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Abstract 
 
Employing the poroelastic theory of acoustic waves in gels, the ultrasound (US) propagation in a gel medium 
filled by poroelastic spherical cells is studied. The equation of fast compressional wave, the phase velocity 
and the attenuation as a function of the elasticity, porosity and concentration of the cells into the gel matrix 
are investigated. The outcomes of the theory agree with the preliminary measurements done on PVA gel 
scaffolds inseminated by porcine liver cells at various concentrations. The feasibility of a non-invasive tech-
nique for the health assessment of soft biological tissues steaming by the model is analyzed. 
 
Keywords: Ultrasound, Bi-Phasic Model of Living Tissues, Non-Invasive Ultrasound Assessment, 

Poroelastic Ultrasounds in Soft Tissues 

1. Introduction 
 
The present work is motivated in obtaining a reliable 
model for ultrasound (US) wave propagation in natural 
soft tissues [1-4]. 

In preceding works the authors validated a poro-elastic 
model for US propagation in synthetic as well as natural 
gels such as those of the extra-cellular matrix of soft tis- 
sues [4]. 

Even if the structure of a synthetic hydrogel is some- 
how different from that of a soft biological mesh, there 
exists a strong analogy between the macroscopic re- 
sponse of charged hydrogels and that of living tissues, 
such as for derma and cartilage [5], in the diffusional 
wave limit. 

On the base of this analogy, the US bi-phasic model for 
soft tissues appears to be a promising tool for the deve- 
lopment of non-invasive health assessment methods and 
for the study and the characterization of tissue mimicking 
phantom for US thermal therapy [6-8]. 

This fact is confirmed by the current research that 
clearly shows how the knowledge of the link between the 
poroelastic characteristics of a biological tissue and its 
acoustical behavior is a source of information that can be 
used for non-invasive investigations [8-10].  

Nowadays, the US propagation in natural hydrogels, 
mostly composed of water, is usually modeled by means 

of the wave equation that holds for liquids [11].  
This approach is poorly satisfying because it com- 

pletely ignores the liquid-solid arrangement, and it does 
not completely explain the experimental behavior of the 
US propagation.  

Moreover, there are many discrepancies between US 
propagation in water and in soft tissues both for trans- 
verse and longitudinal acoustic waves [1]. 

Actually, tissues are modeled as water solutions of 
natural polymers and proteins that may have bounded 
resonant states [1] with the US attenuation showing a fre- 
quency (ν) law [12]: ν(1 + ), with  ranging between 1 4  
and 1 2  ( = 1 for water).  

At high frequencies the classical poroelastic theories, 
mainly developed for geological studies, [13-22] lead to 
a dependence of attenuation with  = 1 without any pos- 
sibility to have a fractional value of . 

The recent gel bi-phasic model for US [4] shows that 
is possible to have a frequency dependence of attenua- 
tion with fractional values of  as a direct consequence 
of the presence of bounded water onto the polymer net- 
work that affects the friction behavior of the fluid against 
the solid matrix. 

At high frequencies the bounded water bearing lowers 
the friction between the free water and the polymer ma- 
trix leading to the peculiar behavior of the US phase ve- 
locity and attenuation of gels. 
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Actually, the natural tissues are far to be homogenous 
but may present anisotropies, blood vessels and cells. In 
the present work spherical cells are introduced into the 
substrate of a homogeneous extra-cellular hydrogel ma- 
trix. The biological cells are designed as poro-elastic 
spheres, endowed by internal and superficial elasticity as 
well as permeability, and are assumed to be isotropically 
dispersed in the hydrogel environment. The model is de- 
veloped in the continuum limit approach for US wave- 
length much bigger than the cells dimension (typically 
up to about 10 MHz). 

The model presented here discloses how the behavior 
of the US propagation is linked to the arrangement of the 
biological medium and its poroelastic characteristics.  

This papers shows that this fact can be used for the 
development of non-invasive health assessment techni- 
ques for tissues and organs by monitoring the elasticity, 
porosity and water content of the cells and the extra- 
cellular matrix. The detection of the liver cirrhosis is the 
short term application proposed in this paper [6]. 
 
2. Poro-Elastic US Wave in Soft Living 

Tissues 
 
2.1. US Wave in Highly Hydrated Gels 
 
The poroelastic wave equations for hydrogels can be ob- 
tained by introducing the appropriate fluid network inte- 
raction to take into account for the bounded water pre- 
sence around the polymer chains [4].  

Under the assumption that the bounded water volume 
fraction is very small and that the “polymer-bounded 
water aggregate” constitutes the solid matrix of the bi- 
phasic mean, it is possible to obtain with the following 
poroelastic motion equations [4] 
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e                      (2) 

where ij is the solid strain tensor, eαα is the trace of the 
liquid strain tensor, e

  is the trace of the bounded wa- 
ter strain tensor; P, Q, and R are the poroelastic medium 
constants that can be measured by means of jacketed and 
unjacketed experiments [18]; β is the water volume frac- 
tion of the hydrogel,  is the volume fraction of bounded 

water, f is the inverse of the hydraulic permeability of the 
matrix [18], and 11, 12 and 22, are the mass densities 
defined as: 11 + 212 + 22 = , 11 + 12 = (1 – βe)s, 
12 + 22 = βe f; where s and f represent the solid and 
the liquid mass densities respectively, while  is the total 
mass density of the biphasic medium. Moreover, the ela- 
stic constant  and the friction coefficient  describe the 
polymer-bounded water interaction. 

The above equations are derived by assuming that [4]: 
1) The inertial effect of bounded water can be disre- 

garded;  
2) The trace of the strain tensor of the polymer   

approximates that one of the solid aggregate. 
Moreover, by introducing the condition that the water 

content in the hydrogel is very high, further approxima- 
tions can be introduced into the wave equations such as 
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For the fast plane wave ( )x i kx tCe e 
   Equation 

(1a) reads 
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where the complex friction coefficient of the gel F() 
reads 
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Leading, by Equation (6a), to the characteristic equa-
tion 
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is the pure elastic longitudinal US wave velocity in the 
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gel,  1 2

f fc R   the US velocity in the intermolecu-  

lar fluid (free water) and  
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Assuming that the polymer-bounded water viscosity 
() follows the frequency behavior [4]  
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Thence, in a hydrogel with a infinitely dilute polymer 
matrix (βe  1 and 11 1  ) Equations (10) and (11) read 
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where  since typically (/k)2 is very small (of or- 
der of 10–3 in hydrogels), and 
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Finally, when the polymer network is not very diluted, 
but has a real finite concentration, the series expansion as 
a function of the fractional polymer volume (1 - β) can 
be introduced into Equation (12) to read [4]  
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2.2. US Wave Equation in a Hydrogel with 

Dispersed Cells 
 

When we describe a tissue as a hydrogel biphasic mean 
containing cells, we have to refer to the overall tissue con- 
stants βt, Rt, ft, Ft and so on, into the Equations (6a)-(6c) 
that for plane waves lead to 
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3
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The constants βt Rt and ft affect the phase velocity of 
the elastic limit, while βt and Ft affect the US absorbance. 
As far as it concerns βt, it influences the US attenuation 

Berryma  matrices [23] for which 11  (1 – t)s.  
By defining  as the fractional volume of cells in

through 11 as it can be explicitly shown in diluted 

n
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where βc is the fractional cells free water content. 

.3. Us Speed in Natural Tissue 

 order to investigate the US phase velocity in the hy-

ompressibility modulus R  
an

ng that the velocity cft = R /ft slightly changes 
as

 
2
 
In
drogel-cells syncytium we need to determine the biphasic 
parameters concerning the inertial and the elastic terms 
in the motion Equations (22). 

As far as it concerns the c t

d the mass density ft of the syncytium they are influ- 
enced by the chemical (e.g., ionic strength) and mass 
composition of the cells that usually differ from that ones 
of the extra-cellular matrix. Thence, cft = (Rt/ft)

1/2 and 
the elastic phase velocity ct0 are function of cell concen- 
tration . 

Assumi t

 a function of the cells concentration , the series ex- 
pansion 
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can be retained for the tissue.  
uations (18) and (21) for a 

bi
Moreover, analogously to Eq
ological tissue we can assume 
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and, hence, 
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where ct0 is the pure elastic phase velocity in the tissue 

.4. Us Attenuation in Natural Tissue 

 this section we derive the complex friction coefficient 

duc-
ta

and t is the absorbing coefficient we are going to calcu- 
late in the next paragraph. 
 
2
 
In
F() (the inverse of hydraulic conductance of the syn- 
cytium) that is responsible for the US attenuation.  

We assume the following complex hydraulic con
nce: 

1)  
1 1

gg F    for the extra-cellular hydrogel; 

12)  
1

bbF     for the internal jelly cell body; 

3)  
1

mF 
  for the cel

 sinu y /2 we assume 

ls membrane. 

For soidal inputs of frequenc
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that  
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where the real part Km is the hydraulic permeability of 
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a 

the cell membrane and where the imaginary one is its 
superficial compliance proportional to the inverse of 
Young’s elastic modulus Em. In the case where the cell 
membrane thickness is much smaller than the cell dia- 
meter, b–1 represents the membrane thickness. 

Since the problem of sinusoidal electrical 
ready been solved [24], we can easily find the overall 

conductance of the tissue by making use of the electric- 
hydraulic analogy.  
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In order to apply the above model to a bio
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l membrane of the cells has a very 
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e we need to single out the relative magnitude of the 
hydraulic constants.  
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w hydraulic permeability (it separates the inner cell 

body from the external hydrogel matrix), we expect that 
the frequency m/2 is not very high. 

Therefore, at high frequencies 1
mm Km b E   , 

th e prevails on its per

1
m

e compliance of the cell membran -
meability and it follows that 

1 1
m m mF K i bE i bE            (34) 

that 

 1 1 1 11bm b b mF F F i baE          (35) 

and that the hydraulic admittance of the tissue reads 

 
  

1 12(1 ) (1 2 )      
1 1

1 1 1 1(2 ) (1 ) 1  

g b

g

g b b m

F
ai b E


     

 

   
 

   
 

(36) 

If we assume 1
bF   
 to r

to have the typical form of E
tio

qua- 
ns (15) and (16) ead 

 ( ) 0b b b gbF


     ,         (37) 

with 02πgb b fb   , it follows that 

    1 1 1  1 1 11 1bm b b m b b gbF ai bE  i               

(38) 
where  

0b mE ab b               (39) 

Since  < 1, at very high frequencies,  

    1 1

bb g

  


  

the imaginary part of Fbm tends to vanis , so that  h

bm bF                  (40) 

and hence  

 
 

1 1

1 1

1

2(1 ) (1 2 )

(2 ) (1 )

g b

g

g

F
   


   

 
 



  
 

  
 

1
b


     (41) 

The friction coefficient of the syncytium given by the 
expression (41) (as a whole) leads to the US attenuation 
that reads  

   2 1
) 112 (1 )(1 )t t ft ek c c F         Re  (42) 

where  represents the normalized difference of water 
content between the cells and the extra-cellular matrix 
that reads 

   1e c e                 (43) 

It is useful to note that for βe close to 1,  can be nega-
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tiv

change of the normalized 
U

g

e and even bigger than one. 
In Figure 1 it is shown the 

S attenuation as a function of the fraction of the cell 
volume  for two values of the permeability ratio be-
tween cell body and the extra-cellular matrix: b/g = 
0.01 and b/g = 0.1. 

In the case b  , the overall friction coefficient  
re


ads 

  1 1 1 2 1gF                 (44) 

while for b g   reads 

   1 1 1  1 2gF                (45) 

When the cellular volume is a small part 
vo

of the total 
lume of the tissue ( 1  ) it follows that 

   1 1 1 11 2 3 2F           1 1
g g b g b     (46) 

That for b g   leads to 

 1 3gF 1 1    ,           (47) 

while for b g   gives 

 1F   1 1 3 2g            (48) 

In Figure 2 it is shown the change of 
U

the normalized 
S attenuation as a function of the fraction of the cell 

volume  for three values of the permeability ratio: 
100b g   , 10b g    2b g   . 

 3 it  tIn Figure is shown he US attenuation for a value 
of  = 0.80 typical of the liver tissue as a function of the 
permeability ratio b g   varying from 10–2 to 100. 

By comparing fo (47) with (48) we can see thrmula at a 
very different behavior for the US attenuation happens 
whether or not b  is bigger than g . The angular coe- 
fficient of the 48) changes from 
positive (+3) for b g

-linear relations (47, 
  , to negative (–3/2) for  

b g   
 
3. Experimental 

.1. Materials and Methods 

el samples were prepared dissolving 0.5 ml of an aque- 

0˚C for 24 h 
an

va
 

 
3
 
G
ous solution of sodium alginate at a concentration of 2% 
by weight (Alginic acid sodium salt from brown algae, 
Sigma A0682-1006) in 0.5 ml of CaCl2 solution (FLU- 
KA 06991) at a concentration of 0.4% by weight to ob- 
tain the cross-liking of the polymer matrix. 

The gel samples were refrigerated at –2
d then lyophilized at –40˚C under vacuum for 12 hours.  
The gel samples were inseminated by liver cells at 
rious densities: 105 cells/cm3, 2 × 105 cells/cm3, 5 × 105 

cells/cm3, 106 cells/cm3, 2 × 106 cells/cm3, 5 × 106 cells/cm3, 

 

Figure 1. Change of the normalized US attenuation as a 
function of the fraction of the cell volume  for two values of 
the permeability ratio: b/g = 0.01 and b/g = 0.1. 
 

 

Figure 2. Change of the normalized US attenuation as a 
function of the fraction of the cell volume  for the values of 
the permeability ratio: b/g = 100, b/g = 10, b/g = 2. 
 

 

Figure 3. US attenuation for  = 0.80 as a function of the 
permeability ratio b/g varying from 10–2 to 100. 
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then in a 

lses were generated by the Panamet- 
ric

in the ex- 
pe

nal registration and conditioning data were co- 
lle

amples were totally dehydrated in an oven 
at

duced by 

using the m

placed into an incubator at for 30 minutes and 
refrigerator at 4˚C. 

The ultrasonic pu
s® Pulser model 5052PR coupled with a PVDF pie- 

zoelectric transducer obtained in our laboratory follow- 
ing the Naganishi e Ohigashi procedure [25].  

The frequencies of the ultrasonic wave used 
rimental test were of 1.4 MHZ and 1 MHz. The dis- 

tance between the transducer and the reflecting iron layer 
behind the samples was measured with an accuracy of 
0.01 cm. 

Echo Sig
cted with a routine and carried out with the LabView™ 

software on a computer through a National Instruments® 
DAQ device.  

Finally, the s
 40˚C with desiccant silica gels, to measure their poly- 

mer content and the US speed in the dry solid. 
The US absorption coefficient “” was de

athematical relation 0

(2 )

1
ln

2 d

A

d A

A0 and A(2d) represent both the initial and final wave am- 

  , where 

plitude, respectively, and where d is the sample thickness. 
The water volume fraction of the hydrogel samples 

 wV V V  , where wV  and w p pV  are the volume 
lymer resp ctively was obtained by 

means of the respective weight fractions wP  and 
of water and po e , 

pP  
such as  wP P P    since the water nd PV  
specific de ose each other. 

The fitting of the experimental results wer

w

nsities are very 
e carried out 

by

.2. Measurement of Ultrasound Wave 

 
troducing the measured values βe = 0.9 for our extra- 

is value in Equation (42), the best- 
fit

p

cl
 a A

 means of a multiple parameter best fit utilizing an 
appropriate routine in MATLAB®7.0. 
 
3

Attenuation 

In
cellular PVA scaffold and βc = 0.89 for the cells in (43), 
we obtain   0.1.  

By introducing th
ted curve of experimental US attenuation in Figure 4 

has been obtained for the ratio 6.54b g   . 
The result put in evidence t pehat once the rmeability 

of the extra-cellular gel scaffold 1
g
  is known or mea- 

sured, the US poro-elastic model a s deriving the per- 
meability of the cellular bulk 1

b

llow
 . 

 
4. Discussion 

he acoustic bi-phasic model for soft living tissues de- 
 
T
scribes the US propagation in terms of collective cells 
and extra-cellular matrix characteristics such as: 1) The 
permeability and the elasticity of the cells and of the extra-  

 

Figure 4. Experimental values of the normalized US at- 

ellular matrix; 2) The percentage of cellular volume of 

ave speed, the model does 
no

tenuation in PVA-porcine liver cells composites with the 
best fit obtained for b/g = 6.54 as a function of the frac-
tion of the cell volume . 
 
c
the tissue; 3) The fractional volume of water of cells and 
of the extra-cellular matrix.  

As far as it concerns the w
t make an explicit derivation of the coefficients A1 and 

A2 by the constituents of the cellular syncytium. On the 
contrary, the model details how the US attenuation de-
pends by the cell elasticity and permeability through the 
term  1Re F  .  

By using t s inhi formation, it is possible to define an 
ex

r, since the poro-elastic characteristics of the 
ce

pe of the absorbance frequency 
sp

perimental method for the measurement of the perme-
ability of the cells once that one of the external scaffold 
is known. 

Moreove
lls and extra-cellular matrix may appreciably change in 

pathological states (e.g. as in the cirrhosis) in principle, 
the health state of biological tissues can be tracked by 
means of ultrasounds.  

In particular, the sha
ectrum determined by the characteristic frequencies 

0 2πgb b fb   , 

0 b mE ab b   

and  
1 m m mK E b   

can give information about the health state of cells and 

. Concluding Remarks 

he bi-phasic continuum model for US propagation in 

tissues (as a sort of eco-biopsy) on the basis of epidemi-
ological comparisons.  
 
5
 
T
hydrogels has been used to build up the acoustic wave 
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odel shows that the absorption of US is sensitive 
to

model shows that the spectrum of US absorption 
in

minary measurements 
do
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