
Network Traffic Processing with PFQ
Nicola Bonelli, Stefano Giordano, Senior Member, IEEE, and Gregorio Procissi

Abstract—The paper presents PFQ, a high performance frame-
work for packet processing designed to flexibly handle network
applications parallelism and making traffic processing safe and
easy. PFQ is an open–source module for the Linux kernel that
combines software accelerated packet I/O to in–kernel early
stage packet processing and fine–grained distribution to network
applications and physical devices. PFQ does not require any
modification to network device drivers and exposes programming
interfaces to multi–threaded applications natively designed to run
on top of it, as well as to legacy monitoring tools using the
pcap library. The results show that the flexibility and backward
compatibility provided by PFQ do not impact its processing
performance that, in fact, reaches line rate figures in cases of
pure speed tests and real practical monitoring use cases on 10+
Gbps links.

Index Terms—Network Monitoring, Concurrent Program-
ming, Multi–Core Architectures, Multi–Queue NICs, Early Stage
Processing, Application Offload.

I. INTRODUCTION

NETWORK applications in charge of performing any kind
of processing on real data must be able to handle huge

volumes [1] of heterogeneous traffic on high–speed (10+
Gbps) communication links. This is commonly the case of
network monitoring applications, Intrusion Detection and Pre-
vention Systems, routers, firewall and so on that must operate
on–line with packet arrivals and process data in streaming
mode to catch–up with traffic pace and promptly trigger the
necessary operations.

High–speed data availability and efficient data processing
call for (at least) two complementary – and somewhat orthog-
onal – features for a network device in charge of running one
of the above listed network applications: high–speed traffic
capturing and effective dispatching mechanisms to upper level
applications.

From a technological point of view, in the last years the evo-
lution of commodity hardware is pushing parallelism forward
as the key factor to allow software–based solutions to attain
hardware–class performance while still retaining its advan-
tages. Indeed, on one side commodity CPUs provide more and
more cores, while on the other side a new generation of NICs
support multiple hardware queues that allow cores to fetch
packets concurrently. For these reasons, commodity PCs have
recently become increasingly popular to be the underlying
hardware platforms for the development of complex and high–
performance network applications, switches, middleboxes and
so on.

As CPU speed has nearly reached saturation values, parallel
processing emerges as the natural way to actually let network

Nicola Bonelli, Stefano Giordano and Gregorio Procissi are with Diparti-
mento di Ingegneria dell’Informazione, Università di Pisa and CNIT, Via G.
Caruso 16, 56122, Pisa, Italy e-mail: (nicola.bonelli@for., stefano.giordano@,
gregorio.procissi@)unipi.it

applications scale up to multi–gigabit (10/20/40 Gbps) line
speed. Indeed, almost any non–trivial monitoring application
in charge of operations like reconstructing TCP flows, com-
puting statistics, performing DPI and protocol classification,
etc. requires at least a few thousands of clock cycles per each
observed packet. In most cases, a large amount of clock cycles
is wasted in accessing the data structures that contain the
state of the flows under investigation rather than in packet
elaboration itself. This way, even a simple application that
consumes around 3000 clock cycles per packet cannot process
more than 1 million of packets per second on a 3 GHz core.
In all such cases, distributing the workload to multiple cores
is the only viable approach to improve speed performance and
maintain the application usability.

This paper presents a general purpose framework named
PFQ for high–speed packet capturing and distribution to
network devices and applications (endpoints) running on Linux
based commodity PCs. The primary objective of PFQ is to
handle the application parallelism by allowing fine–grained
configuration of packet dispatching from the capture interface
to user–space processing applications.

The PFQ project [2] started a few years ago and was
born as a Linux kernel capture engine [3]. Since then, the
platform has changed quite a lot and many features have been
added, including an in–kernel programmable stage for early
processing [4]. In its current shape, PFQ enhances network
I/O capabilities and enables easy configuration for user–space
parallel processing while preserving the host system normal
behavior (including device drivers and kernel data structures).
As such, PFQ masquerades the low level capture complexity
and exposes a set of processing abstractions to new multi–
threaded applications or to legacy single process programs.

The reminder of the paper is organized as follows. Section
II reports on the current background on traffic capture and
monitoring and focuses on the specific motivations for using
PFQ. Section III gives a high level view of the system and
its logical design, while section IV delves into the details
of the PFQ software acceleration. Section V describes the
programmable layer of PFQ where early stage processing
and distribution is performed, while section VI presents the
physical and logical interfaces of PFQ towards the user–space
world. Section VII describes PFQ transmission capabilities;
the pure system speed is then assessed in Section VIII while
a set of practical use–cases are provided in section IX along
with their performance. Finally, section X concludes the paper.

II. BACKGROUND AND MOTIVATIONS

The investigation on software–based approaches to traffic
capturing, monitoring and – more generally – processing run-
ning on commodity PCs has recently emerged as an appealing



topic in the research community as a viable and cheap alter-
native to traditional hardware solutions. At the lowest level,
to overcome the performance limitations of general purpose
operating systems, many techniques have been proposed to
accelerate packet capturing. Most of them rely on bypassing
the entire operating system, or at least its network stack
functions. An extensive comparison of such techniques along
with guidelines and possible improvements to reach higher
performance can be found in [5] and more recently in [6] and
[7].

PF RING [8] was one of the first software accelerated
engines. It uses a memory mapped ring to export packets
to user space processes: such a ring can be filled by a
regular sniffer or by modified drivers, which skip the default
kernel processing chain. PF RING works with both vanilla
and aware drivers, although its performance makes it more
suitable for 1 Gbps links. PF RING ZC (Zero Copy)1 [9] and
Netmap [10], instead, memory map the ring descriptors of
NICs at user space, allowing even a single CPU to receive
64 bytes long packets up to full 10 Gbps line speed. A step
forward to network programming is represented by DPDK [11]
that, besides accelerating traffic capture through OS bypassing,
adds a set of libraries for fast packet processing on multicore
architectures for Linux. OpenOnLoad [12] provides a high
performance network stack to transparently accelerate existing
applications. However, its use is strictly limited to SolarFlare
products.

HPCAP [13] is a packet capture engine designed to opti-
mize incoming traffic storage into non–volatile devices and
to provide timestamping and user–space delivery to multiple
listeners.

Out of the above listed frameworks, DPDK, PF RING ZC
and Netmap hit the best performance in capturing and bringing
packets to user–space applications at multi–gigabit line rates,
even with a single capturing CPU.

At a logically higher level, many interesting works have
been carried out for designing software–based switches and
routers: although their scope is different, several common
grounds with network monitoring are easily found, the most
important being the need for de–queueing packets at wire
speed.

Packetshader [14] is a high performing software router
that takes advantage of GPU power to accelerate computa-
tion/memory intensive functions. Egi et al. [15] investigate on
how to build high performance software routers by distributing
workload across cores while Routebricks [16] proposes an
architecture to improve the performance of software–based
routing by using multiple paths both within the same node
and across multiple nodes forming a routing cluster.

The last two works rely on the Click modular router [17],
a widely known framework that allows to build a router by
connecting graphs of elements. Several works have recently
focused on the acceleration of Clicks by means of some of the
above listed I/O frameworks as in [18] and [19]. Furthermore,
the Click approach has recently been complemented to take
advantage of GPU computational power in Snap [20]. The

1The successor of the formerly known PF RING DNA

Click modular principle is borrowed by Blockmon [21], a
monitoring framework which introduces the concept of prim-
itive composition on a message passing based architecture.
Finally, the Snabb switch [22] combines the kernel bypass
mode of Ethernet I/O with the use of the Lua scripting
language to build a fast and easy to use networking toolkit.

So, why PFQ?
The introduction of a new generation of network cards with

multiple hardware queues has pushed a significant evolution
of existing I/O frameworks in order to support Receive Side
Scale (RSS) [23] technology. As it will be elaborated upon in
the following, RSS uses the Toeplitz hashing mechanism to
split the incoming traffic across multiple hardware queues for
parallel processing. The hash is computed by the network card
itself over the canonical 5–tuple of IP packets and traffic is
spread out among cores maintaining per–core uni–directional
flow coherency by default. In addition, the hash algorithm
can be properly tweaked to achieve bi–directional flow co-
herency [24]. However, in many real cases, a more refined
distribution criteria is required by applications and multi–core
processing management merely based on RSS turns out to be
insufficient. As a simple example, in order to run multiple
instances of the well known NIDS application Snort [25],
a special symmetric hash function to achieve network–level
coherency is required to properly detect cross–flow anomalies
and attacks within a specific LAN.

Slightly more complex examples include service monitoring
applications that require either data and control plane packets
to be processed by the same thread/process (e.g. RTP and
RTCP or SIP) or tunneled protocols (IPIP, GRE, GTP),
whereas RSS would spread traffic according to the tunnel
headers instead of the inner packets fields.

PF RING supports packets distribution through the com-
mercial PF RING ZC library2. According to the documenta-
tion [26], the library is equipped with algorithms for dispatch-
ing packets across endpoints. Such functions take an extra
user–defined callback to fully specify the balancing behavior
(on the basis of a hashing scheme). In addition, to ease the
implementation of such callbacks, the library provides helper
functions that compute a symmetric hash on top of IP packets,
possibly transported by GTP tunnels.

Similarly, the companion Distributor library of DPDK [27]
implements a dynamic load balancing scheme. The module
takes advantage of the RSS tag stored in the mbuf structure
to sequence and dispatch packets across multiple workers.

Both the above solutions are designed to embed a packet
distribution machinery into applications in order to implement
of multi–threaded packet processing. However, such solutions
are not fully transparent to the applications which, in turn,
require to be adapted to take full advantage of these mecha-
nisms.

As previously mentioned, the PFQ project started in 2011
and appeared first in [3]. Since its original version, PFQ
was designed as a software accelerated capture engine with a
basic in–kernel steering stage targeted at allowing user–space
applications defining their arbitrary degree of parallelism.

2The evolution of the formerly known libzero library



Nevertheless, the initial version of PFQ required modified
network device drivers to reach high performance.

The current version of PFQ, instead, is compatible with
a wide plethora of network devices as it only requires the
original vanilla drivers to be recompiled with a script included
in the package to achieve full acceleration. However, PFQ
can work with binary vanilla drivers as well, although I/O
performance may drop depending on a number of factors,
including driver and kernel versions. As an example, the
use of the binary 10G ixgbe Intel driver shipped with Linux
kernel 3.16 allows to hit slightly less than half of the optimal
capturing rate.

Generally speaking, the use of existing vanilla drivers might
result in limited performance figures whenever their quality
is not adequate. However, nothing prevents PFQ from using
modified/optimized drivers to further boost performance.

In addition, PFQ is equipped with an in–kernel processing
stage programmable through the functional language pfq–lang,
available as an embedded Domain Specific Language (eDSL)
for the C++ and the Haskell languages. To further improve
usability, an experimental compiler also allows pfq–lang in-
structions to be scriptable and placed in strings, configuration
files and JSON descriptions. As a result, no programming
skill is needed to accelerate legacy applications as they do
not require any modifications.

The pfq–lang language is extensible and pluggable. Addi-
tional in–kernel functions can be added to the language in sep-
arated kernel modules and loaded on the fly as plugins. More-
over, pfq–lang computations are dynamic and hot–swappable
(i.e., run–time atomically upgradable) to be used, for instance,
in response to either network events or configuration updates.
As a result, packets can be filtered, logged, forwarded, load-
balanced and dispatched on a per–packet basis to application
sockets, to generic endpoints or even to the kernel. This allows
to run a specific accelerated PFQ application concurrently with
a standard one (e.g., the standard OVS kernel module), even
on the same NIC, without changing a single line of code.
As a whole, up to 64 multi–threaded applications can be
bound to the same network device, each of them receiving
an independent and fully configurable quota of the overall
underlying traffic.

This paper aims at providing a complete overview of PFQ
by adding a detailed description of its architecture and its soft-
ware acceleration internals to the functional engine described
in [4] and therein assessed in isolation only. In addition, a set
of practical use–cases is presented to show how PFQ can be
used in practice and to evaluate its effectiveness in accelerating
new and legacy applications.

III. THE SYSTEM ARCHITECTURE

The architecture of PFQ as a whole is shown in Figure
1. In a nutshell, PFQ is a Linux kernel module designed to
retrieve packets from one or more traffic sources, make some
elaborations by means of functional blocks (the λi blocks in
the picture) and finally deliver them to one or more endpoints.

Traffic sources (at the bottom end of the figure) are rep-
resented by Network Interface Cards (NICs) or – in case of

NIC

App

Kernel 

Network Stack

Path to endpoint

Path from source

NIC

NIC

App

λ1

App

NIC

λ1 λ1 λ2

batch queue

socket queue

NIC

Sources

e
n
d
p
o
in
ts

endpoints

Figure 1. The PFQ system at–a–glance

multi–queue cards – by single hardware queues of network
devices.

Endpoints, instead, can be either sockets from user–space
applications (top end of the figure) or network devices, or even
the networking stack of the operating system itself (right end
of the figure) for ordinary operations (e.g., traditional routing,
switching etc.).

The low level management of NICs is totally left under the
OS control as the network device drivers are not modified.

A typical scenario for use of PFQ is that of a multi–threaded
network application in charge of monitoring traffic over one
or more network interfaces. Each thread opens a single socket
to the group of devices to monitor and receives a quota (or
all) of the packets tapped from the selected interfaces. On
their way to the application, packets come across functional
blocks, that may implement part of the application processing
machinery. The execution of such an early stage of elaboration
is instantiated by the application itself through a functional
eDSL. As a result, packets are finally delivered to the selected
endpoints.

It is worth noticing that PFQ does not bypass the Linux
kernel, but simply stands along with it. Packets directed to net-
working applications are actually treated by PFQ exclusively,
whereas packets destined to other system operations can be
transparently passed to the kernel stack, on a per packet basis.

Figure 2 depicts the complete software stack of the PFQ
package. The kernel module includes a reusable pool of socket
buffers and the implementation of a functional language along
with the related processing engine. In the user–space, the stack
includes native libraries for C++11-14 and C language, as
well as bindings for Haskell language, the accelerated pcap
library and two implementations of the eDSL for both C++
and Haskell.

A. Three layers of parallelism
The system architecture depicted in Figure 1 clearly reveals

three distinct levels of parallelism associated with three dif-



PFQ
C++11

pfq-lang 
DLS

libpcap

PFQ libc

Haskell FFI

pfq-lang 
DLS

socket buffer pool pfq-lang

Network Device Drivers

λ (functional engine)

kernel space

user space

Figure 2. PFQ software stack

λ

E

S

λ

E

S

λ

E

S

λ

E

S SS

λ

S

λ

E

S

λ

S

E

λ

E

S

E

λ

E

λ

E

S

λ

E

(a) (b) (c)

(d) (e)

Figure 3. Three layers of parallelism

ferent areas:
• at the low (hardware) level, where packets can be re-

trieved from multiple NICs and multiple queues of mod-
ern network cards;

• at the top level, where multi–threaded applications or
multiple single–threaded applications may want to pro-
cess packets with a different degree of parallelism;

• at the middle level, where multiple kernel threads run-
ning on different cores tap packets from network cards
and serve user–space applications, network cards or the
network stack of the OS.

The above levels of parallelism may additionally get combined
in several possible schemes, as shown in Figure 3 where
endpoints (E), functional engines (λ) and sources (S) can be
configured according to different degrees of parallelism.

Hardware parallelism. At the hardware level, modern NICs
(such as those based on the Intel 82599, X520 or X710 con-
troller) support multiple queues: multiple cores can therefore
receive and transmit packets in parallel. In particular, incoming
packets are demultiplexed by RSS technology [23] to spread
traffic among receiving queues by means of a hash function
computed over a configurable number of packet fields. Each
queue can be bound to a different core by properly setting its
interrupt affinity in order to balance the overall capture load
among the computation resources of the system.

In–kernel parallelism. Once interrupt affinity is set, capture

parallelism is enabled and each CPU is in charge of processing
a quota of the incoming traffic according to the RSS algorithm.

Here is where PFQ intervenes with its operations. PFQ runs
on top of ksoftirqd threads that retrieve packets in parallel from
network device upon receiving an interrupt. NAPI is used to
mitigate interrupt rate as in a standard Linux kernel. Hence,
the number of kernel threads in use, say i, equals the number
of NAPI contexts enabled on the system and throughout the
paper will be referred to as RSS = i (instead, when no
further specification is given, the term thread alone refers to
an application thread of execution).

The combined use of RSS and interrupt affinity allows a fine
grained selection of the NAPI kernel threads and the hardware
queues of network cards. At this stage, packet payloads are
transferred via DMA from the wire to RAM, and the Intel
DCA mechanism makes them available to the CPU cache
memory with no need for extra memory accesses.

Packets handled by PFQ are then processed through the
functional engines and optionally steered to endpoints accord-
ing to application specific criteria. Upon steering, however,
cache locality cannot be generally preserved as packet pay-
loads might be transferred to different cores. This is the nec-
essary price to pay to let user–space applications/threads run
truly in parallel and perform stateful computations (e.g. per–
user stats, per–mega flow processing, per–network monitoring,
etc.) independently of each other.

Overall, hardware parallelism turns out to be totally de-
coupled from the user–space applications which, in turn, only
see the PFQ sockets and the related APIs exposed by the
companion libraries.

The advantage of an in–kernel built–in engine is two–
fold: on one hand, it allows a fine-grained control over the
distribution process before packets are delivered to sockets
without extra packet copies. On the other hand, it is completely
transparent to applications (including legacy ones) which, in
turn, do not require any modification to perform a proper
parallel processing. In addition, the steering process brings
up kernel and network devices along with sockets, which
makes it suitable not only for traffic monitoring, but also
for more advanced networking applications such as packet
brokers, load–balancers, etc.

Application parallelism. At the top level, network appli-
cations (or more generally, endpoints) are allowed to receive
traffic from one or more network devices according to different
schemes. As already mentioned, the typical scenario is that of
a multi–threaded application in which each thread receives a
portion of traffic from one or more network devices. But one
may also think of multiple process instances (typically, legacy
applications) that run in parallel and receive a portion of the
underlying captured traffic as well. Or even a single process
collecting all of the traffic from multiple network devices.

As it will be elaborated upon in a few sections, all such
cases are flexibly handled by PFQ through the abstractions
of groups and classes that provide convenient extensions to
the concept of network socket in case of parallel processing.
Applications will only need to register their sockets to specific
groups, without any knowledge about the underlying configu-
ration.



In addition, multiple logical schemes from Figure 3 may
be instantiated at the same time as different applications may
run concurrently in order to process traffic from the same
set of network devices. PFQ can perfectly cope with this
scenario as different applications will use distinct groups that
run orthogonally among each other making any application
behave just as it were the only one running on the system.

IV. HIGH SPEED PACKET CAPTURE

This section describes the PFQ internals associated with
the operations involved in low level packet capture. As above
introduced, the design philosophy of PFQ is to avoid modifica-
tions to the network device drivers and their interfaces toward
the operating system.

If on one side the use of vanilla drivers allows a complete
compatibility with a large plethora of network devices, on the
other side it could raise performance issues. Indeed, the stan-
dard OS handling of packet capture cannot guarantee decent
performance on high speed links and successful projects like
PF RING ZC or Netmap have demonstrated the effectiveness
of driver modifications.

However, with the software acceleration techniques imple-
mented in PFQ it is still possible to achieve top class capture
figures while retaining full compliance with normal driver data
structures and operations. The impact of such acceleration
techniques will be thoroughly assessed in the corresponding
section of the performance evaluation results.

A. Accelerating vanilla drivers

The first performance acceleration technique introduced by
PFQ consists of intercepting and replacing the OS functions
invoked by the device driver with accelerated routines. This
way, the kernel operations triggered by the arrival of a packet
are bypassed and the packet itself gets under the control
of PFQ. This procedure does not require any modification
to the source code of NIC drivers which, in turn, only
need to be compiled against a PFQ header to overload at
compile time the relevant system–calls that i) pass pack-
ets to kernel (namely netif_receive_skb, netif_rx
and napi_gro_receive) and ii) are in charge of allo-
cating memory for the packet (e.g., netdev_alloc_skb,
alloc_skb, dev_alloc_skb, etc.).

Such a static function overloading does not introduce any
overhead. In addition, the whole operation is made easier
by the pfq-omatic tool included in the PFQ package that
automates the compilation and only needs the original source
code of the vendor device drivers.

B. Pool of socket buffer

The typical behavior of a network device driver is to allocate
a set of socket buffers (skbuffs) where the NIC can place
(via DMA) the payload of the packets received, together with
additional metadata (timestamp, etc.). Once the skbuffs are
ready, they can then be passed back to the network stack of
Linux.

To keep the full compatibility with standard driver oper-
ations and to allow a possible delivery to the system OS

P

(PFQ/Kernel)

C

(Driver)

SKB SKB SKB

P

(PFQ/Kernel)

C

(Driver)

SKB SKB SKB

Core 1

Core 1

Core 3

Core N

Figure 4. Pool of skbuffs

(when it acts as an endpoint) PFQ maintains this design,
while accelerating the skbuff memory allocations by making
use of pre–allocated pools of skbuff (Figure 4). Such pools
have a configurable maximum size and are instantiated one
per–core to avoid inter–core data sharing, as opposed to the
case of the standard OS kernel that, instead, implements a
single kmem cache of skbuff for the whole system. Initially,
each pool is empty and the skbuffs are allocated on–demand
by the device drivers (using the standard memory allocator
for skbuff ). After the completion of their processing, the
consumed skbuffs are parked in the pool for reuse. After very
short time, each pool contains enough recycled skbuffs to be
reused upon driver request, so that the kernel allocator is no
more needed.

In queueing terminology, the pool can be modelled as
a circular single producer/single consumer queue, in which
producer and consumer run on the same core.

As a special case, it is relevant to note that packets for-
warded to the kernel are normally freed by the OS itself
(through the standard kfree() function) after their use in
the system.

C. Batch queues

Once an skbuff is received by PFQ it is first placed in
a batch queue. PFQ maintains one batch queue per (active)
core. Essentially, these queues are standard FIFO used to
place packets before they are processed in batches by the
functional engines (when the queue is full or when a timeout
expires). Batch processing has demonstrated to be a very
effective acceleration technique for at least two reasons. The
first reason is that batching operations always improve the
temporal locality of memory accesses that, in turn, reduce
the probability of cache misses. However, the major effect
is determined by the dramatic amortization of the cost of
the atomic operations involved in the processing of packets.
Indeed, even the simple distribution of packets to sockets
requires at least a per–packet atomic operation. The use of
batch processing allows to decrease the cost of such an
overhead of a factor 1/batch size, with clear performance
improvement.



The size of the batch queues is configurable as a PFQ mod-
ule parameter. The impact of the batch queue and its length
will be next presented and discussed within the performance
section.

V. FUNCTIONAL PROCESSING

Packets backlogged in the batch queues wait their turn to
be processed by functional engines. Each functional engine
runs up to 64 distinct computations instantiated by upstream
applications through a functional language. Computations rep-
resent the compositions of primitive functions that take an
skbuff as input and return the skbuff possibly enriched with
a context specifying an action, a state and a log for I/O
operations. Actions are associated with the final endopoints
and the delivery mode (the packet fanout) of the packet. The
state is associated with annotations of metadata on packets
while logs represent information associated with the packet
that is possibly used to generate I/O.

In the functional world, such primitives are named monadic
functions and their composition is known as Kleisli composi-
tion; a more formal description of the algebra of PFQ com-
putations is provided in [4]. In addition, traditional functions
such as predicates, combinators, properties and comparators
are also available.

All computations instantiated on a functional engine are
executed sequentially on each packet and in parallel with re-
spect to the other instances of the same computations running
on other cores. However, since the functional paradigm does
explicitly forbid packet mutability, the order of execution of
computations on the same core is totally irrelevant.

Computations are executed at kernel space though they
are instantiated at user–space through the specially developed
Domain Specific Language named pfq–lang presented in sec-
tion VI-B. The use of computations is specially targeted at
offloading upstream applications by providing an early stage
of in–kernel processing.

Currently, the PFQ engine integrates about a hundred primi-
tive functions that can be roughly classified as: protocol filters,
conditional functions, logging functions, forwarding (to kernel
or to NIC) and fanout functions (mainly, steering).

The last category of functions is particularly relevant tas it
defines which (and how) applications end points will receive
packets. The next section focuses on this central point of PFQ
operations by introducing the concepts of groups and classes.

A. Groups and classes

One of the key feature of PFQ is the high level of granularity
that can be specified to define the final endpoints for packet
delivery. This is made possible by the introduction of a conve-
nient abstraction to let multi–threaded user–space applications
share and spread flows of packets.

Indeed, consider a single threaded application that receives
packets from one or more devices (in standard Linux, it can
be either a specific device or all of devices installed on the
system). Such an operation requires opening a socket and
binding it to the involved devices. The socket itself, hence,

acts as the software abstraction for the pipe where packets are
received.

In multi–threaded applications, threads reside on top of
multiple cores. In this context, the above abstraction of pipe
needs to be extended to let all of the threads involved in packet
handling receive only a portion of the data flowing in the
pipe. To this aim, PFQ introduces the abstraction of group
of sockets. Under this abstraction, each endpoint (thread or
process) opens a socket and registers the socket to a group.
The group is bound to a set of data sources (physical devices
or a specific subset of their hardware queues). In addition,
each group defines its own (unique) computation; hence, each
socket participating the group receives packets processed by
the same computation in the functional engine.

In a nutshell, a group can be defined as the set of sockets that
share the same computation and the same set of data sources.

Different groups behave orthogonally to each other, that
is they can transparently coexist on the same system and
implement arbitrarily different parallel schemes. In particular,
they can access at the same time any arbitrary data source and
process and redirect the full amount of retrieved traffic to the
registered applications.

The endpoints participating to the same group receives
packets according to the fanout primitives introduced at the
end of the previous section. Two basic delivery modes are:

• Broadcast: a copy of each packet is sent to all of the
sockets of the group;

• Steering: packets are delivered to the group of sockets
by using a hash based load balancing algorithm. Both the
algorithm and the hash keys are defined by the application
through the computation instantiated in the functional
engine. For example, the function steer_flow spreads
traffic according to a symmetric hash that preserves the
coherency of bi–directional flows, while the function
steer_ip steers traffic according to a hash function
that use source and destination IP address fields as mega–
flows.

Although the concept of group and its delivery modes
allow a significant flexibility to the design of user–space
applications, it turns out that in many practical cases they are
not sufficient to cover the fine–grained requirements of many
real network applications.

As an example, consider Figure 5 where a multi–threaded
application is monitoring traffic of an arbitrary service from
the two network cards reported at the bottom. The application
has reserved the special thread shown in the top right hand
side to receive the service control plane packets only, while the
remaining threads on the left hand side are devoted to process
data plane packets. All threads are registered to the same group
i but none of the delivery modes previously described allows
to separate traffic according to the application requirements.

The concept of classes allows to overcome the problem and
increases the granularity of the delivery modes in an elegant
way. Indeed, classes are defined as a subset of sockets of
the group (in fact, a subgroup) that receives specific traffic
as a result of in–kernel computations. Again, sockets belong-
ing to the same class may receive traffic either in broacast



λ1 λ2 λ3

NIC

Group i

Group i

socket…socketsocketsocket

Class 1 (data-plane) Class 2 (control plane)

NIC

Steering
Dispatching

Figure 5. PFQ functional processing and fanout

(here called Deliver) mode or in load balancing (here called
Dispatch) mode.

Coming back to the example of Figure 5, it comes out
clearly that the combined use of groups/classes and the func-
tional computation easily allow to fulfill the application re-
quirements. Indeed, traffic captured from the network devices
are filtered at the functional engines: at this stage, data plane
packets are sent in steering mode to the threads belonging
to Class 1 (in charge of collecting data plane packets) while
control plane packets are sent to the thread belonging to Class
2 (notice that, in this specific case, Deliver and Dispatch mode
are obviously equivalent).

Once again, Figure 5 evidences the total decoupling between
application level and hardware level parallelism allowed by
PFQ in which user–space threads join the group/class and
receive traffic according to their need without any knowledge
about the underlying configuration of hardware devices and
the parallel scheme implemented at the kernel level.

The maximum number of groups and classes allowed by
the PFQ architecture is 64 for both. Other practical examples
of use of groups and classes will be provided in the use–cases
section IX.

Groups access policy. Although the concept of group allows
different sockets to participate and share common monitoring
operations, for security and privacy reasons not all processes
must be able to freely access any active group. To this aim,
PFQ implements three different group access policies:

• private: the group can only be joined by the socket that
created the group;

• restricted: the group can be joined by sockets that belong
to the process that created the group (hence the group is
open to all threads of execution of the process);

• shared: the group is publicly joinable by any active socket
on the system.

BATCH

P1 P2

C

pkt header

pkt payload

Figure 6. Double buffered socket queue

VI. USER TO KERNEL SPACE COMMUNICATION AND APIS

This section describes how packets distributed from the in–
kernel functional engines actually reach user–space endpoints
and how user–space applications can actually take advantage
of the flexibility provided by the underlying PFQ computation
machinery. As such, in the following, the internal software
mechanisms that implement communication between PFQ and
user applications are reported. Next, the focus of the discussion
will turn onto the set of application programming interfaces
exposed by PFQ to actually build network applications.

A. User to Kernel space communication

Packets delivered to user–space sockets are placed on a
shared memory between user and kernel spaces where special
multiple producers/single consumers lock free queues are
allocated. The producers of the queues are the kernel threads
running the functional engines while the (single) consumers
are the user–space application threads. Each user–space socket
consumes packets from its own queue; in the following they
will be referred to as socket queues. In modern Linux systems,
such queues are allocated on 2 MB large hugepages [28]; when
this is not possible, PFQ automatically rolls back to standard
system pages of 4 KB size.

Socket queues (Figure 6) are equipped with a double buffer.
The use of a double buffer allows to decouple the operations of
producers and consumers. While the producers fill one buffer
with batches of packets, packets from the other buffer are
consumed by the user application. Each time the consumer
has exhausted the packets it triggers the atomic swap of the
buffer and start pulling packets from the other buffer.

The atomic swap is triggered upon the (atomic) replacement
of the index that identifies the active producer buffer together
with a read and immediate reset of the counter of packets
placed in the buffer by producers. This atomic swap is made
possible on any system in that the buffer index and the packet
counters are both contained on the same 32–bit integer, in the
higher and lower parts, respectively.

As a final remark, note that the socket queue does not
prevent packet losses. Indeed, whenever the consumer be-
comes slower than the producer, buffer overflow may occur
and packets are dropped.

Egress sockets. A specific discussion is needed when the
final endpoint is not a socket, but rather a network device.



In such case, the socket queue is not used and the communi-
cations is implemented in a different way. To this aim, PFQ
implements the special abstraction called egress socket that
adapts the PFQ interface towards generic endpoints with no
need to change the distribution operations.

B. Application Programming Interfaces
From the application programmer point of view, PFQ is a

polyglot framework that exposes native libraries for the C
and C++11-14 languages, as well as bindings for Haskell.
Moreover, beside the traditional APIs, PFQ additionally in-
cludes a Domain Specific Language (pfq–lang) that allows to
program the kernel–space computations from both embeddable
expressions (C++ and Haskell) and configuration files, by
means of its internal compiler. Finally, for compatibility with
a large number of traditional legacy applications, PFQ also
exposes an adaptation interface towards the standard pcap
library.

Native APIs. Native PFQ libraries include a rich set of
functions to control the underlying PFQ mechanisms, to handle
traffic capture/transmission, to retrieve statistics and to inject
in–kernel pfq–lang computations.

It is worth pointing out that the injection of the computa-
tions occurs once its formal correctness has been validated
at compile time by the C++/Haskell compilers, or by the
qlang compiler itself. Additionally, the correctness of the
computations is checked again by the kernel itself before being
enabled for execution.

pfq–lang. The packet processing pipeline (computation)
executed by functional engines can be described by composing
multiple functions implementing elementary operations. pfq–
lang provides a rich set of functions and is designed to
be extensible; this allows users to easily add functions for
their specific purposes. Like any functional language, pfq–
lang supports high-order functions (functions that take or
return other functions as arguments) and currying, that convert
functions that takes multiple arguments into functions that
take a single argument. In addition, the language includes
conditional functions and predicates to implement a basic code
control flow. Since pfq–lang is used to describe and specify
the packet processing logic, its purpose within PFQ is similar
to that of P4 [29] and Pyretic [30] in describing the data
plane logic of an SDN network or to that of Streamline [31]
to configure I/O paths to applications through the operating
system.

As an example, a simple function that filters IP packets
and dispatches them to a group of endpoints (e.g. sockets) by
means of a steering algorithm is described as:
main = ip >-> steer_ip

where ip is a filter that drops all the packets but IP ones, and
steer_ip is a function that performs a symmetric hash with
IP source and destination.

pfq–lang implements filters for the most common protocols
and several steering functions to serve user–space application
requirements. In addition, each filter is complemented with
a predicate, whose name begins with is_ or has_ by
convention.

Conditional functions allow to change the behavior of the
computation depending on a property of the processed packet,
as in the following example:
main = ip >-> when is_tcp

forward "eth1"
>-> steer_flow

The function drops all non–IP packets, forwards a copy
of TCP packets to eth1, and then dispatches packets to the
group of registered PFQ sockets in steering mode.

The following example shows a simple in–kernel compu-
tation for delivering packets by keeping subnet coherence to
multiple instances of a Network Intrusion Detection System
(e.g., to detect a virus spreading over a LAN):
main = steer_net "131.114.0.0" 16 24

The network under investigation is specified through its
address and prefix (131.114.0.0/16). The second prefix (24)
is used as the hash depth to spread packets across the NIDS
instances and preserving class C network coherence.

Libpcap adaptation layer. Legacy applications using pcap
library [32] can also be accelerated by using the pcap adap-
tation layer that has been extended to support PFQ sockets.
As an example, the availability of the pcap interface allows
multiple instances of single threaded legacy applications to run
in parallel as PFQ shared groups can be joined by multiple
processes.

However, in order to keep full compatibility with legacy
applications, the pcap adaptation layer is designed to maintain
the original semantic and leave the APIs unchanged. There-
fore, some specific options needed by PFQ native libraries
(such as the ones associated with groups/classes handling,
computation instantiations, etc.) are specified as either envi-
ronment variables or within configuration files.

Pcap acceleration is activated depending on the name of
the interface: if it is prefixed by pfq the library automatically
switches to PFQ sockets, otherwise it rolls back to traditional
PF PACKET sockets. In addition, multiple capturing devices
can be specified by interposing the colon symbol (:) between
the names of the interfaces (e.g., pfq:eth0:eth1).

It is worth noticing that PFQ is totally transparent to legacy
pcap applications running on top of it. As such, for example,
they can normally use Berkeley Packet Filters.

In practice, to run on top of PFQ, an arbitrary pcap appli-
cation such as tcpdump should equivalently i) be compiled
against the pfq–pcap library or ii) be executed by preloading
the pfq–pcap library by means of the LD_PRELOAD environ-
ment variable.

The following example shows four sessions of tcpdump
sniffing TCP packets from network interfaces eth0 and
eth1. The four sessions run in parallel on group 42 and
receive a load balanced quota of traffic that preserves the flow
coherency. The (first) master process sets the group number in
use, the pfq–lang computation (steer flow) and the binding to
the network devices. The additional three tcpdump instances
specify the PFQ GROUP only, in that all parameters are
already set.

PFQ_GROUP=42 PFQ_LANG="main = steer_flow" \



tcpdump -n -i pfq:eth0:eth1 tcp

PFQ_GROUP=42 tcpdump -n -i pfq
PFQ_GROUP=42 tcpdump -n -i pfq
PFQ_GROUP=42 tcpdump -n -i pfq

VII. PACKET TRANSMISSION

Although the paper focuses on the receiving side, it is worth
pointing out that PFQ supports packet transmission as well. As
such, this section briefly reports on the mechanisms adopted
by PFQ for packet transmission.

Roughly speaking, the transmission side of PFQ behaves
nearly symmetrically with respect to the receiving side.

Socket queues are still doubly buffered, but the role of
producers (the application threads generating traffic) and con-
sumers (the kernel threads in charge of forwarding packets to
network devices) is now reverted.

Packets placed into socket buffers by user–space applica-
tions are spread out over the different active kernel threads
by means of a hash function that acts as the software dual of
the RSS hardware function (named TSS). In turn, PFQ kernel
threads fetch packets from socket queues and pass them to the
network device drivers for transmission.

Throughout the rest of the paper, the transmission capability
of PFQ is mainly used in the experimental sections to feed
the PFQ receiving node with synthetic and real traffic for
performance evaluation purposes. In particular, the application
pfq-gen (included in the PFQ distribution) is used to gen-
erate traffic with the desired features (random IP addresses,
different packet lengths, etc.) and to replay real traces at
different speeds, with randomized (but flow coherent) IP
addresses, and so on.

In addition, the packet transmission capability of PFQ is
used to effectively accelerate the well known Ostinato traffic
generator [33]. A detailed report of this practical application
is provided in section IX-D.

Just as in the receiving side, the transmission mechanisms
of PFQ use pure vanilla drivers and take full advantage of
bulk network transmission whenever this feature is supported
(as in the latest ixgbe and i40e Intel driver versions). Bulk
transmission perfectly copes with the PFQ architecture, as the
batch mechanism is already present in both the receiving and
transmission sides. The experimental investigation reported in
the next section clearly evidences the benefits that this feature
brings to PFQ performance.

VIII. PERFORMANCE EVALUATION

This section aims at assessing the performance of the PFQ
architecture under different hardware, kernel and application
parallel schemes. Performance of real applications running
on top of PFQ will be evaluated separately in the section
dedicated to use–cases.

Although PFQ privileges flexibility and usability with re-
spect to bare performance, in order to be effective it must
be able to reach high–speed capturing and processing figures,
possibly at the expenses of a slight extra cost in terms of the
amount of system resources needed (i.e., number of cores).

monsters mascarawhiskey

lace

2 x 10G2 x 10G

2 x 40G

Figure 7. Experimental field trial

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

2

4

6

8

10

12

14

P
a
c
k
e
t 
R

a
te

 (
M

p
p
s
)

Line Rate

TSS = 1

TSS = 2

Figure 8. 10G packet transmission

The result reported in the following exactly demonstrates
that PFQ allows commodity hardware to reach top class
performance even by using pure vanilla drivers.

The experimental test bed used throughout the whole set of
measurements is shown in Figure 7 and is made up of two pairs
of identical PCs. Two (older) PCs (mascara and monsters)
with a 6-core Intel Xeon X5650 running at 2.67GHz on board
and equipped with an Intel 82599 10G NIC each, used for
traffic generation. Two (newer) PCs (whiskey and lace) with a
8-core Intel Xeon E5–1660V3 on board running at 3.0GHz and
equipped with an Intel XL710QDA2 40G NIC each and used
for traffic capturing and generation, respectively. In addition,
two more Intel 82599 10G NICs were added to whiskey in
order to receive traffic simultaneously generated by mascara
and monster on two 10 GB NICs at the same time. All of the
systems run a Linux Debian stable distribution with kernel
version 3.16.

A. 10G Speed Tests: Packet Transmission

Since PFQ is used to transmit traffic and stress the receiving
side, the first set of measurements has the purpose to show
that PFQ packet transmission is capable of reaching line rate
speed even in the classical worst case benchmark scenario of
64 bytes long packets. As reported in section VII, the user–
space application in charge of generating packets and feed the
PFQ transmission engines is pfq-gen, an open–source tool
included in the PFQ distributon.

Figure 8 shows that PFQ reaches the theoretical line trans-
mission rate in all but one case by using a single core (TSS =
1) for transmission. However, line rate performance is achieved
even in the case of 64 long byte packet by simply increasing
the transmitting kernel threads to 2 (TSS = 2).



200 400 600 800 1000 1200 1400

Packet Size (Bytes)

2

4

6

8

10

12

14
P

a
c
k
e
t 
R

a
te

 (
M

p
p
s
)

Line Rate

RSS = 1

RSS = 2

Figure 9. 10G packet capture: 1 user space thread

B. 10G Speed Tests: Packet Capture

The following set of tests aims at checking the pure captur-
ing performance of PFQ under different packet sizes, number
of capturing kernel threads and application threads. The user–
space application used to receive and compute statistics is
pfq-counters, a multi–threaded open–source tool included
in the PFQ distribution.

Figure 9 shows the performance of PFQ when
pfq-counters uses a single thread to receive traffic
from a 10G network interface for different packet sizes and
number of hardware queues (i.e., number of cores used for
capture).

In the worst case of 64 bytes long packets, PFQ is capable
of handling around 8.3 Mpps per core and, indeed, it requires
two kernel engines (RSS=2) to reach line rate performance for
all packet sizes.

When the application threads (belonging to the same mon-
itoring group) become two (Figure 10), a slightly different
number of kernel threads is needed due to the upstream
delivery mode. Indeed, the broadcast mode (Figure 10(a)))
requires PFQ to send an exact replica of all packets to both
threads (which makes an internal throughput of 20 Gbps at
full speed), while the steering mode (Figure 10(b))) spreads
statistically packets to the application threads. As a result, in
our system, broadcasting and steering packets require RSS =
3 to achieve full rate figures for all packets sizes. It is worth
noticing that in case of multiple application threads, a small
overhead is also introduced by the functional computations in
charge of distributing packets. This is the reason for the extra
core necessary with respect to the previous results of Figure
9.

C. Up to 40G Speed Tests

PFQ capturing performance has also been checked for traffic
rates of 20 and 40 Gbps.

The 20 Gbps performance test has been carried out by
making pfq-counters use a single thread to capture traffic
from two 10G network interfaces at the same time. In case
of tapping traffic from multiple devices, a particular attention
must be paid in the configuration of interrupt affinities (set

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

0

5

10

15

20

25

30

P
a
c
k
e
t 
R

a
te

 (
M

p
p
s
)

Line Rate (2X)

RSS = 1

RSS = 2

RSS = 3

(a) Broadcast

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

2

4

6

8

10

12

14

P
a
c
k
e
t 
R

a
te

 (
M

p
p
s
)

Line Rate

RSS = 1

RSS = 2

RSS = 3

(b) Steering

Figure 10. 10G packet capture: 2 user space threads

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

5

10

15

20

25

30

P
a
c
k
e
t 
R

a
te

 (
M

p
p
s
)

2 x Line Rate

RSS = 1

RSS = 2

Figure 11. 20G packet capture

with the handful tool irq–affinity, shipped with the frame-
work).

Although it would be possible to use the same kernel
threads to fetch packets from both NICs (suffering a sluggish
performance), Figure 11 reports the performance with RSS
set to 2 and each MSI–X interrupts bound to different cores
(which makes a total of 4 cores in use).

The results are consistent to the ones shown in Figure 9
and demonstrate that PFQ can seamlessly handle two 10G
interfaces independently and reach line rate in capturing traffic
from each of them by using 2 cores.



200 400 600 800 1000 1200 1400

Packet Size (Bytes)

10

20

30

40

50

60

P
a
c
k
e
t 
R

a
te

 (
M

p
p
s
)

Line Rate

Transmitted Packet Rate - i40e 1.3.47

Transmitted Packet Rate

Received Packet Rate, RSS = 1

Received Packet Rate, RSS = 2

Received Packet Rate, RSS = 3

Received Packet Rate, RSS = 4 - i40e 1.3.47

Received Packet Rate, RSS = 5 - i40e 1.3.47

Figure 12. 40G packet capture

When link speed increases up to 40 Gbps, capture perfor-
mance does not scale as well. Figure 12 shows transmission
and capture performance of PFQ by using both the 1.2.48 and
the recently released 1.3.47 versions of the Intel i40e driver.
Although Intel claim that XL710QDA2 40G NICs can reach
full speed with 128 bytes packet size, our results show that
only PFQ transmission performance gets close to line rate with
such a packet length (with the new driver), while full rate
capture is reached for packet sizes bigger or equal than 256
bytes. By carefully looking at the figure, an other interesting
point comes out as well: the sustained packet rate achieved
with two hardware queues (RSS=2) is lower than that of 10
Gbps interfaces! However, PFQ is totally driver agnostic and
does not introduce modifications in its internal mechanisms
when the underlying network devices change. The different
behavior of 1.2.48 and 1.3.47 driver versions, however, offers
a possible interpretation for such an “inconsistent” behavior.
Indeed, up to RSS = 3, the two drivers perform similarly, while
version 1.3.47 improves the sustained rate by increasing the
number of capturing cores up to 5. Version 1.2.48, instead,
does not show any performance improvement for RSS bigger
than 3 (the corresponding plots are therefore omitted). This
evidence, far from being a definitive proof, suggests that the
observed low capture figures (at small packet sizes) may be
caused by limitations still present in the i40e driver and we
expect that performance will significantly improve as the driver
will reach a maturity level compared to that of the ixgbe for
the 10 Gbps cards. Conversely, the above results confirm that
one of the main “pros” of PFQ, namely its full hardware
transparency, may turn into a “cons” as its performance can
be significantly affected by the underlying driver efficiency.

D. Software Acceleration

The performance results so far presented have been ob-
tained with PFQ parameter configuration finely tuned. Such
parameters are strictly connected to the software acceleration
mechanisms presented in section IV and in section VII. The
following experiments aim at evaluating the impact of such
acceleration techniques on the overall PFQ performance.

Figure 13 shows the effectiveness of using the pool of
skbuffs in boosting capturing performance. Interestingly,

0 200 400 600 800 1000

skb Pool Size

6

8

10

12

14

P
a
c
k
e
t 
R

a
te

 (
M

p
p
s
)

RSS = 1

RSS = 2

Line Rate

Figure 13. Skb pool acceleration

0 10 20 30 40 50 60

Batching Queue Size (Pkts)

4

6

8

10

12

14

P
a
c
k
e
t 
R

a
te

 (
M

p
p
s
)

Line Rate

RSS = 1

RSS = 2

Figure 14. Batch queue acceleration

the achieved throughput increases up to a pool size of 64
skbuffs and then slightly decreases. The most plausible
reason for such a slight performance drop may be found in
the way packet payloads are stored upon reception. Indeed,
the ixgbe driver allocates the DMA addressable memory in
pages of 4096 bytes that can accommodate up to 64 packets
of 64 byte size. When the number of skbuffs exceeds such
number, additional pages must be used and this may lead to
a little performance decrease.

Similarly, Figure 14 depicts the beneficial effect of packet
batching in the cases of one or two cores devoted to capture.
The results show that performance increases by enlarging the
queue length and that a batch size value of 32 packets is
enough to reach the maximum benefit (line rate speed in case
of RSS=2).

The beneficial effect of batch transmission is, instead,
reported in Figure 15. Once again, performance improves by
increasing the transmission bulk size until it reaches a plateau
at the value of 32 at which driver resources clearly saturate.

E. Libpcap acceleration

The last performance experiment of this section aims at
evaluating the effectiveness of PFQ in accelerating the pcap
library. A direct comparison against classic pcap library is
possible in that, similarly to PFQ, the underlying Linux
PF PACKET socket can take advantage of the multi–queue



0 10 20 30 40 50 60

Transmission Bulk Size (Pkts)

4

6

8

10

12

14

P
a
c
k
e
t 
R

a
te

 (
M

p
p
s
)

Line Rate

RSS = 1

RSS = 2

Figure 15. Bulk network packet transmission

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

2

4

6

8

10

12

14

16

P
a
c
k
e
t 
R

a
te

 (
M

p
p
s
)

Line Rate

pcap, RSS = 1

pcap, RSS = 2

pcap, RSS = 3

pcap, RSS = 4

pcap+pfq RSS = 1

pcap+pfq RSS = 2

pcap+pfq RSS = 3

Figure 16. Libpcap acceleration

support provided by the RSS technology. Hence, the kernel–
level capture system can be set to the parallel scheme of Figure
3(c) if the interrupt affinity is properly configured.

Figure 16 shows the results achieved by using a small pcap
application that simply counts packets when running on top
of the standard PF PACKET socket and on top of PFQ, under
different traffic packet sizes and different RSS values.

The performance improvement is evident and clearly shows
that PFQ can effectively accelerate legacy network applica-
tions traditionally based on the pcap library. In addition, it
is worth noticing that the multi–queue support provided by
the Intel NICs does not significantly improve the capturing
performance of PF PACKET socket that, indeed, hardly hits
2 Mpps rate, even with 4 hardware queues (RSS = 4).

The most likely reason for the observed libpcap performance
resides in the implementation of the PF PACKET socket,
and specifically involves the re–aggregation in a single queue
of skbuffs coming from different queues/cores. Indeed, this
operation is more efficient in PFQ because of its total lock–
free architecture and because of the batch–fashion policy
adopted to amortize atomic operations. Notably, both PFQ
and PF PACKET use a memory mapped area shared be-
tween kernel–space and user–space where packet payloads are
copied. However, PFQ uses HugePages (if properly config-
ured), whereas PF PACKET uses standard 4k system pages.

0 2 4 6 8 10 12 14

Backgroud Traffic Rate (Mpps)

50

60

70

80

90

100

C
a
p
tu

re
d
 P

a
c
k
e
ts

 (
%

)

PFQ - RSS = 1

PFQ - RSS = 2

PFQ - RSS = 3

PF_RING - RSS = 1

Figure 17. BPF filtered IP traffic with tcpdump

IX. USE–CASES

This section presents the use of PFQ in four practical
use–cases involving real network applications with increasing
complexity. Along with showing mere performance results, the
other – and somewhat primary – objective of the following
presentation is to evidence the high usability and flexibility
of PFQ in common monitoring scenarios where fine grained
parallel processing schemes are often necessary. The first three
use–cases are related to new and legacy network applications
monitoring traffic over a 10 Gbps link. The last use–case,
instead, deals with packet transmission and reports on the ac-
celeration of the widely known traffic generator Ostinato [33].

A. IP address traffic filtering

In this use case, a single instance of the well known
tcpdump sniffer is used to tap real packets of variable length
and source IP address set to 1.1.1.1 out of a synthetic aggregate
of 64 bytes long UDP packets. The real trace is played at 1
Gbps while background traffic is played at increasing packet
rates, up to link saturation. tcpdump runs on top of the pcap
adaptation layer of PFQ and packets are filtered by means
of native BPFs. All this is instantiated through the following
simple command line:
tcpdump -n -i pfq:eth3 "host 1.1.1.1" by

which the application registers to the first free group available
in the system on the network interface eth3 and specifies the
BPF filter “host 1.1.1.1”.

Figure 17 shows (in solid lines) the number of packets
received by the sniffer under different number of enabled
hardware queues. Notice that RSS = 2 is sufficient to reach
full rate filtering up to 6 Mpps disturb traffic but, the small
overhead introduced by both the pcap adaptation layer and the
BPF filter requires an extra core to achieve full capture rate
in all conditions.

In addition, Figure 17 also reports (in broken lines) the
performance of PF RING ZC in filtering IP packets. This
plot is reported to make clearer the trade–offs introduced by
the PFQ architecture with respect to a well known alternative
high–performing capture engine. The figure clearly shows that
PF RING ZC can sustain a higher traffic rate with one single
core (RSS = 1), reaching more than 70% capture rate in the



2 3 4 5 6 7 8

Traffic Rate (Gbps)

30

40

50

60

70

80

90

100
C

a
p
tu

re
d
 P

a
c
k
e
ts

 (
%

)

1 tshark session

PFQ + 1 tshark session

PFQ + 2 tshark sessions

Figure 18. RTP flow processing with tshark

worst case. However, to achieve 100% rate, PF RING would
need the use of two cores which, in turn, would require either
to run two instances of tcpdump or to implement an ad hoc
software module to re–aggregate at the user–space the packets
previously spread out by the RSS algorithm. PFQ (and its
pcap adaptation layer), instead, dispatches and re–aggregates
packets transparently to user applications: this allows a single
instance of tcpdump to receive all traffic at the cost of an
extra core (RSS = 3) to reach full rate performance.

B. RTP flow analysis

In the second use case, the pcap based tshark sniffer [34]
(from the wireshark package) is used to capture and recon-
struct RTP audio flows played at different speeds on a 10G
link up to link saturation, with or without the underlying PFQ
support. To this purpose, an instance of tshark runs with
the following command line:
tshark -i eth3 -z rtp,streams -q
Figure 18 shows that tshark alone does not catch up with

the input traffic pace and the percentage of captured packets
rapidly drops below 50% as the input rate increases.

When PFQ is enabled in the optimal setup of RSS = 2 (as
experimentally determined for this test), tshark performance
quickly increases, although a small percentage of packets are
dropped at high traffic speeds. Such packet are not dropped
by PFQ (which can easily handle 10G rate of packets longer
than 64 bytes). In fact, packets are dropped at the user–space
by tshark itself that cannot accomplish its computations at
such a high packet rate. By means of PFQ, this problem can
be elegantly overcome by increasing the number of user space
instances of tshark and by let them join the same group.
As a result, the top graph of figure 18 shows that the two
instances achieve 100% capture rate by receiving around half
of the overall packets to process.

The operation is easily accomplished by launching each of
the tshark instances through the following command line:
LD_PRELOAD=/usr/local/lib/libpcap-pfq.so

PFQ_CONFIG=/etc/pfq.pcap tshark -i eth3
-z rtp,streams -q that instructs tshark to use the
pcap adaptation layer of PFQ and to retrieve group parameters
and the steer_rtp computation that broadcasts RTCP

packets to a specific control–plane class, and dispatch RTP
flows to the user–plane one.

Although the above procedure allows to spread RTP/RTCP
traffic to multiple process instances, it still does not permit
tshark to properly reconstruct flows and prepare a statistic
summary. In fact, in order to accomplish such operations, both
tshark instances need to access to SIP messages associated
with the RTP flows. PFQ helps getting around this issues
through the use of a more complex computation:

steer_voip = conditional’ is_sip \
(class’ class_control_plane >-> broadcast)\
steer_rtp

that allows the two instances of tshark to receive (in broad-
cast) a copy of all SIP packets as a result of the convenient
SIP filtering computation.

The results shown in Figure 18 are actually obtained under
this setup with the two instances of tshark reporting the
RTP flow summary statistics at the end of their elaborations
on the received traffic.

C. LTE analyzer

The last monitoring use–case consists of a multi–threaded
application designed to natively run on top of PFQ to perform
per–user LTE traffic analysis and provide statistics, such as
number of packets sent and received, per–user TCP flow count,
TCP packet retransmission, etc.. In addition, the application
runs some basic security algorithms (e.g., SYN flood detec-
tion) and user protocol classification (through OpenDPI).

As a result, with respect to the previous scenarios, this
application represents a significant step ahead in benchmarking
PFQ features and performance, in terms of both (higher) com-
putation resources and fine–grained functional requirements.

Indeed, to complete the overall amount of computations,
LTE analyzer needs, on average, a few (around 10) thousands
of clock cycles per each processed packet. As it will be shown
in the following, this definitely requires multiple threads to
catch up with high traffic rates. In terms of functional features,
instead, the application requirements are directly induced by
the way LTE user plane (UP) traffic is carried over IP.

LTE packets are transported over GTP v1/2 tunnels. As
such, per–user analyses cannot leverage on the rough parallel
schemes provided by RSS, nor on steering functions that
spread traffic to application threads by hashing over the
canonical IP 5-tuple. The functional computations of PFQ
must, in this case, delve into the payload of GTP packets
and access user–information to distribute packets to upstream
applications. In addition, all application threads must access
the GTP control plane data (CP) to accomplish their analysis.

The above requirements are readily met through the GTP
related computations at the kernel level, and by means of
groups, classes and their configurable delivery mode for packet
distribution.

The results shown in Figure 19 are obtained under different
number of applications threads (sharing a common monitoring
group and registered to a common control plane class) that
receive:



2 4 6 8 10

Traffic Rate (Gbps)

60

70

80

90

100
C

a
p
tu

re
d
 P

a
c
k
e
ts

 (
%

)

1 thread

2 threads

3 threads

Figure 19. LTE analyzer

• UP packets on a per–user basis through the gtp_steer
kernel computation, in steering mode;

• all of the CP packets, in broadcasting mode.
A real GTP trace is played by pfq-gen at different speeds

over a 10 Gbps link up to its saturation. PFQ is optimally
configured to use two functional engines (RSS=2) that do not
overlap to those running the application threads. Figure 19
shows the percentage of received UP packets retrieved by the
LTE analyzer application with respect to the input traffic rate
and for different number of application threads.

The significant computation machinery of the application
does not allow a single thread to sustain more than 4 Gbps
input traffic. This is a classic case in which, the only way to
scale performance is to take advantage of parallelism. In our
case, it takes up to 3 application threads (though 2 threads
slightly suffer at full line rate only) to sustain a traffic rate of
10 Gbps.

D. Accelerated Traffic Generation

The last use–case refers to packet transmission and aims at
assessing the effectiveness of PFQ in accelerating the well
known traffic generator Ostinato. Ostinato is a highly
configurable open source traffic generator that supports a wide
variety of protocol templates for packet crafting. It is based
on a client–server architecture; the server (drone) runs each
engine as a single–thread of execution that uses the pcap
library for packet transmission.

Figure 20 shows the result of the experiment. Ostinato was
first run alone with the optimal value of 4 hardware queues
for transmission (although, as shown in section VIII-E, the
number of hardware queues used by the standard PF PACKET
socket does not make significant differences). The results show
that Ostinato alone can hardly reaches near full rate generation
speed in the only case of 1500 bytes long packets. In all
other cases its performance is clearly far from the theoretical
physical limit.

The use of PFQ significantly accelerates the application
performance, although line rate is achieved for packet sizes of
at least 128 bytes. However, even in the worst case of 64 bytes
long packets, PFQ allows to bring the Ostinato performance
above 10 Mpps transmission rate (i.e., yielding an acceleration

200 400 600 800 1000 1200 1400

Packet Size (Bytes)

2

4

6

8

10

12

14

P
a
c
k
e
t 
R

a
te

 (
M

p
p
s
) Line Rate

Ostinato

Ostinato + PFQ, TSS = 1

Ostinato + PFQ, TSS = 2

Ostinato + PFQ, TSS = 3

Ostinato + PFQ, TSS = 4

Figure 20. Ostinato packet transmission acceleration with PFQ

factor slightly larger than 7) with 3 transmitting kernel threads
and affinity setup that preserves the engines from running the
Ostinato drone itself. Conversely, the figure also shows that
no significant improvement can be noticed by increasing the
number of transmitting cores beyond 4.

X. CONCLUSION

The paper describes PFQ, an open source traffic processing
framework for the Linux OS designed to provide a flexible
and powerful platform for the development of parallel network
applications. At the lower level, PFQ implements a set of
software accelerated techniques to effectively handle traffic
capturing and transmission over standard network device
drivers. At a higher level, the platform integrates an in–kernel
programmable engine to perform early stage processing and
custom–defined distribution to user–space applications which,
in turn, can be designed according to any arbitrary parallel
scheme. In addition, PFQ provides software bindings and
APIs to several programming languages (namely C, C++ and
Haskell) as well as a fully featured adaptation layer to legacy
applications based on pcap library.

The system performance has been thoroughly assessed and
proves that PFQ reaches top class performance by hitting
full capture, transmission and processing rates on 10+ Gbps
links in pure speed–test benchmarking scenarios as well as in
practical network use cases.

ACKNOWLEDGMENT

This work has been partly supported by the EU project
BEBA and by the Italian MIUR project GreenNet.

REFERENCES

[1] Cisco Systems, “Cisco Visual Networking Index: Forecast and
Methodology,” June 2011. [Online]. Available: http://www.cisco.com

[2] “Pfq.” [Online]. Available: https://www.pfq.io/
[3] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi, “On multi—

gigabit packet capturing with multi—core commodity hardware,” in
Proc. of PAM’2012. Springer-Verlag, 2012, pp. 64–73.

[4] N. Bonelli, S. Giordano, G. Procissi, and L. Abeni, “A purely functional
approach to packet processing,” in Proceedings of the Tenth ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems, ser. ANCS ’14. New York, NY, USA: ACM, 2014, pp. 219–230.



[5] L. Braun et al., “Comparing and improving current packet capturing
solutions based on commodity hardware,” in IMC ’10. ACM, 2010,
pp. 206–217.

[6] V. Moreno, J. Ramos, P. Santiago del Rio, J. Garcia-Dorado, F. Gomez-
Arribas, and J. Aracil, “Commodity packet capture engines: Tutorial,
cookbook and applicability,” Communications Surveys Tutorials, IEEE,
vol. 17, no. 3, pp. 1364–1390, thirdquarter 2015.

[7] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle,
“Comparison of frameworks for high-performance packet io,” in Pro-
ceedings of the Eleventh ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ser. ANCS ’15. Washington,
DC, USA: IEEE Computer Society, 2015, pp. 29–38.

[8] F. Fusco and L. Deri, “High speed network traffic analysis with
commodity multi-core systems,” in Proc. of IMC ’10. ACM, 2010,
pp. 218–224.

[9] L. Deri, “Pf ring zc (zero copy).” [Online]. Available: http:
//www.ntop.org/products/packet-capture/pf ring/pf ring-zc-zero-copy/

[10] L. Rizzo, “Netmap: a novel framework for fast packet i/o,” in Proc. of
USENIX ATC’2012. USENIX Association, 2012, pp. 1–12.

[11] “Dpdk.” [Online]. Available: http://dpdk.org
[12] SolarFlare, “Openonload.” [Online]. Available: http://www.openonload.

org
[13] V. Moreno, P. M. S. D. Rı́o, J. Ramos, J. L. G. Dorado, I. Gonzalez,

F. J. G. Arribas, and J. Aracil, “Packet storage at multi-gigabit rates using
off-the-shelf systems,” in Proceedings of the 2014 IEEE Intl. Conference
on High Performance Computing and Communications, ser. HPCC ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 486–489.

[14] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a gpu-accelerated
software router,” in Proceedings of the ACM SIGCOMM 2010 confer-
ence on SIGCOMM, ser. SIGCOMM ’10. New York, NY, USA: ACM,
2010, pp. 195–206.

[15] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, L. Mathy, and
P. Papadimitriou, “Forwarding path architectures for multicore software
routers,” in Proc. of PRESTO ’10. New York, NY, USA: ACM, 2010,
pp. 3:1–3:6.

[16] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “Routebricks: exploiting
parallelism to scale software routers,” in ACM SIGOPS. New York,
NY, USA: ACM, 2009, pp. 15–28.

[17] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” SIGOPS Oper. Syst. Rev., vol. 33, no. 5, pp. 217–231,
1999.

[18] L. Rizzo, M. Carbone, and G. Catalli, “Transparent acceleration of soft-
ware packet forwarding using netmap,” in INFOCOM, 2012 Proceedings
IEEE, March 2012, pp. 2471–2479.

[19] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet pro-
cessing,” in Architectures for Networking and Communications Systems
(ANCS), 2015 ACM/IEEE Symposium on, 2015, pp. 5–16.

[20] W. Sun and R. Ricci, “Fast and flexible: Parallel packet processing with
gpus and click,” in Proc. of ANCS ’13. Piscataway, NJ, USA: IEEE
Press, 2013, pp. 25–36.

[21] F. Huici et al., “Blockmon: a high-performance composable net-
work traffic measurement system,” SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 79–80, Aug. 2012.

[22] SnabbCo, “Snabb switch.” [Online]. Available: https://github.com/
SnabbCo/snabbswitch

[23] Intel white paper, “Improving Network Per-
formance in Multi-Core Systems,” 2007. [On-
line]. Available: http://www.intel.it/content/dam/doc/white-paper/
improving-network-performance-in-multi-core-systems-paper.pdf

[24] S. Woo, L. Hong, and K. Park, “Scalable tcp session monitoring with
symmetric receive-side scaling,” KAIST, Tech. Rep., 2012.

[25] “Snort.” [Online]. Available: https://www.snort.org/
[26] Ntop, “Pf ring api.” [Online]. Available: http://www.ntop.org/pfring

api/pfring zc 8h.html
[27] DPDK, “Distributor module.” [Online]. Available: http://dpdk.org/doc/

guides/prog guide/packet distrib lib.html
[28] Linux Kernel, “Huge Pages Documentation.” [Online]. Available:

https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
[29] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[30] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker,
“Composing software-defined networks,” in Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation,

ser. nsdi’13. Berkeley, CA, USA: USENIX Association, 2013, pp. 1–14.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2482626.2482629

[31] W. de Bruijn, H. Bos, and H. Bal, “Application-tailored i/o with
streamline,” ACM Trans. Comput. Syst., vol. 29, no. 2, pp. 6:1–6:33, May
2011. [Online]. Available: http://doi.acm.org/10.1145/1963559.1963562

[32] Phil Woods, “libpcap mmap mode on linux.” [Online]. Available:
http://public.lanl.gov/cpw/

[33] “Ostinato: Packet traffic generator and analyzer.” [Online]. Available:
http://ostinato.org/

[34] The Wireshark Network Analyzer, “tshark.” [Online]. Available:
https://www.wireshark.org/docs/man-pages/tshark.html

Nicola Bonelli received the master degree in
Telecommunication Engineering from the Univer-
sity of Pisa, Italy. He is currently Ph.D. student
at the Department of Information Engineering of
University of Pisa. His main research interests are
functional languages, software defined networking
(SDN), wait–free and lock–free algorithms, transac-
tional data–structures, parallel computing and con-
current programming (multi–threaded) on multi–
core architectures. He collaborates with Consorzio
Nazionale Inter-Universitario per le Telecomuni-

cazioni (CNIT), and he is currently involved in the European Research project
BEBA (Behavioral Based forwarding).

Stefano Giordano received the Masters degree in
electronics engineering and the Ph.D. degree in
information engineering from the University of Pisa,
Pisa, Italy, in 1990 and 1994, respectively. He is an
Associate Professor with the Department of Infor-
mation Engineering, University of Pisa, where he
is responsible for the telecommunication networks
laboratories. His research interests are telecommu-
nication networks analysis and design, simulation of
communication networks and multimedia communi-
cations. Dr. Giordano was chair of the Communi-

cation Systems Integration and Modeling (CSIM) Technical Committee. He
is Associate Editor of the International Journal on Communication Systems
and of the Journal of Communication Software and Systems technically
cosponsored by the IEEE Communication Society. He is member of the
Editorial Board of the IEEE Communication Surveys and Tutorials. He was
one of the referees of the European Union, the National Science Foundation,
and the Italian Ministry of Economic Development.

Gregorio Procissi received the graduate degree in
telecommunication engineering and the Ph.D. degree
in information engineering from the University of
Pisa, Pisa, Italy, in 1997 and 2002, respectively.
From 2000 to 2001, he was a Visiting Scholar
with the Computer Science Department, University
of California, Los Angeles. In September 2002,
he became a Researcher with Consorzio Nazionale
Inter-Universitario per le Telecomunicazioni (CNIT)
in the Research Unit of Pisa. Since 2005, he is As-
sistant Professor with the Department of Information

Engineering, University of Pisa. His research interests are measurements,
modelling and performance evaluation of IP networks. He has worked in
several research project funded by NSF, DARPA, European Union and Italian
MIUR.


