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We determine the excitation spectrum of a bosonic dipolar quantum gas in a one-dimensional geometry from
the dynamical density-density correlation functions simulated by means of reptation quantum Monte Carlo
techniques. The excitation energy is always vanishing at the first vector of the reciprocal lattice in the whole
crossover from the liquidlike at low density to the quasiordered state at high density, demonstrating the absence
of a roton minimum and thus the absence of superfluidity in the Landau sense. Gaps at higher reciprocal-lattice
vectors are seen to progressively close with increasing density, while the quantum state evolves into a quasi-
periodic structure. The simulational data together with the uncertainty-principle inequality also provide a
rigorous proof of the absence of long-range order in such a superstrongly correlated system. Our conclusions
confirm that the dipolar gas is in a Luttinger-liquid state and that the Feynman spectrum inferred from the static
structure factor yields in most cases an inaccurate description. The connection with ongoing experiments is
also discussed.
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Ultracold quantum gases with dipolar interactions are cur-
rently being produced in laboratory, where atomic 52Cr at-
oms have been Bose condensed,1 following earlier theoreti-
cal predictions.2 Experiments have been suggested,3 aimed to
produce molecular gases with large dipolar strengths, and a
few laboratories worldwide are working along these lines. In
fact, dipolar quantum gases are emerging as competitive re-
alizations of quantum devices4 and as a laboratory for inves-
tigating strongly correlated regimes5,6 and novel quantum
phases,7 in which quantum fluctuations are enhanced by ex-
ploiting techniques acquired for an accurate manipulation of
atomic gases. These include the possibility of lowering the
temperature, of tuning the interactions in both their long-
range tail8 and in the strength of their short-range part9 by
means of the Fano-Feshbach mechanism10 to let the dipolar
character11 emerge, and of reducing the dimensionality down
to one dimension, as already performed in other systems.12

One-dimensional �1D� quantum gases are naturally in-
clined to be strongly correlated.13,14 We have more recently
predicted that dipolar bosonic quantum gases confined in
quasi-1D geometries can reach correlation regimes well be-
yond those of the �already strongly correlated� Tonks-
Girardeau �TG� gas,15 crossing over to a dipolar-density-
wave �DDW� �Ref. 16� state at very large densities n on the
scale of the potential range, where the atoms arrange into an
ordered state regularly spaced by 1 /n. By a back-to-back
comparison with reptation quantum Monte Carlo �RQMC�
�Ref. 17� simulational data, we have shown that at the level
of the static structure factor, the crossover can be described
by a Luttinger-liquid �LL� theory with exponent K�1
continuously decreasing from K=1 nr0→0 to K→0 as
nr0→�. Finally, we have predicted the corresponding signa-
tures in the collective excitations of the trapped gas.18

Beyond the evidence emerging from the static structure of
the fluid, a clear-cut demonstration of Luttinger behavior re-

quires further understanding of the excitations in the homo-
geneous dipolar gas. In particular, answers to two relevant
questions are not obvious from the beginning. First, whether
rotonlike excitations may show up in the dipolar gas at finite
wave vectors. Second, whether the quantum fluctuations of
the phonon field prevent the existence of long-range order at
large densities, namely, whether the crystal order parameter
vanishes in the thermodynamic limit, as first discussed by
Bogoliubov.19 In fact, exploiting the uncertainty principle in-
stead of the Bogoliubov inequality, Pitaevskii and Stringari20

worked out an extension of the Hohenberg-Mermin-Wagner
theorem,21 which yields more accurate upper bounds to the
size of the order parameter at zero temperature, where the
quantum fluctations dominate. When applied to specific sys-
tems, the inequality may allow us to rule out the existence of
long-range order, as in the case of, e.g., 1D antiferromagnets
and crystals.20 Both questions above would have a definite
answer if the system were in a LL state, for which there is no
long-range order nor roton minimum.

We find that this is the case by means of a finite-size
analysis of the low-energy excitation spectrum, as extracted
from RQMC density-density correlation function in imagi-
nary time at the reciprocal-lattice vector Gm /n=2�m, m
=1, . . .4. The evolution of quasi-long-range order from the
TG to the DDW state emerges as a progressive closing of the
gaps in the excitation spectrum with increasing the order m.
By the same token, we show the absence of a roton mini-
mum at 2� in the whole crossover and that dynamical effects
play a significant role in building the Luttinger state. Our
results, analyzed by means of the uncertainty-principle
inequality,20 also rule out the existence of long-range order in
this superstrongly correlated quantum gas and confirm that
the 1D dipolar gas is in a LL state.

We model the 1D dipolar Bose gas by considering N at-
oms with mass M and permanent dipoles moments arranged
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along and orthogonal to a line, yielding purely repulsive in-
teractions. The Hamiltonian is

H = −
1

rs
2�

i

�2

�xi
2 +

1

rs
3�

i�j

1

�xi − xj�3
�1�

in effective Rydberg units Ry�=�2 / �2Mr0
2�. The effective

Bohr radius r0�MCdd / �2��2� is expressed in terms of the
interaction strength Cdd=�0�d

2 for magnetic and Cdd=d2 /�0
for electric dipoles.22 The dimensionless parameter rs
=1 / �nr0� determines the interacting regime in terms of r0
and of the linear density n. Since the potential-to-kinetic-
energy ratio scales as 1 /rs=nr0, large densities yield strong
correlations.

We determine the excitation spectrum while the parameter
nr0 spans the whole crossover from the TG to the DDW state
from the analysis of the imaginary-time density-density
correlation function: F�q ,��= ��q����q

†�0�� /N, where �q
=�i

Nexp�−iq ·xi���	 is the density-fluctuation operator at
wave vector q and imaginary time �, the sum spanning over
the N particles located at position xi. To compute this quan-
tity we resort to the RQMC technique,17,23 which is in es-
sence a path-integral method at zero temperature, where the
ground-state distribution is directly sampled in the internal
part of the path. Thus, the computation of the imaginary-
time-correlation functions is conceptually straightforward
and practically easy.

We use a trial wave function that is a product of two-body
Jastrow factors 	trial=
i�je

u��xi−xj��. As we are interested in
long-range behavior, we actually use the LL expression,

	trial�R� 
 

i�j
�sin

�

L
�xi − xj��1/K

, �2�

which in the low-density limit, where K=1,5 recovers the
wave-function of spinless noninteracting fermions. Different
choices of the wave functions, such as the product of Gaus-
sians centered on the lattice sites Rm=mn−1, result in differ-
ent time-step extrapolations for the energy, but eventually
lead to negligible differences in the computation of the
imaginary-time-correlation functions.

We perform simulations for different values of the number
N of bosons in a square box with periodic boundary condi-
tions, namely, N=40, 40, 60, 80, and 100, reaching in se-
lected cases N=200. We reduce finite-size effects by sum-
ming the interactions over ten simulation boxes. Ground-
state quantities of interest are computed at long enough
values of the projection time for which the energies saturate
and with a small enough time step to make the results inde-
pendent of the time step itself. The energy per particle as a
function of nr0 has already been provided in �Ref. 18� to-
gether with an accurate analytical form for it. This form re-
covers the known TG and DDW limiting behaviors and can
be used for further applications.

The energy of the low-lying excitations are extracted after
exploiting the Laplace transformation connecting F�q ,��
to the dynamical structure factor, that is, F�q ,��
=�0

�d� exp�−���S�q ,��. In practice, specific choices of
S�q ,�� are used, which introduce a controllable level of ap-
proximation in the method. We assume as suitable form for

the dynamical structure factor at zero temperature,

S�q,�� = �
i

�

Ai�q�
�� − �i� , �3�

and within this choice F�q ,��=�i=1,�Ai�q�e�i�q��, where � is
the number of excitation modes needed to yield the best �2

�chi-square� in the fitting procedure and depends on the val-
ues of q and nr0.

Before proceeding further, we notice that the specific
choice �3� implies an approximation. In order to control the
robustness of such a choice, we have considered different
forms for S�q ,��. In particular, we have �i� replaced the delta
functions in Eq. �3� with sharp peaked Gaussians and
�ii� assumed the form S�q ,��=A��−�min�q�	a for the lowest
mode �i�q� for ���min and 0 elsewhere, leading to
F�q ,��=A��a+1�exp�−��min�q�	��−a−1� valid in the long �
limit. In case �i�, we have found a worsened quality of the
fits which has prevented a systematic analysis, while in case
�ii� we have found insignificant changes in the qualitative
and quantitative picture as obtained from Eq. �3�.

We now turn back to analyze the dependence of the num-
ber of modes � on q and nr0. For low enough wave vectors
q indeed, the Feynman approximation corresponding to �
=1 is the best choice at all densities. While at q=2�, a mul-
timode description with ��2 is often needed as the density
is lowered, and in the extreme low-density limit—eventually
mapping into the noninteracting Fermi gas—two modes are
enough to fit F�q ,��. Best �2 values also correspond to best
degrees to which the f-sum rule �d��S�q ,��=2�nq2 is sat-
isfied. In the very high-density limit a single-mode fit of
F�q=2� ,�� has �2
0.003, while the f-sum rule is satisfied
within 2%. More modes are progressively needed for higher
momenta, such as q=4� and q=6�, at all densities. In the
intermediate and low-density regime, such as nr0=1 and 0.1,
the Feynman approximation yields a �2 of the order of 50 in
the most favorable cases, while addition of a second and
third mode allows us to improve the quality of the fit up to
�2�1 and �2�0.1. On increasing the number of modes, the
f-sum rule is fulfilled to a progressively better accuracy,
passing from a 70% level with one mode to 30% with two
and 10% with three modes. In the extreme low-density limit,
�2 values �2�0.02 and f-sum rule accuracies 5% are ob-
tained with two modes, the quality of the fit not improving
after adding more modes. In Fig. 1 the typical behavior of
the F�q ,�� is displayed, showing how the quality of the fit
improves while adding modes.

The emerging structure of the excitations is consistent
with the weights expected for the so-called type-I and type-II
modes of the Lieb-Liniger gas for 1D Bose systems.24 In the
long � limit of our RQMC simulations however, the behavior
of F�q ,�� will be dominated by the lower branch, i.e., the
type II excitations, as the upper branch has a much faster
exponential decay.

Figure 2 displays the resulting lowest excitation energies
��q�, at N=40, for nr0=1, 10, and 1000. Despite finite-size
effects, the overall qualitative behavior is already clear. At
low q values, where the Feynman approximation is suffi-
cient, the phonon softens while the density decreases and at
2�, where the number of modes needed to fit F�q ,�� are
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�=1 at nr0=1000 and �=3 for nr0=1 ,10, the gap seems to
be always closed at all densities.

As shown in the inset by the dotted curve, even at nr0
=1000 the excitation spectrum �solid line� is very different
from what could be obtained by replicating the portion from
q=0 to q=2� �dotted line�, indicating a nonperiodic struc-
ture. The dashed line represents ��q� as obtained in the
Feynman approximation ��q�=�2q2 / �2mS�q�	, which pro-
vides only an upper bound. As expected, the range of validity
of this approximation, that is, q /n→0, shrinks while lower-
ing the density or increasing q.

A quantitatively reliable measure of the gap sizes requires
an accurate size effect analysis. Figure 3 displays the 1 /N
scaling of ��q /n=2�� for nr0=0.01, 0.1, 1, 10, and 1000. In
all cases the finite-size lowest excitations energies yield a
linear scaling �N�q=2��=c�nr0� /N with the slope c�nr0� be-
ing an increasing function of nr0. We see that the gap is
closed at all densities, demonstrating the absence of a roton
minimum. The Feynman approximation is able to reproduce
the gap closure only in the high-density limit �see the inset of
Fig. 3�, while at the intermediate-to-low densities at least �
=3 modes are needed to get a vanishing gap.25 Breakdown of
the Feynman approximation for low and medium density is
caused by the absence of coherent density excitations at q
=2�. Indeed, the Feynman approximation assumes from the
start that a single coherent mode accounts for most of the
spectral weight. As the spectrum of density excitations in a
LL at q=2� is incoherent,24,26 the averaging of the full spec-
tral weight of the LL over a single mode overestimates the
mode energy and leads to qualitatively different conclusions.
A similar multimode analysis performed at q=2�m, m�2
shows the existence of open gaps, which progressively close
while the quasi-ordered state is approached.

Using these results, we can derive a strict upper bound for
the order parameter of the solid,

�q = N−1��
m

exp�iG · xm�� , �4�

with G as a vector of the reciprocal lattice and rigorously test
the qualitative conclusions from the inset of Fig. 2, namely,
that no long-range order may exist in our 1D dipolar quan-

tum gas. We closely follow the derivation of Pitaevskii and
Stringari.20 By applying the uncertainty-principle inequality

�A†,A��B†,B� � ���A†,B	��2 �5�

to the operators A= �̂q+G and B=��̂q /�t, one has

S�q + G�� d��2S�q,�� �
1

4m2�G
2 ��q · �q + G�2�� . �6�

From the RQMC data we know that as q→0,
S�q+G�→ �q�2K−1, while the second moment of S�q ,�� van-
ishes as �q�3. Thus, the order parameter in the long-
wavelength limit vanishes as �G

2 �qmin�2K,1� with K�0. Thus
no long-ranger order may exist unless K=0, which is how-
ever the limit of infinite density.

These results can be analyzed within the LL theory. We
want to calculate the imaginary-time � correlation function

F̃�x ,��= �T�e
i2��x,��e−2i��0,0�� on a finite-size system of length

L. It is known26 from bosonization that

F̃�x,�� =
���

L �2K

�sinh2��u�
L � + sin2��x

L �	K . �7�

This expression is valid in the long-time �low-energy� limit
u���, where � is now a short-distance cutoff of the order of
n−1, u is the velocity of the excitations, and K the Luttinger

exponent. After Fourier transforming F̃�x ,�� in q space with
q=2�j /L, we get

F�q,�� = ���

L
�2K

L22K+1−j e−��2�u��/L	�K+j�

�1 + e−�2�u��/L�K+j ���j + K�	

����K���j + 1�	−1
2F1�K + j,K; j + 1;e−�2�u��/L� , �8�

where 2F1 and � are the hypergeometric and Euler functions.
Using an ansatz e−��1�q� to fit the long-time behavior

F�q ,�→���e−��2�u��/L	�K+j�, we get

��q� =
2�uK

L
+ u�q� , �9�

where we have used the even parity of the response function.
Thus, there should be no roton gap at q=2� in the infinite
size limit. For finite size, an apparent roton gap �vanishing as
1 /L� can be seen. This gap can be traced to the zero mode
contribution to the correlation functions. All the fits to the
RQMC data presented in Figs. 2 and 3 reproduce remarkably
well this 1 /L scaling27 and are consistent with our previous
findings on the density dependence of Luttinger-K exponent
K�n�.5

In conclusion, the analysis of the RQMC simulational
data neatly leads to two main conclusions, namely, that there
are no roton excitations appearing at the first star of the re-
ciprocal lattice and that no long-range order may exist in the
whole crossover from the TG gas at low density to the qua-
siordered DDW state at high densities. The absence of a
roton gap implies the absence of superfluidity in this system,
according to the Landau criterion. The RQMC data analysis
is in remarkable agreement with what expected for a super-
strongly correlated LL state. The realization of 1D dipolar
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FIG. 1. F�q ,�� for nr0=0.1 and N=100. Symbols: RQMC data
�the error bars are not visible on this scale�. Curves: fits to the
RQMC data after including additional modes, which is �=1 �dotted
line�, 2 �dashed�, and 3 �solid line� modes. Adding a fourth mode
did not improve the quality of the fit. The reduced �2 changed from
1000 for �=1 to 0.2 for �=3.
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quantum �molecular� gases in the TG to the DDW regime is
within reach of current experimental efforts5,28 and thus our
predictions on the excitation spectrum, in particular, on the
absence of the roton minimum and of superfluidity, can be
tested in future experiments by means of, e.g., Bragg spec-
troscopy techniques.29
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FIG. 2. Lowest excitation energies ��q� in Ry� units and scaled
by �nr0�2 for a dipolar gas with N=40 and different values of nr0

=1, 10, and 1000 as in the legend. The symbols with error bars are
energies extracted using Eq. �3�; the solid line is a guide to the eye.
The curve at nr0=1000 is depressed by a factor of 5 for graphical
reasons. Inset: zoom on the ��q� at nr0=1000 up to q /n=8� for
different F�q ,�� models: multimode model �3� �solid� and Feynman
�dashed� approximation. Dotted line: periodic replica of the first
bump.
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