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Abstract

This paper outlines the development of a microwave heated apparatus for the
production of silicon carbide (SiC) based ceramic matrix composites via chemi-
cal vapor infiltration. An innovative pilot scale reactor was designed and built. A
coupled thermal and electromagnetic model was developed in order to predict the
temperature profile inside the reactor. The results obtained from the model demon-
strated that the electric field inside the sample was constant. This fact is partic-
ularly important in order to prevent the thermal instabilities (run-aways) that are
typical in the case of microwave heating. Therefore the heating was uniform with
the aid of a mode stirrer that achieved a better distribution of the microwave power
and then improved the process efficiency. The infiltration cycles were carried out
on SiC fiber preforms and resulted in an excellent average weight increase with re-
spect to the initial sample. By using microwave heating, the treatment times were
considerably reduced with respect to the conventional process times reported in
the literature. The microstructure of the SiC composites were observed by scan-
ning the electron microscopy in order to evaluate the quality and the degree of
densification which was achieved within the fiber tows. The SiC deposition inside
of the sample was sufficiently homogeneous and compact, even if a certain degree
of inter-tow porosity was still evident.
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composites, silicon carbide
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1. Introduction 
 

The importance of minimizing the impact that chemical processing produces on 

the environment is growing. Optimal use of material and energy, and an efficient 

waste management can be recognized as important factors for environmental 

protection. In fact one important element of sustainable chemistry, well-known as 

green chemistry, is commonly defined as the chemical research aiming at the 

optimization of chemical processes and products with respect to energy and 

material consumption, inherent safety, toxicity, environmental degradability, and 

so on (Anastas and Warner, 1998). Microwave processing of materials is a 

technology that can provide the material processor with a new, powerful, and 

significantly different tool with which to process materials that may not be 

amenable to conventional means of processing or to improve the performance 

characteristics of existing materials. Microwave radiation is, in principle, a clean 

source of energy since electric power can be produced from renewable resources. 

More importantly, microwave energy is transferred volumetrically, rather than 

superficially like in conventional heating, resulting in much fast and efficient heat 

transfer. Therefore significant energy savings are possible. The most likely 

candidates for future production-scale applications will be those which will be 

able to take full advantage of the unique characteristics of microwaves (Sheppard, 

1988).  

Ceramic matrix composites (CMCs) represent the latest entry in the field of 

composites for applications involving high temperature and harsh operating 

conditions, since a major shortfall of conventional ceramics is that they possess a 

low fracture toughness which can results in brittle failure (Chawla, 1993). CMCs 

combine the thermal and chemical resistance of monolithic ceramics with the 

mechanical strength of ceramic reinforcements with an improved fracture 

toughness when compared with ordinary ceramics. Ceramic matrix composites 

can be processed according to: (1) a gas phase route, also referred to as chemical 

vapor infiltration (CVI), (2) a liquid phase route including the polymer 

impregnation/pyrolysis (PIP), and liquid silicon infiltration (LSI) also called 

(reactive) melt infiltration (RMI or MI) processes, as well as (3) a ceramic route, 

i.e. a technique combining the impregnation of the reinforcement with a slurry and 

a sintering step at high temperature and high pressure.  

Conventional ceramic routes to producing CMCs require the use of high 

temperatures to sinter the individual ceramic particles of the matrix together, but 

sintering temperatures are typically much higher than the upper temperature limits 

of the fibers (Chawla, 1993). Recently a new technique, the nano-infiltration and 

transient eutectic (NITE) process, has been developed for silicon carbide (SiC) 

ceramic matrix composites primarily for thermo-structural applications (Katoh et 

al., 2002). NITE SiCf/SiC composites was developed for reduced porosity, 
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advanced matrix quality control, and strong fiber–matrix interface (Katoh et al., 

2004), but very high temperature of sintering are required (1700-1800°C). So only 

high thermal stability fibers, for example quasi-stoichiometric SiC fibers prepared 

at high temperatures [such as Tyranno SA (Ube Industries, Japan) or Sylramic 

fibers (Dow Corning, USA)] can be employed, in order to avoid fiber damaging.  

Also there is a certain degree of uncertainty whether a strong fiber-matrix 

interface is desirable for achieving high fracture toughness. 

Among industrially available matrix densification techniques, chemical 

vapor infiltration (CVI) best meets the quality requirements for CMCs (Besmann 

et al., 1995), particularly for the production of SiC ceramic reinforced with SiC 

fibers (SiCf-SiC composites) that present excellent high temperature properties 

including: high strength, high modulus of elasticity, low coefficient of thermal 

expansion, and hence good wear and thermal shock resistance, chemical stability 

and a greater fracture toughness than for unreinforced SiC. In the gas phase route, 

the different constituents of the composite, i.e. the interphase, the matrix and the 

external coating, are successively deposited from gaseous precursors at moderate 

temperatures (900–1100 °C) and under reduced pressures (or sometimes at the 

atmospheric pressure). 

Advantages of CVI  (Lovell, 1991; T.D. Gulden et al., 1990) vs. other 

fabrication methods, such as hot pressing, for densifying and fabricating 

composite materials are the following: 1) CVI is a near-net-shape process; 2) CVI 

minimizes the mechanical damage to the fibers as a result of the much lower 

pressures and temperatures employed in CVI, compared to those in other 

fabrication routes (Naslain, 1992 and 2004); 3) High purity of the matrix 

deposited by CVI. However, all CVI methods, just like other processing methods, 

leave a certain amount of void fraction or unfilled porosity in the composite, 

typically of the order of l-10%. Residual porosity may be open (i.e. accessible 

from the external surface) or closed, and interconnected or not. Whether and how 

residual porosity affects the performance of the final product depends on the 

materials, processing and application. 

The use of microwave radiation is a potentially attractive alternative due to 

its potential for generating a controllable inverse temperature profile during the 

heating of a ceramic fiber preform (Yin et al., 1997). To this end microwave-

heated CVI processes (MWCVI) have been recently developed (Cioni, 2007; 

Jaglin et al., 2006). Different from conventional heating, this method allows the 

creation of a temperature gradient from the center of the preform to its periphery 

(Yin et al., 1997). The surface of the sample can be cooler than the bulk because it 

releases heat by conduction/convection or radiation to the surrounding atmosphere 

and to the cavity walls which are much colder because they are built with low 

dielectric loss materials. Therefore the deposition of the ceramic matrix proceeds 

from the inside to the outside, avoiding the problems connected with the sealing 
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of the outer pores of the preform (Jaglin et al., 2006). By means of the MWCVI 

process high purity and high density SiC matrices can be obtained and preforms 

of very complex geometry can be successfully infiltrated, at operating 

temperatures between 900 and 1200°C. Since the pressure required by the process 

is low (1-100 kPa), the damaging of fibers and their reactions with the matrix are 

limited. Previous works carried out by Binner et al. (Yin et al., 1997; Timms et 

al., 2001), based on SiCf/SiC components (50 mm diameter, 10 mm thick), has 

shown that by using microwaves to enhance the CVI process, fabrication times 

can be reduced from hundreds of hours to around 30 hrs. 

Together to the advantages, described above, of microwave heating there 

some technical difficulties associated to the possible insurgence of thermal 

instabilities (run-aways). In fact in multimode applicator, which is more suitable 

for heating large objects with a complex shape, the intensity of the 

electromagnetic field varies from point to point due to the formation of stationary 

waves. This means that a given specimen to be heated received an amount of 

energy which varies from point to point. This can be the main problem in 

materials, like ceramics, characterized by low thermal conductivity resulting a non 

homogeneous distribution of temperature with some points (hot spots) much 

hotter than surrounding material. Since in many materials dielectric properties 

increase exponentially with temperature, the hot spots can reach extremely high 

temperatures even leading to local fusion of the material. These inhomogeneities 

in local temperature can even give rise to high internal stresses in the material, 

due to the differential thermal expansion, with formation of cracks and even 

leading to the fracture of the sample during heating. Therefore, in order to make 

the most of the microwave heating in this application the prediction of the 

temperature profile, the electromagnetic field and the prevention of thermal 

instabilities is of fundamental importance.  

Many different numerical schemes have been used to predict the 

electromagnetic fields in microwave systems. These schemes are based on either 

the time domain (TD) formulation or the frequency domain (FD) formulation. 

Numerical techniques to solve Maxwell’s equations in the time domain include 

the transmission-line matrix (TLM) method (Johns and Beurle, 1971), the finite 

difference time-domain (FDTD) method (Dibben and Metaxas, 1994), the 

moment method (MOM), line method (MOL), and the finite element time-domain 

(FETD) method (Yee, 1966). While FDTD has been very widely used in the past, 

FETD methods have also been developed in recent years (Lee et al., 1997). FETD 

is an outgrowth of advances in finite-element frequency-domain (FEFD) methods 

and presents several advantages over FDTD including the use of high-order vector 

basis functions to achieve high accuracy, unconditional stability to allow the time 

step to be taken independent of the mesh size, and the use of a single mesh that 

easily conforms to material interfaces. The use of he Faedo–Galerkin procedure 
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provides a very natural way for handling field and flux continuity conditions at 

material interfaces, thus further enhancing modeling accuracy (Lee et al., 1997). 

Therefore the use of Galerkin formulation offers a unifying approach for the 

exploitation of a variety of choices of trial functions, some of them more 

appropriate for specific types of geometries than others. For most materials the 

dielectric properties widely vary with temperature, so it is very important to 

predict thermal instabilities (run-away) that may occur during microwave heating. 

A two-dimensional model has been developed by Midha et al. (Midha and 

Economou, 1997 and 1998) in order to simulate chemical vapor infiltration of 

fiber-reinforced composite materials with radio frequency heating. The model 

equations, including energy transport, multicomponent mass transport, pore 

structure evolution and the power absorbed by the preform, were solved by a 

appositely written finite element method to study carbon chemical vapor 

infiltration in a cylindrical carbon preform.  

The objective of this work is the development of an innovative microwave 

heated chemical vapor infiltration pilot plat in order to produce silicon carbide 

based ceramic matrix composites. The conventional CVI process was modified 

and supplemented in order to reduce the CVI process time and to lower the cost of 

this typically expensive process. In literature a few examples of MWCVI 

processes are reported but only at laboratory level: an important characteristics of 

this research is that typical lab-scale technical solutions that are not suitable for 

industrial production plants, have been carefully avoided in order to easily carry 

out a scale up of this process.  A perspective pilot scale reactor was designed and 

built, in this work. Two commercial packages were used to predict the 

temperature profile and the electromagnetic field. A coupled thermal and 

electromagnetic model was developed, but using commercial software in order to 

easily apply the model to every type of sample geometry. A specifically 

developed code was written to couple the thermal and electromagnetic analysis in 

order to simultaneously estimate the electromagnetic field and the temperature 

profile inside the reactor with a series of iterative calculation steps.  

 

2. Experimental section 
 

2.1 Experimental apparatus 

 

In order to design and build the new MWCVI system (Fig. 1a and 1b) it was 

necessary to prepare: a system for generation and transfer of microwave energy to 

the preform to be heated, a flow system for the reagent and carrier gases in order 

to bring them in contact with the preform without contamination and in safety 

conditions, a system for the treatment of exhaust gases, and an advanced 

electronic apparatus of process control and management.  
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The Pilot Plant was designed after the thermal and electromagnetic 

modeling. 

a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) 

Fig. 1 An image of the MWCVI pilot plant (a) and the control station (b) 

 

2.1.1. The microwave section 

 

The microwave section of the pilot plant consisted of a 6 kW, 2.45 GHz Muegge 

variable power magnetron connected to the applicator by a rectangular wave 

guide. A circulator and a dummy water load were used to protect the magnetron 

from reflected power. A quartz window kept away the inlet from potentially toxic 

gases into the microwave generation section. A mode stirrer was used to improve 

the electromagnetic field homogeneity. The tuning of the microwave source with 

the applicator was carried out by a Muegge autotuner. All the electrical 

instrumentations close to the reactor (magnetron, autotuner, circulator) were 

located into a pressurized cabin to avoid potential deflagrations due to casual 

leakages of explosive gases used in the MWCVI process. 

 

2.1.2. The control system 

 

A computer station enabled the automatic control of the reactor temperature with 

a feedback loop on the magnetron power generator. The monitoring system 

allowed also the monitoring of the absorbed and reflected power, the cooling 

water temperature and the remote activation of the mode stirrer. The control 
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system automatically disabled microwave generation in case of insufficient or 

lacking water flow or when the bottom of the applicator-reactor was not fully shut 

during the experimental trials. 

 

2.1.3. The reactor 

 

The MWCVI reactor (section shown in Fig. 2) was a stainless steel (AISI 304) 

multi-mode cylindrical applicator, closed at both ends by two flanged disks. The 

inlet for the premixed reagent gases was located on the lower end. The microwave 

inlet port was positioned on the upper end. The reactor is provided of a mode 

stirrer with the function of distribute the electromagnetic field in order to 

guarantee a homogenous irradiation of the microwaves on the preform. It was 

necessary to use the most possible irregular shape to limit the possibility of 

stationary waves and hot spots in the applicator. Then the mode stirrer had 

manually distorted aluminum wings attached to each branch of the stainless steel 

cross. It was placed in the space between the closing disc of the inner chamber 

and the superior extremity of the reactor. Two optical pyrometers were used to 

control and monitor the temperature of the sample and the insulator. All electrical 

connections used suitable and deflagrating devices. 

 

2.1.4. The insulator and the preform 

 

The choice of the insulating material used for the inner lining of the reactor was 

particularly complex. An ideal insulating material needed to both show the 

characteristics typical of refractory and thermally insulating materials and, at the 

same time, it had to be transparent to microwaves to avoid thermal losses and 

even thermal run-away problems. A commercial alumino-silicate fiberboard 

(Duraboard 1600 from Unifrax, Saronno, I), with dielectric properties similar to 

mullite, was chosen for the insulation of the reactor. 

SiC preforms were obtained using 15-layer Ceramic Grade Nicalon NL 202 

(Nippon Carbon Co., LTD. Technical datasheet) woven fabric in the form of 

bricks of 20x40x80 mm in size. They were located orthogonal to the reactor 

longitudinal axis, in a refractory inner chamber assembled to create a flow 

directed through the preform. In the picture (Fig. 2) the arrows show that the 

reagent gas flow, in principle, can go through the sample thickness and also 

around the sample. The first layer (layer 1) is the nearest sample surface with 

respect to the reagent gas flux, the 7
th

 layer (layer 7) is in the center of the 

composite and the 15
th

 layer (layer 15) is on the upper surface. 
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List of metallic gates: 

1: Ar flux for the mechanical seal of metallic rotating parts 

2: Output of the exhausted gases and reaction products 

3-4-5: Input of inert gases (N2 or Ar) for cleaning 

 

Fig. 2 Section of the MWCVI reactor 

 
2.1.5. Experimental MWCVI trials 

 

Methyltrichlorosilane (MTS, Sigma-Aldrich, 99% of purity)) was used as the 

precursor material for SiC deposition (Lackey et al., 1998). The MTS gas (boiling 

point: 66°C) was produced by the vaporization of MTS liquid in a suitable 

temperature controlled vessel. When heated to around 1000 °C, MTS decomposes 

into SiC and HCl according to the following reaction: 

 

(g)H3HCl(g)SiC(s)(g)H(g)SiClCH
2233

++→+  

 

The technical gases used for the MWCVI trials were: 
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- Argon (Ar): it was used as gas carrier for MTS and H2 inside the 

reactor. After the infiltration, it was used in order to eliminate residual 

H2 inside the reactor and tubes. 

- Nitrogen (N2): it was used to fluxing the system in the preliminary 

phase and removing air and moisture  

- Hydrogen (H2): it was necessary in order to prevent the Carbon 

formation, for thermodynamical reasons (Fischman and Petuskey, 

1985).  

 

MTS was carried to the reaction chamber using a mixture composed of 

97.2% Ar and 2.8% H2 as gas carrier, with the gas flow passing through the 

sample thickness. The configuration chosen for the experiments carried out in this 

work is the isothermal and isobaric chemical vapor infiltration. Respect to the 

literature (Yin et al., 1997; Timms et al., 2001; Jaglin et al., 2006) the MWCVI 

pilot plant developed in this work presents the important characteristic of 

carefully avoiding typical lab-scale technical solutions, like the use of large 

components in quartz or other materials that are not suitable for industrial 

production plants, in order to easily carry out a scale up of this process. 

The MTS concentration could be controlled by the gas flow rate within the 

range 10-20 mol/hr, maintaining the MTS liquid at range of temperature between 

30°C and 40°C. The molar H2/MTS ratio was chosen between 500-1000. The total 

pressure of the reaction chamber was adjusted to 1.01 bar and the products of the 

reaction were removed with a scrubber system consisting of an aqueous solution 

of sodium hydroxide (Carlo Erba reagents, 97% of purity) with a concentration of 

15 g/l. The standard MWCVI process conditions applied during the experimental 

trial are summarized in Table 1.  

The residual gas (including H2 and Ar and MTS unreacted decomposition 

products) are vented into a fume head. At the end of infiltration, the MTS-H2 

stream and microwave power were shut off and argon was allowed to flow 

through the reaction vessel for a minimum of 2 hr until the sample had cooled 

down to room temperature and the toxic by-products were completely removed 

and neutralized. 

Table 1  Standard MWCVI Process Conditions 

 

Preform control temperature (°C) 1000-1050 

Total Pressure (bar) 1.01 

MTS reservoir temperature (°C) 30-40 

Hydrogen gas flow rate (mol/hr) 180 

Argon gas flow rate (mol/hr) 6250 

MTS fraction at inlet (voll. %) 0.15-0.30 

Molar H2/MTS ratio 500-1000 
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 A schematic diagram of the MWCVI system used to infiltrate the silicon 

carbide fiber preforms is reported in Fig. 3. 

 

 

Fig. 3 Scheme of the MWCVI reactor (G: generator 2.45 GHz, 6 kW; I: three port 

circulator; Z: water cooled dummy load; T: auto tuner; R: connected transition; 

F: quartz window; A: applicator; MS: mode stirrer; P: pyrometer; S: scrubber 

system; B: bubbler; FC: feed controller; TC: temperature controller) 

 

2.2 Measurements of the reflection coefficient 

 

The reflection coefficient S was measured by means of a Rohde&Schwarz ZVRE 

Network Analyzer in the 40MHz÷1GHz range and compared with values obtained 

by the electromagnetic model.  

The wave components required to the definition of S are shown in Fig. 4. 

The wave components from the gate n at the inlet and outlet, respectively an and 

bn, are defined in Equation (1), where n=1, 2:  

  
(1) 

Where 
n

V
+  and 

n
V

−  are voltages measured respectively at the inlet and at the 

outlet of the gate n. The other parameters are defined as following: 

    (2) 

The ratio b1/a1 is known as reflection coefficient, while b2/a1 is known as 

transmission coefficient because it relates the wave ingoing into the gate with the 

one outgoing the system.  

0Z

V
a n

n

+

=
0Z

V
b n

n

−

=

1

1
11

a

b
S =

2

1
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b
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2
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b
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2

2
22

a

b
S =
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1 

 
Fig. 4 Parameters for the determination of the reflection coefficient S 

 

3. Modeling 
 

The analysis of the microwave electromagnetic field was carried out using a 

commercial 3D full-wave FETD software, Ansoft HFSS, version 8.0.25 (Ansoft, 

2001). The Abaqus 5.8 F.E.M. package (Abaqus, 1998) was used to perform the 

thermal modeling. Both software packages were run using a AMD Athlon 

MP2000+ workstation operating at 1.667 GHz. The resolution of the EM problem 

with Ansoft HFSS does not account for thermal gradients in the material, so the 

temperature dependence of the dielectric parameters cannot normally be taken 

into consideration. This inconvenience has been circumvented by dividing the 

insulating material and the SiC preform into a series of finite elements each of 

which of a different set of dielectric constants.  

A specifically developed Fortran code was written to evaluate, from the 

temperature profile computed from Abaqus, the mean temperature of each finite 

element, used by Ansoft HFSS, and the corresponding real and imaginary part of 

the dielectric constant. In this way a sort of “dielectric constant profile” was 

obtained using ε'(T) and ε"(T) experimental data for mullite and SiC obtained 

from the literature (Goodson, 1997). Once the electric field, E, was calculated 

from Ansoft HFSS for each finite element, another specifically developed Fortran 

code was used to compute the dielectric heat generation ( dq� ) inside every element 

from the Equation (3): 
2

02 "( )
d

q f T Eπ ε ε=�                                                                                 (3) 

where f is the frequency and ε0 is the permittivity in vacuo.  

The total heat (
tot

q� ) was given by the sum of the dielectric heat generation 

and the irradiation heat (
i

q� ) in Equation (4): 

 

 ( ) ( )
4 4

Z Z

i A B
q C θ θ θ θ = − − −

  
�                                                               (4) 

where: 

 

1
11

−+

=

BA

F
C

εε

σ
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i
q�  is the irradiation heating flux per surface unit 

ϑA, ϑB and ϑZ
 are respectively the temperature of surface A, surface B and 

the absolute temperature  

σ is the Stefan-Boltzman constant 

εA and εB are respectively the emissivity of  surface A and surface B  

F is the effective factor of view. 

 

The procedure was iteratively repeated until a constant temperature was 

obtained for each element. The sample, the reactor, the wave guide, the mode 

stirrer and the insulator were modeled by meshing the structure, as shown in Fig. 

5a). In Fig. 5b) a scheme of the iterative modeling procedure is reported. The start 

point was a preliminary thermal analysis by means of Abaqus. At first a 

temperature profile was obtained, by fixing the initial and boundary conditions. 

The boundary conditions were 20°C for the atmosphere surrounding the sample, 

while the initial conditions for the SiC preform were 1200°C (maximum value of 

the temperature reachable by the sample).  

Consequently the nodal temperatures were acquired, and it was necessary to 

calculate the mean temperatures and hence the resulting dielectric properties of 

the elements in which the insulator was divided for the EM analysis. Then the 

magnetic field inside the reactor and the value of the electric field were outlined in 

each node by Ansoft HFSS. Finally the heating flux due to the electric field 

associated to each node was calculated and it was used as input for the Abaqus 

program and a iterative procedure was started. The condition of constant 

temperature was taken as satisfied when the difference of mean temperature for 

each element obtained from two different iterations was less then 2°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Modeling of the MWCVI reactor (a) and scheme of the iterative 

modeling procedure (b) 

a)                                                    b) 

 

 

Thermal analysis 

ANSOFT HFSS 

ABAQUS 

Electromagnetic 

Analysis 

nodal temperature 

electric field inside of the reactor 

11Cioni and Lazzeri: Modeling and Development of a Microwave Heated Pilot Plant

Published by The Berkeley Electronic Press, 2008



Regarding to the modeling of the mode stirrer, it is necessary to point the 

attention on some important elements. Although mode stirring has been used for 

many years, very little research has been carried out into modeling or optimizing 

the design of the mode stirrer. Recently the use of genetic algorithms has been 

examined to enhance stirrer design (Clegg et al., 2005). However the modeling of 

a stirrer inside a chamber is very time consuming as each stirrer position requires 

a separate run of the model. So, in this case the mode stirrer was designed by 'rule 

of thumb'. In this work, the mode stirrer was manually distorted aluminum wings 

attached to each branch of the stainless steel cross. The simulation and the 

measurements were carried out for different angles with respect to the microwave 

inlet port, 0°, 30° and 60° in order to reproduce the effects of the rotation of the 

mode stirrer. 

 

4. Results and discussion 
 

4.1 Modeling 

 

4.1.1. Thermal modeling 

 

Thermal modeling enabled the evaluation of the average temperature inside 

different zones of the MWCVI reactor. The electromagnetic field did not 

significantly alter the temperature profile, so the high temperatures reached in 

some nodes of the insulator could be attributed to the irradiated heat from the 

preform. The highest temperatures were reached in a zone under the preform and 

in the area above to the preform itself (Fig. 6). The temperature profile of the 

insulator resulted quite uniform and with acceptable values.  

 

 
Fig. 6 Modeling results after the thermal analysis 
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4.1.2. Electromagnetic modeling 

 

The aim of electromagnetic modeling was to evaluate the electromagnetic field 

inside the reactor and to verify its homogeneity in the insulator and in the 

preform, because a uniform electromagnetic field involved a homogeneous 

distribution of temperature and therefore a uniform MTS deposition. Then the 

electric field was determined in the preform and in the insulator. Ansoft HFFS 

gave the electric fields values in the nodes for different angles of mode stirrer, 

enabling the calculation of the mean value of the field in each element. In Fig. 7 

the results from the electromagnetic modeling are reported, respectively for 0° (a), 

30° (b) and 60° (c) of the angle of rotation of the mode stirrer. Values of electric 

field belonging to the same plane are quite comparable meaning that the 

electromagnetic field, even if it continuously changed during the rotation of mode 

stirrer, showed only small fluctuations around the average value. 

 

Fig. 7 Results of modeling for electromagnetic field in the preform for 0°(a), 

30° (b) and 60° (c) of mode stirrer 
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The different values of electric field assumed in several planes, may be due 

to the planarity of modeled mode stirrer that is not capable to fluster the electric 

field along Z axis and this could be solved by using the real mode stirrer. The 

electromagnetic field was rendered more homogeneous by employing the mode 

stirrer, in fact without it the field could assume dissimilar values with a sinusoidal 

mode, with the undesired consequence of a non uniform deposition of MTS 

during infiltration phase.  

 
 

Fig. 8 Results of modeling for the electromagnetic field inside the insulator 

for 0°(a), 30° (b) and 60° (c) of mode stirrer 

 

Fig. 8 shows that the mean value of the electromagnetic field in the insulator 

is lower or comparable with the related values calculated in SiC preform, except 

in some planes, in which values are higher. The planes nearest to the inlet of 

microwaves presented the highest values of electromagnetic field. That is 

probably due to the mode stirrer that was not able to disperse the electromagnetic 
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waves along the reactor axis, with the consequent accumulation of waves on the 

plane surfaces. Then the insulator could warm up, but slightly, because the 

heating of some points where the electric field was increased was well 

compensated by the big volume of the insulator. 

 

4.2 Experimental results 

 

4.2.1. Reflection coefficient measurements 

 

In Fig. 9 S11 parameter is reported as function of frequency in the range of 2.44-

2.46 GHz. The shape used for the mode stirrer (m.s.) effectively used in our 

MWCVI trials was too complex to be modeled with a fine element code like 

Ansoft HFSS. In fact it is necessary to use the most irregular shape possible to 

limit the possibility of stationary waves and hot spots in the applicator. Therefore, 

to the purpose of  model validation, it was decided to compare the experimental 

S11 data obtained with a m.s. with a simplified shape (in the form of a simple cross 

in stainless steel) with the values calculated by Ansoft HFSS. Moreover the 

experimental data for the simplified m.s. were also compared with that obtained in 

the case of the real mode stirrer. In order to reproduce the effects of the rotation of 

the mode stirrer, both the simulation and the measurements were performed for 

three different angles, with respect to the microwave inlet port, 0° (Fig. 9a), 30° 

(Fig. 9b) and 60° (Fig. 9c). This choose was made firstly because the stirrer was 

symmetric and secondly because the rotation speed of the mode stirrer (about 50 

rpm) was significantly lower than the frequency of the electromagnetic field (2.45 

GHz).   

The differences observed between the curves could be attributed to the fact 

that the material data used for modeling were quite different from that used in the 

real reactor and there could be imperfections that consequently increased or 

decreased the microwave absorption. Moreover the model did not consider the 

presence of nozzles. Taking into account these consideration, the agreement 

between the computed and measured S11 data for the simplified m.s. is quite 

satisfactory, thus validating the model. Data obtained from network analyzer 

showed lower values of S11 in case of the real mode stirrer that confirmed the 

need of a mode stirrer with a very complex shape in order to minimize the 

reflected power and then produce a more homogeneous electromagnetic field.  
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Fig. 9 S11 parameter as function of frequency in the range of 2.44-2.46 GHz 

[hfss: modeling data for simplified m.s.: experimental data for simplified m. s., 

experimental data for real m.s.: real mode stirrer oriented with angles of 0° (a), 

30° (b) and 60° (c)] 
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4.2.2. MWCVI trials 

 

In Fig. 10 is reported a typical temperature profile recorded during an 

experimental infiltration trial. The Nicalon fibrous preform was infiltrated for 

about 18 hours subdivided in four consecutive trials each with duration of 4.5 hr. 

Temperature is measured by an optical pyrometer placed under the Nicalon 

preform. About 3.5 kW of microwave power was required to heat the sample until 

the temperature of 1000°C in only 30 minutes, because of the high dielectric 

constant of silicon carbide. At this point MTS was allowed into the chamber to 

start the infiltration. The sample temperature was maintained constant 

(temperature of reaction) by the action of a PID controller that adjusted the power 

in order to keep the temperature constant. 

 

The densification rate of 15-layer fiber preform is shown in Fig. 11a) as a 

function of the MTS molar flow rate. It is clear that the densification rate 

enhanced with the increase of the reagent molar flux. In Fig. 11b) the weight 

increase vs. time is reported, showing that about 18 hr are needed to reach the 

70% of weight increase, with an average MTS molar flux of 15 mol/hr. Therefore 

the overall deposition of silicon carbide from the MWCVI process was resulted a 

linear function of the time. 

The layer 1 (Fig. 12a)), directly in contact with the reagent gas flux, resulted 

almost completely infiltrated with no visible porosity observed at SEM. This 

lower surface appeared more dense and compact. This type of deposition is not 

desirable since it can make the proceeding of the infiltration difficult if not 

impossible, due to the sealing of the outer pores of the preform. 

 

Fig. 10 Temperature profile for microwave chemical vapor infiltration 

of SiCf/SiC sample. 
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Fig. 11 Densification rate of 15-layer fiber preforms as a function of the 

MTS molar flux, during a multi-cycles process of 18 hr (a) - Weight increase (%) 

vs. time during a multi-cycles process of MWCVI, with an average MTS molar 

flux of 15 mol/hr (b). 

 

Fig. 12b) presents a SEM micrograph at 1500 x magnification of the section 

of the layer 4 of the SiCf/SiC composite surface after the microwave assisted 

infiltration. Although a certain increase in the diameter of the fibers were 

occurred, the composite contained an evident inter-tow porosity. Then the upper 

surface resulted more infiltrated than the inner layers. This effect is probably due 

to the fact that a portion of the gaseous reactive mixture bypassed the sample, 

flowing around it, filling up the chamber and infiltrating the sample from the 

opposite side respect to the inlet flux. In other terms, the mechanism of deposition 

in the outer layers was mostly due to convective mass transfer while in the inner 

layers only diffusion can take place during the infiltration. Comparing the surface 

layer with the more inner layer it is evident that, for the upper surface, the process 

was comparatively slower, resulting in a higher degree of porosity. Nevertheless 

the deposition resulted quite uniform with a large number of spherical micro 
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crystals on the fiber surface as showing in Fig. 13a) in comparing with the 

untreated Nicalon fibers (Fig. 13b).   

 

 
a) 

 
b) 

Fig. 12 SEM image showing sections of the SiCf/SiC sample under 1500 x 

magnification in the layer 1 (a) and layer 4 (b). 

 

These experimental evidences were apparently in disagreement with the 

results obtained by Jaglin (D. Jaglin, 2002) where a preferential densification of 

the SiCf/SiC composites occurred from the inside out. In that case the inverse 

temperature profiles that could be produced via microwave heating was fully 

exploited. However, in this work the experimental apparatus used did not allow 

for temperature measurements inside the sample, but only in its surface. This 

means that the only indication that an inverse temperature profile had been 

attained, during the microwave heating, would have been the observation of a 

larger degree of SiC deposition on the fibers located in the bulk of the sample. 
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This occurrence was not appreciated, but this does not rule out the possibility that 

an inverse temperature profile had really been attained. We believe that the reason 

why we observed a larger deposition on the outer surface nearer to the gas inlet is 

that the gas reagent flux was probably not well optimized. In fact MTS went 

straight against the lower surface of the composite and there it decomposed 

mainly by filling the more external pores present on the first layers. The gas 

mixture progressively decrease its content in reactive component (MTS) and also 

reaches the upper surface with a reduced mass flow rate. This can explain the 

reduced deposition observed for the outer layer. In general it is evident that, for 

the outer and the inner layers, the most of the inter- and intra-tow porosities were 

not fully infiltrated and sealed. However this fact is known also for composites 

produced with standard CVI, which generally contain macroscopic inter-fiber 

bundle pores which hamper several important properties related with composite 

rigidity and transport properties. 

Further MWCVI cycles will be needed in order to completely densify the 

preform, but, in order to further reduce the processing time, a future development 

of this research may be the combination of MWCVI with polymer impregnation 

and pyrolysis (PIP) (Nannetti et al., 2002; Donato et al., 1998) process for the 

preparation of SiCf/SiC composites. The PIP process could be only a possible pre-

treatment of the fibers in order to densify the preforms and finally CVI could be 

used to obtain a final SiC coating on the preforms densified. In this way it will be 

possible to considerably reduce the time to infiltrate the macro-pores that exist 

between the fiber tows. These can be hundreds of micrometers wide and 

consequently infiltrate much more slowly than the micropores that exist between 

the fibers within the tows.  

Fig. 14 shows the XRD patterns of composites SiCf/SiC after a MWCVI 

treatment with duration of 18 hr, respectively for the outer layer (Fig. 14a) and the 

inner layer (Fig. 14b). The SiCf/SiC composites resulted evidently crystalline and 

composed of a single β-phase. The absence of a large peak centered at about 22° 

in all XRD patterns of MWCVI produced composites suggested the lack of 

amorphous SiO2 (Kholmanov et al., 2002). Therefore the oxygen content in the 

MWCVI treated sample was considerably decreased respect the untreated fibers. 

This means that the plant was well-sealed and suitable in order to carried out 

operations in absence of moisture and air, which maybe responsible of silica and 

formation of compounds of silicon carbide affected by oxygen impurities. The 

sensible decrease of oxygen content in the obtained composite can be considered 

an important result because the high temperature mechanical properties of 

SiCf/SiC composites get considerably worse when oxygen is present in the 

material. 
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a) 

 
b) 

Fig. 13 SEM image at 1000 x magnification showing the silicon carbide deposits  

produced via MWCVI of the same fibers (a) and the untreated Nicalon fibers (b) 

 

The crystalline phases were identified on the basis of XRD patterns of α-

silicon carbide and β-silicon carbide reported in literature (Zhu et al., 1998; 

Tanaka et al., 2001) and they were evidenced in the same way either on the 

surface of the SiCf/SiC composite (layer 1) either in the inner part of the sample 

(layer 4).  The synthesis of β-SiC powders requires the use of temperatures lower 

than 1700°C because the β polytype (face-centered cubic crystal structure) is 

metastable, and it tends to transform to α polytypes (hexagonal or rhombohedral) 

at higher temperatures (Xu et al., 2001). Instead beta modification (β-SiC), with a 

face-centered cubic crystal structure, is formed at temperatures of below 2000 °C 

and it is reasonable that it can be found in composites produced in these work, 

where the maximum temperature measured was 1050°C. There was no evidence 

of alpha silicon carbide (α-SiC, with the typical hexagonal crystal structure) 
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because it is known that it is formed at temperatures greater than 2000 °C (Ortiz et 

al., 2001). 

 
a) 

 
b) 

Fig. 14 XRD pattern of layer 1 (a) and layer 4 (b) of MWCVI treated SiC sample 

5. Conclusions 

Results obtained from the coupled thermal and electromagnetic model developed 

in this work showed a relatively constant electric field inside the sample, and a 

rather uniform heating. The simulation results showed a negligible heating inside 

the chosen insulator. The temperature and electric field were reasonably constant 

in the sample, allowing a uniform heating when, in order to improve the process 

efficiency, a mode stirrer is used to achieve a better distribution of microwave 

power. An uniform deposition of MTS on silicon carbide fibers predicted by this 
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result was confirmed by the experimental evidences. In fact an average weight 

increase of about 70% respect to the initial sample was achieved in 18 hr of 

microwave treatment. The silicon carbide deposition inside the sample was 

sufficiently homogeneous and compact, with an evident inter-tow porosity was 

still present. The densification of the SiCf/SiC composites results deeper from the 

lower to the upper surface, because the gas reagent flux was not yet well 

optimized. However the results obtained during these MWCVI trials suggest that 

the optimal heating, the deposition patterns predicted for microwave heating and 

the reduced infiltration times are successfully achievable. Therefore this work can 

be considered a first pioneering step towards the development of an innovative 

MWCVI pilot plant.  

 

Notation 

 

q�  dielectric heat generation flux 

a wave components from the gate n at the inlet  

b wave components from the gate n at the outlet 

E Electrical field 

f  frequency  

S reflection coefficient 

T Temperature 

V- voltages measured at the outlet of the gate n 

V+  voltages measured at the inlet of the gate n 

  

Greek Letters  

ε permittivity 

  

Subscripts  

0 vacuum 

i irradiation 

d dielectric 

n Gate 
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