes 8 times (120/15 = 8), and τ3 executes almost 5 times (120/25 =
4.8).

In conclusion, under permanent overload conditions both the behaviors of RM and EDF
are predictable, but, deciding which one is better is highly application dependent.

5.2. Transient Overload

Another common misconception about RM is to believe that, in the presence of transient
overload conditions, deadlines are missed predictably, that is, the first tasks that fail are
those with the longest period. Unfortunately, this property does not hold under RM (neither
under EDF), and can easily be confuted by the counterexample shown in Figure 9. In this
figure, there are four periodic tasks with computation times C1 = 2, C2 = 3, C3 = 1, C4 = 1,
and periods T1 = 5, T2 = 9, T3 = 20, T4 = 30. In normal load conditions, the task set is
schedulable by RM. However, if there is a transient overload in the first two instances of
task τ1 (in the example, the jobs have an overrun of 1.5 time units), the task that misses its
deadline is not the one with the longest period (i.e., τ4), but τ2.

So the conclusion is that, under RM, if the system becomes overloaded, any task, ex-
cept the highest priority task, can miss its deadline, independently of its period. The
situation is not better under EDF. The only difference between RM and EDF is that,
under RM, an overrun in task τi cannot cause tasks with higher priority to miss their
deadlines, whereas under EDF any other task could miss its deadline. However, such a
property of RM can be of little use if we do not know a priori which task is going to
overrun.

The problem caused by sporadic execution overruns can be solved by enforcing temporal
isolation among tasks through a resource reservation mechanism in the kernel. This issue
has been investigated both under RM and EDF and it is discussed in Section 7.

Figure 9. Under overloads, only the highest priority task is protected under RM, but nothing can be ensured for
the other tasks.
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6. Jitter and Latency

In a feasible periodic task system, the computation performed by each job must start after its
release time and must complete within its deadline. Due to the presence of other concurrent
tasks that compete for the processor, however, a task may evolve in different ways from
instance to instance; that is, the instructions that compose a job can be executed at different
times, relative to the release time, within different jobs. The maximum time variation (rel-
ative to the release time) in the occurrence of a particular event in different instances of a
task defines the jitter for that event. The jitter of an event of a task τi is said to be relative if
the variation refers to two consecutive instances of τi , and absolute if it is computed as the
maximum variation with respect to all the instances.

For example, the relative response time jitter (RRJ) of a task is the maximum time variation
between the response times of any two consecutive jobs. If Ri,k denotes the response time
of the k-th job of task τi , then the relative response time jitter (RRJi ) of task τi is defined as

RRJi = max
k

|Ri,k+1 − Ri,k | (6)

whereas the absolute response time jitter (ARJi ) of task τi is defined as

ARJi = max
k

Ri,k − min
k

Ri,k (7)

In real-time applications, the jitter can be tolerated when it does not degrade the per-
formance of the system. In many control applications, however, a high jitter can cause
instability or a jerky behavior of the controlled system (Marti et al., 2002), hence it must
be kept as low as possible.

Another misconception about RM is to believe that the fixed priority assignment used in
RM reduces the jitter during task execution, more than under EDF. Clearly, this is true for
the highest priority task, but this property does not hold in general, as it is shown by the
following example. Consider a set of three periodic tasks with computation times C1 = 2,
C2 = 3, C3 = 2, and periods T1 = 6, T2 = 8, T3 = 12. Figure 10 illustrates that, under RM,
the three tasks experience a response time jitter (both relative and absolute) equal to 0, 2,
and 8, respectively. Under EDF, the same tasks have a response time jitter (both relative
and absolute) equal to 1, 2, and 3, respectively. Hence, EDF significantly reduces the jitter
experienced by task τ3 by slightly increasing the one of task τ1.

Clearly, this example does not prove that EDF always introduces less jitter than RM, but
just confutes the common belief that RM outperforms EDF in reducing jitter.

A specific simulation experiment has been performed to verify the jitter behavior under
the two scheduling algorithms. Task sets of 10 periodic tasks were randomly generated with
periods uniformly distributed in [10,200] and fixed total utilization U . The results refer to
the Absolute Response-time Jitter (ARJ), which has been normalized with respect to task
periods. Hence a value of 1 on task τi corresponds to a jitter equal to its period Ti . The results
are reported in Figures 11–13, which show the jitter introduced by the algorithms for each
individual task (tasks are ordered by increasing periods). It is worth observing that, when
the periodic load is less than 0.7, both algorithms introduce about the same jitter, which
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Figure 10. Response time jitter introduced under RM (a) and under EDF (b).

Figure 11. Average normalized jitter for U = 0.7.
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Figure 12. Average normalized jitter for U = 0.8.

Figure 13. Average normalized jitter for U = 0.9.

linearly increases for tasks with longer periods. For higher loads, the algorithms exhibit
the same behavior illustrated in Figure 10: while RM reduces the jitter of high priority
tasks at the expenses of tasks with lower priority, EDF treats tasks more evenly, obtaining
a significant reduction in the jitter of the tasks with long periods for a small increase in the
jitter of tasks with shorter periods.
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Another parameter that it is important to minimize in control applications is the input-
output latency. Assuming that a control task τi acquires inputs at the beginning of each
instance and delivers control outputs at the end, the maximum input–output latency is
defined as

Li = max
k

( fi,k − si,k) (8)

where si,k and fi,k are the start time and finishing time of job τi,k respectively.
Cervin proved that EDF can always achieve a shorter input–output latency than RM, for

any task. This is stated by the following theorem (Cervin, 2003).

Theorem 2 [Cervin]. Given a set of n periodic control tasks performing input at the
beginning of each job and output at the end, the maximum input–output latency of each
task under EDF is shorter than or equal to the corresponding maximum latency under RM.

Intuitively, the theorem is true because, under EDF, a task τi can never be preempted
by tasks with a longer relative deadline, but can only be delayed, if the absolute deadline
of the task with longer period is less than the absolute deadline of τi . However, such a
start time delay does not affect the input–output latency. Moreover, under EDF, the number
of preemptions experienced by each job is less than or equal to that experienced under
RM. For example, in the schedule illustrated in Figure 10, the maximum input–output
latencies of the tasks under RM are 2, 5, and 7, whereas under EDF are 2, 3, and 2,
respectively.

7. Other Issues

7.1. Resource Sharing

If tasks share mutually exclusive resources, particular care must be used for accessing shared
data. In fact, if critical sections are accessed through classical semaphores, then tasks may
experience long delays due to a phenomenon known as priority inversion, where a task
may be blocked by a lower priority task for an unbounded amount of time. The problem
can be solved by adopting specific concurrency control protocols for accessing critical
sections, such as the Priority Inheritance Protocol (PIP) or the Priority Ceiling Protocol
(PCP), both developed by Sha et al. (1990). For the reason that both PIP and PCP are well
known in the real-time literature and were originally deviced for RM, some people believe
that only RM can be predictably used and analyzed in the presence of shared resources.
However, this is not true, because a number of protocols also exist for accessing shared
resources under EDF, such as the Dynamic Priority Inheritance (DPI) (Stankovic et al.,
1998), the Dynamic Priority Ceiling (DPC) (Chen and Lin, 1990), the Stack Resource
Policy (SRP) (Baker, 1991), and the Dynamic Deadline Modification (DDM) protocol
(Jeffay, 1992).
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7.2. Aperiodic Task Handling

When real-time systems include soft aperiodic activities to be scheduled together with hard
periodic tasks, RM and EDF show a significant difference in achieving good aperiodic
responsiveness. In this case, the objective is to reduce the aperiodic response times as much
as possible, still guaranteeing that all periodic tasks complete within their deadlines.

Several aperiodic service methods have been proposed under both algorithms. The com-
mon approach adopted in such cases is to schedule aperiodic requests through a periodic
server, which allocates a certain amount of budget Cs , for aperiodic execution, in every pe-
riod Ts . Under RM, the most used service mechanisms are the Deferrable Server (Lehoczky
et al., 1987; Strosnider et al., 1995), and the Sporadic Server (Sprunt et al., 1989), which
have good responsiveness and easy implementation complexity. Under EDF, the most effi-
cient service mechanism in terms of performance/cost ratio is the Total Bandwidth Server
(TBS), proposed by Spuri and Buttazzo (1994, 1995, 1996).

The superior performance of EDF-based methods in aperiodic task handling comes from
the higher processor utilization bound. In fact, the lower schedulability bound of RM limits
the maximum utilization (Us = Cs/Ts) that can be assigned to the server for guaranteeing
the feasibility of the periodic task set. As a consequence, the spare processor utilization that
cannot be assigned to the server is wasted as a background execution. This problem does
not occur under EDF, where, if Up is the processor utilization of the periodic tasks, the full
remaining fraction 1 − Up can always be allocated to the server for aperiodic execution.

A different approach used under RM to improve aperiodic responsiveness is the one
adopted in the Slack Stealing algorithm, originally proposed by Lehoczky and Ramos-
Thuel (1992). The main idea behind this method is that there is no benefit in completing
periodic tasks much before their deadlines. Hence, when an aperiodic request arrives, the
Slack Stealer steals all the available slack from periodic tasks (pushing them as much as
possible towards their deadlines) and uses the slack to execute aperiodic requests as soon
as possible. Although the Slack Stealer performs much better than the Deferrable Server
and the Sporadic Server, it is not optimal, in the sense that it cannot minimize the response
times of the aperiodic requests.

Indeed, Tia et al. (1996) proved that, if periodic tasks are scheduled using a fixed-
priority assignment, no algorithm can minimize the response time of every aperiodic re-
quest and still guarantee the schedulability of the periodic tasks. The same is not true for
EDF, as discussed below. In particular, the following theorems were proved in Tia et al.
(1996):

Theorem 3 [Tia-Liu-Shankar]. For any set of periodic tasks ordered on a given fixed-
priority scheme and aperiodic requests ordered according to a given aperiodic queueing
discipline, there does not exist any valid algorithm that minimizes the response time of every
soft aperiodic request.

Theorem 4 [Tia-Liu-Shankar]. For any set of periodic tasks ordered on a given fixed-
priority scheme and aperiodic requests ordered according to a given aperiodic queueing
discipline, there does not exist any on-line valid algorithm that minimizes the average
response time of the soft aperiodic requests.
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Figure 14. Performance of the TB(N ) against the Slack Stealer.

Notice that Theorem 3 applies both to clairvoyant and on-line algorithms, whereas
Theorem 4 only applies to on-line algorithms. These results are not true for EDF, where
otpimal algorithms have been found for minimizing aperiodic response times. In particular,
the Improved Total Bandwith server (ITB) (Buttazzo and Sensini, 1999) assigns an initial
deadline to an aperiodic request according to a TBS with a bandwidth Us = 1 − Up. Then,
the algorithm tries to shorten this deadline as much as possible to enhance aperiodic re-
sponsiveness, still maintaining the periodic tasks schedulable. When the deadline cannot
be furtherly shortened, it can be used to schedule the task with EDF, thus minimizing its
response time. The algorithm that stops the deadline shortening process after N steps is
denoted as TB(N ). Thus, TB(0) denotes the standard TBS and TB∗ denotes the optimal
algorithm which continues to shorten the deadline until its minimum value.

Figure 14 shows the performance of the Slack Stealer against TB(0), TB(1), TB(3), and
TB∗ as a function of the aperiodic load, when the periodic utilization is Up = 0.85. The
periodic task set has been chosen to be schedulable both under RM and EDF. As can be
seen from the plots, the Slack Stealer performs better than the standard TBS. However, just
one iteration on the TBS deadline assignment, TB(1), dominates the Slack Stealer.

When on-line admission control of aperiodic tasks is performed through a utilization
bound, the difference between fixed and dynamic priority scheduling is even more sig-
nificant. In fact, Abdelzaher et al. (2004) proved that the aperiodic utilization bound is
(2 − √

2) � 0.586 for Deadline Monotonic scheduling, and 1 for EDF.

7.3. Resource Reservation

The problem caused by execution overruns can be solved by enforcing temporal isola-
tion among tasks through a resource reservation mechanism in the kernel. This issue has
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been investigated both under RM and EDF and several approaches have been proposed
in the literature. Under RM, the problem has been investigated by Mercer et al. (1993),
who proposed a capacity reserve mechanism that assigns each task a given budget in ev-
ery period and downgrades the task to a background level when the reserved capacity is
exhausted.

Under EDF, a similar mechanism has been proposed by Abeni and Buttazzo, through
the Constant Bandwidth Server (Abeni and Buttazzo, 1998, 2004). This method also uses
a budget to reserve a desired processor bandwidth for each task, but it is more efficient in
that the task is not executed in background when the budget is exhausted. Instead a deadline
postponement mechanism guarantees that the used bandwidth never exceeds the reserved
value.

Resource reservation mechanisms are essential for preventing task interference during
execution overruns, and this is particularly important in application tasks that have highly
variable computation times (e.g., multimedia activities). In addition, isolating the effects
of overruns within individual tasks allows relaxing worst case assumptions, increasing
efficiency and performing much better quality of service control.

8. Conclusions

In this paper we compared the behavior of the two most famous policies used today for
developing real-time applications: the RM and the EDF algorithm. Although widely used,
in fact, there are still many misconceptions about the properties of these two scheduling
methods, mainly concerning their implementation complexity, the runtime overhead they
introduce, their behavior during transient overloads, the resulting jitter, and their efficiency
in handling aperiodic activities. For each of these issues we tried to confute some typical
misconception and tried to clarify the properties of the algorithms by illustrating simple
examples or reporting formal results from the existing real-time literature. In some cases,
specific simulation experiments have also been performed to verify the overhead introduced
by context switches, the response time jitter, and the effectiveness in improving aperiodic
responsiveness.

In conclusion, the real advantage of RM with respect to EDF is its simpler implemen-
tation in commercial kernels that do not provide explicit support for timing constraints,
such as periods and deadlines. Other properties typically claimed for RM, such as pre-
dictability during overload conditions, or better jitter control, only apply for the highest
priority task, and do not hold in general. On the other hand, EDF allows a full processor
utilization, which implies a more efficient exploitation of computational resources and a
much better responsiveness of aperiodic activities. These properties become very important
for embedded systems working with limited computational resources, and for multimedia
systems, where quality of service is controlled through resource reservation mechanisms
that are much more efficient under EDF. In fact, most resource reservation algorithms are
implemented using service mechanisms similar to aperiodic servers, which have better
performance under EDF.

Finally, both RM and EDF are not very well suited to work in overload conditions and to
achieve jitter control. To cope with overloads, specific extensions have been



24 BUTTAZZO

proposed in the literature, both for aperiodic (Buttazzo and Stankovic, 1995) and peri-
odic (Koren and Shasha, 1995) load. Also a method for jitter control under EDF has been
addressed in Baruah et al. (1999) and can be adopted whenever needed.

Note

1. The hyperperiod is defined as the smallest interval of time after which the schedule repeats itself and it is equal
to the least common multiple of the task periods.
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