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Abstract—Bilayer graphene has the very interesting property of
an energy gap tunable with the vertical electric field. We propose
an analytical model for a bilayer-graphene field-effect transistor,
suitable for exploring the design parameter space in order to
design a device structure with promising performance in terms
of transistor operation. Our model, based on the effective mass
approximation and ballistic transport assumptions, takes into
account bilayer-graphene tunable gap and self-polarization and
includes all band-to-band tunneling current components, which
are shown to represent the major limitation to transistor opera-
tion, because the achievable energy gap is not sufficient to obtain
a large Ion/Ioff ratio.

Index Terms—Analytical model, band-to-band tunneling, field-
effect transistors (FETs), graphene bilayer.

I. INTRODUCTION

THE PROGRESS of CMOS technology, with the pace
foreseen by the International Technology Semiconductor

Roadmap (ITRS) [1], cannot be based only on the capability to
scale down device dimensions, but requires the introduction of
new device architectures [2] and new materials for the channel,
the gate stack, and the contacts. This trend has already emerged
for the recent technology nodes and will hold—probably requir-
ing more aggressive innovations—for devices at the end of the
Roadmap.

In the last decade, carbon allotropes have attracted the at-
tention of the scientific community, first with carbon nanotubes
[3] and, since its isolation in 2004, with graphene [4], which has
shown unique electronic [5] and physical properties [6], such as
unconventional integer quantum Hall effect [7], [8], high carrier
mobility [4] at room temperature, and potential for a wide range
of applications [9]–[11], like nanoribbon FETs [12]. Despite of
the fact that graphene is a zero gap material, an energy gap can
be engineered by “rolling” it in carbon nanotubes [13] or by the
definition of lateral confinement like in graphene nanoribbons
[14]. However, theoretical [15] and experimental [16] works
have shown that a significant gap in nanoribbons is obtained for
widths close to 1–2 nm, which are prohibitive for fabrication
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technology on the scale of integrated circuits, at least in the
medium term.

Recently, theoretical models [17]–[19] and experiments [20]
have shown that bilayer graphene has the interesting property
of an energy gap tunable with an applied vertical electric field.
Anyway, the largest attainable gap is of a few hundreds of mil-
lielectronvolts, which make its use questionable for nanoelec-
tronic applications: Limits and potentials of bilayer graphene
still have to be shown.

From this point of view, device simulations can greatly help
in assessing device performance. Bilayer-graphene field-effect
transistors (BG-FETs) have been compared against monolayer
FETs, by means of the effective mass approximation [21] and
Monte Carlo simulations [22] in the ballistic limit, showing
really poor potential as compared to ITRS requirements [1].
These approaches, however, did not take into account some of
the main specific and important properties of bilayer graphene,
such as the possibility of tuning the band gap and the dis-
persion relation with the vertical electric field and dielectric
polarization in the direction perpendicular to the 2-D sheet.
Such problems have been overcome in [23], using a real-space
tight-binding (TB) approach. However, for the limited set of
device structures considered, the small band gap does not allow
a proper on and off switching of the transistor.

One limitation of detailed physical simulations is that, de-
spite their accuracy, they are typically too demanding from a
computational point of view for a complete investigation of
device potential. Analytical approaches could help in this case.
One example has been proposed in [24], but it has serious
drawbacks, because it completely neglects band-to-band tun-
neling and the dependence of the effective mass on the vertical
electric field, providing an unrealistically optimistic picture of
the achievable performance.

In this paper, we have developed a semianalytical model
for a bilayer-graphene FET with two gates to study the pos-
sibility of realizing a FET by tuning the gap with a vertical
electric field. The model has been validated through compar-
ison with results obtained by means of our full 3-D atomistic
Poisson–Schrödinger solver NanoTCAD ViDES [25], showing
good agreement in the applied bias range [23]. Interband tun-
neling proves to be the main limiting factor of device operation,
as demonstrated by the device analysis performed in the param-
eter space.

II. MODEL

In this section, we provide a detailed description of the
developed model, which is based both on a top of the barrier
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Fig. 1. (a) Real-space lattice structure of bilayer graphene. The bilayer
consists of two coupled hexagonal lattices with inequivalent sites A1, B1
and A2, B2 in the first and second sheets, respectively, arranged according
to Bernal (A2–B1) stacking. (b) TB band structure of bilayer graphene for
U = U1 − U2 = 0.5 eV. (c) Detail of the band structure in correspondence
of band minimum kmin: K is the Dirac point.

model [26] and on the calculation of all the interband tunnel-
ing components. In particular, we adopt the ballistic transport
and the effective mass approximation, whose main physical
parameters, such as the effective mass and the energy gap,
have been extracted from the energy bands obtained from a
pz-orbital TB Hamiltonian. Since we want to address long-
channel devices, short-channel effects have been completely
neglected, as well as inelastic scattering mechanisms, which are
expected to be negligible in this kind of material [6]. With re-
spect to more accurate atomistic models, the followed approach
may underestimate the actual concentration of carriers in the
channel, particularly for large drain-to-source (VDS) and gate
(VGS) voltages, when a parabolic band misses to match the
exact dispersion relation. However, we believe that the devel-
oped model represents a good tradeoff between accuracy and
speed.

A. Effective Mass Approximation

In order to proceed with the definition of an analytical model
based on the effective mass approximation, we first need an ex-
pression for the energy bands of bilayer graphene. The top view
of the bilayer-graphene lattice structure with carbon–carbon
distance a = 1.44 Å is shown in Fig. 1(a): A1–B1 atoms lay
on the top layer, while A2–B2 atoms lay on the bottom layer.
The energy dispersion relation can be computed by means of
a pz-TB Hamiltonian [27] considering two layers of graphene
coupled in correspondence of the overlaying atoms A1 and A2.

The energy dispersion relation reads [17]

E(k) =
U1 + U2

2

±
√

|f(k)|2 +
U2

4
+

t2⊥
2

± 1
2

√
4 (U2 + t2⊥) |f(k)|2 + t4⊥

(1)

where U1 and U2 are the potential energies on the first and
second layers, respectively, U = U1 − U2, t⊥ = −0.35 eV
is the interlayer hopping parameter [17], k = kxk̂x + kyk̂y ,
and [27]

f(k) = teikxa/2

[
2 cos

(
kya

√
3

2

)
+ e−i3kxa/2

]
(2)

is the well-known off-diagonal element of the 2 × 2 graphene
pz-Hamiltonian, where t is the in-plane hopping parameter (t =
−2.7 eV). In Fig. 1(b), the band diagram for U = 0.5 eV is
shown. As can be seen, bilayer graphene has four bands, which
are symmetric with respect to the coordinate axis. For large U
values, the “mexican-hat” behavior in correspondence of the
band minima can be observed, as shown in Fig. 1(c).

Let us now consider the third band [Fig. 1(b)], which corre-
sponds to the conduction band (same considerations follow for
the valence band, i.e., second band), and apply a parabolic band
approximation in correspondence of the minimum kmin, which
reads [17]

kmin =

√
U2 + 2t2⊥
U2 + t2⊥

U

2vF �
. (3)

The dispersion relation can now be expressed as [17]

E(k) =
Egap

2
+

�
2

2m∗ (|k| − kmin)2 +
U1 + U2

2
(4)

where

m∗ =
t⊥
(
U2 + t2⊥

)3/2

2U (U2 + 2t2⊥)
1
v2

F

; Egap =
Ut⊥√

U2 + t2⊥
. (5)

vF = (3at/2�) is the Fermi velocity, and � is the reduced
Planck’s constant.

As can be observed in (5), the effective mass m∗ has a
singularity for U = 0, which is clearly unphysical. In order to
avoid such an issue, energy bands in the range U ∈ [0, 0.14]
have been fitted with the parabolic expression in (4), within an
energy range of 2kBT from the band minimum (where kB is
the Boltzmann constant and T is the room temperature), and
using m∗ as a fitting parameter. In Fig. 2(a) and (b), we show,
for two different interlayer potential energies (U = 0 eV and
U = 0.1 eV), the TB energy bands as well as the parabolic
bands exploiting the analytical expression in (5) and the fitted
values for m∗, respectively. As can be seen, the fitted effective
mass manages to better match the TB band in the specified
energy range. In Fig. 2(c), we show the fitted effective mass
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Fig. 2. Comparison between energy dispersions obtained by means of the
(dashed–dotted line) analytical effective mass, (solid line) fitted effective mass,
and (circle) TB Hamiltonian for an interlayer potential equal to (a) U = 0 eV
and (b) U = 0.1 eV. (c) Analytical and fitted relative effective mass as
a function of the interlayer potential U . me is the free electron mass.
(d) αcond(U) and αval(U) as a function of the interlayer potential U .

for different U . In particular, for U < 0.14 eV, m∗ can be
written as

m∗

me
= 0.09U + 0.043 (6)

where me is the electron mass at rest and U is expressed in eV.
For larger values of U , (5) is recovered.

B. Electrostatics

Once obtained the expression for m∗, the electron concentra-
tion n can be expressed as

n =
ν

2

+∞∫
Ec

D(E) [f(E − EFS) + f(E − EFD)] dE (7)

where f is the Fermi–Dirac occupation factor, EFS and EFD

are the Fermi energies of the source and drain, respectively, and
ν = 2 is the band degeneracy. D(E) is the total density of states
per unit area (for the complete calculation, see the Appendix),
which reads

D(E) =
1

2π�

(
2m∗

�
+
√

2m∗

E − Ec
kmin

)
(8)

where Ec is the conduction band edge. If we define

fn(Ef ) =
m∗

π�2
kBT ln

[
1 + exp

(
Ec − Ef

kBT

)]

+
kmin

√
2m∗kBT

2π�
F1/2

(
Ec − Ef

kBT

)
(9)

where F1/2 is the Fermi–Dirac integral of order 1/2, the electron
concentration reads

n = [fn(EFS) + fn(EFD)] . (10)

Analogous considerations can be made for the hole concen-
tration p, which reads

p = [fp(EFS) + fp(EFD)] (11)

where

fp(Ef ) =
m∗

π�2
kBT ln

[
1 + exp

(
Ef − Ev

kBT

)]

+
kmin

√
2m∗kBT

2π�
F1/2

(
Ef − Ev

kBT

)
(12)

and Ev is the valence band edge.
Once n and p are computed, attention has to be posed on

how charge distributes on the two layers, i.e., on dielectric
polarization. To this purpose, we have numerically extracted,
from TB simulations, αval(U) and αcond(U), which repre-
sent the fractions of the total states in the valence band and
of electrons in the conduction band, respectively, on layer 1
[23]. We computed αcond(U) for a particular bias (U1 =
−U2 = U/2 and EF = 0 eV) and made the assumption that
its dependence on the bias can be neglected. As far as αval

is concerned, we assumed, in our considered bias range, that
all electron states in the valence band are fully occupied, and
therefore, f(E) = 1. Fig. 2(d) shows αcond(U) and αval(U)
as a function of the interlayer potential U . The charge density
ρj per unit area on layer j (j = 1, 2) is expressed as the sum
of the polarization charge, electrons, and holes and finally
reads

ρ1(U) = q {[1 − 2αval(U)] Ntot

− n [1 − 2αcond(U)] + pαcond(U)}
ρ2(U) = q {[2αval(U) − 1] Ntot

− nαcond(U) + p [1 − 2αcond(U)]} (13)

where q is the electron charge and Ntot is the concentration of
ions per unit area.

The considered device structure is a double-gate FET embed-
ded in SiO2. The bilayer graphene interlayer distance d is equal
to 0.35 nm, while two different oxide thicknesses t1 and t2 have
been considered [Fig. 3(a)]. An air interface between bilayer
graphene and oxide has also been taken into account (tsp =
0.5 nm) [28]. For such a system, we can define an equivalent
capacitance circuit as in Fig. 3(b), where C0 = (ε0/d), C1 =
[(t1/ε1) + (tsp/ε0)]−1, C2 = [(t2/ε2) + (tsp/ε0)]−1, and ε1 =
ε2 = 3.9ε0, while ε0 = 8.85 × 10−12 F/m. VTg and VBg are the
top- and back-gate voltage, respectively, V1 ≡ (−U1/q), and
V2 ≡ (−U2/q). In Fig. 3(c), the flat-band diagram along the
transverse direction (y axis) is shown. Metal work functions
for the back and top gates are equal to 4.1 eV [ΦBg = ΦTg =
4.1 eV], while the graphene work function (Φgra) is equal to
4.5 eV [29]. EFTg and EFBg are the Fermi level of the top and
back gates, respectively.
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Fig. 3. (a) Sketch of the considered BG-FET: d is the interlayer distance, and t1 and t2 are the top and back oxide thicknesses. (b) Equivalent capacitance circuit
of the simulated device. (c) Flat-band diagram of the BG-FET along the y-direction. (d) Conduction and valence band edge profiles in the longitudinal direction;
we assume that, deep in the source and drain regions, the electric field induced by the gate vanishes and that the gap gradually reduces to zero.

The conduction band edge inserted in (9) can be expressed as

Ec = ΦBg + EFBg − Φgra +
U1 + U2

2
+

Egap

2
. (14)

Applying the Gauss theorem, we obtain the following:{
C1(VTg − V1) + (V2 − V1)C0 = −ρ1

C0(V1 − V2) + (VBg − V2)C2 = −ρ2.
(15)

Equations (13) and (15) are then solved self-consistently
until convergence on V1 and V2 is achieved.

C. Current

Drain-to-source (JTOT) current is computed at the end of the
self-consistent scheme. As shown in Fig. 3(d), JTOT consists of
three different components: The first is due to the thermionic
current Jth over the barrier [26], whereas the second (JTS)
and the third (JTD) are due to band-to-band tunneling. In the
same figure, we show the conduction band edge ECS (ECD)
and the valence band edge EVS (EVD) at the source (drain).
Assuming reflectionless contacts, the thermionic current is due

to electrons injected from the source with positive velocity
vx > 0 and to electrons injected from the drain with vx < 0

Jth =
−q

π2�

+∞∫
−∞

dky

⎡
⎢⎣ ∫

k>
x

∂E

∂kx
f(E − EFS)dkx

+
∫

k<
x

∂E

∂kx
f(E − EFD)dkx

⎤
⎥⎦ (16)

where E = Ec + (�2/2m∗)(|k| − kmin)2, vx = (1/�)(∂E/
∂kx) is the group velocity, and k>

x (k<
x ) is the wave vector range

for which vx > 0 (vx < 0). For the complete derivation, see the
Appendix.

Let us now discuss the band-to-band tunneling current due to
the barrier at source (drain) contact, which reads

JTi = 2
∫
ky

∫
k>

x

q
1

2π2

1
�

∂E

∂kx
Ti(ky)

× [f(E − EFS) − f(E − EFD)] ∂kx∂ky, i = S,D

(17)
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Fig. 4. Comparison between analytical and numerical simulations of (a) ρ1

and ρ2 and (b) V1 and V2 as a function of VTg. VBg = 0 V and VDS = 0 V.
(c) Energy gap as a function of top-gate voltage, with VBg = 0 V.

where S refers to the source and D refers to the drain, while
Ti(ky) is the transmission coefficient at the different reservoirs.
The key issue in computing (17) is the definition of an expres-
sion for Ti(ky), which accounts for the band-to-band tunneling
process.

We have assumed a non-charge-neutrality region of fixed
width Δx at the contact/channel interface and an electric field
Ei = (Ec − EFi)/(qΔx) with i = S,D. For what concern the
JTS term, electrons emitted with electrochemical potential EFS

see two triangular barriers, one at the source junction and one
in correspondence of the drain [Fig. 3(d)], whose heights are
equal to Egap and widths are Wi = Egap/(qEi). Assuming the
same Δx for both source and drain junctions, the drain barrier
is transparent with respect to the source barrier, since, for large
VDS values, the electric field at the source is smaller than the
electric field at the drain barrier: TS(ky) is therefore essentially
given by the source junction barrier. The same considerations
follow for the other band-to-band tunneling current component
JTD, flowing only through the drain-channel contact. In this
case, E = Ec − EFD = (Ec − EFS + qVDS)/(qΔx).

Assuming the WKB approximation, the transmission coeffi-
cient can be expressed as

Ti(ky) = e
−2
∫

[Wb]
|Im{kx}|dx

, i = S,D (18)

where Im{kx} is the imaginary part of kx and is obtained from

�
2

2m∗ (|k| − kmin)2 = qEix − Egap, i = S,D. (19)

Finally, JTi is computed by performing the integral (17)
numerically.

III. EXPLORATION OF THE DESIGN SPACE

In order to validate our model, we have first compared
analytical results with those obtained by means of numerical
NEGF TB simulations [25], considering a test structure with
t1 = t2 = 1.5 nm, tsp = 0.5 nm, Φgra = ΦG = ΦBg = 4.1 eV,
VDS = 0.1 V, and VBg = 0 V. In Fig. 4(a)–(b), the electron
concentrations (ρ1, ρ2) and the electrostatic potentials (V1, V2)
on layers 1 and 2 are shown, as a function of VTg, for
VDS = 0 V and VBg = 0 V. As can be seen, results are in
good agreement. Some discrepancies, however, occur for larger

Fig. 5. (a) Thresholds as a function of the oxide thickness t2 for VDS =
0.5 V, VBG = 0 V, and EFS − ECS = 0.9 eV. (b) Thresholds as a function of
EFS − ECS for t2 = 1.5 nm, VDS = 0.5 V, and VBG = 0 V. (c) Thresholds
as a function of VBg for t2 = 1.5 nm, VDS = 0.5 V, and EFS − ECS =
1 eV. (d) Total current JTOT and its three components (JTS, JTD, Jth) for
VDS = 0.1 V, VBg = 0 V, and EFS − ECS = 0.5 eV. Thresholds are shown
along the coordinate axis. (e) Total current for t2 = 1.5 nm, VDS = 0.5 V,
EFS − ECS = 1 eV, VBG = 0 V, and different Δx values.

VDS (VDS > 0.2 V), where the parabolic band approximation
misses to reproduce band behavior for large ky . In Fig. 4(c), the
energy gap is shown as a function of VTg. As can be seen, even
for large VTg, the biggest attainable Egap is close to 0.15 eV.

Let us now consider the different contributions of the three
current components (Jth, JTS, and JTD) to the total current
JTOT [Fig. 5(d)]. For each of these components, we can define
a sort of threshold voltage, above which their contribution
is not negligible. In particular, Jth starts to be relevant as
soon as Ec ∼ EFS. We then define Vth as the VTg for which
Ec = EFS. Similarly, interband current JTS is not zero when
Ev ≥ ECS; therefore, we define VTS as the top-gate voltage for
which Ev = ECS. Finally, JTD is not zero in the energy range
ECD < E < EVS: We define V >

TD and V <
TD as the top-gate

voltages for which EVS = ECD; owing to these definitions, we
can qualitatively evaluate current contribution by observing the
band structure.

Our goal is indeed to obtain the largest value for the Ion/Ioff

ratio, and this is only possible if the band-to-band component
of the current is suppressed. We have considered three different
solutions to accomplish this task: by varying the back-gate
oxide (t2), by varying the EFS − ECS or EFD − ECD differ-
ence, or by simply varying the back-gate voltage. If otherwise
specified, Δx = 0.7 nm, as obtained from TB simulations of
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Fig. 6. Simulated band edges when (a) tunnel current weakly affects JTOT,
(b) JTS + JTD is one order of magnitude smaller than the total current, and
(c) interband tunneling current is the dominant component.

an abrupt junction with the same doping of the considered
BG-FET. In Fig. 5(a)–(c), the previously defined thresholds are
shown for the three considered cases.

As shown in Fig. 5(a), back-gate oxide thickness has no
effect in our case, since the top layer screens the electric field
induced by the top gate, as also shown in Fig. 4(b), where
V2 remains almost constant. Fig. 5(b) shows thresholds as
a function of (EFS − ECS) and, therefore, as a function of
dopant concentration. We observe that, for EFS − ECS = 1 eV,
V >

TD = V <
TD, so that JTD is practically eliminated, while JTS

increases since VTS becomes larger. In Fig. 5(c), we show
Vth and VTS, for EFS − ECS = 1 eV, as a function of VBg.
Unfortunately, the two curves have the same behavior, so that
VTS cannot be reduced to values smaller than Vth, or—in other
words—we cannot suppress current due to interband tunneling
at source contact.

We have then computed the transfer characteristics for VBg =
0 V, t1 = t2 = 1.5 nm, and EFS − ECS = 1 eV. In Fig. 5(e),
JTOT is shown. As can be seen, poor Ion/Ioff ratio can be
obtained since band-to-band tunneling at source contact is too
high as also observed in graphene FETs [30]. Reducing E , i.e.,
T (ky), could lead to a reduction of JTS and, consequently, to
an improvement of the Ion/Ioff ratio. As shown in Fig. 5(e), an
improved Ion/Ioff is obtained by increasing Δx to 5–10 nm,
but it is still lower than the ITRS requirements (104) for
digital circuits. In Fig. 6, we also sketch the simulated band
edges for three different cases: 1) when tunneling is negligible
(JTOT 
 JTi for VTg = 2 V); 2) when tunneling weakly affects
the total current (JTOT 
 10(JTS + JTD) for VTg = 0.4 V);
and 3) when tunneling represents the predominant component
(JTOT 
 (JTS + JTD) for VTg = −2 V).

IV. CONCLUSION

We have developed an analytical model for BG-FETs, suit-
able for the exploration of the design parameter space. The
model is based on some simplifying assumptions, such as

the effective mass approximation, but includes all the relevant
physics of bilayer graphene. First and foremost, it includes the
tunable gap of bilayer graphene with the vertical electric field,
which is exploited in order to induce the largest gap, when the
device is in the OFF state. It also fully includes polarization
of bilayer graphene in response to a vertical electric field. As
far as transport is concerned, it includes the thermionic current
components and all interband tunneling components, which are
the main limiting factors in achieving a large Ion/Ioff ratio.
Significant aspects of the model have been validated through
comparisons with numerical TB NEGF simulations.

Due to the small computational requirements, we have been
able to explore the parameter design space of bilayer-graphene
FETs in order to maximize the Ion/Ioff ratio. Despite applied
vertical field manages to induce an energy gap on the order
of 100 meV, band-to-band tunneling greatly affects device
performance, limiting its use for device applications. A larger
gap must be induced to make bilayer graphene a useful channel
material for digital applications, probably by combining dif-
ferent options, such as using bilayer graphene in addition to
limited lateral confinement, stress, or doping.

APPENDIX A

A. Density of States

The total density of states can be computed as follows,
performing the integral over the first Brillouin zone (BZ):

D(E) =
2

(2π)2

∫
BZ

δ

(
Ec +

�
2

2m∗ (|k| − kmin)2 − E

)
2πkdk.

(20)

If we apply the following property of the delta function:

δ [f(x)] =
∑

n

δ(x − xn)
|f ′(xn)| (21)

where xn are the zeroes of the function f(x), (20) reads

D(E) =
1
π

√
2m∗

�

1

2
√

E − Ec

∫
BZ′

δ(r −
√

E − Ec )

×
(√

2m∗

�
r + kmin

)
dr

=
1

2π�

(
2m∗

�
+
√

2m∗

E − Ec
kmin

)
(22)

where r = (�/
√

2m∗)(|k| − kmin).

B. Thermionic Current

In order to derive the expression of the thermionic current,
first, we have to compute the group velocity vx, which reads

1
�

∂E(kx, ky)
∂kx

=
1
�

∂

∂kx

(
Egap

2
+

�
2

2m∗ (|k| − kmin)2
)

=
�kx

m∗

(
1 − kmin

|k|
)

. (23)
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Replacing (23) in (16), we obtain

Jth =
−q�

π2m∗

+∞∫
−∞

dky

⎡
⎢⎣ ∫

k>
x

kx

(
1 − kmin

|k|
)

f(E − EFS)dkx

+
∫

k<
x

kx

(
1 − kmin

|k|
)

f(E − EFD)dkx

⎤
⎥⎦ .

(24)

In order to remove the singularity in (24) for kx = ky = 0,
we can use cylindrical coordinates, i.e., kx = k cos θ, ky =
k sin θ, and |k| = k. In this representation, the condition vx > 0
translates in{

k cos θ > 0
k − kmin > 0

{
k cos θ < 0
k − kmin < 0.

The integral (24) becomes

Jth =
2q�

π2m∗

kmax∫
0

k(k − kmin) [fS(E, k) − fD(E, k)] dk.

(25)

C. Transmission Coefficient

The tunneling transmission probability T (ky) has been com-
puted through the WKB approximation. The |Im{kx}| in (18) is
computed from the energy dispersion relation as follows: From
(19), we can write(√

k2
x + k2

y − kmin

)2

=
2m∗

�2

(
qEx − Egap

2

)
. (26)

Defining

β(x) =

√
2m∗

(
Egap

2 − qEx
)

�
> 0 (27)

and inserting (27) in (26), we obtain(
k2

x + k2
y

) 1
2 − kmin = iβ(x) (28)

which reads

k2
x =

(
k2
min − β(x)2 − k2

y

)
+ 2iβ(x)kmin. (29)

If we expressed kx as kx = a + ib(a, b ∈ �), k2
x reads

k2
x = a2 − b2 + 2iab. (30)

By comparing (29) and (30), |Im{kx}| simply reads

|Im{kx}| =

√
C +

√
C2 + 4β(x)2k2

min

2
(31)

with C = −k2
min + β2(x) + k2

y .
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